NONMAXIMAL DECIDABLE STRUCTURES

A. Bes∗ and P. Cegielski∗ UDC 510.665

Given any infinite structure \mathfrak{M} with a decidable first-order theory, we give a sufficient condition in terms of the Gaifman graph of $\mathfrak M$ that ensures that $\mathfrak M$ can be expanded with some nondefinable predicate in such a way that the first-order theory of the expansion is still decidable. Bibliography: 10 titles.

1. INTRODUCTION

Elgot and Rabin ask in $[3]$ whether there exist maximal decidable structures, i.e., structures \mathfrak{M} with a decidable elementary theory and such that the elementary theory of any expansion of \mathfrak{M} by a nondefinable predicate is unde
idable.

Soprunov proved in [10] (using a forcing argument) that every structure in which a regular ordering is interpretable is not maximal. A partial ordering (B, \leq) is said to be regular if for every $a \in B$ there exist distinct elements $b_1, b_2 \in B$ such that $b_1 < a, b_2 < a$, and no element $c \in B$ satisfies both $c < b_1$ and $c < b_2$. As a corollary, he also proved that there is no maximal decidable structure if we replace "elementary theory" by "weak monadic second-order theory." 1

In $[1]$, we considered a weakening of the Elgot-Rabin question, namely, the question of whether all structures \mathfrak{M} whose first-order theory is decidable can be expanded by some constant in such a way that the resulting structure still has a decidable theory. We answered this question negatively by proving that there exists a structure \mathfrak{M} whose monadic second-order theory is decidable and such that any expansion of \mathfrak{M} by a constant has an unde
idable elementary theory.

In this paper, we address the initial Elgot-Rabin question, and provide a criterion for nonmaximality. More precisely, given any structure \mathfrak{M} with a decidable first-order theory, we give in Sec. 3 a sufficient condition in terms of the Gaifman graph of \mathfrak{M} that ensures that \mathfrak{M} can be expanded with some nondefinable predicate in such a way that the first-order theory of the expansion is still decidable. The condition is the following: for every natural number r and every finite set X of elements of the base set $|\mathfrak{M}|$ of \mathfrak{M} , there exists an element $x \in |\mathfrak{M}|$ such that the Gaifman distance between x and every element of X is greater than r. This condition holds, e.g., for the structure (N, S) , where S denotes the graph of the successor function, and, more generally, for any labelled infinite graph with finite degree whose elementary theory is decidable, i.e., any structure $\mathfrak{M} = (V, E, P_1, \ldots, P_n)$ where V is infinite, E is a binary relation of finite degree, the P_i 's are unary relations, and the elementary theory of M is de
idable. Unlike Soprunov's ondition, our ondition expresses some limitation on the expressive power of the structure \mathfrak{M} .

In Sec. 2, we recall some important definitions and results. Section 3 deals with the main theorem. We on
lude the paper with related questions.

2. Preliminaries

In the sequel, we consider first-order logic with equality. We deal only with relational structures. Given a language $\mathfrak L$ and an $\mathfrak L$ -structure $\mathfrak M$, we denote by $|\mathfrak M|$ the base set of $\mathfrak M$. For every symbol $R \in \mathfrak L$, we denote by $R^{\mathfrak{M}}$ the interpretation of R in \mathfrak{M} . As usual, we will often confuse symbols and their interpretation. We denote by $FO(\mathfrak{M})$ the first-order (complete) theory of \mathfrak{M} , i.e., the set of first-order \mathfrak{L} -sentences φ such that $\mathfrak{M} \models \varphi$.

We say that an n-ary relation R over $|\mathfrak{M}|$ is elementary definable (in short: *definable*) in \mathfrak{M} if there exists an $\mathfrak L$ formula φ with n free variables such that $R = \{(a_1, \ldots, a_n) : \mathfrak M \models \varphi(a_1, \ldots, a_n)\}.$

We denote by $\text{qr}(F)$ the quantifier rank of a formula F, defined inductively as follows: $\text{qr}(F) = 0$ if F is atomic, $q\text{r}(\neg F) = q\text{r}(F), q\text{r}(F\alpha G) = \max(q\text{r}(F), q\text{r}(G))$ for $\alpha \in \{\wedge, \vee, \rightarrow\}$, and $q\text{r}(\exists x F) = q\text{r}(\forall x F) = q\text{r}(F) + 1$. We define $FO_n(\mathfrak{M})$ as the set of \mathfrak{L} -sentences F such that $\text{qr}(F) \leq n$ and $\mathfrak{M} \models F$.

We say that the elementary diagram of a structure \mathfrak{M} is computable if there exists an injective map $f : |\mathfrak{M}| \to \mathbb{N}$ such that the range of f, as well as the relations $\{(f(a_1),...,f(a_n)) \mid a_1,...,a_n \in |\mathfrak{M}| \text{ and } \mathfrak{M} \models R(a_1,...,a_n)\}\$ for every relation R of \mathfrak{L} , are recursive (see, e.g., [9]).

[∗]LACL, Universit´e Paris-Est, France, e-mail: bes@univ-paris12.fr, cegielski@univ-paris12.fr.

¹These results, and the Elgot–Rabin question itself, were brought to our attention by Semenov's paper [8].

