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We obtain sufficient conditions for the noncoincidence of the phase transition tempera-
tures and illustrate this result by examples of problems in two-phase elastic media. We
also indicate some cases where equilibrium states exist or not depending on the values
of the temperature lying between the lower and upper phase transition temperatures.
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1. Introduction

If the surface energy of the boundary of the interface of phases is not taken into account, the
energy functional of a two-phase elastic medium is given by the formula [1]

I[u, χ, t] =
∫

Ω

{χ(F+(∇u) + g+ · u + t) + (1 − χ)(F−(∇u) + g− · u)} dx +
∫

∂Ω

f · u dS, (1.1)

where the measurable characteristic function χ is a distribution of the phases in a bounded
domain Ω ⊂ Rm, m � 2, with Lipschitz boundary, g± and f are fixed exterior force fields, t ∈ R1

is the temperature (we assume that t is constant in the domain), and u is the replacement field.
Ω ∈ Rm, m � 2.

We denote by Rm×m the space of m × m-matrices and by Rm×m
s the space of symmetric

m×m-matrices. To describe the quadratic strain energy density of each of the phases F±(M),
M ∈ Rm×m, we introduce a linear mapping A± : Rm×m

s → Rm×m
s such that

(A±ξ)ij = a±ijklξkl, ξ ∈ Rm×m
s ,

where the sum is taken with respect to related indices from 1 to m and

a±ijkl = a±jikl = a±ijlk = a±klij, a±ijklξijξkl � ν|ξ|2.

Translated from Problemy Matematicheskogo Analiza, 41, May 2009, pp. 37–48.

1072-3374/09/1592-0168 c© 2009 Springer Science+Business Media, Inc.

168



In the last inequality, ξ ∈ Rm×m
s , ν is a positive constant, and |ξ|2 = ξijξij . Under these

assumptions, A± are symmetric in Rm×m
s relative to the Hilbert–Schmidt inner product

〈ξ1, ξ2〉 = tr ξ1ξ2, ξ1, ξ2 ∈ Rm×m
s ;

moreover, A± are invertible. We set

F±(M) = 〈A±(e(M) − ζ±), e(M) − ζ±〉,

M ∈ Rm×M , e(M) =
M + M∗

2
, ζ± ∈ Rm×m

s ,
(1.2)

where the matrices ζ± are interpreted as the residual strain tensors. By (1.2), for M = ∇u the
matrix e(∇u) has entries

eij(∇u) =
ui

xj
+ uj

xi

2
.

It is the strain tensor for the displacement field u.
To describe the domain of the functional (1.1), we fix a measurable subset Γ ⊂ ∂Ω and a

function u0 ∈ W 1
2 (Ω, Rm). We set

X = {u ∈ W 1
2 (Ω, Rm) : u(x) − u0(x) = 0 for x ∈ Γ},

Z = {χ ∈ L∞(Ω) : χ(x) = χ2(x) almost everywhere in Ω}.
(1.3)

For the domain of the functional (1.1) we take the sets X and Z.
By an equilibrium state of a two-phase elastic medium for fixed t we mean a solution to the

variational problem

I[û, χ̂, t] = inf
u∈X,χ∈Z

I[u, χ, t], û ∈ X, χ̂ ∈ Z. (1.4)

An equilibrium state is said to be one-phase if χ̂ ≡ 0 or χ̂ ≡ 1 and two-phase in the opposite
case.

In the case Γ = ∅, it is easy to see that the following condition is necessary for the solvability
of the problem (1.4):

g+ = g− ≡ g,

∫

Ω

g · v dx +
∫

∂Ω

f · v dS = 0 for all functions v(x) = Bx + x0, (1.5)

where B is a skew-symmetric m × m-matrix and x0 ∈ Rm.
The functional (1.1) with the domain (1.3) is not, in general, lower semicontinuous [2].

Therefore, traditional direct methods of the Calculus of Variations [3] cannot provide us with
a positive answer to the question about the solvability of the problem (1.4). Furthermore, it
is not reasonable to use the approach of [4], based on the study of the quasiconvex hull of the
energy functional (1.1), since the integrand explicitly depends on u and x.

