
Journal of Mathematical Sciences, Vol. 158, No. 5, 2009

FASTER SUBSEQUENCE RECOGNITION IN COMPRESSED STRINGSA. Tiskin∗ UDC 519.16
Computation on compressed strings is one of the key approaches to processing massive data sets. We consider local
subsequence recognition problems on strings compressed by straight-line programs (SLP), which is closely related
to Lempel–Ziv compression. For an SLP-compressed text of length m, and an uncompressed pattern of length n,

Cégielski et al. gave an algorithm for local subsequence recognition running in time O(mn
2 log n). We improve the

running time to O(mn
1.5). Our algorithm can also be used to compute the longest common subsequence between

a compressed text and an uncompressed pattern in time O(mn
1.5); the same problem with a compressed pattern is

known to be NP-hard. Bibliography: 22 titles.

1. IntroductionComputation on
ompressed strings is one of the key approa
hes to pro
essing massive data sets. It haslong been known that
ertain algorithmi
 problems
an be solved dire
tly on a
ompressed string, without �rstde
ompressing it; see [4, 11℄ for referen
es.One of the most general string
ompression methods is
ompression by straight-line programs (SLP) [16℄.In parti
ular, SLP
ompression
aptures the well-known LZ and LZW algorithms [21, 22, 20℄. Various patternmat
hing problems on SLP-
ompressed strings have been studied; see, e.g., [4℄ for referen
es. C�egielski et al. [4℄
onsidered subsequen
e re
ognition problems on SLP-
ompressed strings. For an SLP-
ompressed text of lengthm, and an un
ompressed pattern of length n, they gave several algorithms for global and lo
al subsequen
ere
ognition, running in time O(mn2 logn).In this paper, we improve on the results of [4℄ as follows. First, we des
ribe a simple folklore algorithm forglobal subsequen
e re
ognition on an SLP-
ompressed text, running in time O(mn). Then, we
onsider the moregeneral partial semi-lo
al longest
ommon subsequen
e (LCS) problem, whi
h
onsists in
omputing impli
itlythe LCS between a
ompressed text and every substring of an un
ompressed pattern. The same problem witha
ompressed pattern is known to be NP-hard. For the partial semi-lo
al LCS problem, we propose a newalgorithm, running in time O(mn1:5). Our algorithm is based on the partial highest-s
ore matrix multipli
ationte
hnique presented in [18℄. We then extend this method to the several versions of lo
al subsequen
e re
ognition
onsidered in [4℄, for ea
h obtaining an algorithm running in the same asymptoti
 time O(mn1:5).This paper is a sequel to the papers [17, 18℄; we re
all most of their relevant material here for
ompleteness.
2. Subsequences in a compressed textWe
onsider strings of
hara
ters from a �xed �nite alphabet, denoting string
on
atenation by juxtaposition.Given a string, we distinguish between its
ontiguous substrings, and not ne
essarily
ontiguous subsequen
es.Spe
ial
ases of a substring are a pre�x and a suÆx of a string. Given a string a of length m, we use the take/dropnotation of [19℄, a ↿ k, a ⇃ k, a ↾ k, a ⇂ k, to denote, respe
tively, its pre�x of length k, suÆx of length m − k,suÆx of length k, and pre�x of length m − k. For two strings a = �1�2 : : : �m and b = �1�2 : : : �n of lengthsm and n, respe
tively, the longest
ommon subsequen
e (LCS) problem
onsists in
omputing the length of thelongest string that is a subsequen
e both of a and b. We will
all this length the LCS s
ore of the strings.Let T be a string of length m (typi
ally large). The string T will be represented impli
itly by a straight-lineprogram (SLP) of length m, whi
h is a sequen
e of m statements. Ea
h statement r, 1 ≤ r ≤ m, has either theform Tr = �, where � is an alphabet
hara
ter, or the form Tr = TsTt, where 1 ≤ s, t < r. We identify everysymbol Tr with the string it represents; in parti
ular, we have T = Tm. Note that m ≥ m, and that in generalthe un
ompressed text length m
an be exponential in the SLP-
ompressed text length m.Our goal is to design eÆ
ient algorithms on SLP-
ompressed texts. While we do not allow text de
ompression(sin
e, in the worst
ase, this
ould be extremely ineÆ
ient), we will assume that standard arithmeti
 operationson integers up to m
an be performed in
onstant time. This assumption is ne
essary, sin
e the
ounting versionof our problem produ
es a numeri
al output that may be as high as O(m). The same assumption on the
omputation model is made impli
itly in [4℄.

∗Department of Computer Science, University of Warwick, Coventry, United Kingdom, e-mail: tiskin@dcs.warwick.ac.uk.

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 358, 2008, pp. 282–300. Original article submitted June 10, 2007.

