
Journal of Mathematical Sciences, Vol. 158, No. 5, 2009

FASTER SUBSEQUENCE RECOGNITION IN COMPRESSED STRINGSA. Tiskin∗ UDC 519.16
Computation on compressed strings is one of the key approaches to processing massive data sets. We consider local
subsequence recognition problems on strings compressed by straight-line programs (SLP), which is closely related
to Lempel–Ziv compression. For an SLP-compressed text of length m, and an uncompressed pattern of length n,

Cégielski et al. gave an algorithm for local subsequence recognition running in time O(mn
2 log n). We improve the

running time to O(mn
1.5). Our algorithm can also be used to compute the longest common subsequence between

a compressed text and an uncompressed pattern in time O(mn
1.5); the same problem with a compressed pattern is

known to be NP-hard. Bibliography: 22 titles.

1. IntroductionComputation on ompressed strings is one of the key approahes to proessing massive data sets. It haslong been known that ertain algorithmi problems an be solved diretly on a ompressed string, without �rstdeompressing it; see [4, 11℄ for referenes.One of the most general string ompression methods is ompression by straight-line programs (SLP) [16℄.In partiular, SLP ompression aptures the well-known LZ and LZW algorithms [21, 22, 20℄. Various patternmathing problems on SLP-ompressed strings have been studied; see, e.g., [4℄ for referenes. C�egielski et al. [4℄onsidered subsequene reognition problems on SLP-ompressed strings. For an SLP-ompressed text of lengthm, and an unompressed pattern of length n, they gave several algorithms for global and loal subsequenereognition, running in time O(mn2 logn).In this paper, we improve on the results of [4℄ as follows. First, we desribe a simple folklore algorithm forglobal subsequene reognition on an SLP-ompressed text, running in time O(mn). Then, we onsider the moregeneral partial semi-loal longest ommon subsequene (LCS) problem, whih onsists in omputing impliitlythe LCS between a ompressed text and every substring of an unompressed pattern. The same problem witha ompressed pattern is known to be NP-hard. For the partial semi-loal LCS problem, we propose a newalgorithm, running in time O(mn1:5). Our algorithm is based on the partial highest-sore matrix multipliationtehnique presented in [18℄. We then extend this method to the several versions of loal subsequene reognitiononsidered in [4℄, for eah obtaining an algorithm running in the same asymptoti time O(mn1:5).This paper is a sequel to the papers [17, 18℄; we reall most of their relevant material here for ompleteness.
2. Subsequences in a compressed textWe onsider strings of haraters from a �xed �nite alphabet, denoting string onatenation by juxtaposition.Given a string, we distinguish between its ontiguous substrings, and not neessarily ontiguous subsequenes.Speial ases of a substring are a pre�x and a suÆx of a string. Given a string a of length m, we use the take/dropnotation of [19℄, a ↿ k, a ⇃ k, a ↾ k, a ⇂ k, to denote, respetively, its pre�x of length k, suÆx of length m − k,suÆx of length k, and pre�x of length m − k. For two strings a = �1�2 : : : �m and b = �1�2 : : : �n of lengthsm and n, respetively, the longest ommon subsequene (LCS) problem onsists in omputing the length of thelongest string that is a subsequene both of a and b. We will all this length the LCS sore of the strings.Let T be a string of length m (typially large). The string T will be represented impliitly by a straight-lineprogram (SLP) of length m, whih is a sequene of m statements. Eah statement r, 1 ≤ r ≤ m, has either theform Tr = �, where � is an alphabet harater, or the form Tr = TsTt, where 1 ≤ s, t < r. We identify everysymbol Tr with the string it represents; in partiular, we have T = Tm. Note that m ≥ m, and that in generalthe unompressed text length m an be exponential in the SLP-ompressed text length m.Our goal is to design eÆient algorithms on SLP-ompressed texts. While we do not allow text deompression(sine, in the worst ase, this ould be extremely ineÆient), we will assume that standard arithmeti operationson integers up to m an be performed in onstant time. This assumption is neessary, sine the ounting versionof our problem produes a numerial output that may be as high as O(m). The same assumption on theomputation model is made impliitly in [4℄.

∗Department of Computer Science, University of Warwick, Coventry, United Kingdom, e-mail: tiskin@dcs.warwick.ac.uk.

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 358, 2008, pp. 282–300. Original article submitted June 10, 2007.