There are approaches to the study of the problem (1.4) based on the use of the explicit
form of the functional (1.1). One approach allows us to reduce the variational problem (1.4) to
a boundary value problem for a system of first order differential equations. In this direction,
the solvability of the problem (1.4) is proved in the case of homogeneous isotropic two-phase
media under some additional assumptions on the energy densities and boundary conditions and
a number of model one-dimensional problems were also considered (cf. [5]–[7]).
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The other approach is based on the notion of the phase transition temperatures. Keeping in
mind formula (1.1) for the energy functional, it is reasonable to suggest that there exist numbers
t± such that

−∞ < t− � t+ < ∞
for t < t− there exist only one-phase equilibrium states with χ̂ ≡ χ+ ≡ 1,

for t > t+ there exist only one-phase equilibrium states with χ̂ ≡ χ− ≡ 0,

for t = t± there exist equilibrium states with χ̂ = χ± respectively,

for t− < t+, t ∈ (t−, t+) there are no one-phase equilibrium states.

(1.6)

The numbers t± (if they exist) are called the upper temperature and lower temperature of phase
transitions. The conjecture (1.6) asserts the existence of equilibrium states for t � t− and t � t+,
but not for t ∈ (t−, t+). Therefore, for t− = t+ the problem (1.4) is always solvable, whereas for
t− < t+ and t ∈ (t−, t+) the solvability question remains open.

We set
I±[u] =

∫

Ω

(F±(∇u) + g± · u) dx +
∫

∂Ω

f · u dS, u ∈ X. (1.7)

A sufficient condition for the existence of the phase transition temperatures was formulated in
[8] in terms of the solutions û± to the variational problem

I±[û±] = inf
u∈X

I±[u], û± ∈ X. (1.8)

It is obvious that the variational problem (1.8) is uniquely solvable. The functions û± determine
the equilibrium displacement fields for one-phase problems with energy densities (1.2).

The following assertion holds (cf. [8]).

if g+ − g− ∈ L∞(Ω, Rm), û± ∈ W 1
∞(Ω, Rm),

then the phase transition temperatures t± exist.
(1.9)

There are examples with t− = t+, as well with t− < t+. To the first kind of examples we
can relate the problem (1.4) with g+ = g− = 0, Γ = ∅, and f = qn, where q is a constant (the
external hydrostatic pressure) and n is the field of unit normals to ∂Ω (cf. [9]). Examples of
second kind are presented in [4]–[8] (except for several degenerate cases) with Γ = ∂Ω.

From the unique solvability of the problem (1.8) it follows that

if one of the following equalities holds: I+[û+] = I+[û−] or I−[û−] = I−[û+],

then û+ = û− ≡ û0 and both equalities hold simultaneously.
(1.10)

The goal of this paper is to find sufficient conditions for the realization of the inequality
t− < t+ and to illustrate the result obtained by a number of examples.

Theorem. Suppose that the phase transition temperatures exist and one of the equalities in
(1.10) is satisfied. Then the following assertions hold.

(1) If the following condition is satisfied:

F+(∇û0) − F−(∇û0) + (g+ − g−) · û0 	= const almost everywhere in Ω, (1.11)

then t− < t+.
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(2) If the following condition is satisfied:

F+(∇û0) − F−(∇û0) + (g+ − g−) · û0 = const almost everywhere in Ω, (1.12)

but
F+

M (∇û0) 	= F−
M (∇û0) on a set of positive measure E ⊂ Ω, (1.13)

then t− < t+.

(3) If (1.12) holds and

F+
M (∇û0) = F−

M (∇û0) almost everywhere in Ω, (1.14)

then g+ = g− and t− = t+.

The theorem is proved in Section 2. The corresponding examples are given in Section 3,
whereas situations where the problem (1.4) does not has a solution for t ∈ (t−, t+) are described
in Section 4.

2. Proof of Theorem

We introduce the functions

i±(t) = inf
u∈X

I[u, χ±, t] =

{
I+[û+] + t|Ω|,
I−[û−]

(2.1)

and set
imin(t) = min{i+(t), i−(t)}. (2.2)

It is obvious that imin(t) is a piecewise linear function and

imin(t) =

{
i+(t) for t � t∗,

i−(t) for t � t∗,
t∗ = −|Ω|−1(I+[û+] − I−[û−]). (2.3)

Let
i(t) = inf

u∈X,χ∈Z

I[u, χ, t]. (2.4)

It is obvious that i(t) � imin(t). Let

E= = {t ∈ R1 : i(t) = imin(t)},
E< = {t ∈ R1 : i(t) < imin(t)}.

