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NONMAXIMAL DECIDABLE STRUCTURESA. B�es∗ and P. C�egielski∗ UDC 510.665
Given any infinite structure M with a decidable first-order theory, we give a sufficient condition in terms of the
Gaifman graph of M that ensures that M can be expanded with some nondefinable predicate in such a way that the
first-order theory of the expansion is still decidable. Bibliography: 10 titles.

1. IntroductionElgot and Rabin ask in [3℄ whether there exist maximal deidable strutures, i.e., strutures M with a deidableelementary theory and suh that the elementary theory of any expansion of M by a nonde�nable prediate isundeidable.Soprunov proved in [10℄ (using a foring argument) that every struture in whih a regular ordering is inter-pretable is not maximal. A partial ordering (B;<) is said to be regular if for every a ∈ B there exist distintelements b1; b2 ∈ B suh that b1 < a, b2 < a, and no element  ∈ B satis�es both  < b1 and  < b2. Asa orollary, he also proved that there is no maximal deidable struture if we replae \elementary theory" by\weak monadi seond-order theory."1In [1℄, we onsidered a weakening of the Elgot{Rabin question, namely, the question of whether all strutures
M whose �rst-order theory is deidable an be expanded by some onstant in suh a way that the resultingstruture still has a deidable theory. We answered this question negatively by proving that there exists astruture M whose monadi seond-order theory is deidable and suh that any expansion of M by a onstanthas an undeidable elementary theory.In this paper, we address the initial Elgot{Rabin question, and provide a riterion for nonmaximality. Morepreisely, given any struture M with a deidable �rst-order theory, we give in Se. 3 a suÆient ondition interms of the Gaifman graph of M that ensures that M an be expanded with some nonde�nable prediate insuh a way that the �rst-order theory of the expansion is still deidable. The ondition is the following: for everynatural number r and every �nite set X of elements of the base set |M| of M, there exists an element x ∈ |M|suh that the Gaifman distane between x and every element of X is greater than r. This ondition holds, e.g.,for the struture (N; S), where S denotes the graph of the suessor funtion, and, more generally, for any labelledin�nite graph with �nite degree whose elementary theory is deidable, i.e., any struture M = (V;E; P1; : : : ; Pn)where V is in�nite, E is a binary relation of �nite degree, the Pi's are unary relations, and the elementary theoryof M is deidable. Unlike Soprunov's ondition, our ondition expresses some limitation on the expressive powerof the struture M.In Se. 2, we reall some important de�nitions and results. Setion 3 deals with the main theorem. Weonlude the paper with related questions.

2. PreliminariesIn the sequel, we onsider �rst-order logi with equality. We deal only with relational strutures. Given alanguage L and an L-struture M, we denote by |M| the base set of M. For every symbol R ∈ L, we denote byRM the interpretation of R in M. As usual, we will often onfuse symbols and their interpretation. We denoteby FO(M) the �rst-order (omplete) theory of M, i.e., the set of �rst-order L-sentenes ' suh that M |= '.We say that an n-ary relation R over |M| is elementary de�nable (in short: de�nable) in M if there exists an
L-formula ' with n free variables suh that R = {(a1; : : : ; an) : M |= '(a1; : : : ; an)}.We denote by qr(F ) the quanti�er rank of a formula F , de�ned indutively as follows: qr(F ) = 0 if F is atomi,qr(¬F ) = qr(F ), qr(F�G) = max(qr(F ); qr(G)) for � ∈ {∧;∨;→}, and qr(∃xF ) = qr(∀xF ) = qr(F ) + 1. Wede�ne FOn(M) as the set of L-sentenes F suh that qr(F ) ≤ n and M |= F .We say that the elementary diagram of a strutureM is omputable if there exists an injetive map f : |M| → Nsuh that the range of f , as well as the relations {(f(a1); : : : ; f(an)) | a1; : : : ; an ∈ |M| and M |= R(a1; : : : ; an)}for every relation R of L, are reursive (see, e.g., [9℄).
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1These results, and the Elgot–Rabin question itself, were brought to our attention by Semenov’s paper [8].
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Let us reall useful de�nitions and results related to the Gaifman graph of a struture [4℄ (see also [6℄). Let
L be a relational language, and let M be an L-struture. The Gaifman graph of M, whih we denote by G(M),is the undireted graph with vertex set |M| suh that for all x; y ∈ |M| there is an edge between x and y if andonly if x = y or there exist some n-ary relational symbol R ∈ L and some n-tuple ~t of elements of |M| thatontains both x and y and satis�es ~t ∈ RM.The distane d(x; y) between two elements x; y ∈ |M| is de�ned as the usual distane in the sense of the graphG(M). We denote by Br(x) the r-ball with enter x, i.e., the set of elements y of |M| suh that d(x; y) ≤ r. Itshould be noted that for every �xed r the binary relation \y ∈ Br(x)" is de�nable in M. For every X ⊆ |M| wede�ne Br(X) as Br(X) = ⋃x∈X Br(x).An r-loal formula '(x1; : : : ; xn) is a formula whose quanti�ers are all relativized to Br({x1; : : : ; xn}). Wewill use the notation '(r) to indiate that ' is r-loal.Let us now state Gaifman's theorem about loal formulas.Theorem 1 ([4℄). Let ~x = (x1; : : : ; xn), and let '(~x) be an L-formula. From ' one an e�etively ompute aformula that is equivalent to ' and is a boolean ombination of formulas of the form