1072-3374/09/1585-0759 c©2009 Springer Science+Business Media, Inc. 759

The LCS problem on unompressed strings is a lassial problem; see, e.g., [7, 9℄ for the bakground andreferenes. Given input strings of lengths m, n, the LCS problem an be solved in time O(mnlog(m+n)), assumingm and n are reasonably lose [12, 6℄. The LCS problem on two SLP-ompressed strings is onsidered in [11℄,and proven to be NP-hard. In this paper, we onsider the LCS problem on two input strings, one of whih isSLP-ompressed and the other unompressed. This problem an be regarded as a speial ase of omputing theedit distane between a ontext-free language given by a grammar of size m, and a string of size n. For thismore general problem, Myers [13℄ gives an algorithm running in time O(mn3 +m logm · n2).From now on, we will assume that a string T (the text string) of length m is represented by an SLP of lengthm, and that a string P (the pattern string) of length n is represented expliitly. Following [4, 11℄, we study theproblem of reognizing in T subsequenes idential to P , whih is losely related to the LCS problem.De�nition 1. The (global) subsequene reognition problem onsists in deiding whether the string T ontainsthe string P as a subsequene.The subsequene reognition problem on unompressed strings is a lassial problem, onsidered, e.g., in [1℄as the \subsequene mathing problem." The subsequene reognition problem on an SLP-ompressed text isonsidered in [4℄ as Problem 1, with an algorithm running in time O(mn2 logn).In addition to global subsequene reognition, it is useful to onsider text subsequenes loally, i.e., in sub-strings of T . In this ontext, we will all the substrings of T windows. We will say that a string a ontains astring b minimally as a subsequene if b is a subsequene in a, but not in any proper substring of a. Even withthis restrition, the number of substrings in T ontaining P minimally as a subsequene may be as high as O(m),so just listing them all may require time exponential in m. The same is true if, instead of minimal substrings,we onsider all substrings of T of a �xed length. Therefore, it is sensible to de�ne loal subsequene reognitionas a family of ounting problems.De�nition 2. The minimal-window subsequene reognition problem onsists in ounting the number of win-dows in a string T ontaining a string P minimally as a subsequene.De�nition 3. The �xed-window subsequene reognition problem onsists in ounting the number of windowsof a given length w in a string T ontaining a string P as a subsequene.The minimal-window and �xed-window subsequene reognition problems on unompressed strings are on-sidered in [8℄ as \episode mathing problems" (see also [5℄ and referenes therein). The same problems on anSLP-ompressed text and an unompressed pattern are onsidered in [4℄ as Problems 2 and 3 (a speial ase of2) and 4. Additionally, the same paper onsiders the bounded minimal-window subsequene reognition problem(ounting the number of windows in T of length at most w ontaining P minimally as a subsequene) as Problem5. For all these problems, the paper [4℄ gives algorithms running in time O(mn2 logn).
3. Semi-local longest common subsequencesIn this setion and the next, we reall the algorithmi framework developed in [17, 18℄. This framework issubsequently used to solve the ompressed subsequene reognition problems introdued in the previous setion.In [17℄, we introdued the following problem.De�nition 4. The all semi-loal LCS problem onsists in omputing the LCS sores on substrings of strings aand b as follows:

• the all string-substring LCS problem: a against every substring of b;
• the all pre�x-suÆx LCS problem: every pre�x of a against every suÆx of b;
• symmetrially, the all substring-string LCS problem and the all suÆx-pre�x LCS problem, de�ned as abovebut with the roles of a and b exhanged.It turns out that this is a very natural and useful generalization of the LCS problem.In addition to standard integer indies : : : ;−2;−1; 0; 1; 2; : : : , we use odd half-integer indies : : : ;− 52 , − 32 ,

− 12 , 12 , 32 , 52 ; : : : . We denote[i : j℄ = {i; i+ 1; : : : ; j − 1; j}; 〈i : j〉 = {i+ 12 ; i+ 32 ; : : : ; j − 32 ; j − 12}:To denote in�nite intervals of integers and odd half-integers, we will use−∞ for i and +∞ for j where appropriate.For both interval types [i : j℄ and 〈i : j〉, we all the di�erene j − i the length of the interval.
760

We will make extensive use of �nite and in�nite matries, with integer elements and integer or odd half-integerindies. A permutation matrix is a (0,1)-matrix ontaining exatly one nonzero in every row and every olumn.An identity matrix is a permutation matrix I suh that I(i; j) = 1 if i = j, and I(i; j) = 0 otherwise. Eah ofthese de�nitions applies to both �nite and in�nite matries.From now on, instead of \index pairs orresponding to nonzeros," we will write simply \nonzeros," wherethis does not lead to onfusion. A �nite permutation matrix an be represented by its nonzeros. When wedeal with an in�nite matrix, it will typially have a �nite nontrivial ore, and will be trivial (e.g., equal to thein�nite identity matrix) outside of this ore. An in�nite permutation matrix with �nite nontrivial ore an berepresented by its ore nonzeros.Let D be an arbitrary numerial matrix with indies ranging over 〈0 : n〉. Its distribution matrix, with indiesranging over [0 : n℄, is de�ned byd(i0; j0) = ∑D(i; j); i ∈ 〈i0 : n〉; j ∈ 〈0 : j0〉;for all i0; j0 ∈ [0 : n℄. We haveD(i; j) = d(i− 12 ; j + 12)

− d(i− 12 ; j − 12)

