
Journal of Mathematical Sciences, Vol. 153, No. 5, 2008

THE THIRD BOUNDARY-VALUE PROBLEM
FOR PARABOLIC DIFFERENTIAL-DIFFERENCE EQUATIONS

A. M. Selitskii UDC 517.955.4

CONTENTS

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
2. Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
3. Weak Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
4. Strong Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
5. Smoothness of Strong Solutions in Cylindrical Subdomains . . . . . . . . . . . . . . . . . 597
6. Smoothness of Strong Solutions at Boundaries between Neighboring Cylindrical Subdomains 604

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

1. Introduction

In [11, 16, 17], the first boundary-value problem for parabolic differential-difference equations with
translations with respect to spatial variables was considered. In [12], it is found that problems of
the above kind are related to nonlocal problems. The second boundary-value problem for parabolic
differential-difference equations was originally considered in [10]. Regions of dimension n > 1 are
considered in those papers. In [9], the first boundary-value problem was studied for n = 1. It is
proved in the above papers that, unlike parabolic equations, the smoothness of solutions may be
broken inside the region even in the case where the initial function is infinitely differentiable.

In [6, 17], the strong solvability is investigated. It turns out that the arising spaces of the initial
data are related to the well-known Kato problem on the square root of the operator constructed with
respect to a sectorial form (see [3, Ch. VI, Sec. 2, Remark 2.29]). In [9, 11], comprehensive classes of
functional-differential operators satisfying the Kato hypothesis are provided.

In this paper, we study the solvability and the smoothness of strong solutions of the third boundary-
value problem for parabolic differential-difference equations with translations with respect to spatial
variables for n ≥ 2. The methods applied are based on the theory of elliptic functional-differential
equations (see [13, 18]).

Note that boundary-value problems for parabolic functional-differential equations arise in the theory
of nonlinear optical two-dimensional feedback systems (see, e.g., [8, 14, 15, 22]).

Parabolic functional-differential equations with time delay have been studied by many authors;
in [20, 21], the most general case, including variable delays in the higher derivatives is considered.

2. Problem Setting

1. Let Q be a bounded domain in R
n (n ≥ 2). Let ∂Q =

N0⋃

i=1

M i be its piecewise-smooth boundary,

where Mi are (n − 1)-dimensional C∞-manifolds open and connected with respect to the topology
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of ∂Q. Suppose that Q satisfies the cone condition in a neighborhood of any point x ∈ K = ∂Q\⋃
i
Mi;

in particular, it is diffeomorphic to a plane angle for n = 2.
Introduce bounded difference operators Rij , Ri : L2(Rn) → L2(Rn) as follows:

(Riju)(x) =
∑

h∈M

aijhu(x+ h) (i, j = 1, . . . , n),

(Riu)(x) =
∑

h∈M

aihu(x+ h) (i = 0, 1, . . . , n).

Here aijh and aih are complex numbers, while the set M consists of a finite number of vectors with
integer-valued coordinates.

Introduce linear operators IQ, PQ, RijQ, and RiQ. The operator IQ : L2(Q) → L2(Rn) extends func-
tions outside Q by the identical zero, the operator PQ : L2(Rn) → L2(Q) is the restriction of functions
to Q, while the operators RijQ, RiQ : L2(Q) → L2(Q) are defined as follows: RijQ = PQRijIQ, RiQ =
PQRiIQ.

Consider the differential-difference equation

ut(x, t) −
n∑

i,j=1

(
RijQuxj (x, t)

)
xi

+
n∑

i=1

RiQuxi(x, t) +R0Qu(x, t) = f(x, t) ((x, t) ∈ QT ) (2.1)

with the boundary condition
n∑

i,j=1

RijQuxj cos(ν, xi) + σ(x)u = 0 ((x, t) ∈ ΓT ) (2.2)

and the initial condition
u|t=0 = ϕ(x) (x ∈ Q) , (2.3)

where QT = Q× (0, T ), 0 < T <∞, ΓT = (∂Q \K)× (0, T ), ν is the unit vector of the outer normal
to ΓT , f ∈ L2(QT ), ϕ ∈ L2(Q), σ ∈ C(∂Q), and σ ≥ 0 in ∂Q.