(2.5)

As is known [8], the following assertions hold:

(a) if t∗ ∈ E= , then E= = R1,

(b) if t∗ ∈ E<, then one of the following cases is realized:

E< =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

R1

(t−,∞)
(−∞, t+)
(t−, t+)

, −∞ < t− < t+ < ∞, (2.6)
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Furthermore, in case (a), there exists only the equilibrium state û = û+, χ̂ = χ+ for t < t∗

and û = û−, χ̂ = χ−. for t > t∗. The same assertions are valid in case (b) for t < t− and t > t+

respectively.
Consequently, in case (a), the numbers t± = t∗ are the phase transition temperatures in

view of (1.6) and (2.6), whereas, in case (b), E< = (t−, t+) provided that the phase transition
temperatures exist.

Therefore, if the phase transition temperatures exist, then the inequality t− < t+ is equiva-
lent to the inequality i(t∗) < imin(t∗) which, in turn, is equivalent to the following assertion:

there exist u ∈ X, χ ∈ Z such that J [u, χ] < 0,

J [u, χ] = I[u, χ, t∗] − I[û+, χ+, t∗] = I[u, χ, t∗] − I[û−, χ−, t∗].
(2.7)

Lemma 1. The following equalities hold:

J [u, χ] =
∫

Ω

(1 − χ){(F−(∇û+) − F+(∇û+)) + (g− − g+) · û+ − t∗} dx

+
∫

Ω

(1 − χ){(F−
M (∇û+) − F+

M (∇û+))∇h + (g− − g+) · h} dx

+
1
2

∫

Ω

(χF+
MM + (1 − χ)F−

MM )(∇h,∇h) dx, u ∈ X, u = û+ + h, (2.8)

J [u, χ] =
∫

Ω

χ{(F+(∇û−) − F−(∇û−)) + (g+ − g−) · û− + t∗} dx

+
∫

Ω

χ{(F+
M (∇û−) − F−

M (∇û−))∇h + (g+ − g−) · h} dx

+
1
2

∫

Ω

(χF+
MM + (1 − χ)F−

MM )(∇h,∇h) dx, u ∈ X, u = û− + h. (2.9)

Proof. Expanding in the Taylor series, we find

F±(∇u) = F±(∇û+) + F±
M (∇û+)∇h +

1
2
F±

MM (∇h,∇h), u = û+ + h. (2.10)

From the first equality in (2.7) we find

J [u, χ] =
∫

Ω

χ{F+(∇û+) + F+
M (∇û+)∇h +

1
2
F+

MM (∇h,∇h) + g+ · û+ + g+ · h + t∗} dx

+
∫

Ω

(1 − χ){F−(∇û+) + F−
M (∇û+)∇h +

1
2
F−

MM (∇h,∇h) + g− · û+ + g− · h} dx

+
∫

∂Ω

f · û+ dS +
∫

∂Ω

f · hdS −
∫

Ω

(F+(∇û+) + g+ · û+ + t∗) dx −
∫

∂Ω

f · û+ dS.
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Taking into account the identity∫

Ω

(
F+

M (∇û+)∇h + g+ · h)
dx +

∫

∂Ω

f · hdS = 0,

we obtain (2.8). Replacing (2.10) with

F±(∇u) = F±(∇û−) + F±
M (∇û−)∇h +

1
2
F±

MM (∇h,∇h), u = û− + h,

after simple calculations we arrive at (2.9). �

If we wish to determine the sign of J [u, χ], then for the zero approximation it is natural to
determine the sign of the first term on the right-hand side of (2.8) with χ ≡ 0 or the first term
on the right-hand side of (2.9) with χ ≡ 1. Taking into account the definition of t∗, we find∫

Ω

{(F−(∇û+) − F+(∇û+)) + (g− − g+) · û+ − t∗)} dx = I−[û+] − I−[û−] � 0,

∫

Ω

{(F+(∇û−) − F−(∇û−)) + (g+ − g−) · û− + t∗)} dx = I+[û−] − I+[û+] � 0.

(2.11)

The last inequalities are valid because for any sign ± the functions û± are minimizers of the
functionals I±[u] over the set X. Thus, it is reasonable to assume that the inclusion t∗ ∈ E<

holds under the condition (1.10).
Now, we conclude the proof of the theorem.