− d(i+ 12 ; j + 12)+ d(i+ 12 ; j − 12):When a matrix d is the distribution matrix of D, the matrix D is alled the density matrix of d. The de�nitionsof distribution and density matries extend naturally to in�nite matries. We will only deal with distributionmatries where all elements are de�ned and �nite.We will use the term permutation-distribution matrix as an abbreviation of \the distribution matrix of apermutation matrix."
4. Algorithmic techniquesThe rest of this paper is based on the framework for the all semi-loal LCS problem developed in [17, 18℄. Forompleteness, we reall most bakground de�nitions and results from [17℄, omitting the proofs.4.1. Dominane ounting. It is well known that an instane of the LCS problem an be represented by adag (direted ayli graph) on an m× n grid of nodes, where harater mathes orrespond to edges soring 1,and mismathes to edges soring 0.De�nition 5. Let m;n ∈ N. An alignment dag G is a weighted dag, de�ned on the set of nodes vl;i, l ∈ [0 : m℄,i ∈ [0 : n℄. The edge and path weights are alled sores. For all l ∈ [1 : m℄, i ∈ [1 : n℄,

• the horizontal edge vl;i−1 → vl;i and the vertial edge vl−1;i → vl;i are both always present in G and havesore 0;
• the diagonal edge vl−1;i−1 → vl;i may or may not be present in G; if present, it has sore 1.Given an instane of the all semi-loal LCS problem, its orresponding alignment dag is the m × n alignmentdag where the diagonal edge vl−1;i−1 → vl;i is present if and only if �i = �j .

Fig. 1. An alignment dag and a highest-soring path.
761

Figure 1 shows the alignment dag orresponding to the strings a = \baabba", b = \baabababaa" (anexample borrowed from [2℄).Common string-substring, suÆx-pre�x, pre�x-suÆx, and substring-string subsequenes orrespond, respe-tively, to paths of the following form in the alignment dag:v0;i vm;i′ ; vl;0 vm;i′ ; v0;i vl′;n; vl;0 vl′;n; (1)where l; l′ ∈ [0 : m℄, i; i′ ∈ [0 : n℄. The length of eah subsequene is equal to the sore of its orresponding path.The solution to the all semi-loal LCS problem is equivalent to �nding the sore of a highest-soring path ofeah of the four types (1) between every possible pair of endpoints.To desribe our algorithms, we need to modify the de�nition of an alignment dag by embedding the �nitegrid of nodes into an in�nite grid.De�nition 6. Given an m × n alignment dag G, its extension G+ is an in�nite weighted dag, de�ned on theset of nodes vl;i, l; i ∈ [−∞ : +∞℄, and ontaining G as a subgraph. For all l; i ∈ [−∞ : +∞℄,
• the horizontal edge vl;i−1 → vl;i and the vertial edge vl−1;i → vl;i are both always present in G+ and havesore 0;
• when l ∈ [1 : m℄, i ∈ [1 : n℄, the diagonal edge vl−1;i−1 → vl;i is present in G+ if and only if it is presentin G; if present, it has sore 1;
• otherwise, the diagonal edge vl−1;i−1 → vl;i is always present in G+ and has sore 1.An in�nite dag that is an extension of some (�nite) alignment dag will be alled an extended alignment dag.When a dag G+ is the extension of a dag G, we will say that G is the ore of G+. Relative to G+, we will allthe nodes of G ore nodes.By using the extended alignment dag representation, the four path types (1) an be redued to a single type,orresponding to the all string-substring (or, symmetrially, substring-string) LCS problem on an extended setof indies.De�nition 7. Given an m×n alignment dag G, its extended highest-sore matrix is the in�nite matrix de�nedby A(i; j) = max sore (v0;i vm;j); i; j ∈ [−∞ : +∞℄; (2)where the maximum is taken aross all paths between the given endpoints in the extension G+. If i = j, we haveA(i; j) = 0. By onvention, if j < i, then we let A(i; j) = j − i < 0.In Fig. 1, the highlighted path has sore 5, and orresponds to the value A(4; 11) = 5, whih is equal to theLCS sore of the string a and the substring b′ = \ababa".In this paper, we will deal almost exlusively with extended (i.e., �nitely represented, but oneptually in�nite)alignment dags and highest-sore matries. From now on, we omit the term \extended" for brevity, alwaysassuming it by default.The maximum path sores for eah of the four path types (1) an be obtained from the highest-sore matrix(2) as follows: max sore (v0;j vm;j′) = A(j; j′);max sore (vi;0 vm;j′) = A(−i; j′)− i;max sore (v0;j vi′;n) = A(j;m+ n− i′)−m+ i′;max sore (vi;0 vi′;n) = A(−i;m+ n− i′)−m− i+ i′;where i; i′ ∈ [0 : m℄, j; j′ ∈ [0 : n℄, and the maximum is taken aross all paths between the given endpoints.De�nition 8. An odd half-integer point (i; j) ∈ 〈−∞ : +∞〉2 is alled A-ritial ifA(i+ 12 ; j − 12)+ 1 = A(i− 12 ; j − 12) = A(i+ 12 ; j + 12) = A(i− 12 ; j + 12):In partiular, the point (i; j) is never A-ritial for i > j. When i = j, the point (i; j) is A-ritial if and onlyif A(i− 12 ; j + 12) = 0.