Let W k
2 (Q) be the Sobolev space of complex-valued functions from L2(Q) such that all their gener-

alized derivatives up to the order k belong to L2(Q); the norm in W k
2 (Q) is introduced as follows:

‖v‖W k
2 (Q) =

⎧
⎪⎨

⎪⎩

∑

|α|≤k

∫

Q

|Dαv(x)|2 dx

⎫
⎪⎬

⎪⎭

1/2

.

Introduce in L2(Q) a sesquilinear form aR[v, w] with the domain W 1
2 (Q) as follows:

aR[v, w] =
n∑

i,j=1

(
RijQvxj , wxi

)
L2(Q)

+
n∑

i=1

(RiQvxi , w)L2(Q) + (R0Qv, w)L2(Q) + (v, w)L2(∂Q). (2.4)

The difference operators RijQ, RiQ, R0Q : L2(Q) → L2(Q) are bounded. Therefore, there exists a
positive c0 such that

|aR[v, w]| ≤ c0‖v‖W 1
2 (Q)‖w‖W 1

2 (Q) (v, w ∈W 1
2 (Q)). (2.5)

The sesquilinear form aR[v, w] is continuous in W 1
2 (Q) with respect to w. Hence, there exists a

linear bounded operator AR : W 1
2 (Q) → [W 1

2 (Q)]′ such that

〈ARv, w〉 = aR[v, w] (v, w ∈W 1
2 (Q)), (2.6)

where [W 1
2 (Q)]′ is the space dual to W 1

2 (Q).

Definition 2.1. The operator AR is called strongly elliptic if there exist c1 > 0 and c2 ≥ 0 such that

Re 〈ARv, v〉 ≥ c1‖v‖2
W 1

2 (Q) − c2‖v‖2
L2(Q) (v ∈W 1

2 (Q)). (2.7)
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2. To formulate necessary and sufficient conditions of the strong ellipticity of the operator AR in
algebraic terms, we have to introduce the following notation. The additive group generated by the set
M is denoted by G. Open connected components of the set Q\ ⋃

h∈G

(∂Q+ h) are denoted by Qr.

Definition 2.2. Any set Qr is called a subdomain. The set of all subdomains Qr is called a partition
of the domain Q and is denoted by R.

The partition R is decomposed in nonintersecting classes in the following natural way. Subdomains
Qr1 , Qr2 ∈ R belong to the same class if there exists a vector h ∈ G such that Qr2 = Qr1 + h. Denote
the subdomains by Qsl, where s is the class number (s = 1, 2, . . .), while l is the number of the
subdomain within the sth class. By virtue of the boundedness of Q, each class consists of a finite
number N = N(s) of subdomains Qsl and we have N(s) ≤ (diam Q+1)n. In general, the set of classes
is countable. Let hsl denote a vector h ∈ G such that Qs1 + h = Qsl. Obviously, hs1 = 0.

If v ∈ W k
2 (Q), then the function RijQv can be outside W k

2 (Q). However, the following assertion is
valid (cf. [13, Sec. 8, Lemma 8.15]).

Lemma 2.1. Let v ∈ W k
2 (Q′

sl), where Q′
sl ⊂ Qsl and Q′

sl = Q′
s1 + hsl. Then RijQv ∈ W k

2 (Q′
sl) and

(RijQv)xp(x) = (RijQvxp)(x) (x ∈ Q′
sl, p = 1, . . . , n).

Introduce the matrices Rijs and Ris of order N(s) ×N(s) with elements

rijs
km =

{
aijh, h = hsm − hsk ∈M,

0, hsm − hsk /∈M,
(2.8)

ris
km =

{
aih, h = hsm − hsk ∈M,

0, hsm − hsk /∈M.
(2.9)

Let Rs denote the block matrices ‖Rijs‖n
i,j=1 of order nN(s) × nN(s) (s = 1, 2, . . .). Since Q

is a bounded domain, it follows from (2.8) that the number of different matrices Rsk
is finite (k =

1, 2, . . . , N1).

Lemma 2.2. Let the matrices Rsk
+ R∗

sk
be positive definite for all k = 1, 2, . . . , N1, where R∗

sk
are

Hermitian-adjoint matrices. Then (2.7) holds for any v from W 1
2 (Q).