•  (r)(~x),
• ∃x1 : : : ∃xs ( ∧1≤i≤s�(r)(xi) ∧ ∧1≤i<j≤s d(xi; xj) > 2r),where s ≤ qr(') + n and r ≤ 7k.Moreover, if ' is a sentene, then only sentenes of the seond kind our in the resulting formula.

3. A sufficient condition for nonmaximalityThe aim of this setion is to prove the following theorem.Theorem 2. Let L be a �nite relational language, and let M be an in�nite ountable L-struture that satis�esthe following onditions:(1) FO(M) is deidable;(2) every element of |M| is de�nable in M;(3) for every �nite set X ⊆ |M| and every r ∈ N, there exists a ∈ |M| suh that d(a;X) > r.Then there exists a unary prediate symbol R 6∈ L and a (L ∪ {R})-expansion M
′ of M suh that

• FO(M′) is deidable;
• the set RM

′ is not de�nable in M;
• the elementary diagram of M

′ is omputable.Note that in the above theorem, the onstrution of M
′ from M an be repeated starting from M

′. Indeed, M
′learly satis�es Conditions (1) and (2). Moreover, expanding a struture by unary prediates does not modifyits Gaifman graph, therefore we have G(M′) = G(M), whih implies that Condition (3) also holds for M

′.Let us illustrate Theorem 2 with a few examples.
• The struture M = (N;S), where S denotes the graph of the funtion x 7→ x + 1, satis�es all onditions ofTheorem 2. Indeed, Langford [5℄ proved that FO(M) is deidable. Moreover, Condition (2) is easy to prove,and Condition (3) is a straightforward onsequene of the fat that d(x; y) = |x − y| for all natural numbersx; y.
• The same holds for any struture of the form M = (N;S; P1; : : : ; Pn) where the Pi's denote unary prediatesand FO(M) is deidable (the Gaifman graph of any suh struture is equal to that of (N;S), see the remarkabove).
• More generally, Theorem 2 applies to any in�nite labelled graph with �nite degree, more preisely, to anystruture of the form M = (V ;E;P1; : : : ; Pn) where V is in�nite, E is a binary relation with �nite degree, thePi's denote unary prediates, FO(M) is deidable, and every element of V is de�nable in M. In this ase,the Gaifman graph of M has �nite degree, whih implies Condition (3). Note that Theorem 2 also applies tosome strutures for whih the degree of the Gaifman graph is in�nite { see the last example.
• The struture M = (N;<) does not satisfy Condition (3) of Theorem 2, sine d(x; y) ≤ 1 for all x; y ∈ N.Observe that FO(M) is deidable [5℄, and, moreover, M is not maximal: onsider, e.g., the struture M