762

Fig. 2. An alignment dag and the seaweeds.Corollary 1. Let i; j ∈ 〈−∞ : +∞〉. For eah i (respetively, j), there exists exatly one j (respetively, i) suhthat the point (i; j) is A-ritial.Figure 2 shows the alignment dag of Figure 1 along with the ritial points. In partiular, every ritialpoint (i; j) with i; j ∈ 〈0 : n〉 is represented by a seaweed1, originating between the nodes v0;i− 12 and v0;i+ 12 andterminating between the nodes vm;j− 12 and vm;j+ 12 . The remaining seaweeds, originating or terminating at thesides of the dag, orrespond to ritial points (i; j) with either i ∈ 〈−m : 0〉 or j ∈ 〈n : n +m〉 (or both). Inpartiular, every ritial point (i; j) with i ∈ 〈−m : 0〉 (respetively, j ∈ 〈n : m+n〉) is represented by a seaweedoriginating between the nodes v
−i− 12 ;0 and v

−i+ 12 ;0 (respetively, terminating between the nodes vm+n−j− 12 ;nand vm+n−j+ 12 ;n).It is onvenient to onsider the set of A-ritial points as an in�nite permutation matrix. For all i; j ∈ 〈−∞ :+∞〉, we de�ne DA(i; j) = { 1 if (i; j) is A-ritial;0 otherwise:We denote the in�nite distribution matrix of DA by dA, and onsider the following simple geometri relation.De�nition 9. A point (i0; j0) dominates2 a point (i; j) if i0 < i and j < j0.Informally, the dominated point is \below and to the left" of the dominating point in the highest-sorematrix3. Clearly, for an arbitrary integer point (i0; j0) ∈ [−∞ : +∞℄2, the value dA(i0; j0) is the number of (oddhalf-integer) A-ritial points it dominates.The following theorem shows that the set of ritial points uniquely de�nes a highest-sore matrix, and givesa simple formula for reovering the matrix elements.Theorem 1 ([17℄). For all i0; j0 ∈ [−∞ : +∞℄, we haveA(i0; j0) = j0 − i0 − dA(i0; j0):In Fig. 2, ritial points dominated by the point (4; 11) are represented by seaweeds whose both endpoints(and therefore the whole seaweed) �t between the two vertial lines orresponding to the index values i = 4 andj = 11. Note that there are exatly two suh seaweeds, and that A(4; 11) = 11− 4− 2 = 5.By Theorem 1, a highest-sore matrix A is represented uniquely by an in�nite permutation matrix DA withodd half-integer row and olumn indies. We will all the matrix DA the impliit representation of A. From nowon, we will refer to the ritial points of A as nonzeros (i.e., ones) in its impliit representation.Reall that outside the ore, the struture of an alignment graph is trivial: all possible diagonal edges arepresent in the o�-ore subgraph. This property arries over to the orresponding permutation matrix.
1This imaginative term was suggested by Yu. V. Matiyasevich.
2The standard definition of dominance requires i < i0 instead of i0 < i. Our definition is more convenient in the context of the

LCS problem.
3Note that these concepts of “below” and “left” are relative to the highest-score matrix, and have no connection to the “vertical”

and “horizontal” directions in the alignment dag.

763

De�nition 10. Given an in�nite permutation matrix D, a ore of D is a square (possibly semi-in�nite) subma-trix de�ned by an index range [i0 : j0℄× [i1 : j1℄ with j0 − i0 = j1 − i1 (as long as both these values are de�ned)suh that for all o�-ore elements D(i; j), we have D(i; j) = 1 if and only if j − i = j0 − i0 and j − i = j1 − i1(in eah ase, as long as the right-hand side is de�ned).Informally, the o�-ore part of a matrix D has nonzeros on the o�-ore extension of the main diagonal of theore.The following statements are an immediate onsequene of the de�nitions.Corollary 2. A ore of an in�nite permutation matrix is a (possibly semi-in�nite) permutation matrix.Corollary 3. Given an alignment dag A as desribed above, the orresponding permutation matrix DA has aore of size m+ n, de�ned by i ∈ 〈−m;n〉, j ∈ 〈0;m+ n〉.In Fig. 2, the set of ritial points represented by the seaweeds orresponds preisely to the set of all orenonzeros in DA. Note that there are m+ n = 8 + 13 = 21 seaweeds in total.Sine only ore nonzeros need to be represented expliitly, the impliit representation of a highest-sore matrixan be stored as a permutation of size m + n. From now on, we will assume this as the default representationof suh matries.By Theorem 1, the value A(i0; j0) is determined by the number of nonzeros in DA dominated by (i0; j0).Therefore, an individual element of A an be obtained expliitly by sanning the impliit representation of A intime O(m+ n), ounting the dominated nonzeros. However, existing methods of omputational geometry allowus to perform this dominane ounting proedure muh more eÆiently, as long as preproessing of the impliitrepresentation is allowed.Theorem 2 ([17℄). Given the impliit representation DA of a highest-sore matrix A, there exists a data struturethat
• has size O((m+ n) log(m+ n));
• an be built in time O((m+ n) log(m+ n));
• allows to query an individual element of A in time O(log2(m+ n)).4.2. Highest-sore matrix multipliation. A ommon pattern in many problems on strings is partitioningthe alignment dag into alignment subdags. Without loss of generality, onsider a partitioning of an (M +m)×nalignment dag G into an M × n alignment dag G1 and an m × n alignment dag G2, where M ≥ m. The dagsG1, G2 share a horizontal row of n nodes, whih is simultaneously the bottom row of G1 and the top row of G2;the dags also share the orresponding n − 1 horizontal edges. We will say that the dag G is the onatenationof the dags G1 and G2. Let A, B, C denote the highest-sore matries de�ned, respetively, by the dags G1,G2, G. Our goal is, given the matries A, B, to ompute the matrix C eÆiently. We all this proedure thehighest-sore matrix multipliation.De�nition 11. Let n ∈ N. Let A, B, C be arbitrary numerial matries with indies ranging over [0 : n℄. The(min;+)-produt A⊙B = C is de�ned byC(i; k) = minj (A(i; j) +B(j; k)); i; j; k ∈ [0 : n℄:Lemma 1 ([17℄). Let DA, DB, DC be permutation matries with indies ranging over 〈0 : n〉, and let dA, dB,dC be their respetive distribution matries. Let dA ⊙ dB = dC . Given the nonzeros of DA, DB, the nonzeros ofDC an be omputed in time O(n1:5) and memory O(n).Lemma 2 ([17℄). Let DA, DB, DC be permutation matries with indies ranging over 〈−∞ : +∞〉. Let DA(respetively, DB) have semi-in�nite ore 〈0 : +∞〉2 (respetively, 〈−∞ : n〉2). Let dA, dB, dC be the respetivedistribution matries, and assume dA ⊙ dB = dC . We haveDA(i; j) = DC(i; j) for i ∈ 〈−∞ : +∞〉; j ∈ 〈n : +∞〉; (3)DB(j; k) = DC(j; k) for j ∈ 〈−∞ : 0〉; k ∈ 〈−∞ : +∞〉: (4)

764

Fig. 3. An illustration of Lemma 2.Equations (3){(4) over all but n nonzeros in eah of DA, DB, DC . These remaining nonzeros have i ∈ 〈0 : +∞〉,j ∈ 〈0 : n〉, k ∈ 〈−∞ : n〉. Given the n remaining nonzeros in eah of DA, DB, the n remaining nonzeros in DCan be omputed in time O(n1:5) and memory O(n).The above lemma is illustrated by Fig. 3. Three horizontal lines represent the index ranges of i, j, k,respetively. The nonzeros in DA (respetively, DB) are shown by top-to-middle (respetively, middle-to-bottom)seaweeds; thin seaweeds orrespond to the nonzeros overed by (3){(4), and thik seaweeds to the remainingnonzeros. By Lemma 2, the nonzeros in DC overed by (3){(4) are represented by thin top-to-bottom seaweeds.The remaining nonzeros in DC are not represented expliitly, but an be obtained from the thik top-to-middleand middle-to bottom seaweeds by Lemma 1.4.3. Partial highest-sore matrix multipliation. In ertain ontexts, e.g., when m ≫ n, we may not beable to solve the all semi-loal LCS problem, or even to store its impliit highest-sore matrix. In suh ases, wemay wish to settle for the following asymmetri version of the problem.De�nition 12. The partial semi-loal LCS problem onsists in omputing the LCS sores on substrings of aand b as follows:
• the all string-substring LCS problem: a against every substring of b;
• the all pre�x-suÆx LCS problem: every pre�x of a against every suÆx of b;
• the all suÆx-pre�x LCS problem: every suÆx of a against every pre�x of b.In ontrast with the all semi-loal LCS problem, the omparison of substrings of a against b is not required.Let A be the highest-sore matrix for the all semi-loal LCS problem. Given the impliit representation ofA, the orresponding partial impliit representation onsists of all nonzeros A(i; j) with either i ∈ 〈0 : n〉 orj ∈ 〈0 : n〉 (equivalently, (i; j) ∈ 〈0 : n〉 × 〈0 : +∞〉 ∪ 〈−∞ : n〉 × 〈0 : n〉). All suh nonzeros are ore; thenumber of these nonzeros is at least n and at most 2n (note that the size of the partial impliit representationis therefore independent of m). The minimum (respetively, maximum) number of nonzeros is attained when all(respetively, none of) these nonzeros are ontained in the submatrix de�ned by (i; j) ∈ 〈0 : n〉 × 〈0 : n〉.Theorem 3. Given the partial impliit representation of a highest-sore matrix A, there exists a data struturethat
• has size O(n log n);
• an be built in time O(n log n);
• allows to query an individual element of A, orresponding to an output of the partial semi-loal LCS problem,in time O(log2 n).Proof. Similarly to the proof of Theorem 2, the struture in question is a 2D range tree built on the set ofnonzeros in the partial impliit representation of A. �The following lemma gives an equivalent of highest-sore matrix multipliation for partially represented ma-tries.Lemma 3. Consider the onatenation of alignment dags as desribed in Se. 4:2, with highest-sore matriesA, B, C. Given the partial impliit representations of A, B, the partial impliit representation of C an beomputed in time O(n1:5) and memory O(n).