Proof. By virtue of [18, Lemma 1], there exists a positive k1 such that

Re
n∑

i,j=1

(
RijQvxj , vxi

)
L2(Q)

≥ k1‖v‖2
W 1

2 (Q) − k1‖v‖2
L2(Q) (v ∈W 1

2 (Q)). (2.10)

On the other hand, since the operators RiQ are bounded (i = 0, 1, . . . , n), we have
∣∣∣∣∣

n∑

i=1

(RiQvxi , v)L2(Q) + (R0Qv, v)L2(Q)

∣∣∣∣∣ ≤ k2‖v‖W 1
2 (Q)‖v‖L2(Q)

≤ k2

(
ε2‖v‖2

W 1
2 (Q) + ε−2‖v‖2

L2(Q)

)
(2.11)

for all ε > 0 and v ∈W 1
2 (Q), where k2 is positive and does not depend on v and ε.

Taking into account the nonnegativity of the latter term of (σv, v)L2(Q) and choosing a positive ε
such that k2ε

2 < k1/2, we obtain (2.7) with c1 = k1/2 and c2 = k1 + k2ε
−2.

Lemma 2.3. Let (2.7) hold for any v from W 1
2 (Q). Then the matrices

n∑

i,j=1

(
Rijs +R∗

ijs

)
ξiξj

are positive definite for all s = 1, 2, . . . and 0 �= ξ ∈ R
n.
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This assertion follows from [13, Sec. 9, Theorem 9.1].
In the sequel, we assume that the operator AR corresponding to (2.1) is strongly elliptic. In this

case, it is natural to say that problem (2.1)–(2.3) is the third boundary-value problem for a parabolic
differential-difference equation.

3. Weak Solutions

1. Consider the space V = L2

(
0, T ; W 1

2 (Q)
)
. Its dual space is V ′ = L2

(
0, T ;

[
W 1

2 (Q)
]′)

.

Define a bounded operator LR : V → V ′ as follows:

LRv(·, t) = ARv(·, t) for almost all t ∈ (0, T ).

Introduce the Hilbert space

W =
{
v ∈ V : vt ∈ V ′}

with the norm

‖v‖W =

⎧
⎨

⎩

T∫

0

‖v‖2
W 1

2 (Q) dt+

T∫

0

‖vt‖2

[W 1
2 (Q)]′ dt

⎫
⎬

⎭

1/2

.

Here the derivatives are understood in the sense of distributions over QT .
Let f ∈ V ′ and ϕ ∈ L2(Q).

Definition 3.1. A function u ∈ W is called a weak solution of problem (2.1)–(2.3) if it satisfies the
equation

du

dt
+ LRu = f for almost all t ∈ (0, T ) (3.1)

and the initial condition

u|t=0 = ϕ. (3.2)

Note that, by virtue of [5, Ch. 1, Theorem 3.1 and Proposition 2.1], we have W ⊂ C ([0, T ], L2(Q)) ,
i.e., the trace u|t=0 ∈ L2(Q) is well defined.

In the sequel, we assume that c2 = 0 in (2.7). Otherwise, we set u = z ec2t. Then problem (3.1), (3.2)

is equivalent to the problem
dz

dt
+ (LR + c2I)z = e−c2tf, z|t=0 = ϕ.

Theorem 3.1. Let the operator AR be strongly elliptic. Then problem (2.1)–(2.3) has a unique weak
solution u ∈ W for all f ∈ V ′ and ϕ ∈ L2(Q).

The proof follows from inequalities (2.5) and (2.7) and [4, Ch. 3, Theorem 1.2].

2. Suppose that f ∈ L2(QT ) and ϕ ∈ L2(Q). Then we can formulate the definition of the weak
solution of problem (2.1)–(2.3) by means of an integral identity.

Let W k,0
2 (QT ) be the space of functions u ∈ L2(QT ) such that all their generalized derivatives with

respect to x up to the kth order belong to L2(QT ); the norm in W k,0
2 (QT ) is defined as follows:

‖v‖
W k,0

2 (QT )
=

⎧
⎪⎨

⎪⎩

∑

|α|≤k

∫

QT

|Dα
xv(x, t)|2 dx dt

⎫
⎪⎬

⎪⎭

1/2

.