′ =(N;<;+) where + denotes the graph of addition; FO(M′) is deidable [7℄, and + is not de�nable in M, sinein M one an only de�ne �nite or o-�nite subsets of N.
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Atually, one an prove that for every in�nite struture M in whih some linear ordering of elements of |M|is de�nable, Condition (3) does not hold. However, the next example shows that Theorem 2 an be applied tosome strutures in whih an in�nite linear ordering is interpretable.
• Consider the disjoint union of ! opies of (N;<) equipped with a suessor relation between opies, i.e., thestruture M = (N × N;<; Su) where
− (x; y) < (x′; y′) if and only if (x = x′ and y < y′);
− Su((x; y); (x′; y′)) if and only if x′ = x+ 1;then M satis�es the onditions of Theorem 2: the �rst ondition omes from the fat that FO(M) redues toFO(N;<), and the two other onditions are easy to hek.Let us explain informally the struture of the proof of Theorem 2. Given M that ful�lls all onditions ofTheorem 2, we de�ne RM

′ by gradually marking elements of |M|, some in RM
′ and some in its omplement.More preisely, we de�ne by indution on n the sequene (Xn)n∈N with Xn = (Rn; Sn; Tn; Fn) where

• Rn orresponds to a �nite set of elements of RM
′ (we will say \marked positively");

• Sn orresponds to a �nite set of elements of the omplement of RM
′ (we will say \marked negatively");

• Tn orresponds to a �nite set of enters of balls whose elements (apart from elements of Rn) are marked inthe omplement of RM
′ ;

• Fn denotes the set of formulas of quanti�er rank ≤ n that will be true in M
′.The set RM

′ will be de�ned as the union of the sets Rn. At eah step n, the partial marking Xn ensuresthat RM
′ is not de�nable by any formula of quanti�er rank n, and also �xes FOn(M′). The possibility to �xFOn(M′) whereas RM

′ is only partially de�ned omes from Gaifman's Theorem 1, whih redues the satisfationof sentenes in M
′ to the one of sentenes that only speak about a �nite number of r-balls in |M′| (these aresentenes of the seond kind in Theorem 1), and thus an be evaluated as soon as RM

′ is ompletely de�ned inthese r-balls.In the onstrution we impose some sparsity ondition on RM
′ ; this ondition implies that there are fewelements of RM

′ in eah r-ball, whih in turn allows us to express with L-sentenes that an r-ball of |M| an bemarked onveniently, and then use the hypothesis that FO(M) is deidable in order to extend the marking inan e�etive way.Proof of Theorem 2. Assume that M is an L-struture that satis�es all onditions of the theorem. Let R 6∈ Lbe a unary prediate symbol. For every X ⊆ |M| we denote by M(X) the (L ∪ {R})-expansion of M de�ned byinterpreting R by X .Throughout the proof we will use the following interesting onsequenes of Conditions (1) and (2):
• The elementary diagram of M is omputable. Indeed, sine L is �nite, we an enumerate all formulas '(x)with one free variable. Let us denote by ('i(x))i≥0 suh an enumeration. Then the appliation f : |M| → Nthat maps every element e of |M| to the least integer i suh that 'i de�nes e is injetive; moreover, the rangeof f , and the relations {(f(a1); : : : ; f(an)) : M |= Q(a1; : : : ; an)} for every symbol Q of L, are reursive.
• If  (x) is a formula with one free variable and M |= ∃x (x), then one an e�etively �nd the �rst integer ithat belongs to the range of f and is suh that M |= ∃x('i(x) ∧  (x)). That is, one an e�etively �nd someelement x ∈ |M| for whih  (x) holds in M.
• Every �nite or o-�nite subset A ⊆ |M| is de�nable in M. This will allow us to use shortuts suh as\x ∈ A" when we write formulas in the language L.We now de�ne by indution on n ∈ N a sequene Xn = (Rn; Sn; Tn; Fn) suh that(1) Rn; Sn; Tn are �nite subsets of |M|;(2) Fn is a set of (L ∪ {R})-sentenes with quanti�er rank ≤ n;(3) Rn ∩ Sn = ∅;(4) Rn−1 ⊆ Rn and Sn−1 ⊆ Sn for every n ≥ 1;(5) Rn ∩ ((Sn−1 ∪ ⋃i≤n−1B7i(Ti)) \Rn−1) = ∅ for every n ≥ 1;(6) Sn ∩Rn−1 = ∅ for every n ≥ 1;(7) d(x; y) ≥ 7n for every pair of distint elements of Rn \Rn−1 (for n ≥ 1);(8) d(Rn \Rn−1; Rn−1) ≥ 7n (for n ≥ 1);(9) for every R′ ⊆ |M| suh that Rn ⊆ R′ andR′ ∩ ((Sn ∪