765

Proof. Let D′A(i; j) = DA(i −M; j), D′B(j; k) = DB(j; k +m), D′C(i; k) = DB(i−M;k +m) for all i; j; k, andde�ne d′A, d′B , d′C aordingly. It is easy to hek that d′A ⊙ d′B = d′C if and only if dA ⊙ dB = dC . The matriesD′A, D′B , D′C satisfy the onditions of Lemma 2, therefore all but n of the ore nonzeros in the required partialimpliit representation an be obtained by (3){(4) in time and memory O(n), and the remaining n ore nonzerosan be obtained in time O(n1:5) and memory O(n). �
5. The algorithms5.1. Clobal subsequene reognition and LCS. We now return to the problem of subsequene reognitionintrodued in Se. 2. A simple eÆient algorithm for global subsequene reognition in an SLP-ompressed stringis not diÆult to obtain, and has been known in folklore4. For onveniene, we generalize the output of theproblem: instead of a Boolean value, the algorithm will return an integer.Algorithm 1 (Global subsequene reognition).Input: string T of length m, represented by an SLP of length m; string P of length n, represented expliitly.Output: the integer k giving the length of the longest pre�x of P that is a subsequene of T . The string Tontains P as a subsequene if and only if k = n.Desription. The omputation is performed reursively as follows.Let T = T ′T ′′ be the SLP statement de�ning the string T . Let k′ be the length of the longest pre�x of P thatis a subsequene of T ′. Let k′′ be the length of the longest pre�x of P ⇃ k′ that is a subsequene of T ′′. Both k′and k′′ an be found reursively. We have k = k′ + k′′.The base of the reursion is m = m = 1. In this ase, the value k ∈ {0; 1} is determined by a single harateromparison.Cost analysis. The running time of the algorithm is O(mk). The proof is by indution. The running timesof the reursive alls are, respetively, O(mk′) and O(mk′′). The overall running time of the algorithm isO(mk′) +O(mk′′) +O(1) = O(mk). In the worst ase, this is O(mn). �We now address the more general partial semi-loal LCS problem. Our approah is based on the tehniqueintrodued in Se. 4.3.Algorithm 2 (Partial semi-loal LCS).Input: string T of length m, represented by an SLP of length m; string P of length n, represented expliitly.Output: the partial impliit highest-sore matrix on the strings T , PDesription. The omputation is performed reursively as follows.Let T = T ′T ′′ be the SLP statement de�ning the string T . Given the partial impliit highest-sore matriesfor eah of T ′ and T ′′ against P , the partial impliit highest-sore matrix of T against P an be omputed byLemma 3.The base of the reursion is m = m = 1. In this ase, the matrix oinides with the full impliit highest-sorematrix, and an be omputed by a simple san of the string P .Cost analysis. By Lemma 3, eah impliit matrix multipliation runs in time O(n1:5) and memory O(n).There are m reursive steps in total, therefore all the matrix multipliations ombined run in time O(mn1:5) andmemory O(n). �Note that the above algorithm, as a speial ase, provides an eÆient solution for the LCS problem: the LCSsore for T against P an easily be queried from the output of the algorithm by Theorem 2.The running time of Algorithm 2 should be ontrasted with the standard unompressed LCS algorithms,running in time O(mnlog(m+n)) (see [12, 6℄), and with the NP-hardness of the LCS problem on two ompressedstrings (see [11℄).5.2. Loal subsequene reognition. We now show how the partial semi-loal LCS algorithm of the previoussetion an be used to provide loal subsequene reognition.Algorithm 3 (Minimal-window subsequene reognition).Input: string T of length m, represented by an SLP of length m; string P of length n, represented expliitly.Output: the number of windows in T ontaining P minimally as a subsequene.

4The author is grateful to Y. Lifshits for pointing this out.

766

Desription. The algorithm runs in two phases.First phase. Using Algorithm 2, we ompute the partial impliit highest-sore matrix for every SLP symbolagainst P . For eah of these matries, we then build the data struture of Theorem 3.Seond phase. For brevity, we will all a window ontaining P minimally as a subsequene a P -episode window.The number of P -episode windows in T is omputed reursively as follows.Let T = T ′T ′′ be the SLP statement de�ning the string T . Let m′, m′′ be the (unompressed) lengths of thestrings T ′, T ′′. Let r′ (respetively, r′′) be the number of P -episode windows in T ′ (respetively, T ′′), omputedby reursion.We now need to onsider the n−1 possible pre�x-suÆx deompositions P = (P ↿ n′)(P ↾ n′′), for all n′; n′′ > 0suh that n′ + n′′ = n. Let l′ (respetively, l′′) be the length of the shortest suÆx of T ′ (respetively, pre�xof T ′′) ontaining P ↿ n′ (respetively, P ↾ n′′) as a subsequene. The value of l′ (respetively, l′′) an befound, or its nonexistene established, by binary searh on the �rst (respetively, seond) index omponent ofnonzeros in the partial impliit highest-sore matrix of T ′ (respetively, T ′′) against P . At every step of thebinary searh, we make a suÆx-pre�x (respetively, pre�x-suÆx) LCS sore query by Theorem 3. We all theinterval [m′ − l′ : m′ + l′′℄ a andidate window.It is easy to see that if a window in T is P -episode, then it is either ontained within one of T ′, T ′′, or is aandidate window. Conversely, a andidate window [i; j℄ is P -episode unless there is a smaller andidate window[i1; j1℄ with either i = i1 < j1 < j, or i < i1 < j1 = j. Given the set of all andidate windows sorted separatelyby the lower endpoints and the higher endpoints, this test an be performed in overall time O(n). Let s be theresulting number of distint P -episode andidate windows. The overall number of P -episode windows in T isequal to r′ + r′′ + s.The base of the reursion is m < n. In this ase, no windows of length n or more exist in T , so none an beP -episode.Cost analysis.First phase. As in Algorithm 2, the main data struture an be built in time O(mn1:5). The additional datastruture of Theorem 2 an be built in time m · O(n logn) = O(mn logn).Seond phase. For eah of n − 1 deompositions n′ + n′′ = n, the binary searh performs at most logn suÆx-pre�x and pre�x-suÆx LCS queries, eah taking time O(log2 n). Therefore, eah reursive step runs in time2n · logn · O(log2 n) = O(n log3 n). There are m reursive steps in total, therefore the whole reursion runs intime O(mn log3 n). It is possible to speed up this phase by reusing data between di�erent instanes of binarysearh and LCS query; however, this is not neessary for the overall eÆieny of the algorithm.The overall omputation ost is dominated by the ost of building the main data struture in the �rst phase,equal to O(mn1:5). �Algorithm 4 (Fixed-window subsequene reognition).Input: string T of length m, represented by an SLP of length m; string P of length n, represented expliitly;window length w.Output: the number of windows of length w in T ontaining P as a subsequene.Desription.First phase. As in Algorithm 3.Seond phase. For brevity, we will all a window of length w ontaining P as a subsequene a (P;w)-episodewindow. The number of (P;w)-episode windows in T is omputed reursively as follows.Let T = T ′T ′′ be the SLP statement de�ning the string T . Let m′, m′′ be the (unompressed) lengths ofthe strings T ′, T ′′. Let r′ (respetively, r′′) be the number of (P;w)-episode windows in T ′ (respetively, T ′′),omputed by reursion.We now need to onsider the w − 1 windows that span the boundary between T ′ and T ′′, orresponding tothe strings (T ′ ↾ w′)(T ′′ ↿ w′′), for all w′; w′′ > 0 suh that w′ +w′′ = w. We all an interval [m′ −w′ : m′ +w′′℄a andidate window. In ontrast with the minimal-window problem, we an no longer a�ord to onsider everyandidate window individually, and will therefore need to ount them in groups of \equivalent" windows.Let (i; j) (respetively, (j; k)) be a nonzero in the partial highest-sore matrix of T ′ (respetively, T ′′) againstP . We will say that suh a nonzero is overed by a andidate window [m′−w′ : m′+w′′℄ if i ∈ 〈−m′ : −m′+w′〉(respetively, k ∈ 〈m′′ + n− w : m′′ + n〉). We will say that two andidate windows are equivalent if they overthe same set of nonzeros both for T ′ and T ′′.
767

Sine the number of nonzeros for eah of T ′, T ′′ is at most n, the de�ned equivalene relation has at most 2nequivalene lasses. Eah equivalene lass orresponds to a ontiguous segment of values w′ (and, symmetrially,w′′), and is ompletely desribed by the two endpoints of this segment. Given the set of all the nonzeros, theendpoint desription of all the equivalene lasses an be omputed in time O(n).For eah equivalene lass of andidate windows, either none or all of them are (P;w)-episode; in the latterase, we will all the whole equivalene lass (P;w)-episode. We onsider eah equivalene lass in turn, and pikfrom it an arbitrary representative andidate window [m′ −w′ : m′ +w′′℄. Let l′ (respetively, l′′) be the lengthof the longest pre�x (respetively, suÆx) of P ontained in T ′ ↾ w′ (respetively, T ′′ ↿ w′′) as a subsequene. Thevalue of l′ (respetively, l′′) an be found by binary searh on the seond (respetively, �rst) index omponentof nonzeros in the partial impliit highest-sore matrix of T ′ (respetively, T ′′) against P . At every step of thebinary searh, we make a suÆx-pre�x (respetively, pre�x-suÆx) LCS sore query by Theorem 3.It is easy to see that the urrent equivalene lass is (P;w)-episode if and only if l′ + l′′ ≥ n. Let s be thetotal size of (P;w)-episode equivalene lasses. The overall number of (P;w)-episode windows in T is equalto r′ + r′′ + s.The base of the reursion is m < w. In this ase, no windows of length w or more exist in T , so none an be(P;w)-episode.Cost analysis. As in Algorithm 3, the total ost is dominated by the ost of the �rst phase, equal toO(mn1:5). �The bounded minimal-window subsequene reognition problem an be solved by a simple modi�ation ofAlgorithm 3, disarding all andidate windows of length greater than w. Furthermore, in addition to ounting thewindows, Algorithms 3 and 4 an both be easily modi�ed to report all the respetive windows at the additionalost of O(output).
6. ConclusionsWe have onsidered several subsequene reognition problems for an SLP-ompressed text against an unom-pressed pattern. First, we mentioned a simple folklore algorithm for the global subsequene reognition problem,running in time O(mn). Relying on the previously developed framework of semi-loal string omparison, wethen gave an algorithm for the partial semi-loal LCS problem, running in time O(mn1:5); this inludes the LCSproblem as a speial ase. A natural question is whether the running time of partial semi-loal LCS (or justLCS) an be improved to math global subsequene reognition.We have also given algorithms for the loal subsequene reognition problem in its minimal-window and �xed-window versions. Both algorithms run in time O(mn1:5), and an be easily modi�ed to report all the respetivewindows at the additional ost of O(output). Again, a natural question is whether this running time an befurther improved.Another lassial generalization of both the LCS problem and loal subsequene reognition is approximatemathing (see, e.g., [14℄). Here, we look for substrings in the text that are lose to the pattern in terms of theedit distane, with possibly di�erent osts harged for insertions/deletions and substitutions. One again, we anformulate it as a ounting problem (the k-approximate mathing problem): ounting the number of windows inT that have edit distane at most k from P . This problem is onsidered on LZ-ompressed strings (essentially, aspeial ase of SLP-ompression) in the paper [10℄, whih gives an algorithm running in time O(mnk). It wouldbe interesting to see if this algorithm an be improved by using the ideas of the urrent paper.REFERENCES1. A. V. Aho, J. E. Hoproft, and J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley (1976).2. C. E. R. Alves, E. N. C�aeres, and S. W. Song, \An all-substrings ommon subsequene algorithm," Eletr.Notes Disr. Math., 19, 133{139 (2005).3. J. L. Bentley, \Multidimensional divide-and-onquer," Comm. ACM, 23, No. 4, 214{229 (1980).4. P. C�egielski, I. Guessarian, Y. Lifshits, and Y. Matiyasevih, \Window subsequene problems for ompressedtexts," in: Proeedings of CSR, Let. Notes Comp. Si., 3967 (2006), pp. 127{136.5. P. C�egielski, I. Guessarian, and Y. Matiyasevih, \Multiple serial episodes mathing," Inform. Proess. Lett.,98, No. 6, 211{218 (2006).6. M. Crohemore, G. M. Landau, and M. Ziv-Ukelson, \A subquadrati sequene alignment algorithm forunrestrited sore matries," SIAM J. Comp., 32, No. 6, 1654{1673 (2003).

768

7. M. Crohemore and W. Rytter, Text Algorithms, Oxford University Press (1994).8. G. Das, R. Fleisher, L. Gasienie, D. Gunopulos, and J. K�arkk�ainen, \Episode mathing," in: Proeedingsof CPM, Let. Notes Comp. Si., 1264 (1997), pp. 12{27.9. D. Gus�eld, Algorithms on Strings, Trees, and Sequenes: Computer Siene and Computational Biology,Cambridge University Press (1997).10. J. K�arkk�ainen, G. Navarro, and E. Ukkonen, \Approximate string mathing on Ziv{Lempel ompressedtext," J. Disr. Alg., 1, 313{338 (2003).11. Y. Lifshits and M. Lohrey, \Querying and embedding ompressed texts," in: Proeedings of MFCS, Let.Notes Comp. Si., 4162 (2006), pp. 681{692.12. W. J. Masek and M. S. Paterson, \A faster algorithm omputing string edit distanes," J. Comp. SystemSi., 20, 18{31 (1980).13. G. Myers, \Approximately mathing ontext-free languages," Inform. Proess. Lett., 54, 85{92 (1995).14. G. Navarro, \A guided tour to approximate string mathing," ACM Comp. Surv., 33, No. 1, 31{88 (2001).15. F. P. Preparata and M. I. Shamos, Computational Geometry: An Introdution, Springer (1985).16. W. Rytter, \Appliation of Lempel{Ziv fatorization to the approximation of grammar-based ompression,"Theor. Comp. Si., 302, No. 1{3, 211{222 (2003).17. A. Tiskin, \Semi-loal longest ommon subsequenes in subquadrati time," J. Disr. Alg., 6, No. 4, 570{581(2008).18. A. Tiskin, \Semi-loal string omparison: Algorithmi tehniques and appliations," Math. Comput. Si., 1,No. 4, 571{603 (2008).19. B. W. Watson and G. Zwaan, \A taxonomy of sublinear multiple keyword pattern mathing algorithms,"Si. Comput. Programm., 27, No. 2, 85{118 (1996).20. T. A. Welh, \A tehnique for high-performane data ompression," Computer, 17, No. 6, 8{19 (1984).21. G. Ziv and A. Lempel, \A universal algorithm for sequential data ompression," IEEE Transat. Inform.Theory, 23, 337{343 (1977).22. G. Ziv and A. Lempel, \Compression of individual sequenes via variable-rate oding," IEEE Transat.Inform. Theory, 24, 530{536 (1978).

769