It is easy to see that V = W 1,0
2 (QT ) due to the Fubini theorem.
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Definition 3.2. A function u ∈W 1,0
2 (QT ) is called a weak solution of problem (2.1)–(2.3) if

∫

QT

⎧
⎨

⎩−uv̄t +
n∑

i,j=1

(RijQuxj )v̄xi +
n∑

i=1

(RiQuxi)v̄ + (R0Qu)v̄

⎫
⎬

⎭ dx dt+
∫

ΓT

σuv̄ dSdt

=
∫

QT

fv̄ dx dt+
∫

Q

ϕv̄|t=0 dx (3.3)

for all v ∈W 1
2 (QT ) such that v|t=T = 0.

Identity (3.3) can be obtained from Eq. (2.1) by means of formal integration by parts.

Theorem 3.2. If the operator AR is strongly elliptic, f ∈ L2(QT ), and ϕ ∈ L2(Q), then Defini-
tions 3.1 and 3.2 are equivalent to each other.

Proof. Taking into account [5, Ch. 3, Theorems 4.1 and 4.2], we see that it suffices to prove that the

set V1 =
{
v ∈W 1

2 (QT ) : v|t=T = 0
}

is dense in the space V2 =
{
v ∈ V :

dv

dt
∈ V ′, v|t=T = 0

}
.

Let v ∈ V2. Consider the functions ξk ∈ C∞[0, T ] such that 0 ≤ ξk(t) ≤ 1, |ξ′k(t)| ≤ C k, and

ξk(t) =

⎧
⎨

⎩
1, 0 ≤ t ≤ T − 2

k
,

0, T − 1
k ≤ t ≤ T.

It is easy to check that ξk v → v in V2 as k → ∞. Smoothing out the functions ξk v with respect to
t, we obtain a sequence of W 1

2 (Q)-valued functions vk(t) infinitely differentiable with respect to t and
such that their supports are subsets of [0, T ). By construction, vk → v in V2 and vk ∈ V1.

4. Strong Solutions

1. To prove the existence of a strong solution, i.e., a solution differentiable with respect to t, we
use the semigroup theory.

Definition 4.1. A strongly continuous operator semigroup {Tt} (t ≥ 0) in a Hilbert space H is called
contractive if ‖Tt‖ ≤ 1 (t ≥ 0).

Introduce the notation Δω = {z ∈ C : | arg z| < ω}, where 0 < ω < π.

Definition 4.2. A family of linear bounded operators {Tz} (z ∈ Δω) in H is called an analytic
semigroup in Δω if

(1) the function z → Tz is analytic in Δω;
(2) we have T0 = I and lim

z→0, z∈Δω

Tzx = x (x ∈ H);

(3) the relation Tz1+z2 = Tz1 Tz2 (z1, z2 ∈ Δω) is valid.
A semigroup {Tt} (t ≥ 0) is called analytic if there exists an angle Δω such that there exists an
analytic continuation Tz of the operator-function Tt to Δω.

Definition 4.3. A sesquilinear form a[v, w] is called a sectorial form with vertex γ if its range is a
subset of an angle of the kind

{ζ ∈ C : | arg(ζ − γ)| ≤ θ} , 0 ≤ θ <
π

2
, γ ∈ R.

Lemma 4.1. Let the operator AR be strongly elliptic. Then the form aR[v, w] is sectorial with ver-
tex 0.
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Proof. By assumption, we have c2 = 0 in (2.7). It follows from (2.5) and (2.7) that

| Im aR[v, v]| ≤ |aR[v, v]| ≤ c0‖v‖2
W 1

2 (Q) ≤ kRe aR[v, v],

where k = c0/c1.

This means that there exists 0 ≤ θ <
π

2
such that the inequality

| Im aR[v, v]| ≤ (tan θ) Re a[v, v]

holds for any v ∈W 1
2 (Q). This yields the assertion of the lemma.

Definition 4.4. We say that a linear operator A is m-sectorial with top γ if there exists α ∈ R such
that the operator B = A+ αI satisfies the following conditions:

there exists a bounded operator (B + λI)−1 for Reλ > 0 and

‖(B + λI)−1‖ ≤ (Reλ)−1, Reλ > 0.

There exists θ ∈ [0, π
2 ) such that the numerical range of the operator A is a subset of the angle

| arg(ζ − γ)| ≤ θ.