⋃i≤nB7i(Ti)) \Rn) = ∅;
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R′ is not de�nable in M by any L-formula of quanti�er rank ≤ n;(10) for every R′ ⊆ |M| suh that Rn ⊆ R′,R′ ∩ ((Sn ∪
⋃i≤nB7i(Ti)) \Rn) = ∅;d(R′; R′ \Rn) ≥ 7n+1;and d(x; y) ≥ 7n+1 whenever x; y are distint elements of R′ \Rn, we haveFOn(M(R′)) = Fn:Conditions (4), (5), and (6) express the fat that the marking assoiated with Xn extends the one assoiatedwith Xn−1, and Conditions (7) and (8) speify that elements of Rn \Rn−1 (i.e., new elements marked positively)are far away from eah other and also from elements of Rn−1. Conditions (9) and (10) ensure that for any setR′ ⊆ |M| that extends Rn \sparsely" (this will hold in partiular for the sets Rn+1; Rn+2; : : : , and eventuallyfor RM

′), R′ is not de�nable in M by any L-formula of quanti�er rank ≤ n, and, moreover, FOn(M(R′)) = Fn,i.e., the partial marking Xn �xes FOn(M(R′)).We now de�ne the sequene (Xn)n∈N.Indution hypothesis: assume that (Xi)i<n is de�ned and satis�es the required onditions.Let us de�ne Xn. The de�nition onsists of two main steps: during the �rst step, we extend the markingin order to obtain Condition (9), i.e., to ensure that RM
′ will not be de�nable in M with any L-formula withquanti�er rank n; this is the easiest step, and it involves Condition (3) of the theorem. During the seond step,we again extend the marking in order to obtain Condition (9), i.e., to �x FOn(M′).We set r = 7n.First step: during this step, we mark a �nite number of elements in order to ensure that RM

′ will not bede�nable by any L-formula with quanti�er rank n.Sine we deal with a �nite relational language, there exist �nitely many (up to equivalene) formulas withquanti�er rank n. From L we an ompute an integer kn and a �nite set of L-formulas {�n;i(x) : 1 ≤ i ≤ kn}suh that every L-formula with quanti�er rank n is equivalent to the disjuntion of some of the �n;i's, and,moreover, suh that the formulas �n;i are inompatible. For i = 1; : : : ; kn, let us denote by En;i the subset of
|M| de�ned by �n;i(x). By onstrution, the sequene (En;1; : : : ; En;kn) is a partition of |M|, and every subsetof |M| de�nable by a formula of quanti�er rank n is a �nite union of some of the subsets En;i.We will mark elements in suh a way that for some i the subset En;i ontains at least an element markedpositively and another element marked negatively. This will ensure that Condition (9) is satis�ed. More preisely,for i = 1; : : : ; kn, we mark positively (respetively, negatively) at most one new element of En;i. We de�ne thesets R′n;i (respetively, S′n;i) suh that R′n;i ontains the set of new elements to mark positively (respetively,negatively) in En;i (eah of the sets R′n;i and S′n;i is either empty or redued to a singleton). We proeed asfollows:

• If there exists some element of En;i that is not yet marked and, moreover, all marked elements of En;i aremarked positively, then we mark negatively the �rst unmarked element of En;i.Formally, assume that the sets R′n;j and S′n;j have been de�ned for every j < i, and letZn;i = Rn−1 ∪ ⋃j<iR′n;j ∪ Sn−1 ∪ ⋃j<iS′n;j ∪ ⋃i<nB7i(Ti):If
M |= ∃x(�n;i(x) ∧ x 6∈ Zn;i)and, moreover,

M |= (En;i ∩ Zn;i) ⊆ (Rn−1 ∪ ⋃j<iR′n;j)(this property is expressible with an L-sentene), then we set S′n;i to be the singleton set onsisting of the �rstelement x suh that
M |= ∃x(�n;i(x) ∧ x 6∈ Zn;i):
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Otherwise we set S′n;i = ∅.
• Then, if all urrently marked elements of En;i are marked negatively and, moreover, there exists someunmarked element x of En;i at distane ≥ 7n+1 from the already marked elements, then we mark positivelythe �rst suh element x.Formally, let Z ′n;i = Zn;i ∪ S′n;i:If