1072-3374/09/1585-0759 c©2009 Springer Science+Business Media, Inc. 759

The LCS problem on un
ompressed strings is a
lassi
al problem; see, e.g., [7, 9℄ for the ba
kground andreferen
es. Given input strings of lengths m, n, the LCS problem
an be solved in time O(mnlog(m+n)), assumingm and n are reasonably
lose [12, 6℄. The LCS problem on two SLP-
ompressed strings is
onsidered in [11℄,and proven to be NP-hard. In this paper, we
onsider the LCS problem on two input strings, one of whi
h isSLP-
ompressed and the other un
ompressed. This problem
an be regarded as a spe
ial
ase of
omputing theedit distan
e between a
ontext-free language given by a grammar of size m, and a string of size n. For thismore general problem, Myers [13℄ gives an algorithm running in time O(mn3 +m logm · n2).From now on, we will assume that a string T (the text string) of length m is represented by an SLP of lengthm, and that a string P (the pattern string) of length n is represented expli
itly. Following [4, 11℄, we study theproblem of re
ognizing in T subsequen
es identi
al to P , whi
h is
losely related to the LCS problem.De�nition 1. The (global) subsequen
e re
ognition problem
onsists in de
iding whether the string T
ontainsthe string P as a subsequen
e.The subsequen
e re
ognition problem on un
ompressed strings is a
lassi
al problem,
onsidered, e.g., in [1℄as the \subsequen
e mat
hing problem." The subsequen
e re
ognition problem on an SLP-
ompressed text is
onsidered in [4℄ as Problem 1, with an algorithm running in time O(mn2 logn).In addition to global subsequen
e re
ognition, it is useful to
onsider text subsequen
es lo
ally, i.e., in sub-strings of T . In this
ontext, we will
all the substrings of T windows. We will say that a string a
ontains astring b minimally as a subsequen
e if b is a subsequen
e in a, but not in any proper substring of a. Even withthis restri
tion, the number of substrings in T
ontaining P minimally as a subsequen
e may be as high as O(m),so just listing them all may require time exponential in m. The same is true if, instead of minimal substrings,we
onsider all substrings of T of a �xed length. Therefore, it is sensible to de�ne lo
al subsequen
e re
ognitionas a family of
ounting problems.De�nition 2. The minimal-window subsequen
e re
ognition problem
onsists in
ounting the number of win-dows in a string T
ontaining a string P minimally as a subsequen
e.De�nition 3. The �xed-window subsequen
e re
ognition problem
onsists in
ounting the number of windowsof a given length w in a string T
ontaining a string P as a subsequen
e.The minimal-window and �xed-window subsequen
e re
ognition problems on un
ompressed strings are
on-sidered in [8℄ as \episode mat
hing problems" (see also [5℄ and referen
es therein). The same problems on anSLP-
ompressed text and an un
ompressed pattern are
onsidered in [4℄ as Problems 2 and 3 (a spe
ial
ase of2) and 4. Additionally, the same paper
onsiders the bounded minimal-window subsequen
e re
ognition problem(
ounting the number of windows in T of length at most w
ontaining P minimally as a subsequen
e) as Problem5. For all these problems, the paper [4℄ gives algorithms running in time O(mn2 logn).
3. Semi-local longest common subsequencesIn this se
tion and the next, we re
all the algorithmi
 framework developed in [17, 18℄. This framework issubsequently used to solve the
ompressed subsequen
e re
ognition problems introdu
ed in the previous se
tion.In [17℄, we introdu
ed the following problem.De�nition 4. The all semi-lo
al LCS problem
onsists in
omputing the LCS s
ores on substrings of strings aand b as follows:

• the all string-substring LCS problem: a against every substring of b;
• the all pre�x-suÆx LCS problem: every pre�x of a against every suÆx of b;
• symmetri
ally, the all substring-string LCS problem and the all suÆx-pre�x LCS problem, de�ned as abovebut with the roles of a and b ex
hanged.It turns out that this is a very natural and useful generalization of the LCS problem.In addition to standard integer indi
es : : : ;−2;−1; 0; 1; 2; : : : , we use odd half-integer indi
es : : : ;− 52 , − 32 ,

− 12 , 12 , 32 , 52 ; : : : . We denote[i : j℄ = {i; i+ 1; : : : ; j − 1; j}; 〈i : j〉 = {i+ 12 ; i+ 32 ; : : : ; j − 32 ; j − 12}:To denote in�nite intervals of integers and odd half-integers, we will use−∞ for i and +∞ for j where appropriate.For both interval types [i : j℄ and 〈i : j〉, we
all the di�eren
e j − i the length of the interval.
760

We will make extensive use of �nite and in�nite matri
es, with integer elements and integer or odd half-integerindi
es. A permutation matrix is a (0,1)-matrix
ontaining exa
tly one nonzero in every row and every
olumn.An identity matrix is a permutation matrix I su
h that I(i; j) = 1 if i = j, and I(i; j) = 0 otherwise. Ea
h ofthese de�nitions applies to both �nite and in�nite matri
es.From now on, instead of \index pairs
orresponding to nonzeros," we will write simply \nonzeros," wherethis does not lead to
onfusion. A �nite permutation matrix
an be represented by its nonzeros. When wedeal with an in�nite matrix, it will typi
ally have a �nite nontrivial
ore, and will be trivial (e.g., equal to thein�nite identity matrix) outside of this
ore. An in�nite permutation matrix with �nite nontrivial
ore
an berepresented by its
ore nonzeros.Let D be an arbitrary numeri
al matrix with indi
es ranging over 〈0 : n〉. Its distribution matrix, with indi
esranging over [0 : n℄, is de�ned byd(i0; j0) = ∑D(i; j); i ∈ 〈i0 : n〉; j ∈ 〈0 : j0〉;for all i0; j0 ∈ [0 : n℄. We haveD(i; j) = d(i− 12 ; j + 12)

− d(i− 12 ; j − 12)