The space W 1
2 (Q) is complete. Hence, the form aR[v, w] is closed. It follows from Lemma 4.1 and

the first representation theorem (see [3, Ch. VI, Sec. 2, Theorem 2.1]) that there exists an m-sectorial
operator AR : D(AR) → L2(Q), D(AR) ⊂ L2(Q), with vertex 0 and such that

aR[v, w] = (ARv, w)L2(Q) (v ∈ D(AR), w ∈W 1
2 (Q)); (4.1)

moreover, D(AR) is dense in W 1
2 (Q). Note that (4.1) can be written as

ARv = ARv (v ∈ D(AR)) (4.2)

(by virtue of (2.6)).
Introduce a scalar product in D(AR) as follows:

(v, w)D(AR) = (ARv, ARw)L2(Q) + (v, w)L2(Q).

Since the operator AR is closed, it follows that D(AR) is a Hilbert space.

Theorem 4.1. The operator (−AR) generates an analytic contractive semigroup.

Proof. The operator AR is m-sectorial and its vertex is 0. It follows from [3, Ch. IX, Sec. 1, Theo-
rem 1.24] that the operator (−AR) generates an analytic contractive semigroup.

The next auxiliary result, which follows from [5, Ch. 2, Theorem 9.1], is used to investigate the
smoothness of strong solutions of problem (2.1)–(2.3) (Definition 4.5).

Lemma 4.2. The equation
ARw = f0 (4.3)

has a unique solution w ∈ D(AR) for any function f0 ∈ L2(Q) and

‖w‖W 1
2 (Q) ≤ C‖f0‖L2(Q), (4.4)

where a positive C does not depend on f0.

2. Now we investigate the existence and uniqueness of the strong solution of problem (2.1)–(2.3).
Introduce Hilbert space

W(AR) =
{
w ∈ L2(0, T ; D(AR)) : wt ∈ L2(QT )

}

with the scalar product

(v, w)W(AR) =

T∫

0

(ARv, ARw)L2(Q) dt+

T∫

0

(v, w)L2(Q) dt+

T∫

0

(vt, wt)L2(Q) dt,
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where the derivatives are treated in the sense of distributions over QT .

Definition 4.5. A weak solution u(x, t) of problem (2.1)–(2.3) is called a strong solution if u ∈
W(AR).

Let X and Y be Hilbert spaces such that X is continuous and densely embedded into Y. For any
ψ ∈ Y and any positive t, we define the functional

K (t, ψ; X, Y ) = inf
(‖ψ1‖2

X + t2‖ψ2‖2
Y

)1/2
.

Here ψ1 ∈ X and ψ2 ∈ Y are such that ψ = ψ1 + ψ2.
Introduce the interpolation space

[X, Y ]1/2 =

⎧
⎨

⎩ψ ∈ Y :

∞∫

0

t−2K2 (t, ψ; X, Y ) dt <∞
⎫
⎬

⎭

with the norm

‖ψ‖[X, Y ]1/2
=

⎧
⎨

⎩‖ψ‖
2
Y +

∞∫

0

t−2K2 (t, ψ; X, Y ) dt

⎫
⎬

⎭

1/2

(see, e.g., [19] for detailed treatment of interpolation theory).

Theorem 4.2. For any f ∈ L2(QT ) and ϕ ∈ [D(AR), L2(Q)]1/2, problem (2.1)–(2.3) has a unique
solution. It is defined by the relation

u(x, t) = Ttϕ(x) +

t∫

0

Tt−sf(x, s) ds, (4.5)

where {Tt} (t ≥ 0) is an analytic semigroup generated by (−AR).

Proof. Let us treat problem (2.1)–(2.3) as an abstract Cauchy problem for a parabolic equation in the
space L2(Q). By virtue of [1, Ch. 1, Theorem 3.7], problem (2.1)–(2.3) has a unique strong solution if
and only if the following condition is satisfied:

T∫

0

‖ARTtϕ‖2
L2(Q)dt <∞. (4.6)

That solution is presented by (4.5). Due to Theorem 4.1, the semigroup {Tt} generated by the operator
(−AR) is analytic and contractive. Then [19, Ch. 1, Theorem 1.14.5] implies that inequality (4.6)
holds if and only if ϕ ∈ [D(AR), L2(Q)]1/2 .

5. Smoothness of Strong Solutions in Cylindrical Subdomains

1. Consider the sets

K =
⋃

h1, h2∈G

{
Q ∩ (∂Q+ h1) ∩ [(∂Q+ h2)\(∂Q+ h1)]

}

and
Kε = {x ∈ R

n : ρ(x, K) < ε} ,
where ε > 0. For simplicity, we assume that K ⊂ K.