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 358, 2008, pp. 23–37. Original article submitted May 22, 2007. 1072-3374/09/1585-0615 c 2009 Springer Science+Business Media, Inc. 615

Let us recall useful definitions and results related to the Gaifman graph of a structure $[4]$ (see also $[6]$). Let $\mathfrak L$ be a relational language, and let $\mathfrak M$ be an $\mathfrak L$ -structure. The Gaifman graph of $\mathfrak M$, which we denote by $G(\mathfrak M)$, is the undirected graph with vertex set $|\mathfrak{M}|$ such that for all $x, y \in |\mathfrak{M}|$ there is an edge between x and y if and only if $x = y$ or there exist some n-ary relational symbol $R \in \mathfrak{L}$ and some n-tuple \vec{t} of elements of $|\mathfrak{M}|$ that contains both x and y and satisfies $\vec{t} \in R^{\mathfrak{M}}$.

The distance $d(x, y)$ between two elements $x, y \in |\mathfrak{M}|$ is defined as the usual distance in the sense of the graph $G(\mathfrak{M})$. We denote by $B_r(x)$ the r-ball with center x, i.e., the set of elements y of $|\mathfrak{M}|$ such that $d(x, y) \leq r$. It should be noted that for every fixed r the binary relation " $y \in B_r (x)$ " is definable in M. For every $X \subseteq |\mathfrak{M}|$ we define $B_r(X)$ as $B_r(X) = \bigcup B_r(x)$. $x \in X$

An r-local formula $\varphi(x_1,\ldots,x_n)$ is a formula whose quantifiers are all relativized to $B_r({x_1,\ldots,x_n})$. We will use the notation φ \vee to indicate that φ is r-local.

Let us now state Gaifman's theorem about local formulas.

Theorem 1 ([4]). Let $\vec{x} = (x_1, \ldots, x_n)$, and let $\varphi(\vec{x})$ be an \mathfrak{L} -formula. From φ one can effectively compute a formula that is equivalent to φ and is a boolean combination of formulas of the form

$$
\bullet \quad \psi^{(r)}(\vec x),
$$

 \bullet $\exists x_1 \dots \exists x_s \in \bigwedge$ $1 \leq i \leq s$ $\alpha^{(r)}(x_i) \wedge \quad \bigwedge$ ¹≤i<j≤^s $d(x_i, x_j) > 2r$

where $s \leq \text{qr}(\varphi) + n$ and $r \leq 7^k$.

Moreover, if φ is a sentence, then only sentences of the second kind occur in the resulting formula.

3. A sufficient condition for nonmaximality

The aim of this section is to prove the following theorem.

Theorem 2. Let $\mathfrak L$ be a finite relational language, and let $\mathfrak M$ be an infinite countable $\mathfrak L$ -structure that satisfies the following conditions:

(1) $FO(\mathfrak{M})$ is decidable;

(2) every element of $|\mathfrak{M}|$ is definable in \mathfrak{M} ;

(3) for every finite set $X \subseteq |\mathfrak{M}|$ and every $r \in \mathbb{N}$, there exists $a \in |\mathfrak{M}|$ such that $d(a, X) > r$.

Then there exists a unary predicate symbol $R \not\in \mathfrak{L}$ and a $(\mathfrak{L} \cup \{R\})$ -expansion \mathfrak{M}' of \mathfrak{M} such that

• $FO(\mathfrak{M}')$ is decidable;

• the set $R^{\mathfrak{M}'}$ is not definable in $\mathfrak{M};$

 \bullet the elementary diagram of \mathfrak{M}' is computable.

Note that in the above theorem, the construction of \mathfrak{M}' from \mathfrak{M} can be repeated starting from \mathfrak{M}' . Indeed, \mathfrak{M}' clearly satisfies Conditions (1) and (2). Moreover, expanding a structure by unary predicates does not modify its Gaifman graph, therefore we have $G(\mathfrak{M}') = G(\mathfrak{M})$, which implies that Condition (3) also holds for \mathfrak{M}' .

Let us illustrate Theorem 2 with a few examples.

• The structure $\mathfrak{M} = (\mathbb{N}; S)$, where S denotes the graph of the function $x \mapsto x + 1$, satisfies all conditions of Theorem 2. Indeed, Langford [5] proved that $FO(\mathfrak{M})$ is decidable. Moreover, Condition (2) is easy to prove, and Condition (3) is a straightforward consequence of the fact that $d(x, y) = |x - y|$ for all natural numbers $x, y.$

• The same holds for any structure of the form $\mathfrak{M} = (\mathbb{N}; S, P_1, \ldots, P_n)$ where the P_i 's denote unary predicates and $FO(\mathfrak{M})$ is decidable (the Gaifman graph of any such structure is equal to that of $(\mathbb{N};S)$, see the remark above).

• More generally, Theorem 2 applies to any infinite labelled graph with finite degree, more precisely, to any structure of the form $\mathfrak{M} = (V; E, P_1, \ldots, P_n)$ where V is infinite, E is a binary relation with finite degree, the P_i 's denote unary predicates, $FO(\mathfrak{M})$ is decidable, and every element of V is definable in \mathfrak{M} . In this case, the Gaifman graph of \mathfrak{M} has finite degree, which implies Condition (3). Note that Theorem 2 also applies to some structures for which the degree of the Gaifman graph is infinite $-$ see the last example.

• The structure $\mathfrak{M} = (\mathbb{N}; <)$ does not satisfy Condition (3) of Theorem 2, since $d(x, y) \leq 1$ for all $x, y \in \mathbb{N}$. Observe that $FO(\mathfrak{M})$ is decidable [5], and, moreover, \mathfrak{M} is not maximal: consider, e.g., the structure $\mathfrak{M}' =$ $(N, <, +)$ where + denotes the graph of addition; $FO(\mathfrak{M}')$ is decidable [7], and + is not definable in \mathfrak{M} , since in $\mathfrak M$ one can only define finite or co-finite subsets of $\mathbb N$.

Actually, one can prove that for every infinite structure \mathfrak{M} in which some linear ordering of elements of $|\mathfrak{M}|$ is definable, Condition (3) does not hold. However, the next example shows that Theorem 2 can be applied to some structures in which an infinite linear ordering is *interpretable*.

• Consider the disjoint union of ω copies of $(N, <)$ equipped with a successor relation between copies, i.e., the structure $\mathfrak{M} = (\mathbb{N} \times \mathbb{N}; <, \text{Suc})$ where

 $-(x, y) < (x', y')$ if and only if $(x = x'$ and $y < y')$;

 $-$ Suc($(x, y), (x', y')$) if and only if $x' = x + 1$;

then M satisfies the conditions of Theorem 2: the first condition comes from the fact that $FO(\mathfrak{M})$ reduces to $FO(N,<)$, and the two other conditions are easy to check.

Let us explain informally the structure of the proof of Theorem 2. Given \mathfrak{M} that fulfills all conditions of Theorem 2, we define $R^{\mathfrak{M}'}$ by gradually marking elements of $|\mathfrak{M}|$, some in $R^{\mathfrak{M}'}$ and some in its complement. More precisely, we define by induction on *n* the sequence $(X_n)_{n\in\mathbb{N}}$ with $X_n = (R_n, S_n, T_n, F_n)$ where

• R_n corresponds to a finite set of elements of $R^{\mathfrak{M}'}$ (we will say "marked positively");

- \bullet S_n corresponds to a finite set of elements of the complement of $R^{\mathfrak{M}'}$ (we will say "marked negatively");
- \bullet T_n corresponds to a finite set of centers of balls whose elements (apart from elements of R_n) are marked in the complement of $R^{\mathfrak{M}'}$:
- F_n denotes the set of formulas of quantifier rank $\leq n$ that will be true in \mathfrak{M}' .

The set $R^{\mathfrak{M}'}$ will be defined as the union of the sets R_n . At each step n, the partial marking X_n ensures that $R^{\mathfrak{M}'}$ is not definable by any formula of quantifier rank n, and also fixes $FO_n(\mathfrak{M}')$. The possibility to fix $FO_n(\mathfrak{M}')$ whereas $R^{\mathfrak{M}'}$ is only partially defined comes from Gaifman's Theorem 1, which reduces the satisfaction of sentences in \mathfrak{M}' to the one of sentences that only speak about a finite number of r-balls in $|\mathfrak{M}'|$ (these are sentences of the second kind in Theorem 1), and thus can be evaluated as soon as $R^{\mathfrak{M}'}$ is completely defined in these r-balls.

In the construction we impose some sparsity condition on $R^{\mathfrak{M}'}$; this condition implies that there are few elements of $R^{\mathfrak{M}'}$ in each r-ball, which in turn allows us to express with \mathfrak{L} -sentences that an r-ball of $|\mathfrak{M}|$ can be marked conveniently, and then use the hypothesis that $FO(\mathfrak{M})$ is decidable in order to extend the marking in an effective way.

Proof of Theorem 2. Assume that \mathfrak{M} is an L-structure that satisfies all conditions of the theorem. Let $R \notin \mathfrak{L}$ be a unary predicate symbol. For every $X \subseteq |\mathfrak{M}|$ we denote by $\mathfrak{M}(X)$ the $(\mathfrak{L} \cup \{R\})$ -expansion of \mathfrak{M} defined by interpreting R by X .

Throughout the proof we will use the following interesting onsequen
es of Conditions (1) and (2):

• The elementary diagram of \mathfrak{M} is computable. Indeed, since \mathfrak{L} is finite, we can enumerate all formulas $\varphi(x)$ with one free variable. Let us denote by $(\varphi_i(x))_{i>0}$ such an enumeration. Then the application $f : |\mathfrak{M}| \to \mathbb{N}$ that maps every element e of $|\mathfrak{M}|$ to the least integer i such that φ_i defines e is injective; moreover, the range of f, and the relations $\{(f(a_1), \ldots, f(a_n)) : \mathfrak{M} \models Q(a_1, \ldots, a_n)\}\$ for every symbol Q of \mathfrak{L} , are recursive.

• If $\psi(x)$ is a formula with one free variable and $\mathfrak{M} \models \exists x \psi(x)$, then one can effectively find the first integer i that belongs to the range of f and is such that $\mathfrak{M} \models \exists x(\varphi_i(x) \land \psi(x))$. That is, one can effectively find some element $x \in \mathfrak{M}$ for which $\psi(x)$ holds in \mathfrak{M} .

• Every finite or co-finite subset $A \subseteq |\mathfrak{M}|$ is definable in \mathfrak{M} . This will allow us to use shortcuts such as " $x \in A$ " when we write formulas in the language \mathfrak{L} .

We now define by induction on $n \in \mathbb{N}$ a sequence $X_n = (R_n, S_n, T_n, F_n)$ such that

(1) R_n, S_n, T_n are finite subsets of $|\mathfrak{M}|$;

(2) F_n is a set of $(\mathfrak{L} \cup \{R\})$ -sentences with quantifier rank $\leq n$;

$$
(3) R_n \cap S_n = \varnothing;
$$

(4) $R_{n-1} \subseteq R_n$ and $S_{n-1} \subseteq S_n$ for every $n \geq 1$;

- (5) R_n ∩ $((S_{n-1} \cup \ \vert \)$ ⁱ≤n−¹ $B_{7^i}(T_i)) \setminus R_{n-1}$ = ∅ for every $n \geq 1$;
- (6) $S_n \cap R_{n-1} = \varnothing$ for every $n \geq 1$;
- (7) $d(x, y) \geq 7^n$ for every pair of distinct elements of $R_n \setminus R_{n-1}$ (for $n \geq 1$);
- (8) $d(R_n \setminus R_{n-1}, R_{n-1}) \geq 7^n$ (for $n \geq 1$);
- (9) for every $R' \subseteq |\mathfrak{M}|$ such that $R_n \subseteq R'$ and

$$
R' \cap ((S_n \cup \bigcup_{i \leq n} B_{7^i}(T_i)) \setminus R_n) = \varnothing,
$$

617

R' is not definable in $\mathfrak M$ by any $\mathfrak L$ -formula of quantifier rank $\leq n;$ (10) for every $R' \subseteq |\mathfrak{M}|$ such that $R_n \subseteq R'$,

$$
R' \cap ((S_n \cup \bigcup_{i \leq n} B_{7^i}(T_i)) \setminus R_n) = \varnothing,
$$

$$
d(R', R' \setminus R_n) \geq 7^{n+1},
$$

and $d(x, y) \geq 7^{n+1}$ whenever x, y are distinct elements of $R' \setminus R_n$, we have

$$
FO_n(\mathfrak{M}(R')) = F_n.
$$

Conditions (4), (5), and (6) express the fact that the marking associated with X_n extends the one associated with X_{n-1} , and Conditions (7) and (8) specify that elements of $R_n \setminus R_{n-1}$ (i.e., new elements marked positively) are far away from each other and also from elements of R_{n-1} . Conditions (9) and (10) ensure that for any set $R' \subseteq |\mathfrak{M}|$ that extends R_n "sparsely" (this will hold in particular for the sets R_{n+1}, R_{n+2}, \ldots , and eventually for $\overline{R}^{\mathfrak{M}'}, R'$ is not definable in \mathfrak{M} by any \mathfrak{L} -formula of quantifier rank $\leq n$, and, moreover, $\text{FO}_n(\mathfrak{M}(R')) = F_n$, i.e., the partial marking X_n fixes $FO_n(\mathfrak{M}(R'))$.

We now define the sequence $(X_n)_{n\in\mathbb{N}}$.

Induction hypothesis: assume that $(X_i)_{i \leq n}$ is defined and satisfies the required conditions.

Let us define X_n . The definition consists of two main steps: during the first step, we extend the marking in order to obtain Condition (9), i.e., to ensure that $R^{\mathfrak{M}'}$ will not be definable in \mathfrak{M} with any £-formula with quantifier rank n ; this is the easiest step, and it involves Condition (3) of the theorem. During the second step, we again extend the marking in order to obtain Condition (9), i.e., to fix $FO_n(\mathfrak{M}')$.

We set $r = r^n$.

First step: during this step, we mark a finite number of elements in order to ensure that $R^{\mathfrak{M}'}$ will not be definable by any \mathfrak{L} -formula with quantifier rank n.

Since we deal with a finite relational language, there exist finitely many (up to equivalence) formulas with quantifier rank n. From $\mathfrak L$ we can compute an integer k_n and a finite set of $\mathfrak L$ -formulas $\{\alpha_{n,i}(x):1\leq i\leq k_n\}$ such that every *L*-formula with quantifier rank *n* is equivalent to the disjunction of some of the $\alpha_{n,i}$'s, and, moreover, such that the formulas $\alpha_{n,i}$ are incompatible. For $i = 1, \ldots, k_n$, let us denote by $E_{n,i}$ the subset of $|\mathfrak{M}|$ defined by $\alpha_{n,i}(x)$. By construction, the sequence $(E_{n,1},\ldots,E_{n,k_n})$ is a partition of $|\mathfrak{M}|$, and every subset of $|\mathfrak{M}|$ definable by a formula of quantifier rank n is a finite union of some of the subsets $E_{n,i}$.

We will mark elements in such a way that for some *i* the subset $E_{n,i}$ contains at least an element marked positively and another element marked negatively. This will ensure that Condition (9) is satisfied. More precisely, for $i = 1, \ldots, k_n$, we mark positively (respectively, negatively) at most one new element of $E_{n,i}$. We define the sets $R'_{n,i}$ (respectively, $S'_{n,i}$) such that $R'_{n,i}$ contains the set of new elements to mark positively (respectively, negatively) in $E_{n,i}$ (each of the sets $R'_{n,i}$ and $S'_{n,i}$ is either empty or reduced to a singleton). We proceed as follows:

• If there exists some element of $E_{n,i}$ that is not yet marked and, moreover, all marked elements of $E_{n,i}$ are marked positively, then we mark negatively the first unmarked element of $E_{n,i}$.

Formally, assume that the sets $R'_{n,j}$ and $S'_{n,j}$ have been defined for every $j < i$, and let

$$
Z_{n,i} = R_{n-1} \cup \bigcup_{j
$$

If

$$
\mathfrak{M} \models \exists x (\alpha_{n,i}(x) \land x \notin Z_{n,i})
$$

and, moreover,

$$
\mathfrak{M} \models (E_{n,i} \cap Z_{n,i}) \subseteq (R_{n-1} \cup \bigcup_{j
$$

(this property is expressible with an \mathfrak{L} -sentence), then we set $S'_{n,i}$ to be the singleton set consisting of the first element x su
h that

$$
\mathfrak{M} \models \exists x (\alpha_{n,i}(x) \land x \notin Z_{n,i}).
$$

618

Otherwise we set $S'_{n,i} = \emptyset$.

• Then, if all currently marked elements of $E_{n,i}$ are marked negatively and, moreover, there exists some unmarked element x of $E_{n,i}$ at distance $\geq 7^{n+1}$ from the already marked elements, then we mark positively the first such element x .

Formally, let

$$
Z'_{n,i}=Z_{n,i}\cup S'_{n,i}.
$$

If

$$
\mathfrak{M} \models (E_{n,i} \cap (R_{n-1} \cup \bigcup_{j
$$

and, moreover,

$$
\mathfrak{M} \models \exists x (\alpha_{n,i}(x) \land d(x, Z'_{n,i}) \geq 7^{n+1}),
$$

then let $R'_{n,i}$ be the singleton set consisting of the first such x. Otherwise set $R'_{n,i} = \emptyset$.

Note that the above construction is effective (see the remarks at the beginning of the proof).

Second step: during this step, we extend the marking in order to fix $FO_n(\mathfrak{M}')$.

Up to equivalence, there exist finitely many $(\mathfrak{L} \cup \{R\})$ -sentences F such that $\mathfrak{qr}(F) = n$. By Theorem 1, every such sentence F is equivalent to a boolean combination of sentences of the form

$$
\exists x_1 \ldots \exists x_s \; \big(\bigwedge_{1 \leq i \leq s} \alpha^{(r)}(x_i) \wedge \bigwedge_{1 \leq i < j \leq s} d(x_i, x_j) > 2r \big).
$$

Consider an enumeration $G_{n,1},\ldots,G_{n,m_n}$ of all sentences of the above form that arise when we apply Theorem 1 to formulas F such that $qr(F) = n$.

During this step we will fix which sentences $G_{n,j}$ will be true in $\mathfrak{M}',$ and this will suffice (using again Theorem 1 to fix which sentences F with quantifier rank n will be true in \mathfrak{M}' .

The first idea is to check, for every j, whether there exists $R' \subseteq |\mathfrak{M}|$ that extends the current marking in a convenient way and is such that $\mathfrak{M}(R')\models G_{n,j}$. If the answer is positive, then we extend our marking just enough to ensure that any extension of the marking will be such that $\mathfrak{M}'\models G_{n,j}.$ If the answer is negative, then we do not extend the marking, and then every extension of the marking will be such that $\mathfrak{M}'\models \neg G_{n,j}$.

We define by induction on $j \leq m_n$ the sets $R''_{n,j}$ and $T'_{n,j}$ such that $R''_{n,j}$ contains new elements to mark positively, and $T'_{n,j}$ contains the centers of new r-balls whose elements are marked negatively.

We proceed as follows. Fix j and assume that the sets $R''_{n,i}$ and $T'_{n,i}$ have been defined for every $i < j$. We have

$$
G_{n,j} : \exists x_1 \dots \exists x_s \; \big(\bigwedge_{1 \leq i \leq s} \alpha_{n,j}^{(r)}(x_i) \wedge \bigwedge_{1 \leq i < j \leq s} d(x_i, x_j) > 2r\big)
$$

for some r-local formula $\alpha_{n,j}^{(r)}$ (formally, s depends on n and j, but we omit the subscripts for the sake of readability).

Let $R_{n,i}^{+}$ be the set of elements currently marked positively, i.e.,

$$
R_{n,j}^+ = R_{n-1} \cup \bigcup_{i < k_n} R'_{n,i} \cup \bigcup_{i < j} R''_{n,i},
$$

and let $R_{n,i}^-$ be the set of elements currently marked negatively, that is,

$$
R_{n,j}^- = (S_{n-1} \cup \bigcup_{i < k_n} S'_{n,i} \cup \bigcup_{i < n} B_{7^i}(T_i) \cup \bigcup_{i < j} B_{7^n}(T'_{n,i})) \setminus R_{n,j}^+.
$$

We want to check whether there exists $R' \subseteq |\mathfrak{M}|$ such that

(1) $\mathfrak{M}(R')\models G_{n,j};$

- (2) $R_{n,i}^+ \subseteq R'$ and $R_{n,i}^- \cap R' = 0$ (i.e., R' extends the current marking);
- (3) $d(R_{n,j}^+, R' \setminus R_{n,j}^+) \geq 7^{n+1}$;
- (4) $d(x, y) \geq 7^{n+1}$ for every pair of distinct elements of $R' \setminus R_{n,j}^+$.

Let us denote by (*) the conjunction of these four conditions. Let us prove that one can express (*) with an L-senten
e.

First assume that there exists R' that satisfies (*). Let $x_1, \ldots, x_s \in |\mathfrak{M}|$ be such that

$$
\mathfrak{M}(R') \models (\bigwedge_{1 \leq i \leq s} \alpha_{n,j}^{(r)}(x_i) \land \bigwedge_{1 \leq i < j \leq s} d(x_i, x_j) > 2r).
$$

Conditions (3) and (4) of (*) imply that each ball $B_r(x_i)$ contains at most one element of $R'\setminus R_{n,i}^+$ and, moreover, that if such an element exists, then it is the unique element of R' in $B_r(x_i)$. Thus we can assume without loss of generality that there exist $t \leq s$ and $y_1, \ldots, y_t \in |\mathfrak{M}|$ such that

$$
B_r(x_i) \cap (R' \setminus R_{n,j}^+) = \{y_i\}
$$

for every $i \leq t$ and

$$
B_r(x_i) \cap (R' \setminus R_{n,j}^+) = \varnothing
$$

for every $i > t$. Condition (3) yields $d(R_{n,j}^+, y_i) \geq 7^{n+1}$ for every i, and Condition (4) yields $d(y_i, y_j) \geq 7^{n+1}$ for all distinct integers i, j .

Let us first consider the r-balls $B_r(x_i)$ for $i \leq t$. By the definition of x_i , we have $\mathfrak{M}(R') \models \alpha_{n,i}^{(r)}(x_i)$. Now y_i is the unique element of $R' \cap B_r(x_i)$; thus we have $\mathfrak{M} \models \alpha'_{n,i}(x_i,y_i)$, where $\alpha'_{n,i}(x_i,y_i)$ is obtained from $\alpha^{(r)}_{n,i}(x_i)$ by replacing every atomic formula of the form $R(z)$ by $(z = y_i)$.

Now consider the r-balls $B_r(x_i)$ for $i > t$. By definition, we have $\mathfrak{M}(R') \models \alpha_{n,i}^{(r)}(x_i)$, and $B_r(x_i)$ contains no element of $R' \setminus R_{n,i}^+$. Thus we have $\mathfrak{M} \models \gamma_{n,i}^{(r)}(x_i)$, where $\gamma_{n,i}^{(r)}(x_i)$ is obtained from $\alpha_{n,i}^{(r)}(x_i)$ by replacing every atomic formula of the form $R(z)$ by $(z \in B_r(x_i) \cap R^+_{n,i}).$

The previous arguments show that $\mathfrak{M} \models G'_{n,i}$ where $G'_{n,i}$ is the L-sentence defined as follows:

$$
G'_{n,j}:\ \bigvee_{t\leq s}H_{n,j,t},
$$

where

$$
H_{n,j,t}: \exists x_1 \dots \exists x_s \exists y_1 \dots \exists y_t (\bigwedge_{1 \leq i < j \leq s} d(x_i, x_j) > 2r \land \bigwedge_{1 \leq i < j \leq t} d(y_i, y_j) > 7r \land \bigwedge_{1 \leq i < j \leq t} d(y_i, R_{n,j}^+) > 7r \land \bigwedge_{1 \leq i \leq t} \beta_{n,j}^{(r)}(x_i, y_i) \land \bigwedge_{t < i \leq s} \gamma_{n,j}^{(r)}(x_i))
$$

with

$$
\beta_{n,j}^{(r)}(x_i, y_i): y_i \in B_r(x_i) \wedge y_i \notin (R_{n,j}^+ \cup R_{n,j}^-) \wedge B_r(x_i) \cap R_{n,j}^+ = \varnothing \wedge \alpha'_{n,j}^{(r)}(x_i, y_i).
$$

Conversely, assume that $\mathfrak{M} \models G'_{n,j}$. Let t, x_1, \ldots, x_s and y_1, \ldots, y_t be such that $H_{n,j,t}$ holds in \mathfrak{M} . Then if we set $R' = R_{n,i}^+ \cup \{y_1,\ldots,y_t\}$, we can easily check that R' satisfies (*).

Therefore we have shown that the question whether there exists R' that satisfies $(*)$ is equivalent to the question whether $\mathfrak{M} \models G'_{n,i}$ for some £-sentence that can be effectively constructed from $G_{n,j}$.

If $\mathfrak{M} \models \neg G'_{n,i}$ (which can be checked effectively, since by our hypotheses $FO(\mathfrak{M})$ is decidable), then we set

$$
R_{n,j}'' = T_{n,j}' = F_{n,j}' = \varnothing.
$$

Now if $\mathfrak{M} \models G'_{n,i}$, then we can effectively find the least value of t such that $\mathfrak{M} \models H_{n,j,t}$, and then x_1, \ldots, x_s and y_1, \ldots, y_t for which the formula holds. We set

$$
R''_{n,j} = \{y_1, \ldots, y_t\}, \quad T'_{n,j} = \{x_1, \ldots, x_s\}, \quad \text{and} \quad F'_{n,j} = \{G_{n,j}\}.
$$

Note that the above definition of $T'_{n,i}$ means that all elements that were not yet marked and belong to some r-ball $B_r(x_i)$ are now marked negatively.

This completes the second step of the construction of X_n . 620

We can now define X_n as follows: for $n \geq 1$, we set

$$
R_n = R_{n-1} \cup \bigcup_{i \le k_n} R'_{n,i} \cup \bigcup_{j \le m_n} R''_{n,j},
$$

$$
S_n = S_{n-1} \cup \bigcup_{i \le k_n} S'_{n,i},
$$

and

$$
T_n = \bigcup_{j \le m_n} T'_{n,j}.
$$

For $n = 0$, the definitions are the same but we omit the set R_{n-1} (respectively, S_{n-1}) in the definition of R_n (respectively, S_n).

In order to define F_n , consider a sentence F with quantifier rank n. By Theorem 1, F is equivalent to a formula F' that is a boolean combination of sentences of the form $G_{n,j}$. Consider the truth value of F' determined by setting "true" all sentences $G_{n,j} \in F'_{n,j}$, and "false" sentences $G_{n,j} \notin F'_{n,j}$. Then we define F_n as the union of F_{n-1} and all sentences F for which $F^{(n)}$ is true.

We have defined X_n . It remains to show that X_n satisfies all conditions required in the definition.

• Conditions (1) to (8) are easy consequences of the construction of X_n (and the induction hypotheses).

• Let us consider Condition (9). Let $R' \subseteq |\mathfrak{M}|$ be such that $R_n \subseteq R'$ and

$$
R' \cap ((S_n \cup \bigcup_{i \leq n} B_{7^i}(T_i)) - R_n) = \varnothing.
$$

Let us prove that R' is not definable by any L-formula of quantifier rank $\leq n$. Since every subset of $|\mathfrak{M}|$ definable by an L-formula with quantifier rank n is the union of some of the sets $E_{n,i}$, it suffices to prove that R' and its complement intersect some $E_{n,i}$.

By construction, the set $X = R_n \cup S_n \cup \bigcup T_i$ is finite. Now, by hypothesis, M satisfies Condition (3) of ⁱ≤ⁿ

Theorem 2; thus there exists $x \in |\mathfrak{M}|$ such that $d(X, x) > 7^n$. The element x belongs to some set $E_{n,i}$. Let us prove that R' and its complement intersect $E_{n,i}$.

Consider the step of the construction of X_n during which we marked the elements of $E_{n,i}$. Recall that just before this step the set of marked elements was

$$
Z_{n,i} = R_{n-1} \cup \bigcup_{j
$$

Since $x \in E_{n,i}$ and $d(X,x) > 7^n$, the set $E_{n,i} \setminus Z_{n,i}$ is nonempty. Thus either $E_{n,i}$ already contained an element marked negatively (and in this case $S'_{n,i} = \varnothing$), or we marked one (from $E_{n,i} \setminus Z_{n,i}$) and put it in $S'_{n,i}$. Therefore the complement of R' intersects $E_{n,i}$.

Then just after this step, either $E_{n,i}$ already contained some element marked positively, or, by the definition of $x,$ there existed an element y of $E_{n,i}$ at distance $\geq 7^n$ from the currently marked elements, and thus we could mark positively the first such element y. In both cases this ensures that R' intersects $E_{n,i}$.

• Let us now prove that X_n satisfies Condition (10). Let $R' \subseteq |\mathfrak{M}|$ be such that $R_n \subseteq R'$,

$$
R' \cap ((S_n \cup \bigcup_{i \le n} B_{7^i}(T_i)) \setminus R_n) = \varnothing,
$$

$$
d(R', R \setminus R_n) \ge 7^{n+1},
$$

and $d(x, y) \ge 7^{n+1}$ whenever x, y are distinct elements of $R' \setminus R_n$. Let us prove that $FO_n(\mathfrak{M}(R')) = F_n$. The case of formulas with quantifier $rank < n$ follows from our induction hypotheses. Now consider formulas with quantifier rank n. Their truth values are completely determined by the truth values of the sentences $G_{n,j}$. Thus it is sufficient to prove that for every j we have $\mathfrak{M}(R')\models G_{n,j}$ if and only if $F'_{n,j}=\{G_{n,j}\}$. Fix j, and consider the step of the construction of X_n during which we dealt with the sentence $\tilde{G_{n,j}}.$ If $\mathfrak{M}\models G'_{n,j},$ then in this case $F'_{n,i} = \{G_{n,j}\}$, and the definitions of $R''_{n,i}$ and $T'_{n,i}$ imply that the sentence $G_{n,j}$ holds for every R' that extends (in a convenient way) the marking (R_n, S_n, T_n) ; thus we have $\mathfrak{M}(R') \models G_{n,j}$. On the other 621 hand, if $\mathfrak{M} \not\models G'_{n,i}$, then (*) cannot be satisfied, and we have set $F_{n,j} = \varnothing$. In particular, R' does not satisfy (*). Now the hypotheses on R' yield that R' satisfies the last three conditions of (*); thus the first condition is not satisfied, that is, $\mathfrak{M}(R') \not\models G_{n,j}$.

This concludes the proof that there exists a sequence $(X_n)_{n\geq 0}$ that satisfies all conditions required in the definition.

Now let \mathfrak{M}' be the $(\mathfrak{L} \cup \{R\})$ -expansion of \mathfrak{M} defined by

$$
R^{\mathfrak{M}'} = \bigcup_{n \geq 0} R_n.
$$

Let us prove that \mathfrak{M}' satisfies the properties required in Theorem 2.

The definition of $R^{\mathfrak{M}'}$ implies that, for every n, $R^{\mathfrak{M}'}$ is not definable by any \mathfrak{L} -sentence with quantifier rank n, and, moreover, that $FO_n(\mathfrak{M}') = F_n$. Therefore $R^{\mathfrak{M}'}$ is not definable in \mathfrak{M} , and $FO(\mathfrak{M}')$ is decidable.

Let us prove that the elementary diagram of \mathfrak{M}' is computable. Consider the function f used for the elementary diagram of \mathfrak{M} ; it is sufficient to prove that $\{f(a) \mid \mathfrak{M}' \models R(a)$, $a \in |\mathfrak{M}|\}$ is recursive. Since every element e of $|\mathfrak{M}|$ is definable, there exist n, i such that $E_{n,i} = \{e\}$. During the construction of X_n , more precisely, just before the marking of $E_{n,i}$, either e had already been marked, or e was marked during this step. Thus every element of $|\mathfrak{M}|$ is eventually marked in $R^{\mathfrak{M}'}$ or in its complement. Moreover, the whole construction is effective. This implies that both $\{f(a) \mid \mathfrak{M}' \models R(a)$, $a \in |\mathfrak{M}|\}$ and $\{f(a) \mid \mathfrak{M}' \not\models R(a)$, $a \in |\mathfrak{M}|\}$ are recursively enumerable, from which the result follows.

This concludes the proof of Theorem 2. \Box

4. Conclusion

We gave a sufficient condition in terms of the Gaifman graph of the structure \mathfrak{M} that ensures that \mathfrak{M} is not maximal. A natural problem is to extend Theorem 2 to structures \mathfrak{M} that do not satisfy Condition (3). In particular, one can consider the case of labelled linear orderings, i.e., infinite structures $(A; \langle, P_1, \ldots, P_n)$ where \lt is a linear ordering over A and the P_i 's denote unary predicates; the Gaifman distance is trivial for these structures. Another related general problem is to find a way to refine the notion of Gaifman distance; see [2] for some re
ent progress.

Finally, it would also be interesting to study the complexity gap between the decision procedure for the theory of $\mathfrak M$ and the one for the structure $\mathfrak M'$ constructed in the proof of Theorem 2.

5. Acknowledgments

We dedicate the paper to Yuri Matiyasevich on the occasion of his 60th birthday.

We wish to thank the anonymous referee for useful suggestions.

REFERENCES

- 1. A. Bès and P. Cégielski, "Weakly maximal decidable structures," $RAIRO$ Theor. Inf. Appl., 42, No. 1, $137{-}145$ (2008).
- 2. A. Blumensath, "Locality and modular Ehrenfeucht-Fraisse games," preprint (2006).
- 3. C. C. Elgot and M. O. Rabin, "Decidability and undecidability of extensions of second (first) order theory of (generalized) successor," J. Symbolic Logic, 31 , No. 2, 169–181 (1966).
- 4. H. Gaifman, "On local and nonlocal properties," in: Proceedings of the Herbrand Symposium (Marseille, 1981), *Stud. Logic Found. Math.*, **107** (1982), pp. $105-135$.
- 5. C. H. Langford, "Theorems on deducibility," Ann. of Math. (2) , 28, 459-471 (1927).
- 6. L. Libkin, Elements of Finite Model Theory, Springer-Verlag, Berlin (2004).
- 7. M. Presburger, "Uber de vollständigkeit eines gewissen Systems der Arithmetic ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt," in: Comptes Rendus du Premier Congrès des Mathématiciens des Pays Slaves, Warsaw (1927), pp. 92–101, 395. English translation: "On the completeness of a certain system of arithmetic of whole numbers in which addition occurs as the only operation," Hist. Philos. Logic, 12, No. 2, $225 - 233$ (1991).
- 8. A. L. Semenov, "Decidability of monadic theories," Lecture Notes Comput. Sci., 176, 162–175 (1984).
- 9. V. S. Harizanov, "Computability-theoretic complexity of countable structures," Bull. Symbolic Logic, 8, 457-477 (2002).
- 10. S. Soprunov, "Decidable expansions of structures," Voprosy Kibernet., 134, 175–179 (1988).

622