− d(i+ 12 ; j + 12)+ d(i+ 12 ; j − 12):When a matrix d is the distribution matrix of D, the matrix D is
alled the density matrix of d. The de�nitionsof distribution and density matri
es extend naturally to in�nite matri
es. We will only deal with distributionmatri
es where all elements are de�ned and �nite.We will use the term permutation-distribution matrix as an abbreviation of \the distribution matrix of apermutation matrix."
4. Algorithmic techniquesThe rest of this paper is based on the framework for the all semi-lo
al LCS problem developed in [17, 18℄. For
ompleteness, we re
all most ba
kground de�nitions and results from [17℄, omitting the proofs.4.1. Dominan
e
ounting. It is well known that an instan
e of the LCS problem
an be represented by adag (dire
ted a
y
li
 graph) on an m× n grid of nodes, where
hara
ter mat
hes
orrespond to edges s
oring 1,and mismat
hes to edges s
oring 0.De�nition 5. Let m;n ∈ N. An alignment dag G is a weighted dag, de�ned on the set of nodes vl;i, l ∈ [0 : m℄,i ∈ [0 : n℄. The edge and path weights are
alled s
ores. For all l ∈ [1 : m℄, i ∈ [1 : n℄,

• the horizontal edge vl;i−1 → vl;i and the verti
al edge vl−1;i → vl;i are both always present in G and haves
ore 0;
• the diagonal edge vl−1;i−1 → vl;i may or may not be present in G; if present, it has s
ore 1.Given an instan
e of the all semi-lo
al LCS problem, its
orresponding alignment dag is the m × n alignmentdag where the diagonal edge vl−1;i−1 → vl;i is present if and only if �i = �j .

Fig. 1. An alignment dag and a highest-s
oring path.
761

Figure 1 shows the alignment dag
orresponding to the strings a = \baab
b
a", b = \baab
ab
aba
a" (anexample borrowed from [2℄).Common string-substring, suÆx-pre�x, pre�x-suÆx, and substring-string subsequen
es
orrespond, respe
-tively, to paths of the following form in the alignment dag:v0;i vm;i′ ; vl;0 vm;i′ ; v0;i vl′;n; vl;0 vl′;n; (1)where l; l′ ∈ [0 : m℄, i; i′ ∈ [0 : n℄. The length of ea
h subsequen
e is equal to the s
ore of its
orresponding path.The solution to the all semi-lo
al LCS problem is equivalent to �nding the s
ore of a highest-s
oring path ofea
h of the four types (1) between every possible pair of endpoints.To des
ribe our algorithms, we need to modify the de�nition of an alignment dag by embedding the �nitegrid of nodes into an in�nite grid.De�nition 6. Given an m × n alignment dag G, its extension G+ is an in�nite weighted dag, de�ned on theset of nodes vl;i, l; i ∈ [−∞ : +∞℄, and
ontaining G as a subgraph. For all l; i ∈ [−∞ : +∞℄,
• the horizontal edge vl;i−1 → vl;i and the verti
al edge vl−1;i → vl;i are both always present in G+ and haves
ore 0;
• when l ∈ [1 : m℄, i ∈ [1 : n℄, the diagonal edge vl−1;i−1 → vl;i is present in G+ if and only if it is presentin G; if present, it has s
ore 1;
• otherwise, the diagonal edge vl−1;i−1 → vl;i is always present in G+ and has s
ore 1.An in�nite dag that is an extension of some (�nite) alignment dag will be
alled an extended alignment dag.When a dag G+ is the extension of a dag G, we will say that G is the
ore of G+. Relative to G+, we will
allthe nodes of G
ore nodes.By using the extended alignment dag representation, the four path types (1)
an be redu
ed to a single type,
orresponding to the all string-substring (or, symmetri
ally, substring-string) LCS problem on an extended setof indi
es.De�nition 7. Given an m×n alignment dag G, its extended highest-s
ore matrix is the in�nite matrix de�nedby A(i; j) = max s
ore (v0;i vm;j); i; j ∈ [−∞ : +∞℄; (2)where the maximum is taken a
ross all paths between the given endpoints in the extension G+. If i = j, we haveA(i; j) = 0. By
onvention, if j < i, then we let A(i; j) = j − i < 0.In Fig. 1, the highlighted path has s
ore 5, and
orresponds to the value A(4; 11) = 5, whi
h is equal to theLCS s
ore of the string a and the substring b′ = \
ab
aba".In this paper, we will deal almost ex
lusively with extended (i.e., �nitely represented, but
on
eptually in�nite)alignment dags and highest-s
ore matri
es. From now on, we omit the term \extended" for brevity, alwaysassuming it by default.The maximum path s
ores for ea
h of the four path types (1)
an be obtained from the highest-s
ore matrix(2) as follows: max s
ore (v0;j vm;j′) = A(j; j′);max s
ore (vi;0 vm;j′) = A(−i; j′)− i;max s
ore (v0;j vi′;n) = A(j;m+ n− i′)−m+ i′;max s
ore (vi;0 vi′;n) = A(−i;m+ n− i′)−m− i+ i′;where i; i′ ∈ [0 : m℄, j; j′ ∈ [0 : n℄, and the maximum is taken a
ross all paths between the given endpoints.De�nition 8. An odd half-integer point (i; j) ∈ 〈−∞ : +∞〉2 is
alled A-
riti
al ifA(i+ 12 ; j − 12)+ 1 = A(i− 12 ; j − 12) = A(i+ 12 ; j + 12) = A(i− 12 ; j + 12):In parti
ular, the point (i; j) is never A-
riti
al for i > j. When i = j, the point (i; j) is A-
riti
al if and onlyif A(i− 12 ; j + 12) = 0.

762

Fig. 2. An alignment dag and the seaweeds.Corollary 1. Let i; j ∈ 〈−∞ : +∞〉. For ea
h i (respe
tively, j), there exists exa
tly one j (respe
tively, i) su
hthat the point (i; j) is A-
riti
al.Figure 2 shows the alignment dag of Figure 1 along with the
riti
al points. In parti
ular, every
riti
alpoint (i; j) with i; j ∈ 〈0 : n〉 is represented by a seaweed1, originating between the nodes v0;i− 12 and v0;i+ 12 andterminating between the nodes vm;j− 12 and vm;j+ 12 . The remaining seaweeds, originating or terminating at thesides of the dag,
orrespond to
riti
al points (i; j) with either i ∈ 〈−m : 0〉 or j ∈ 〈n : n +m〉 (or both). Inparti
ular, every
riti
al point (i; j) with i ∈ 〈−m : 0〉 (respe
tively, j ∈ 〈n : m+n〉) is represented by a seaweedoriginating between the nodes v
−i− 12 ;0 and v

−i+ 12 ;0 (respe
tively, terminating between the nodes vm+n−j− 12 ;nand vm+n−j+ 12 ;n).It is
onvenient to
onsider the set of A-
riti
al points as an in�nite permutation matrix. For all i; j ∈ 〈−∞ :+∞〉, we de�ne DA(i; j) = { 1 if (i; j) is A-
riti
al;0 otherwise:We denote the in�nite distribution matrix of DA by dA, and
onsider the following simple geometri
 relation.De�nition 9. A point (i0; j0) dominates2 a point (i; j) if i0 < i and j < j0.Informally, the dominated point is \below and to the left" of the dominating point in the highest-s
orematrix3. Clearly, for an arbitrary integer point (i0; j0) ∈ [−∞ : +∞℄2, the value dA(i0; j0) is the number of (oddhalf-integer) A-
riti
al points it dominates.The following theorem shows that the set of
riti
al points uniquely de�nes a highest-s
ore matrix, and givesa simple formula for re
overing the matrix elements.Theorem 1 ([17℄). For all i0; j0 ∈ [−∞ : +∞℄, we haveA(i0; j0) = j0 − i0 − dA(i0; j0):In Fig. 2,
riti
al points dominated by the point (4; 11) are represented by seaweeds whose both endpoints(and therefore the whole seaweed) �t between the two verti
al lines
orresponding to the index values i = 4 andj = 11. Note that there are exa
tly two su
h seaweeds, and that A(4; 11) = 11− 4− 2 = 5.By Theorem 1, a highest-s
ore matrix A is represented uniquely by an in�nite permutation matrix DA withodd half-integer row and
olumn indi
es. We will
all the matrix DA the impli
it representation of A. From nowon, we will refer to the
riti
al points of A as nonzeros (i.e., ones) in its impli
it representation.Re
all that outside the
ore, the stru
ture of an alignment graph is trivial: all possible diagonal edges arepresent in the o�-
ore subgraph. This property
arries over to the
orresponding permutation matrix.
1This imaginative term was suggested by Yu. V. Matiyasevich.
2The standard definition of dominance requires i < i0 instead of i0 < i. Our definition is more convenient in the context of the

LCS problem.
3Note that these concepts of “below” and “left” are relative to the highest-score matrix, and have no connection to the “vertical”

and “horizontal” directions in the alignment dag.

763

De�nition 10. Given an in�nite permutation matrix D, a
ore of D is a square (possibly semi-in�nite) subma-trix de�ned by an index range [i0 : j0℄× [i1 : j1℄ with j0 − i0 = j1 − i1 (as long as both these values are de�ned)su
h that for all o�-
ore elements D(i; j), we have D(i; j) = 1 if and only if j − i = j0 − i0 and j − i = j1 − i1(in ea
h
ase, as long as the right-hand side is de�ned).Informally, the o�-
ore part of a matrix D has nonzeros on the o�-
ore extension of the main diagonal of the
ore.The following statements are an immediate
onsequen
e of the de�nitions.Corollary 2. A
ore of an in�nite permutation matrix is a (possibly semi-in�nite) permutation matrix.Corollary 3. Given an alignment dag A as des
ribed above, the
orresponding permutation matrix DA has a
ore of size m+ n, de�ned by i ∈ 〈−m;n〉, j ∈ 〈0;m+ n〉.In Fig. 2, the set of
riti
al points represented by the seaweeds
orresponds pre
isely to the set of all
orenonzeros in DA. Note that there are m+ n = 8 + 13 = 21 seaweeds in total.Sin
e only
ore nonzeros need to be represented expli
itly, the impli
it representation of a highest-s
ore matrix
an be stored as a permutation of size m + n. From now on, we will assume this as the default representationof su
h matri
es.By Theorem 1, the value A(i0; j0) is determined by the number of nonzeros in DA dominated by (i0; j0).Therefore, an individual element of A
an be obtained expli
itly by s
anning the impli
it representation of A intime O(m+ n),
ounting the dominated nonzeros. However, existing methods of
omputational geometry allowus to perform this dominan
e
ounting pro
edure mu
h more eÆ
iently, as long as prepro
essing of the impli
itrepresentation is allowed.Theorem 2 ([17℄). Given the impli
it representation DA of a highest-s
ore matrix A, there exists a data stru
turethat
• has size O((m+ n) log(m+ n));
•
an be built in time O((m+ n) log(m+ n));
• allows to query an individual element of A in time O(log2(m+ n)).4.2. Highest-s
ore matrix multipli
ation. A
ommon pattern in many problems on strings is partitioningthe alignment dag into alignment subdags. Without loss of generality,
onsider a partitioning of an (M +m)×nalignment dag G into an M × n alignment dag G1 and an m × n alignment dag G2, where M ≥ m. The dagsG1, G2 share a horizontal row of n nodes, whi
h is simultaneously the bottom row of G1 and the top row of G2;the dags also share the
orresponding n − 1 horizontal edges. We will say that the dag G is the
on
atenationof the dags G1 and G2. Let A, B, C denote the highest-s
ore matri
es de�ned, respe
tively, by the dags G1,G2, G. Our goal is, given the matri
es A, B, to
ompute the matrix C eÆ
iently. We
all this pro
edure thehighest-s
ore matrix multipli
ation.De�nition 11. Let n ∈ N. Let A, B, C be arbitrary numeri
al matri
es with indi
es ranging over [0 : n℄. The(min;+)-produ
t A⊙B = C is de�ned byC(i; k) = minj (A(i; j) +B(j; k)); i; j; k ∈ [0 : n℄:Lemma 1 ([17℄). Let DA, DB, DC be permutation matri
es with indi
es ranging over 〈0 : n〉, and let dA, dB,dC be their respe
tive distribution matri
es. Let dA ⊙ dB = dC . Given the nonzeros of DA, DB, the nonzeros ofDC
an be
omputed in time O(n1:5) and memory O(n).Lemma 2 ([17℄). Let DA, DB, DC be permutation matri
es with indi
es ranging over 〈−∞ : +∞〉. Let DA(respe
tively, DB) have semi-in�nite
ore 〈0 : +∞〉2 (respe
tively, 〈−∞ : n〉2). Let dA, dB, dC be the respe
tivedistribution matri
es, and assume dA ⊙ dB = dC . We haveDA(i; j) = DC(i; j) for i ∈ 〈−∞ : +∞〉; j ∈ 〈n : +∞〉; (3)DB(j; k) = DC(j; k) for j ∈ 〈−∞ : 0〉; k ∈ 〈−∞ : +∞〉: (4)

764

Fig. 3. An illustration of Lemma 2.Equations (3){(4)
over all but n nonzeros in ea
h of DA, DB, DC . These remaining nonzeros have i ∈ 〈0 : +∞〉,j ∈ 〈0 : n〉, k ∈ 〈−∞ : n〉. Given the n remaining nonzeros in ea
h of DA, DB, the n remaining nonzeros in DC
an be
omputed in time O(n1:5) and memory O(n).The above lemma is illustrated by Fig. 3. Three horizontal lines represent the index ranges of i, j, k,respe
tively. The nonzeros in DA (respe
tively, DB) are shown by top-to-middle (respe
tively, middle-to-bottom)seaweeds; thin seaweeds
orrespond to the nonzeros
overed by (3){(4), and thi
k seaweeds to the remainingnonzeros. By Lemma 2, the nonzeros in DC
overed by (3){(4) are represented by thin top-to-bottom seaweeds.The remaining nonzeros in DC are not represented expli
itly, but
an be obtained from the thi
k top-to-middleand middle-to bottom seaweeds by Lemma 1.4.3. Partial highest-s
ore matrix multipli
ation. In
ertain
ontexts, e.g., when m ≫ n, we may not beable to solve the all semi-lo
al LCS problem, or even to store its impli
it highest-s
ore matrix. In su
h
ases, wemay wish to settle for the following asymmetri
 version of the problem.De�nition 12. The partial semi-lo
al LCS problem
onsists in
omputing the LCS s
ores on substrings of aand b as follows:
• the all string-substring LCS problem: a against every substring of b;
• the all pre�x-suÆx LCS problem: every pre�x of a against every suÆx of b;
• the all suÆx-pre�x LCS problem: every suÆx of a against every pre�x of b.In
ontrast with the all semi-lo
al LCS problem, the
omparison of substrings of a against b is not required.Let A be the highest-s
ore matrix for the all semi-lo
al LCS problem. Given the impli
it representation ofA, the
orresponding partial impli
it representation
onsists of all nonzeros A(i; j) with either i ∈ 〈0 : n〉 orj ∈ 〈0 : n〉 (equivalently, (i; j) ∈ 〈0 : n〉 × 〈0 : +∞〉 ∪ 〈−∞ : n〉 × 〈0 : n〉). All su
h nonzeros are
ore; thenumber of these nonzeros is at least n and at most 2n (note that the size of the partial impli
it representationis therefore independent of m). The minimum (respe
tively, maximum) number of nonzeros is attained when all(respe
tively, none of) these nonzeros are
ontained in the submatrix de�ned by (i; j) ∈ 〈0 : n〉 × 〈0 : n〉.Theorem 3. Given the partial impli
it representation of a highest-s
ore matrix A, there exists a data stru
turethat
• has size O(n log n);
•
an be built in time O(n log n);
• allows to query an individual element of A,
orresponding to an output of the partial semi-lo
al LCS problem,in time O(log2 n).Proof. Similarly to the proof of Theorem 2, the stru
ture in question is a 2D range tree built on the set ofnonzeros in the partial impli
it representation of A. �The following lemma gives an equivalent of highest-s
ore matrix multipli
ation for partially represented ma-tri
es.Lemma 3. Consider the
on
atenation of alignment dags as des
ribed in Se
. 4:2, with highest-s
ore matri
esA, B, C. Given the partial impli
it representations of A, B, the partial impli
it representation of C
an be
omputed in time O(n1:5) and memory O(n).

765

Proof. Let D′A(i; j) = DA(i −M; j), D′B(j; k) = DB(j; k +m), D′C(i; k) = DB(i−M;k +m) for all i; j; k, andde�ne d′A, d′B , d′C a

ordingly. It is easy to
he
k that d′A ⊙ d′B = d′C if and only if dA ⊙ dB = dC . The matri
esD′A, D′B , D′C satisfy the
onditions of Lemma 2, therefore all but n of the
ore nonzeros in the required partialimpli
it representation
an be obtained by (3){(4) in time and memory O(n), and the remaining n
ore nonzeros
an be obtained in time O(n1:5) and memory O(n). �
5. The algorithms5.1. Clobal subsequen
e re
ognition and LCS. We now return to the problem of subsequen
e re
ognitionintrodu
ed in Se
. 2. A simple eÆ
ient algorithm for global subsequen
e re
ognition in an SLP-
ompressed stringis not diÆ
ult to obtain, and has been known in folklore4. For
onvenien
e, we generalize the output of theproblem: instead of a Boolean value, the algorithm will return an integer.Algorithm 1 (Global subsequen
e re
ognition).Input: string T of length m, represented by an SLP of length m; string P of length n, represented expli
itly.Output: the integer k giving the length of the longest pre�x of P that is a subsequen
e of T . The string T
ontains P as a subsequen
e if and only if k = n.Des
ription. The
omputation is performed re
ursively as follows.Let T = T ′T ′′ be the SLP statement de�ning the string T . Let k′ be the length of the longest pre�x of P thatis a subsequen
e of T ′. Let k′′ be the length of the longest pre�x of P ⇃ k′ that is a subsequen
e of T ′′. Both k′and k′′
an be found re
ursively. We have k = k′ + k′′.The base of the re
ursion is m = m = 1. In this
ase, the value k ∈ {0; 1} is determined by a single
hara
ter
omparison.Cost analysis. The running time of the algorithm is O(mk). The proof is by indu
tion. The running timesof the re
ursive
alls are, respe
tively, O(mk′) and O(mk′′). The overall running time of the algorithm isO(mk′) +O(mk′′) +O(1) = O(mk). In the worst
ase, this is O(mn). �We now address the more general partial semi-lo
al LCS problem. Our approa
h is based on the te
hniqueintrodu
ed in Se
. 4.3.Algorithm 2 (Partial semi-lo
al LCS).Input: string T of length m, represented by an SLP of length m; string P of length n, represented expli
itly.Output: the partial impli
it highest-s
ore matrix on the strings T , PDes
ription. The
omputation is performed re
ursively as follows.Let T = T ′T ′′ be the SLP statement de�ning the string T . Given the partial impli
it highest-s
ore matri
esfor ea
h of T ′ and T ′′ against P , the partial impli
it highest-s
ore matrix of T against P
an be
omputed byLemma 3.The base of the re
ursion is m = m = 1. In this
ase, the matrix
oin
ides with the full impli
it highest-s
orematrix, and
an be
omputed by a simple s
an of the string P .Cost analysis. By Lemma 3, ea
h impli
it matrix multipli
ation runs in time O(n1:5) and memory O(n).There are m re
ursive steps in total, therefore all the matrix multipli
ations
ombined run in time O(mn1:5) andmemory O(n). �Note that the above algorithm, as a spe
ial
ase, provides an eÆ
ient solution for the LCS problem: the LCSs
ore for T against P
an easily be queried from the output of the algorithm by Theorem 2.The running time of Algorithm 2 should be
ontrasted with the standard un
ompressed LCS algorithms,running in time O(mnlog(m+n)) (see [12, 6℄), and with the NP-hardness of the LCS problem on two
ompressedstrings (see [11℄).5.2. Lo
al subsequen
e re
ognition. We now show how the partial semi-lo
al LCS algorithm of the previousse
tion
an be used to provide lo
al subsequen
e re
ognition.Algorithm 3 (Minimal-window subsequen
e re
ognition).Input: string T of length m, represented by an SLP of length m; string P of length n, represented expli
itly.Output: the number of windows in T
ontaining P minimally as a subsequen
e.

4The author is grateful to Y. Lifshits for pointing this out.

766

Des
ription. The algorithm runs in two phases.First phase. Using Algorithm 2, we
ompute the partial impli
it highest-s
ore matrix for every SLP symbolagainst P . For ea
h of these matri
es, we then build the data stru
ture of Theorem 3.Se
ond phase. For brevity, we will
all a window
ontaining P minimally as a subsequen
e a P -episode window.The number of P -episode windows in T is
omputed re
ursively as follows.Let T = T ′T ′′ be the SLP statement de�ning the string T . Let m′, m′′ be the (un
ompressed) lengths of thestrings T ′, T ′′. Let r′ (respe
tively, r′′) be the number of P -episode windows in T ′ (respe
tively, T ′′),
omputedby re
ursion.We now need to
onsider the n−1 possible pre�x-suÆx de
ompositions P = (P ↿ n′)(P ↾ n′′), for all n′; n′′ > 0su
h that n′ + n′′ = n. Let l′ (respe
tively, l′′) be the length of the shortest suÆx of T ′ (respe
tively, pre�xof T ′′)
ontaining P ↿ n′ (respe
tively, P ↾ n′′) as a subsequen
e. The value of l′ (respe
tively, l′′)
an befound, or its nonexisten
e established, by binary sear
h on the �rst (respe
tively, se
ond) index
omponent ofnonzeros in the partial impli
it highest-s
ore matrix of T ′ (respe
tively, T ′′) against P . At every step of thebinary sear
h, we make a suÆx-pre�x (respe
tively, pre�x-suÆx) LCS s
ore query by Theorem 3. We
all theinterval [m′ − l′ : m′ + l′′℄ a
andidate window.It is easy to see that if a window in T is P -episode, then it is either
ontained within one of T ′, T ′′, or is a
andidate window. Conversely, a
andidate window [i; j℄ is P -episode unless there is a smaller
andidate window[i1; j1℄ with either i = i1 < j1 < j, or i < i1 < j1 = j. Given the set of all
andidate windows sorted separatelyby the lower endpoints and the higher endpoints, this test
an be performed in overall time O(n). Let s be theresulting number of distin
t P -episode
andidate windows. The overall number of P -episode windows in T isequal to r′ + r′′ + s.The base of the re
ursion is m < n. In this
ase, no windows of length n or more exist in T , so none
an beP -episode.Cost analysis.First phase. As in Algorithm 2, the main data stru
ture
an be built in time O(mn1:5). The additional datastru
ture of Theorem 2
an be built in time m · O(n logn) = O(mn logn).Se
ond phase. For ea
h of n − 1 de
ompositions n′ + n′′ = n, the binary sear
h performs at most logn suÆx-pre�x and pre�x-suÆx LCS queries, ea
h taking time O(log2 n). Therefore, ea
h re
ursive step runs in time2n · logn · O(log2 n) = O(n log3 n). There are m re
ursive steps in total, therefore the whole re
ursion runs intime O(mn log3 n). It is possible to speed up this phase by reusing data between di�erent instan
es of binarysear
h and LCS query; however, this is not ne
essary for the overall eÆ
ien
y of the algorithm.The overall
omputation
ost is dominated by the
ost of building the main data stru
ture in the �rst phase,equal to O(mn1:5). �Algorithm 4 (Fixed-window subsequen
e re
ognition).Input: string T of length m, represented by an SLP of length m; string P of length n, represented expli
itly;window length w.Output: the number of windows of length w in T
ontaining P as a subsequen
e.Des
ription.First phase. As in Algorithm 3.Se
ond phase. For brevity, we will
all a window of length w
ontaining P as a subsequen
e a (P;w)-episodewindow. The number of (P;w)-episode windows in T is
omputed re
ursively as follows.Let T = T ′T ′′ be the SLP statement de�ning the string T . Let m′, m′′ be the (un
ompressed) lengths ofthe strings T ′, T ′′. Let r′ (respe
tively, r′′) be the number of (P;w)-episode windows in T ′ (respe
tively, T ′′),
omputed by re
ursion.We now need to
onsider the w − 1 windows that span the boundary between T ′ and T ′′,
orresponding tothe strings (T ′ ↾ w′)(T ′′ ↿ w′′), for all w′; w′′ > 0 su
h that w′ +w′′ = w. We
all an interval [m′ −w′ : m′ +w′′℄a
andidate window. In
ontrast with the minimal-window problem, we
an no longer a�ord to
onsider every
andidate window individually, and will therefore need to
ount them in groups of \equivalent" windows.Let (i; j) (respe
tively, (j; k)) be a nonzero in the partial highest-s
ore matrix of T ′ (respe
tively, T ′′) againstP . We will say that su
h a nonzero is
overed by a
andidate window [m′−w′ : m′+w′′℄ if i ∈ 〈−m′ : −m′+w′〉(respe
tively, k ∈ 〈m′′ + n− w : m′′ + n〉). We will say that two
andidate windows are equivalent if they
overthe same set of nonzeros both for T ′ and T ′′.
767

Sin
e the number of nonzeros for ea
h of T ′, T ′′ is at most n, the de�ned equivalen
e relation has at most 2nequivalen
e
lasses. Ea
h equivalen
e
lass
orresponds to a
ontiguous segment of values w′ (and, symmetri
ally,w′′), and is
ompletely des
ribed by the two endpoints of this segment. Given the set of all the nonzeros, theendpoint des
ription of all the equivalen
e
lasses
an be
omputed in time O(n).For ea
h equivalen
e
lass of
andidate windows, either none or all of them are (P;w)-episode; in the latter
ase, we will
all the whole equivalen
e
lass (P;w)-episode. We
onsider ea
h equivalen
e
lass in turn, and pi
kfrom it an arbitrary representative
andidate window [m′ −w′ : m′ +w′′℄. Let l′ (respe
tively, l′′) be the lengthof the longest pre�x (respe
tively, suÆx) of P
ontained in T ′ ↾ w′ (respe
tively, T ′′ ↿ w′′) as a subsequen
e. Thevalue of l′ (respe
tively, l′′)
an be found by binary sear
h on the se
ond (respe
tively, �rst) index
omponentof nonzeros in the partial impli
it highest-s
ore matrix of T ′ (respe
tively, T ′′) against P . At every step of thebinary sear
h, we make a suÆx-pre�x (respe
tively, pre�x-suÆx) LCS s
ore query by Theorem 3.It is easy to see that the
urrent equivalen
e
lass is (P;w)-episode if and only if l′ + l′′ ≥ n. Let s be thetotal size of (P;w)-episode equivalen
e
lasses. The overall number of (P;w)-episode windows in T is equalto r′ + r′′ + s.The base of the re
ursion is m < w. In this
ase, no windows of length w or more exist in T , so none
an be(P;w)-episode.Cost analysis. As in Algorithm 3, the total
ost is dominated by the
ost of the �rst phase, equal toO(mn1:5). �The bounded minimal-window subsequen
e re
ognition problem
an be solved by a simple modi�
ation ofAlgorithm 3, dis
arding all
andidate windows of length greater than w. Furthermore, in addition to
ounting thewindows, Algorithms 3 and 4
an both be easily modi�ed to report all the respe
tive windows at the additional
ost of O(output).
6. ConclusionsWe have
onsidered several subsequen
e re
ognition problems for an SLP-
ompressed text against an un
om-pressed pattern. First, we mentioned a simple folklore algorithm for the global subsequen
e re
ognition problem,running in time O(mn). Relying on the previously developed framework of semi-lo
al string
omparison, wethen gave an algorithm for the partial semi-lo
al LCS problem, running in time O(mn1:5); this in
ludes the LCSproblem as a spe
ial
ase. A natural question is whether the running time of partial semi-lo
al LCS (or justLCS)
an be improved to mat
h global subsequen
e re
ognition.We have also given algorithms for the lo
al subsequen
e re
ognition problem in its minimal-window and �xed-window versions. Both algorithms run in time O(mn1:5), and
an be easily modi�ed to report all the respe
tivewindows at the additional
ost of O(output). Again, a natural question is whether this running time
an befurther improved.Another
lassi
al generalization of both the LCS problem and lo
al subsequen
e re
ognition is approximatemat
hing (see, e.g., [14℄). Here, we look for substrings in the text that are
lose to the pattern in terms of theedit distan
e, with possibly di�erent
osts
harged for insertions/deletions and substitutions. On
e again, we
anformulate it as a
ounting problem (the k-approximate mat
hing problem):
ounting the number of windows inT that have edit distan
e at most k from P . This problem is
onsidered on LZ-
ompressed strings (essentially, aspe
ial
ase of SLP-
ompression) in the paper [10℄, whi
h gives an algorithm running in time O(mnk). It wouldbe interesting to see if this algorithm
an be improved by using the ideas of the
urrent paper.REFERENCES1. A. V. Aho, J. E. Hop
roft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley (1976).2. C. E. R. Alves, E. N. C�a
eres, and S. W. Song, \An all-substrings
ommon subsequen
e algorithm," Ele
tr.Notes Dis
r. Math., 19, 133{139 (2005).3. J. L. Bentley, \Multidimensional divide-and-
onquer," Comm. ACM, 23, No. 4, 214{229 (1980).4. P. C�egielski, I. Guessarian, Y. Lifshits, and Y. Matiyasevi
h, \Window subsequen
e problems for
ompressedtexts," in: Pro
eedings of CSR, Le
t. Notes Comp. S
i., 3967 (2006), pp. 127{136.5. P. C�egielski, I. Guessarian, and Y. Matiyasevi
h, \Multiple serial episodes mat
hing," Inform. Pro
ess. Lett.,98, No. 6, 211{218 (2006).6. M. Cro
hemore, G. M. Landau, and M. Ziv-Ukelson, \A subquadrati
 sequen
e alignment algorithm forunrestri
ted s
ore matri
es," SIAM J. Comp., 32, No. 6, 1654{1673 (2003).

768

7. M. Cro
hemore and W. Rytter, Text Algorithms, Oxford University Press (1994).8. G. Das, R. Fleis
her, L. Gasienie
, D. Gunopulos, and J. K�arkk�ainen, \Episode mat
hing," in: Pro
eedingsof CPM, Le
t. Notes Comp. S
i., 1264 (1997), pp. 12{27.9. D. Gus�eld, Algorithms on Strings, Trees, and Sequen
es: Computer S
ien
e and Computational Biology,Cambridge University Press (1997).10. J. K�arkk�ainen, G. Navarro, and E. Ukkonen, \Approximate string mat
hing on Ziv{Lempel
ompressedtext," J. Dis
r. Alg., 1, 313{338 (2003).11. Y. Lifshits and M. Lohrey, \Querying and embedding
ompressed texts," in: Pro
eedings of MFCS, Le
t.Notes Comp. S
i., 4162 (2006), pp. 681{692.12. W. J. Masek and M. S. Paterson, \A faster algorithm
omputing string edit distan
es," J. Comp. SystemS
i., 20, 18{31 (1980).13. G. Myers, \Approximately mat
hing
ontext-free languages," Inform. Pro
ess. Lett., 54, 85{92 (1995).14. G. Navarro, \A guided tour to approximate string mat
hing," ACM Comp. Surv., 33, No. 1, 31{88 (2001).15. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introdu
tion, Springer (1985).16. W. Rytter, \Appli
ation of Lempel{Ziv fa
torization to the approximation of grammar-based
ompression,"Theor. Comp. S
i., 302, No. 1{3, 211{222 (2003).17. A. Tiskin, \Semi-lo
al longest
ommon subsequen
es in subquadrati
 time," J. Dis
r. Alg., 6, No. 4, 570{581(2008).18. A. Tiskin, \Semi-lo
al string
omparison: Algorithmi
 te
hniques and appli
ations," Math. Comput. S
i., 1,No. 4, 571{603 (2008).19. B. W. Watson and G. Zwaan, \A taxonomy of sublinear multiple keyword pattern mat
hing algorithms,"S
i. Comput. Programm., 27, No. 2, 85{118 (1996).20. T. A. Wel
h, \A te
hnique for high-performan
e data
ompression," Computer, 17, No. 6, 8{19 (1984).21. G. Ziv and A. Lempel, \A universal algorithm for sequential data
ompression," IEEE Transa
t. Inform.Theory, 23, 337{343 (1977).22. G. Ziv and A. Lempel, \Compression of individual sequen
es via variable-rate
oding," IEEE Transa
t.Inform. Theory, 24, 530{536 (1978).

769