We need the following auxiliary results (see [13, Sec. 7, Lemmas 7.3–7.5]).

Lemma 5.1.

(1) Let x0 ∈ ∂Qsl ∩ ∂Q. Suppose that there exists a sequence {xk} such that xk → x0 as k → ∞
and xk ∈ Qsklk

, (sk, lk) �= (s, l). Then x0 ∈ K.
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(2) Let x0 ∈ Q∩ ∂Qpl ∩ ∂Qqm, (p, l) �= (q, m). Suppose that there exists a sequence {xk} such that
xk → x0 as k → ∞ and xk ∈ Qsklk

, (sk, lk) �= (p, l), (q, m). Then x0 ∈ K.
Let Γp denote connected (with respect to the topology of ∂Q) components of the set ∂Q \ K.

Obviously, Γp ∈ C∞.

Lemma 5.2. Let there exist h ∈ G such that (Γp + h) ∩ Q �= ∅. Then either Γp + h ⊂ Q or there
exists Γr ⊂ ∂Q \ K such that Γp + h = Γr.

By virtue of Lemma 5.1, we can decompose the set {Γp +h : Γp +h ⊂ Q, p = 1, 2, . . . ; h ∈ G} into
classes as follows: sets Γp1 + h1 and Γp2 + h2 belong to the same class if

(1) there exists h ∈ G such that Γp1 + h1 = Γp2 + h2 + h;
(2) if Γp1 + h1, Γp2 + h2 ⊂ ∂Q, then the directions of the inner normals to ∂Q at the points

x ∈ Γp1 + h1 and x− h ∈ Γp2 + h2 coincide.
The set Γp ⊂ ∂Q belongs to at most one class, while the set Γp + h ⊂ Q can belong to no more than
two classes. Denote the set Γp + h by Γrj , where r is the class number, while j is the number of
the element within the given class (1 ≤ j ≤ J = J(r)). Without loss of generality, we assume that
Γr1, . . . , ΓrJ0 ⊂ Q, Γr,J0+1, . . . , Γr,J ⊂ ∂Q (0 ≤ J0 = J0(r) < J(r)).

To prove the smoothness theorem for strong solutions of problem (2.1)–(2.3) in cylindrical subdo-
mains, we have to investigate the smoothness of generalized solutions of the second boundary-value
problem for strongly elliptic differential-difference equations.

Lemma 5.3. Suppose that μn−1(K ∩ ∂Q) = 0, f0 ∈ L2(Q), and w satisfies (4.3). Let ε > 0. Then
w ∈W 2

2

(
Qsl\Kε

)
(s = 1, 2, . . . , l = 1, . . . , N(s)) and

‖w‖W 2
2 (Qsl\Kε) ≤ c‖f0‖L2(Q), (5.1)

where c = c(ε) > 0 does not depend on f0.

Proof. The first part of the lemma follows from [2, Sec. 14, Theorem 2]. However, we will need
inequality (5.1). This is why we present the complete proof.

I. It follows from the proof of [13, Sec. 11, Theorem 11.1] that if a subdomain Ωsl is such that
Ωsl ⊂ Qsl, then w ∈W 2

2 (Ωsl) and

‖w‖W 2
2 (Ωsl)

≤ k1(‖w‖W 1
2 (Q) + ‖f0‖L2(Q)),

where k1 = k1(Ωsl) > 0 does not depend on f0 and w. It follows from the latter inequality and
from (4.4) that

‖w‖W 2
2 (Ωsl)

≤ k2‖f0‖L2(Q), (5.2)

where k2 = k2(Ωsl) > 0 does not depend on f0 and w.
Therefore, it suffices to prove that for any y ∈ ∂Qpi \ K, there exists a ball Bδ(y) such that

w ∈W 2
2 (Qpi ∩Bδ(y)) and

‖w‖W 2
2 (Qpi∩Bδ(y)) ≤ k3‖f0‖L2(Q), (5.3)

where k3 = k3(Qpi, δ) > 0 does not depend on f0 and w.
II. Fix a class of subdomains s = p. Let hpl be a vector satisfying the condition Qpl = Qp1 + hpl

(l = 1, . . . , N(p)), hp1 = 0. Introduce points y1, . . . , yN(p) such that yl = yi − hpi + hpl, where yi = y.
It follows from the definition of the sets Γsl that there exists a unique r such that J(r) = N(p)
and we have (after the corresponding renumbering of the sets Qpl and Γrl) the following inclusions:
yl ∈ Γrl ⊂ ∂Qpl \ K, Γrl ⊂ Q for 1 ≤ l ≤ J0 = J0(r), and Γrl ⊂ ∂Q for J0 + 1 ≤ l ≤ J(r).