M |= (En;i ∩ (Rn−1 ∪ ⋃j<iR′n;j)) = ∅and, moreover,
M |= ∃x(�n;i(x) ∧ d(x; Z ′n;i) ≥ 7n+1);then let R′n;i be the singleton set onsisting of the �rst suh x. Otherwise set R′n;i = ∅.Note that the above onstrution is e�etive (see the remarks at the beginning of the proof).Seond step: during this step, we extend the marking in order to �x FOn(M′).Up to equivalene, there exist �nitely many (L∪{R})-sentenes F suh that qr(F ) = n. By Theorem 1, everysuh sentene F is equivalent to a boolean ombination of sentenes of the form

∃x1 : : : ∃xs ( ∧1≤i≤s�(r)(xi) ∧ ∧1≤i<j≤s d(xi; xj) > 2r):Consider an enumeration Gn;1; : : : ; Gn;mn of all sentenes of the above form that arise when we apply Theorem1 to formulas F suh that qr(F ) = n.During this step we will �x whih sentenes Gn;j will be true in M
′, and this will suÆe (using again Theorem1 to �x whih sentenes F with quanti�er rank n will be true in M

′.The �rst idea is to hek, for every j, whether there exists R′ ⊆ |M| that extends the urrent marking ina onvenient way and is suh that M(R′) |= Gn;j . If the answer is positive, then we extend our marking justenough to ensure that any extension of the marking will be suh that M
′ |= Gn;j . If the answer is negative, thenwe do not extend the marking, and then every extension of the marking will be suh that M

′ |= ¬Gn;j .We de�ne by indution on j ≤ mn the sets R′′n;j and T ′n;j suh that R′′n;j ontains new elements to markpositively, and T ′n;j ontains the enters of new r-balls whose elements are marked negatively.We proeed as follows. Fix j and assume that the sets R′′n;i and T ′n;i have been de�ned for every i < j. Wehave Gn;j : ∃x1 : : : ∃xs ( ∧1≤i≤s�(r)n;j(xi) ∧ ∧1≤i<j≤s d(xi; xj) > 2r)for some r-loal formula �(r)n;j (formally, s depends on n and j, but we omit the subsripts for the sake ofreadability).Let R+n;j be the set of elements urrently marked positively, i.e.,R+n;j = Rn−1 ∪ ⋃i<knR′n;i ∪ ⋃i<jR′′n;i;and let R−n;j be the set of elements urrently marked negatively, that is,R−n;j = (Sn−1 ∪ ⋃i<kn S′n;i ∪ ⋃i<nB7i(Ti) ∪ ⋃i<jB7n(T ′n;i)) \R+n;j :We want to hek whether there exists R′ ⊆ |M| suh that(1) M(R′) |= Gn;j ;(2) R+n;j ⊆ R′ and R−n;j ∩R′ = 0 (i.e., R′ extends the urrent marking);(3) d(R+n;j ; R′ \R+n;j) ≥ 7n+1 ;(4) d(x; y) ≥ 7n+1 for every pair of distint elements of R′ \R+n;j .Let us denote by (∗) the onjuntion of these four onditions. Let us prove that one an express (∗) with an
L-sentene.
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First assume that there exists R′ that satis�es (∗). Let x1; : : : ; xs ∈ |M| be suh that
M(R′) |= ( ∧1≤i≤s�(r)n;j(xi) ∧ ∧1≤i<j≤s d(xi; xj) > 2r):Conditions (3) and (4) of (∗) imply that eah ball Br(xi) ontains at most one element of R′\R+n;j and, moreover,that if suh an element exists, then it is the unique element of R′ in Br(xi). Thus we an assume without lossof generality that there exist t ≤ s and y1; : : : ; yt ∈ |M| suh thatBr(xi) ∩ (R′ \R+n;j) = {yi}for every i ≤ t and Br(xi) ∩ (R′ \R+n;j) = ∅for every i > t. Condition (3) yields d(R+n;j ; yi) ≥ 7n+1 for every i, and Condition (4) yields d(yi; yj) ≥ 7n+1 forall distint integers i; j.Let us �rst onsider the r-balls Br(xi) for i ≤ t. By the de�nition of xi, we have M(R′) |= �(r)n;j(xi). Now yiis the unique element of R′ ∩Br(xi); thus we have M |= �′n;j(xi; yi), where �′n;j(xi; yi) is obtained from �(r)n;j(xi)by replaing every atomi formula of the form R(z) by (z = yi).Now onsider the r-balls Br(xi) for i > t. By de�nition, we have M(R′) |= �(r)n;j(xi), and Br(xi) ontains noelement of R′ \ R+n;j . Thus we have M |= (r)n;j(xi), where (r)n;j(xi) is obtained from �(r)n;j(xi) by replaing everyatomi formula of the form R(z) by (z ∈ Br(xi) ∩R+n;j).The previous arguments show that M |= G′n;j where G′n;j is the L-sentene de�ned as follows:G′n;j : ∨t≤sHn;j;t;where Hn;j;t : ∃x1 : : : ∃xs∃y1 : : : ∃yt( ∧1≤i<j≤s d(xi; xj) > 2r ∧ ∧1≤i<j≤t d(yi; yj) > 7r∧

∧
∧1≤i≤t d(yi; R+n;j) > 7r ∧ ∧1≤i≤t�(r)n;j(xi; yi) ∧ ∧t<i≤s (r)n;j(xi))with �(r)n;j(xi; yi) : yi ∈ Br(xi) ∧ yi 6∈ (R+n;j ∪R−n;j) ∧Br(xi) ∩R+n;j = ∅ ∧ �′(r)n;j(xi; yi):Conversely, assume that M |= G′n;j . Let t, x1; : : : ; xs and y1; : : : ; yt be suh that Hn;j;t holds in M. Then ifwe set R′ = R+n;j ∪ {y1; : : : ; yt}, we an easily hek that R′ satis�es (∗).Therefore we have shown that the question whether there exists R′ that satis�es (∗) is equivalent to thequestion whether M |= G′n;j for some L-sentene that an be e�etively onstruted from Gn;j .If M |= ¬G′n;j (whih an be heked e�etively, sine by our hypotheses FO(M) is deidable), then we setR′′n;j = T ′n;j = F ′n;j = ∅:Now if M |= G′n;j , then we an e�etively �nd the least value of t suh that M |= Hn;j;t, and then x1; : : : ; xs andy1; : : : ; yt for whih the formula holds. We setR′′n;j = {y1; : : : ; yt}; T ′n;j = {x1; : : : ; xs}; and F ′n;j = {Gn;j}:Note that the above de�nition of T ′n;j means that all elements that were not yet marked and belong to somer-ball Br(xi) are now marked negatively.This ompletes the seond step of the onstrution of Xn.
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We an now de�ne Xn as follows: for n ≥ 1, we setRn = Rn−1 ∪ ⋃i≤knR′n;i ∪ ⋃j≤mnR′′n;j ;Sn = Sn−1 ∪ ⋃i≤kn S′n;i;and Tn = ⋃j≤mn T ′n;j :For n = 0, the de�nitions are the same but we omit the set Rn−1 (respetively, Sn−1) in the de�nition of Rn(respetively, Sn).In order to de�ne Fn, onsider a sentene F with quanti�er rank n. By Theorem 1, F is equivalent to a formulaF ′ that is a boolean ombination of sentenes of the form Gn;j . Consider the truth value of F ′ determined bysetting \true" all sentenes Gn;j ∈ F ′n;j , and \false" sentenes Gn;j 6∈ F ′n;j . Then we de�ne Fn as the union ofFn−1 and all sentenes F for whih F ′ is true.We have de�ned Xn. It remains to show that Xn satis�es all onditions required in the de�nition.
• Conditions (1) to (8) are easy onsequenes of the onstrution of Xn (and the indution hypotheses).
• Let us onsider Condition (9). Let R′ ⊆ |M| be suh that Rn ⊆ R′ andR′ ∩ ((Sn ∪

⋃i≤nB7i(Ti))−Rn) = ∅:Let us prove that R′ is not de�nable by any L-formula of quanti�er rank ≤ n. Sine every subset of |M|de�nable by an L-formula with quanti�er rank n is the union of some of the sets En;i, it suÆes to prove thatR′ and its omplement interset some En;i.By onstrution, the set X = Rn ∪ Sn ∪
⋃i≤nTi is �nite. Now, by hypothesis, M satis�es Condition (3) ofTheorem 2; thus there exists x ∈ |M| suh that d(X; x) > 7n. The element x belongs to some set En;i. Let usprove that R′ and its omplement interset En;i.Consider the step of the onstrution of Xn during whih we marked the elements of En;i. Reall that justbefore this step the set of marked elements wasZn;i = Rn−1 ∪ ⋃j<iR′n;j ∪ Sn−1 ∪ ⋃j<iS′n;j ∪ ⋃i<nB7i(Ti):Sine x ∈ En;i and d(X; x) > 7n, the set En;i \Zn;i is nonempty. Thus either En;i already ontained an elementmarked negatively (and in this ase S′n;i = ∅), or we marked one (from En;i \Zn;i) and put it in S′n;i. Thereforethe omplement of R′ intersets En;i.Then just after this step, either En;i already ontained some element marked positively, or, by the de�nitionof x, there existed an element y of En;i at distane ≥ 7n from the urrently marked elements, and thus we ouldmark positively the �rst suh element y. In both ases this ensures that R′ intersets En;i.

• Let us now prove that Xn satis�es Condition (10). Let R′ ⊆ |M| be suh that Rn ⊆ R′,R′ ∩ ((Sn ∪
⋃i≤nB7i(Ti)) \Rn) = ∅;d(R′; R \Rn) ≥ 7n+1;and d(x; y) ≥ 7n+1 whenever x; y are distint elements of R′ \Rn. Let us prove that FOn(M(R′)) = Fn. Thease of formulas with quanti�er rank < n follows from our indution hypotheses. Now onsider formulas withquanti�er rank n. Their truth values are ompletely determined by the truth values of the sentenes Gn;j .Thus it is suÆient to prove that for every j we have M(R′) |= Gn;j if and only if F ′n;j = {Gn;j}. Fix j, andonsider the step of the onstrution of Xn during whih we dealt with the sentene Gn;j . If M |= G′n;j , thenin this ase F ′n;j = {Gn;j}, and the de�nitions of R′′n;j and T ′n;j imply that the sentene Gn;j holds for everyR′ that extends (in a onvenient way) the marking (Rn; Sn; Tn); thus we have M(R′) |= Gn;j . On the other
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hand, if M 6|= G′n;j , then (∗) annot be satis�ed, and we have set Fn;j = ∅. In partiular, R′ does not satisfy(∗). Now the hypotheses on R′ yield that R′ satis�es the last three onditions of (∗); thus the �rst onditionis not satis�ed, that is, M(R′) 6|= Gn;j .This onludes the proof that there exists a sequene (Xn)n≥0 that satis�es all onditions required in thede�nition.Now let M
′ be the (L ∪ {R})-expansion of M de�ned byRM

′ = ⋃n≥0Rn:Let us prove that M
′ satis�es the properties required in Theorem 2.The de�nition of RM

′ implies that, for every n, RM
′ is not de�nable by any L-sentene with quanti�er rankn, and, moreover, that FOn(M′) = Fn. Therefore RM
′ is not de�nable in M, and FO(M′) is deidable.Let us prove that the elementary diagram of M′ is omputable. Consider the funtion f used for the elementarydiagram of M; it is suÆient to prove that {f(a) | M
′ |= R(a) ; a ∈ |M|} is reursive. Sine every element e of

|M| is de�nable, there exist n; i suh that En;i = {e}. During the onstrution of Xn, more preisely, just beforethe marking of En;i, either e had already been marked, or e was marked during this step. Thus every elementof |M| is eventually marked in RM
′ or in its omplement. Moreover, the whole onstrution is e�etive. Thisimplies that both {f(a) | M

′ |= R(a) ; a ∈ |M|} and {f(a) | M
′ 6|= R(a) ; a ∈ |M|} are reursively enumerable,from whih the result follows.This onludes the proof of Theorem 2. �

4. ConclusionWe gave a suÆient ondition in terms of the Gaifman graph of the struture M that ensures that M is notmaximal. A natural problem is to extend Theorem 2 to strutures M that do not satisfy Condition (3). Inpartiular, one an onsider the ase of labelled linear orderings, i.e., in�nite strutures (A;<;P1; : : : ; Pn) where< is a linear ordering over A and the Pi's denote unary prediates; the Gaifman distane is trivial for thesestrutures. Another related general problem is to �nd a way to re�ne the notion of Gaifman distane; see [2℄ forsome reent progress.Finally, it would also be interesting to study the omplexity gap between the deision proedure for the theoryof M and the one for the struture M
′ onstruted in the proof of Theorem 2.
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