(1) By the second equality in (2.11), the integral on the left-hand side of the inequality (1.11)
is equal to −|Ω|t∗. Consequently, the constant on the right-hand side of (1.11) can be equal only
to −t∗. By the assumption (1.11), there exists a set of positive measure E ⊂ Ω such that

F+(∇û0(x)) − F−(∇û0(x)) + (g+(x) − g−(x)) · û0(x) + t∗ < 0, x ∈ E.

Taking for χ the characteristic function of this set in (2.9) and setting h = 0, we obtain t− < t+
in view of (2.7).

(2) As was already mentioned, the constant in (1.12) should coincide with −t∗. Then, by
(2.7) and (2.9), a sufficient condition for the validity of the inequality t− < t+ is the existence
of functions h0 ∈ C∞

0 (Ω, Rm) and χ0 ∈ Z such that∫

Ω

χ0{(F+
M (∇û0) − F−

M (∇û0))∇h0 + (g+ − g−) · h0} dx 	= 0. (2.12)

Indeed, if the relation (2.12) holds, then, replacing h0 with −h0 if necessary, we see that the
left-hand side of (2.12) is negative. If we multiply h0 by a sufficiently small positive number λ,
then the right-hand side of (2.9) becomes negative for χ = χ0 and h = λh0.

To prove the inequality (2.12), we assume the contrary. Let∫

Ω

χ{Φ∇h + ϕ · h} dx = 0,

Φ = F+
M (∇û0) − F−

M (∇û0), ϕ = g+ − g− for all χ ∈ Z, h ∈ C∞
0 (Ω, Rm).

(2.13)

Now, we arrive to a contradiction between the assumption (2.13) and the condition (1.13).
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Let a point x0 ∈ Ω belong to the intersection of the Lebesgue sets for the functions Φ and ϕ,
and let both functions are finite at this point. Let χδ, δ ∈ (0, δ0], be the characteristic function
of a ball Bδ ⊂ Bδ ⊂ Ω. Then for such functions χδ and the function h ∈ C∞

0 (Ω, Rm) defined by
the formula

h(x) = Φ(x0)(x − x0), x ∈ Bδ0(x0),
the equality (2.13) takes the form∫

|x−x0|<δ

{Φ(x)Φ(x0) + ϕ(x) · Φ(x0)(x − x0)} dx = 0. (2.14)

Since x0 is a Lebesgue point of Φ(x), we have
1

|Bδ|
∫

Bδ(x0)

Φ(x)Φ(x0) dx → Φ2(x0) as δ → 0.

Since x0 is a Lebesgue point of ϕ(x) and the functions Φ and ϕ are finite at this point, we get

1
|Bδ|

∫

Bδ(x0)

|ϕ(x) · Φ(x0)(x − x0)| dx � |Φ(x0)|δ
|Bδ|

∫

Bδ(x0)

|ϕ(x) − ϕ(x0)| dx + |ϕ(x0)||Φ(x0)|δ → 0

as δ → 0. Then (2.14) implies |Φ(x0)| = 0 for almost all x0 ∈ Ω. Therefore, F+
M (∇û0) =

F−
M (∇û0) for almost all x ∈ Ω, which contradicts the assumption (1.13).

(3) By the definition of û0, the following equalities hold:∫

Ω

{F+
M (∇û0)∇h + g+ · h} dx =

∫

Ω

{F−
M (∇û0)∇h + g− · h} dx = 0

for all h ∈ C∞
0 (Ω, Rm). By (1.14), these equalities imply∫

Ω

(g+ − g−) · hdx = 0 for all h ∈ C∞
0 (Ω, Rm).

Consequently, g+ = g−.
From (1.12), (1.14), and the last equality we find that the right-hand side of (2.9) is non-

negative for all χ and h. �

3. Examples

We give some examples to illustrate the possibilities of the above theorem.

Example 1. Let

A+ = A− ≡ A, ζ+ 	= ζ−, g+ = g− ≡ g, Γ0 = ∂Ω. (3.1)

If
g ∈ Lp(Ω, Rm), u0 ∈ W 2

p (Ω, Rm), p > m, ∂Ω ∈ C2, (3.2)
then the phase transition temperatures t± exist and t− < t+.

Proof. The equilibrium one-phase displacement fields û± are found from the identities∫

Ω

(
F±

M (∇û±)∇h + g · h)
dx = 0 for all h ∈ X0 =

◦
W 1

2(Ω, Rm),
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from which we find ∫

Ω

(
2aijklû

±k
xl

hi
xj

+ gihi
)
dx − 2aijklζ

±
kl

∫

Ω

hi
xj

dx = 0.

Since the second term on the left-hand side of the previous equality vanishes, we conclude that

û+ = û− ≡ û0. (3.3)

If (3.2) holds, then û0 ∈ C1(Ω, Rm). Therefore, the existence of the phase transition tem-
peratures follows from (1.9).

We prove that t− < t+. By (3.3), the equalities (1.10) hold. Since

F±
Mij

(∇û±) = F±
Mij

(∇û0) = 2aijkl(û0k
xl

− ζ±kl),

we have
F+

Mij
(∇û0) − F−

Mij
(∇û0) = −2aijkl(ζ+ − ζ−)kl. (3.4)

Since
aijkl(ζ+ − ζ−)kl(ζ+ − ζ−)ij > 0,

the right-hand side of (3.4) does not vanish.
If (1.11) holds, then t− < t+ by assertion (1) of the theorem. If (1.12) holds, then t− < t+

by assertion (2) of the theorem. �

Example 2. Let
g+ = g− ≡ 0, Γ0 = ∂Ω, u0 = 0. (3.5)

Then the phase transition temperatures exist and

t− < t+ if A+ζ+ 	= A−ζ−,

t− = t+ if A+ζ+ = A−ζ−.
(3.6)

Proof. As above, we prove that
û+ = û− ≡ 0. (3.7)

Therefore, the existence of the phase transition temperatures is guaranteed by (1.9).
From (3.7) we obtain the validity of (1.10) and (1.12). It is obvious that F±

M (0) = −2A±ζ±.
Thus, the assertions in (3.6) are consequences of assertions (2) and (3) of the theorem. �

Example 3. Let

A+ = A− ≡ A, ζ = ζ+ − ζ− 	= 0, g+ = g− ≡ g. (3.8)

We assume that for B = Aζ there exists a vector n0 ∈ Rm such that Bn0 = 0, |n0| = 1. Suppose
that a part Γ1 of ∂Ω is plane and n0 is the unit outward normal to Γ1. Let

Γ = ∂Ω \ Γ1, f = qn. (3.9)

Then the inequality t− < t+ holds provided that the phase transition temperatures exist.

Proof. In our case,

I±[u] =
∫

Ω

(
F±(∇u) + g · u)

dx + q

∫

Γ1

u · n0 dS.
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Therefore, the one-phase equilibrium states û± ∈ X are found from the relations∫

Ω

(
2aijklû

±k
xl

vi
xj

+ givi
)
dx + (qδij − 2aijklζ

±
kl)n

j
0

∫

Γ1

vi dS = 0, v ∈ W 1
2 (Ω, Rm),

v
∣∣
Γ

= 0.

(3.10)

Under the above assumptions, the factor in the second term on the left-hand side of (3.10) is
independent of the choice of sign ±. Therefore, (3.3) holds. Then, under the condition

û0 ∈ W 2
p (Ω, Rm), p > m, (3.11)

(1.9) implies the existence of the phase transition temperatures t±. The inequality t− < t+ is
established on the basis of the above theorem in the same way as in Example 1.

The inclusion (3.11) can be realized if we choose u0 providing the boundary condition on Γ
in such a way that u0 ∈ W 2

p (Ω, Rm), p > m, 2aijklu
k
0xl

nj
0 + (qδij − 2aijklζ

±
kl)n

j
0 = 0, x ∈ Γ1, and

set gi = 2(aijklu
k
0xl

)xj . In this case, û0 ≡ u0 and the inclusion (3.11) holds. �

4. Example of Nonexistence of Solutions for t ∈ (t−, t+)

We consider the functional (1.1) with

g+ = g− = 0, Γ0 = ∂Ω, u0 = 0, t = 0. (4.1)

Let us construct the residual strain tensors. We set N± = {x ∈ Rm : ζ±x = 0} and assume that

N+ = N− ≡ N, dim N = m − 1. (4.2)

Let
l ∈ Rm, |l| = 1, l ⊥ N. (4.3)

Since the matrices ζ± are symmetric, we have

ζ±l = α±l, α± ∈ R1.

We fix ζ± by the requirement
ζ+l = l, ζ−l = −l. (4.4)

It is obvious that the functions

u±(x) = ζ±x − x±
0 , x, x±

0 ∈ Rm (4.5)

satisfy the equation
e(∇u±) = ζ±. (4.6)

Using the formula
x = x̃ + sl, x̃ ∈ N, s ∈ R1, (4.7)

we write the functions u± in the form

u±(x) = ±sl − x±
0 . (4.8)

We fix δ > 0. We choose vectors x±
0 such that

u−(x) = 0, x ∈ {N + 2δl},
u−(x) = u+(x), x ∈ {N + δl},
u+(x) = 0, x ∈ N.

(4.9)
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The conditions (4.9) are realized for x+
0 = 0, x−

0 = −2δl. For such x±
0 the functions (4.8) take

the form
u+(x) = sl, u−(x) = (2δ − s)l. (4.10)

For x in the representation (4.7) we introduce the composed function

uδ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, s � 0,
sl, s ∈ [0, δ],
(2δ − s)l, s ∈ [δ, 2δ],
0, s � 2δ.

(4.11)

We divide the space Rm into strips

Πk = {x ∈ Rm : in the representation (4.7) the number s ∈ [2kδ, 2(k + 1)δ]}
k = . . . ,−2,−1, 0, 1, 2, . . .

(4.12)

For every strip Πk we define the function

uk
δ (x) = uδ(x + 2kδl).

Then the function
ûδ(x) = Σ∞

k=−∞uk
δ (x) (4.13)

possesses the properties

ûδ ∈ W 1
2,loc(R

m, Rm), |ûδ(x)| � Cδ for all x ∈ Rm. (4.14)

Furthermore, by (4.6),

e(∇ûδ) = χ̂δζ
+ + (1 − χ̂δ)ζ−,

χ̂δ =

{
1, x ∈ Π+

k , Π+
k = {x ∈ Πk : s ∈ [2kδ, (2k + 1)δ]},

0, x ∈ Π−
k , Π−

k = {x ∈ Πk : s ∈ ((2k + 1)δ, 2(k + 1)δ)}.
(4.15)

By the assumption (4.1) and property (4.15), we have

I[ûδ, χ̂δ, 0] = 0. (4.16)

Lemma 1. If the assumption (4.1) holds for the tensors ζ± satisfying the conditions (4.2)
and (4.4), then

inf
u∈X,χ∈Z

I[u, χ, 0] = 0. (4.17)

Proof. For any sufficiently small positive number ρ we introduce the function ϕρ such that

ϕρ ∈ C∞
0 (Ω), ϕρ(x) = 1 for dist(x, ∂Ω) > ρ, |∇ϕρ(x)| � C

ρ
. (4.18)

Since
e(∇(ϕρûδ)) = ϕρe(∇ûδ) + e(∇ϕρ ⊗ ûδ), (∇ϕρ ⊗ ûδ)ij = ϕρxi û

j
δ, (4.19)

from (4.15) and (4.18) for some positive constant C 	= C(ρ, δ) it follows that

e(∇(ϕρûδ)) = χ̂δζ
+ + (1 − χ̂δ)ζ−, dist(x, ∂Ω) > ρ,

|e(∇(ϕρûδ))| � C(δ/ρ + 1), dist(x, ∂Ω) � ρ.
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Therefore,

χ̂δF
+(∇(ϕρûδ)) + (1 − χ̂δ)F−(∇(ϕρûδ)) = 0, dist(x, ∂Ω) > ρ,

χ̂δF
+(∇(ϕρûδ)) + (1 − χ̂δ)F−(∇(ϕρûδ)) � C(δ/ρ + 1)2, dist(x, ∂Ω) � ρ.

Thus,
I[ûδϕρ, χ̂δ, 0] � C(δ/ρ + 1)2ρ.

Setting ρ = δ in the last inequality and taking into account the inclusion ûδϕρ ∈ X and the fact
that the functional I[u, χ, 0] is nonnegative, we obtain (4.17). �

If, under the condition (4.1), the functional I[u, χ, 0] possesses an equilibrium state û, χ̂,
then, by the lemma,

e(∇û) = χ̂ζ+ + (1 − χ̂)ζ−. (4.20)

Conversely, any solution û ∈ X, χ̂ ∈ Z to the problem (4.20) is an equilibrium state of the
functional I[u, χ, 0].

Lemma 2. If ζ± satisfy the conditions (4.2) and (4.4), then the problem (4.20) does not
have a solution û ∈ X, χ̂ ∈ Z.

Proof. From (4.20) we find

ûi
xj

+ ûj
xi

= 2(χ̂ζ+
ij + (1 − χ̂)ζ−ij ). (4.21)

Let τ be a unit vector in N . Multiplying both sides of (4.21) by τiτj, τilj , lilj and taking the
sum over repeated indices, we obtain the relations

∂(û · τ)
∂τ

= 0,
∂(û · τ)

∂l
+

∂(û · l)
∂τ

= 0,
∂(û · l)

∂l
= 2χ̂ − 1. (4.22)

We fix τ ∈ N and denote by S the subspace Rm orthogonal to this vector. It is obvious that
l ∈ S. We set

Ωx = {r ∈ R1 : Ω ∩ {x + rτ}}, x ∈ S.

Since Ωx is an open set on the line, it is either empty or the union of at most countable family
of open disjoint intervals lj .

The function û ∈ X =
◦

W 1
2(Ω, Rm). Consequently, for almost all x ∈ S such that Ωx 	= ∅ the

restriction of û · τ onto the interval lj belongs to the space
◦

W 1
2(lj) for every j and the Sobolev

derivative with respect to r ∈ lj of this restriction coincides with the restriction of the Sobolev
derivative ∂û · τ/∂τ to this interval.

The above arguments show that from the first equality in (4.22) it follows that û · τ = 0 on
the set of full measure Eτ ⊂ Ω. Then, by the same reasons, the second equality in (4.22) leads
to the relation û · l = 0 on the set of full measure E′

τ ⊂ Ω. Repeating the arguments for the
elements of the basis τ1, . . . , τm−1 for the space N , we conclude that û = 0 almost everywhere
in Ω. The last equality contradicts the third equation in (4.22). �

We note that functions of type ûδ are traditionally used in the study of variational problems
of elastic media with microstructure [10].

Acknowledgement. The work is supported by the Russian Foundation for Basic Research
(grant No. 08-01-00748) and the program “Veduchshie Nauchnye Shkoly” (grant No. NSh-
227.2008.1).

178



References

1. M. A. Grinfel’d, Methods of Continuum Mechanics in the Theory of Phase Transitions [in
Russian], Nauka, Moscow (1990).

2. V. G. Osmolovskii, “Criterion for the lower semicontinuity of the energy functional of a two-
phase elastic medium” [in Russian], Probl. Mat. Anal. 26, 215–254 (2003); English transl.:
J. Math. Sci. (New York) 117, No. 3, 4211–4236 (2003).

3. B. Dacorogna, Direct Methods in the Calculus of Variations, Berlin (1989).
4. B. Dacorogna, G. Pisante, and A. Ribero, “On non quasiconvex problem of the calculus of

variations,” Sect. Math. EPFL, 1015 Lausanne, Switzerland. February 4, 2005.
5. V. G. Osmolovskii, “Exact solutions to the variational problem of the phase transition theory

in continuum mechanics” [in Russian], Probl. Mat. Anal. 27, 171–206 (2004); English transl.:
J. Math. Sci. (New York) 120, No. 2, 1167–1190 (2004).

6. V. G. Osmolovskii, “Existence of equilibrium states in the one-dimensional phase transition
problem” [in Russian], Vest. S. Peterburg. State Univ. Ser. 1, No. 3, 54-65 (2006).

7. V. G. Osmolovskii, “On the solvability of a variational problem about phase transitions in
continuum mechanics” [in Russian], Probl. Mat. Anal. 38 61–72 (2008); English transl.: J.
Math. Sci. (New York) 156, No. 4, no. 2, 632–643 (2009).

8. V. G. Osmolovskii, “Existence of phase transition temperatures of a nonhomogeneous
anisotropic two-phase elastic medium” [in Russian], Probl. Mat. Anal. 31 59-66 (2005);
English transl.: J. Math. Sci. (New York) 132, No. 4, 441–450 (2006).

9. V. G. Osmolovskii, “Dependence of the temperature of phase transitions on the size of the
domain” [in Russian], Zap. Nauchn. Semin. POMI 310, 98–114 (2004); English transl.: J.
Math. Sci. (New York) 132, No. 3, 304–312 (2006).

10. S. Muller, “Variational models for microstructure and phase transitions,” Preprint. Max-
Planck-Institut, Leipzig, Lecture notes N2, (1998).

Submitted date: April 10, 2009

179



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 793.701]
>> setpagedevice