There exists a unique subdomain Qqm �= Qp1 such that Γr1 ⊂ ∂Qqm. Change the numeration of
subdomains of the qth class to obtain the inclusion Γrl ⊂ ∂Qql (l = 1, . . . , J0).
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Introduce the points z1, . . . , zN(q) as follows: zl = y1 + hql. By construction, zl ∈ ∂Qql \ K and

zl = yl ∈ Q for 1 ≤ l ≤ J0, z
l ∈ ∂Q for J0 + 1 ≤ l ≤ N(q), and

(
⋃

l>J0

{yl}
)

∩
(
⋃

l>J0

{zl}
)

= ∅.

Consider the balls B4δ(xsl), where xpl = yl, xql = zl (l = 1, . . . , N(s); s = p, q.) Using Lemma 5.1
and the fact that K ⊂ K, we can choose δ > 0 so small that 4δ < min

s, l
min{ρ(xsl, K), 1/2}, the sets

∂Qsl ∩ B4δ(xsl) are connected and belong to the class C∞, B4δ(xsl) ⊂ Γrl ∪Qpl ∪Qql for 1 ≤ l ≤ J0,

and B4δ(xsl) ∩Q = B4δ(xsl) ∩Qsl for J0 + 1 ≤ l ≤ N(s) (s = p, q).
By definition, the function w satisfies the integral identity

n∑

i,j=1

∫

Q

RijQwxj vxi dx+
n∑

i=1

∫

Q

RiQwxi v dx+
∫

Q

R0Qw v dx+
∫

∂Q

σw v̄ dS =
∫

Q

f0 v dx (5.4)

for all v ∈W 1
2 (Q).

Introduce the function

ξ(x) =
N(p)∑

l=1

η(x+ hpl) +
N(q)∑

l=J0+1

η(x+ hql),

where η ∈ Ċ∞(Rn), 0 ≤ η(x) ≤ 1, η(x) = 1 for x ∈ Bδ(y1), and η(x) = 0 for x /∈ B2δ(y1).
Let v = ξv0, v0 ∈W 1

2 (Q), in (5.4). Then, using the Leibnitz formula, we get

∑

s,l

∫

Ωsl

n∑

i,j=1

(RijQwxj ) ξv0xi
dx+

∑

s,l

∫

Ωsl

n∑

i=1

(RiQwxi) ξv0 dx+
∑

s,l

∫

Ωsl

(R0Qw) ξv0 dx

+
∫

∂Q

σw ξv̄0 dS =
∑

s,l

∫

Ωs,l

f0 ξv0 dx−
∑

s,l

∫

Ωs,l

n∑

i,j=1

(RijQwxj ) ξxiv0 dx,

where Ωsl = Qsl ∩B4δ(xsl). Hereinafter we can sum over l = 1, . . . , N(s), s = p, q.
Applying the Leibnitz formula to the first and second terms again, we get

aR[ξw, v0] =
∑

s,l

∫

Ωs,l

f0 ξv0 dx−
∑

s,l

∫

Ωs,l

n∑

i,j=1

(RijQwxj ) ξxiv0 dx

+
∑

s,l

∫

Ωs,l

n∑

i,j=1

(RijQw) ξxjv0xi
dx+

∑

s,l

∫

Ωs,l

n∑

i=1

(RiQw) ξxiv0 dx. (5.5)

Let L2

(⋃
l

Qsl

)
be the subspace of functions from L2(Q) vanishing outside

⋃
l

Qsl (l = 1, . . . , N(s)).

The operator of the orthogonal projection on L2

(⋃
l

Qsl

)
is denoted by Ps. Introduce an isomorphism

Us : L2

(⋃
l

Qsl

)
→ L

N(s)
2 (Qs1) =

N(s)∏
l=1

L2(Qs1) as follows:

(
Usu
)
l
(x) = u(x+ hsl) (x ∈ Qs1). (5.6)
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It follows from [13, Sec. 8, