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FASTER SUBSEQUENCE RECOGNITION IN COMPRESSED STRINGS
A. Tiskin* UDC 519.16

Computation on compressed strings is one of the key approaches to processing massive data sets. We consider local
subsequence recognition problems on strings compressed by straight-line programs (SLP), which is closely related
to Lempel-Ziv compression. For an SLP-compressed text of length m, and an uncompressed pattern of length n,
Cégielski et al. gave an algorithm for local subsequence recognition running in time O(mn2 logn). We improve the
running time to O(mn'®). Our algorithm can also be used to compute the longest common subsequence between

a compressed text and an uncompressed pattern in time O(mn”); the same problem with a compressed pattern is

known to be NP-hard. Bibliography: 22 titles.

1. INTRODUCTION

Computation on compressed strings is one of the key approaches to processing massive data sets. It has
long been known that certain algorithmic problems can be solved directly on a compressed string, without first
decompressing it; see [4, 11] for references.

One of the most general string compression methods is compression by straight-line programs (SLP) [16].
In particular, SLP compression captures the well-known LZ and LZW algorithms [21, 22, 20]. Various pattern
matching problems on SLP-compressed strings have been studied; see, e.g., [4] for references. Cégielski et al. [4]
considered subsequence recognition problems on SLP-compressed strings. For an SLP-compressed text of length
m, and an uncompressed pattern of length n, they gave several algorithms for global and local subsequence
recognition, running in time O(mn? logn).

In this paper, we improve on the results of [4] as follows. First, we describe a simple folklore algorithm for
global subsequence recognition on an SLP-compressed text, running in time O(mn). Then, we consider the more
general partial semi-local longest common subsequence (I.CS) problem, which consists in computing implicitly
the LCS between a compressed text and every substring of an uncompressed pattern. The same problem with
a compressed pattern is known to be NP-hard. For the partial semi-local LCS problem, we propose a new
algorithm, running in time O(mn'-). Our algorithm is based on the partial highest-score matrix multiplication
technique presented in [18]. We then extend this method to the several versions of local subsequence recognition
considered in [4], for each obtaining an algorithm running in the same asymptotic time O(mn!?).

This paper is a sequel to the papers [17, 18]; we recall most of their relevant material here for completeness.

2. SUBSEQUENCES IN A COMPRESSED TEXT

We consider strings of characters from a fixed finite alphabet, denoting string concatenation by juxtaposition.
Given a string, we distinguish between its contiguous substrings, and not necessarily contiguous subsequences.
Special cases of a substring are a prefiz and o suffiz of a string. Given a string a of length m, we use the take/drop
notation of [19], a 1 k, a | k, a | k, a | k, to denote, respectively, its prefix of length k, suffix of length m — &,
suffix of length k, and prefix of length m — k. For two strings @ = ajas ...y, and b = p15s ... 3, of lengths
m and n, respectively, the longest common subsequence (LCS) problem consists in computing the length of the
longest string that is a subsequence both of a and b. We will call this length the LCS score of the strings.

Let T be a string of length m (typically large). The string T' will be represented implicitly by a straight-line
program (SLP) of length T, which is a sequence of m statements. Each statement r, 1 < r < 7, has either the
form T, = «, where « is an alphabet character, or the form T, = T,T;, where 1 < s, t < r. We identify every
symbol T, with the string it represents; in particular, we have T' = T3. Note that m > m, and that in general
the uncompressed text length m can be exponential in the SLP-compressed text length 7.

Our goal is to design efficient algorithms on SLP-compressed texts. While we do not allow text decompression
(since, in the worst case, this could be extremely inefficient), we will assume that standard arithmetic operations
on integers up to m can be performed in constant time. This assumption is necessary, since the counting version
of our problem produces a numerical output that may be as high as O(m). The same assumption on the
computation model is made implicitly in [4].
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The LCS problem on uncompressed strings is a classical problem; see, e.g., [7, 9] for the background and

references. Given input strings of lengths m, n, the LCS problem can be solved in time O(%), assuming

m and n are reasonably close [12, 6]. The LCS problem on two SLP-compressed strings is considered in [11],
and proven to be NP-hard. In this paper, we consider the LCS problem on two input strings, one of which is
SLP-compressed and the other uncompressed. This problem can be regarded as a special case of computing the
edit distance between a context-free language given by a grammar of size m, and a string of size n. For this
more general problem, Myers [13] gives an algorithm running in time O(mn3 + mlogm - n?).

From now on, we will assume that a string T' (the text siring) of length m is represented by an SLP of length
m, and that a string P (the pattern string) of length n is represented explicitly. Following [4, 11], we study the
problem of recognizing in T subsequences identical to P, which is closely related to the LCS problem.

Definition 1. The (global) subsequence recognition problem consists in deciding whether the string T' contains
the string P as a subsequence.

The subsequence recognition problem on uncompressed strings is a classical problem, considered, e.g., in [1]
as the “subsequence matching problem.” The subsequence recognition problem on an SLP-compressed text is
considered in [4] as Problem 1, with an algorithm running in time O(mn?logn).

In addition to global subsequence recognition, it is useful to consider text subsequences locally, i.e., in sub-
strings of T'. In this context, we will call the substrings of T" windows. We will say that a string a contains a
string b minimally as a subsequence if b is a subsequence in a, but not in any proper substring of a. Even with
this restriction, the number of substrings in 7' containing P minimally as a subsequence may be as high as O(m),
so just listing them all may require time exponential in 2. The same is true if, instead of minimal substrings,
we consider all substrings of T of a fixed length. Therefore, it is sensible to define local subsequence recognition
as a family of counting problems.

Definition 2. The minimal-window subsequence recognition problem consists in counting the number of win-
dows in a string T containing a string P minimally as a subsequence.

Definition 3. The fixed-window subsequence recognition problem consists in counting the number of windows
of a given length w in o string T containing a string P as a subsequence.

The minimal-window and fixed-window subsequence recognition problems on uncompressed strings are con-
sidered in [8] as “episode matching problems” (see also [5] and references therein). The same problems on an
SLP-compressed text and an uncompressed pattern are considered in [4] as Problems 2 and 3 (a special case of
2) and 4. Additionally, the same paper considers the bounded minimal-window subsequence recognition problem
(counting the number of windows in T of length at most w containing P minimally as a subsequence) as Problem
5. For all these problems, the paper [4] gives algorithms running in time O(mn? logn).

3. SEMI-LOCAL LONGEST COMMON SUBSEQUENCES

In this section and the next, we recall the algorithmic framework developed in [17, 18]. This framework is
subsequently used to solve the compressed subsequence recognition problems introduced in the previous section.
In [17], we introduced the following problem.

Definition 4. The all semi-local LCS problem consists in computing the LCS scores on substrings of strings a
and b as follows:
e the all string-substring LCS problem: a against every substring of b;
o the all prefix-suffix LCS problem: every prefiz of a against every suffix of b;
o symmetrically, the all substring-string LCS problem and the all suffix-prefix LCS problem, defined as above
but with the roles of a and b exchanged.

It turns out that this is a very natural and useful generalization of the LCS problem.

In addition to standard integer indices ... ,—2,—1,0,1,2,..., we use odd half-integer indices ... ,—g, —%,
-3, %, 2, 2,.... We denote

[Z]]:{sz—'_lav]_la]}? <Z]>:{Z+%7Z+%77]_%7]_%}

To denote infinite intervals of integers and odd half-integers, we will use —oo for ¢ and +oco for j where appropriate.
For both interval types [i : j] and (i : j), we call the difference j — i the length of the interval.
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We will make extensive use of finite and infinite matrices, with integer elements and integer or odd half-integer
indices. A permutation matriz is a (0,1)-matrix containing exactly one nonzero in every row and every column.
An identity matriz is a permutation matrix I such that I(i,j) = 1if i = j, and I(i,j) = 0 otherwise. Each of
these definitions applies to both finite and infinite matrices.

From now on, instead of “index pairs corresponding to nonzeros,” we will write simply “nonzeros,” where
this does not lead to confusion. A finite permutation matrix can be represented by its nonzeros. When we
deal with an infinite matrix, it will typically have a finite nontrivial core, and will be trivial (e.g., equal to the
infinite identity matrix) outside of this core. An infinite permutation matrix with finite nontrivial core can be
represented by its core nonzeros.

Let D be an arbitrary numerical matrix with indices ranging over (0 : n). Its distribution matriz, with indices
ranging over [0 : n], is defined by

d(io, jo) = »_ D(i,]), i€ (io:n), j€(0:jo),

for all 49, jo € [0 : n]. We have
Dii,j)=d(i-4j+3)—d(i-4i-4)—a(i+4.+4) +a(i+5,i-1).

When a matrix d is the distribution matrix of D, the matrix D is called the density matriz of d. The definitions
of distribution and density matrices extend naturally to infinite matrices. We will only deal with distribution
matrices where all elements are defined and finite.

We will use the term permutation-distribution matriz as an abbreviation of “the distribution matrix of a
permutation matrix.”

4. ALGORITHMIC TECHNIQUES

The rest of this paper is based on the framework for the all semi-local LCS problem developed in [17, 18]. For
completeness, we recall most background definitions and results from [17], omitting the proofs.

4.1. Dominance counting. It is well known that an instance of the LCS problem can be represented by a
dag (directed acyclic graph) on an m x n grid of nodes, where character matches correspond to edges scoring 1,
and mismatches to edges scoring 0.

Definition 5. Let m,n € N. An alignment dag G is a weighted dag, defined on the set of nodes v ;, | € [0:m],
i € [0:n]. The edge and path weights are called scores. For alll € [1:m], i € [1: n],

o the horizontal edge v;;—1 — v;,; and the vertical edge v;_1; — v;; are both always present in G and have
score 0;

o the diagonal edge vi_1 ;1 — v;; may or may not be present in G; if present, it has score 1.

Given an instance of the all semi-local LCS problem, its corresponding alignment dag is the m x n alignment
dag where the diagonal edge vi—1 -1 — v1,; s present if and only if o; = B;.

baabcabcabaca

o NC L NN N

al NN N NN N

a N\ \-\\\\
AN

NN

b\ HEED
NERNEREN

NN NN NN

F1G. 1. An alignment dag and a highest-scoring path.
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Figure 1 shows the alignment dag corresponding to the strings a = “baabcbca”, b = “baabcabcabaca” (an
example borrowed from [2]).

Common string-substring, suffix-prefix, prefix-suffix, and substring-string subsequences correspond, respec-
tively, to paths of the following form in the alignment dag;:

Vi ~ Uity VL0~ Uity U0~ Ulms  ULO ~ U1, (1)

where [,1’ € [0: m], 4,4’ € [0: n]. The length of each subsequence is equal to the score of its corresponding path.
The solution to the all semi-local LCS problem is equivalent to finding the score of a highest-scoring path of
each of the four types (1) between every possible pair of endpoints.
To describe our algorithms, we need to modify the definition of an alignment dag by embedding the finite
grid of nodes into an infinite grid.

Definition 6. Given an m X n alignment dag G, its extension GT is an infinite weighted dag, defined on the
set of nodes vy ;, 1,i € [—00 : +00], and containing G as a subgraph. For all l,i € [—o0 : +00],
o the horizontal edge vi;—1 — vi; and the vertical edge vi—1,; — v;; are both always present in Gt and have
score 0;
e when | € [1:m], i € [1:n], the diagonal edge vi_1 ;1 — v ; is present in GT if and only if it is present
in G; if present, it has score 1;
o otherwise, the diagonal edge vi—1 ;-1 — v;,; s always present in G* and has score 1.

An infinite dag that is an extension of some (finite) alignment dag will be called an extended alignment dag.
When a dag GT is the extension of a dag G, we will say that G is the core of GT. Relative to GT, we will call
the nodes of G core nodes.

By using the extended alignment dag representation, the four path types (1) can be reduced to a single type,
corresponding to the all string-substring (or, symmetrically, substring-string) LCS problem on an extended set
of indices.

Definition 7. Given an m X n alignment dag G, its extended highest-score matrix is the infinite matriz defined

by
A(i,j) = max score (Vo,; ~ Upj), 14,J € [—00: 400, (2)

where the mazimum is taken across all paths between the given endpoints in the extension Gt. Ifi = j, we have
A(i,j) = 0. By convention, if j < i, then we let A(i,j) =7 —1 <0.

In Fig. 1, the highlighted path has score 5, and corresponds to the value A(4,11) = 5, which is equal to the
LCS score of the string ¢ and the substring b’ = “cabcaba”.

In this paper, we will deal almost exclusively with extended (i.e., finitely represented, but conceptually infinite)
alignment dags and highest-score matrices. From now on, we omit the term “extended” for brevity, always
assuming it by default.

The maximum path scores for each of the four path types (1) can be obtained from the highest-score matrix
(2) as follows:

max score (vo j ~ v i) = A(j,5'),
= A(—i

(
( i, J') = i,
(
(

(
max score (v g ~ vy n) = A(—i,m+n—1i)—m—i+7,

max score (v;9 ~» U, jr) = A

max score (Vg j ~ Virn) = A(j,m+n—i') —m+ 7,

where 4,7’ € [0 :m], 4,7’ € [0 : n], and the maximum is taken across all paths between the given endpoints.

Definition 8. An odd half-integer point (i,j) € (—oo : +00)? is called A-critical if
Ali+bi-5)+1=Aa(i-4j-3)=a(i+1i+1)=a(i-1i+1),
In particular, the point (4,7) is never A-critical for 4 > j. When i = j, the point (4, j) is A-critical if and only

ﬁAQ—%J+%):&
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FiG. 2. An alignment dag and the seaweeds.

Corollary 1. Leti,j € (—oo: +00). For each i (respectively, j), there exists exactly one j (respectively, i) such
that the point (i,7) is A-critical.

Figure 2 shows the alignment dag of Figure 1 along with the critical points. In particular, every critical
point (i,7) with 7,5 € (0 : n) is represented by a seaweed®, originating between the nodes Vg ;1 and Vo,i41 and

2

1 and v The remaining seaweeds, originating or terminating at the

m,j—3% mj+5-
sides of the dag, correspond to critical points (i,7) with either i € (—m : 0) or j € (n : n 4+ m) (or both). In
particular, every critical point (i, j) with ¢ € (—m : 0) (respectively, j € (n : m +n)) is represented by a seaweed

originating between the nodes Vi 10 and V_irlo (respectively, terminating between the nodes v

terminating between the nodes v

m+n—j— % RO
and vy, 441 ,)-

It is convenient to consider the set of A-critical points as an infinite permutation matrix. For all 4, j € (—o0 :
+00), we define
1 if (¢,7) is A-critical,

0 otherwise.

DA (Zvj) = {
We denote the infinite distribution matrix of D4 by d 4, and consider the following simple geometric relation.
Definition 9. A point (ig, jo) dominates® a point (i,7) if io <4 and j < jo.

Informally, the dominated point is “below and to the left” of the dominating point in the highest-score
matrix®. Clearly, for an arbitrary integer point (ig, jo) € [—00 : +00]?, the value da(io, jo) is the number of (odd
half-integer) A-critical points it dominates.

The following theorem shows that the set of critical points uniquely defines a highest-score matrix, and gives
a simple formula for recovering the matrix elements.

Theorem 1 ([17]). For all iy, jo € [—00 : +00], we have
Alio, jo) = jo —io — da(io, jo)-

In Fig. 2, critical points dominated by the point (4,11) are represented by seaweeds whose both endpoints
(and therefore the whole seaweed) fit between the two vertical lines corresponding to the index values ¢ = 4 and
j = 11. Note that there are exactly two such seaweeds, and that A(4,11) =11 —-4—2 =5.

By Theorem 1, a highest-score matrix A is represented uniquely by an infinite permutation matrix D4 with
odd half-integer row and column indices. We will call the matrix D 4 the implicit representation of A. From now
on, we will refer to the critical points of A as nonzeros (i.e., ones) in its implicit representation.

Recall that outside the core, the structure of an alignment graph is trivial: all possible diagonal edges are
present in the off-core subgraph. This property carries over to the corresponding permutation matrix.

IThis imaginative term was suggested by Yu. V. Matiyasevich.

2The standard definition of dominance requires i < i instead of 49 < i. Our definition is more convenient in the context of the
LCS problem.

3Note that these concepts of “below” and “left” are relative to the highest-score matrix, and have no connection to the “vertical”
and “horizontal” directions in the alignment dag.
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Definition 10. Given an infinite permutation matriz D, a core of D is a square (possibly semi-infinite) subma-
triz defined by an index range [ig : jo] X [i1 : j1] with jo —io = j1 — i1 (as long as both these values are defined)
such that for all off-core elements D(i,j), we have D(i,j) = 1 if and only if j —i = jo —ip and j —i = j1 — i1
(in each case, as long as the right-hand side is defined).

Informally, the off-core part of a matrix D has nonzeros on the off-core extension of the main diagonal of the
core.
The following statements are an immediate consequence of the definitions.

Corollary 2. A core of an infinite permutation matriz is a (possibly semi-infinite) permutation matriz.

Corollary 3. Given an alignment dag A as described above, the corresponding permutation matriz D4 has a
core of size m +n, defined by i € (—m,n), j € (0,m +n).

In Fig. 2, the set of critical points represented by the seaweeds corresponds precisely to the set of all core
nonzeros in D 4. Note that there are m +n = 8 + 13 = 21 seaweeds in total.

Since only core nonzeros need to be represented explicitly, the implicit representation of a highest-score matrix
can be stored as a permutation of size m + n. From now on, we will assume this as the default representation
of such matrices.

By Theorem 1, the value A(ig,jo) is determined by the number of nonzeros in D4 dominated by (ig,jo)-
Therefore, an individual element of A can be obtained explicitly by scanning the implicit representation of A in
time O(m + n), counting the dominated nonzeros. However, existing methods of computational geometry allow
us to perform this dominance counting procedure much more efficiently, as long as preprocessing of the implicit
representation is allowed.

Theorem 2 ([17]). Given the implicit representation D 4 of a highest-score matriz A, there exists a data structure
that

e has size O((m + n)log(m + n)) ;
e can be built in time O((m + n)log(m + n)),
e allows to query an individual element of A in time O(logz(m + n))

4.2. Highest-score matrix multiplication. A common pattern in many problems on strings is partitioning
the alignment dag into alignment subdags. Without loss of generality, consider a partitioning of an (M +m) xn
alignment dag G into an M x n alignment dag G; and an m x n alignment dag G2, where M > m. The dags
G, G share a horizontal row of n nodes, which is simultaneously the bottom row of G; and the top row of Ga;
the dags also share the corresponding n — 1 horizontal edges. We will say that the dag G is the concatenation
of the dags G1 and G3. Let A, B, C denote the highest-score matrices defined, respectively, by the dags G4,
G, G. Our goal is, given the matrices A, B, to compute the matrix C efficiently. We call this procedure the
highest-score matriz multiplication.

Definition 11. Let n € N. Let A, B, C be arbitrary numerical matrices with indices ranging over [0 : n]. The
(min, +)-product A ® B = C is defined by

C(i,k) = min (A, ) + B(G.K)), gk e [0:n].

Lemma 1 ([17]). Let D4, Dp, D¢ be permutation matrices with indices ranging over (0 : n), and let da, dp,
dc be their respective distribution matrices. Let d4 © dp = dc. Given the nonzeros of D s, Dp, the nonzeros of

D¢ can be computed in time O(n1'5> and memory O(n).

Lemma 2 ([17]). Let Dy, Dp, Do be permutation matrices with indices ranging over (—oo : +00). Let D4
(respectively, Dp) have semi-infinite core (0 : +00)? (respectively, (—oo : n)?). Let da, dp, dc be the respective
distribution matrices, and assume dy © dp = do. We have

Da(i,j) = Do(i, 5) for i€ {(—oco:400), jE (n:+o0), (3)

Dg(j,k) = Dc(5, k) for j € (—o0:0), ke (—o00:400). (4)
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Dg

F1G. 3. An illustration of Lemma 2.

Equations (3)—(4) cover all but n nonzeros in each of Da, Dp, Dc. These remaining nonzeros have i € (0 : +00),
€(0:n), k € (—oo :n). Given the n remaining nonzeros in each of D, Dp, the n remaining nonzeros in D¢

can be computed in time O(n1'5) and memory O(n).

The above lemma is illustrated by Fig. 3. Three horizontal lines represent the index ranges of i, j, k,
respectively. The nonzeros in D 4 (respectively, Dg) are shown by top-to-middle (respectively, middle-to-bottom)
seaweeds; thin seaweeds correspond to the nonzeros covered by (3)—(4), and thick seaweeds to the remaining
nonzeros. By Lemma 2, the nonzeros in D¢ covered by (3)—(4) are represented by thin top-to-bottom seaweeds.
The remaining nonzeros in D¢ are not represented explicitly, but can be obtained from the thick top-to-middle
and middle-to bottom seaweeds by Lemma 1.

4.3. Partial highest-score matrix multiplication. In certain contexts, e.g., when m > n, we may not be
able to solve the all semi-local LCS problem, or even to store its implicit highest-score matrix. In such cases, we
may wish to settle for the following asymmetric version of the problem.

Definition 12. The partial semi-local LCS problem consists in computing the LCS scores on substrings of a
and b as follows:

o the all string-substring LCS problem: a against every substring of b;

o the all prefix-suffix LCS problem: every prefiz of a against every suffix of b;

e the all suffix-prefix LCS problem: every suffiz of a against every prefiz of b.

In contrast with the all semi-local LCS problem, the comparison of substrings of a against b is not required.

Let A be the highest-score matrix for the all semi-local LCS problem. Given the implicit representation of
A, the corresponding partial implicit representation consists of all nonzeros A(i,j) with either ¢ € (0 : n) or
J € (0 : n) (equivalently, (i,5) € (0 : n) x (0 : +00) U (—oco : n) x (0 : n)). All such nonzeros are core; the
number of these nonzeros is at least n and at most 2n (note that the size of the partial implicit representation

is therefore independent of m). The minimum (respectively, maximum) number of nonzeros is attained when all
(respectively, none of) these nonzeros are contained in the submatrix defined by (4,j) € (0: n) x (0: n).

Theorem 3. Given the partial implicit representation of a highest-score matrix A, there exists a data structure
that
e has size O(nlogn);
o can be built in time O(nlogn);
e allows to query an individual element of A, corresponding to an output of the partial semi-local LCS problem,
in time O(log® n).
Proof. Similarly to the proof of Theorem 2, the structure in question is a 2D range tree built on the set of

nonzeros in the partial implicit representation of A. O

The following lemma gives an equivalent of highest-score matrix multiplication for partially represented ma-
trices.

Lemma 3. Consider the concatenation of alignment dags as described in Sec. 4.2, with highest-score matrices
A, B, C. Given the partial implicit representations of A, B, the partial implicit representation of C can be

computed in time O<n1'5) and memory O(n).
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Proof. Let D'y (i,5) = Da(i — M, j), Ds(j,k) = Dg(j,k +m), D (i, k) = Dg(i — M,k +m) for all 4,4, k, and
define d'y, d)y, d}, accordingly. It is easy to check that d’; ©® dy = d[, if and only if d4 ® dp = dc. The matrices
D'y, Dy, D¢, satisfy the conditions of Lemma 2, therefore all but n of the core nonzeros in the required partial
implicit representation can be obtained by (3)—(4) in time and memory O(n), and the remaining n core nonzeros
can be obtained in time O(n!®) and memory O(n). O

5. THE ALGORITHMS

5.1. Clobal subsequence recognition and LCS. We now return to the problem of subsequence recognition
introduced in Sec. 2. A simple efficient algorithm for global subsequence recognition in an SLP-compressed string
is not difficult to obtain, and has been known in folklore*. For convenience, we generalize the output of the
problem: instead of a Boolean value, the algorithm will return an integer.

Algorithm 1 (Global subsequence recognition).
Input: string T of length m, represented by an SLP of length 77; string P of length n, represented explicitly.

Output: the integer k giving the length of the longest prefix of P that is a subsequence of T'. The string T
contains P as a subsequence if and only if k£ = n.

Description. The computation is performed recursively as follows.

Let T = T'T" be the SLP statement defining the string T'. Let &’ be the length of the longest prefix of P that
is a subsequence of 7. Let k" be the length of the longest prefix of P | k¥’ that is a subsequence of T”. Both &’
and k" can be found recursively. We have k = k¥’ + k"

The base of the recursion is @ = m = 1. In this case, the value k € {0, 1} is determined by a single character
comparison.

Cost analysis. The running time of the algorithm is O(mk). The proof is by induction. The running times
of the recursive calls are, respectively, O(mk’) and O(mk"). The overall running time of the algorithm is
O(mk") + O(mk") + O(1) = O(mk). In the worst case, this is O(mn). O

We now address the more general partial semi-local LCS problem. Our approach is based on the technique
introduced in Sec. 4.3.

Algorithm 2 (Partial semi-local LCS).
Input: string T of length m, represented by an SLP of length m; string P of length n, represented explicitly.
Output: the partial implicit highest-score matrix on the strings T', P

Description. The computation is performed recursively as follows.

Let T = T'T" be the SLP statement defining the string T'. Given the partial implicit highest-score matrices
for each of T' and T" against P, the partial implicit highest-score matrix of T' against P can be computed by
Lemma 3.

The base of the recursion is m = m = 1. In this case, the matrix coincides with the full implicit highest-score
matrix, and can be computed by a simple scan of the string P.

Cost analysis. By Lemma 3, each implicit matrix multiplication runs in time O(n!®) and memory O(n).
There are m recursive steps in total, therefore all the matrix multiplications combined run in time O(mn!~) and
memory O(n). O

Note that the above algorithm, as a special case, provides an efficient solution for the LCS problem: the LCS
score for T against P can easily be queried from the output of the algorithm by Theorem 2.

The running time of Algorithm 2 should be contrasted with the standard uncompressed LCS algorithms,
running in time O(%) (see [12, 6]), and with the NP-hardness of the LCS problem on two compressed
strings (see [11]).

5.2. Local subsequence recognition. We now show how the partial semi-local LCS algorithm of the previous
section can be used to provide local subsequence recognition.

Algorithm 3 (Minimal-window subsequence recognition).

Input: string T of length m, represented by an SLP of length 77; string P of length n, represented explicitly.

Output: the number of windows in 7' containing P minimally as a subsequence.

4The author is grateful to Y. Lifshits for pointing this out.
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Description. The algorithm runs in two phases.

First phase. Using Algorithm 2, we compute the partial implicit highest-score matrix for every SLP symbol
against P. For each of these matrices, we then build the data structure of Theorem 3.

Second phase. For brevity, we will call a window containing P minimally as a subsequence a P-episode window.
The number of P-episode windows in 7" is computed recursively as follows.

Let T = T'T" be the SLP statement defining the string T'. Let m’, m” be the (uncompressed) lengths of the
strings T”, T”. Let 1’ (respectively, r”’) be the number of P-episode windows in T” (respectively, "), computed
by recursion.

We now need to consider the n—1 possible prefix-suffix decompositions P = (P 1 n/)(P | n”), for alln/,n"” > 0
such that n’ + n” = n. Let I’ (respectively, I”) be the length of the shortest suffix of T’ (respectively, prefix
of T") containing P | n’ (respectively, P | n”) as a subsequence. The value of I’ (respectively, {”) can be
found, or its nonexistence established, by binary search on the first (respectively, second) index component of
nonzeros in the partial implicit highest-score matrix of 7" (respectively, T") against P. At every step of the
binary search, we make a suffix-prefix (respectively, prefix-suffix) LCS score query by Theorem 3. We call the
interval [m’ — ' : m’ +1"] a candidate window.

It is easy to see that if a window in T is P-episode, then it is either contained within one of 7", T, or is a
candidate window. Conversely, a candidate window [i, j] is P-episode unless there is a smaller candidate window
[i1,71] with either ¢ = i; < j; < j, ori < iy < j; = j. Given the set of all candidate windows sorted separately
by the lower endpoints and the higher endpoints, this test can be performed in overall time O(n). Let s be the
resulting number of distinct P-episode candidate windows. The overall number of P-episode windows in 7' is
equal to ' + 71" + s.

The base of the recursion is m < n. In this case, no windows of length n or more exist in 7', so none can be
P-episode.

Cost analysis.

First phase. As in Algorithm 2, the main data structure can be built in time O(mn!?®). The additional data
structure of Theorem 2 can be built in time 7 - O(nlogn) = O(mnlogn).

Second phase. For each of n — 1 decompositions n’ + n” = n, the binary search performs at most logn suffix-
prefix and prefix-suffix LCS queries, each taking time O(log2 n). Therefore, each recursive step runs in time
2n - logn - O(log® n) = O(nlog®n). There are T recursive steps in total, therefore the whole recursion runs in
time O(mn log3 n). It is possible to speed up this phase by reusing data between different instances of binary
search and LCS query; however, this is not necessary for the overall efficiency of the algorithm.

The overall computation cost is dominated by the cost of building the main data structure in the first phase,
equal to O(mn!?). O

Algorithm 4 (Fixed-window subsequence recognition).

Input: string T of length m, represented by an SLP of length m; string P of length n, represented explicitly;
window length w.

Output: the number of windows of length w in T containing P as a subsequence.
Description.
First phase. As in Algorithm 3.

Second phase. For brevity, we will call a window of length w containing P as a subsequence a (P, w)-episode
window. The number of (P, w)-episode windows in T is computed recursively as follows.

Let T = T'T" be the SLP statement defining the string T. Let m’, m' be the (uncompressed) lengths of
the strings 7", T". Let 7’ (respectively, r”’) be the number of (P, w)-episode windows in T" (respectively, T"),
computed by recursion.

We now need to consider the w — 1 windows that span the boundary between T’ and T, corresponding to
the strings (T" | w')(T" 1 w”), for all w’,w"” > 0 such that w’ +w” = w. We call an interval [m’ —w’ : m' + w"']
a candidate window. In contrast with the minimal-window problem, we can no longer afford to consider every
candidate window individually, and will therefore need to count them in groups of “equivalent” windows.

Let (i, ) (respectively, (j,k)) be a nonzero in the partial highest-score matrix of 7" (respectively, T") against
P. We will say that such a nonzero is covered by a candidate window [m' —w’ : m' +w"]if i € (—m/ : —m/ +w')
(respectively, k € (m” +n —w: m” +n)). We will say that two candidate windows are equivalent if they cover
the same set of nonzeros both for 77 and T".
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Since the number of nonzeros for each of 77, T is at most n, the defined equivalence relation has at most 2n
equivalence classes. Each equivalence class corresponds to a contiguous segment of values w’ (and, symmetrically,
w’), and is completely described by the two endpoints of this segment. Given the set of all the nonzeros, the
endpoint description of all the equivalence classes can be computed in time O(n).

For each equivalence class of candidate windows, either none or all of them are (P, w)-episode; in the latter
case, we will call the whole equivalence class (P, w)-episode. We consider each equivalence class in turn, and pick
from it an arbitrary representative candidate window [m’ — w’ : m’ + w’]. Let I’ (respectively, I”’) be the length
of the longest prefix (respectively, suffix) of P contained in 7" | w’ (respectively, T” 1 w”') as a subsequence. The
value of I’ (respectively, I”) can be found by binary search on the second (respectively, first) index component
of nonzeros in the partial implicit highest-score matrix of 7" (respectively, T”) against P. At every step of the
binary search, we make a suffix-prefix (respectively, prefix-suffix) LCS score query by Theorem 3.

It is easy to see that the current equivalence class is (P, w)-episode if and only if I’ +1” > n. Let s be the
total size of (P, w)-episode equivalence classes. The overall number of (P, w)-episode windows in T is equal
tor’ +r" +s.

The base of the recursion is m < w. In this case, no windows of length w or more exist in 7', so none can be
(P, w)-episode.

Cost analysis. As in Algorithm 3, the total cost is dominated by the cost of the first phase, equal to
O(mn!s). O

The bounded minimal-window subsequence recognition problem can be solved by a simple modification of
Algorithm 3, discarding all candidate windows of length greater than w. Furthermore, in addition to counting the
windows, Algorithms 3 and 4 can both be easily modified to report all the respective windows at the additional
cost of O(output).

6. CONCLUSIONS

We have considered several subsequence recognition problems for an SLP-compressed text against an uncom-
pressed pattern. First, we mentioned a simple folklore algorithm for the global subsequence recognition problem,
running in time O(mn). Relying on the previously developed framework of semi-local string comparison, we
then gave an algorithm for the partial semi-local LCS problem, running in time O(mn!-?); this includes the LCS
problem as a special case. A natural question is whether the running time of partial semi-local LCS (or just
LCS) can be improved to match global subsequence recognition.

We have also given algorithms for the local subsequence recognition problem in its minimal-window and fixed-
window versions. Both algorithms run in time O(mn!-?), and can be easily modified to report all the respective
windows at the additional cost of O(output). Again, a natural question is whether this running time can be
further improved.

Another classical generalization of both the LCS problem and local subsequence recognition is approzimate
matching (see, e.g., [14]). Here, we look for substrings in the text that are close to the pattern in terms of the
edit distance, with possibly different costs charged for insertions/deletions and substitutions. Once again, we can
formulate it as a counting problem (the k-approzimate matching problem): counting the number of windows in
T that have edit distance at most &k from P. This problem is considered on LZ-compressed strings (essentially, a
special case of SLP-compression) in the paper [10], which gives an algorithm running in time O(mnk). It would
be interesting to see if this algorithm can be improved by using the ideas of the current paper.
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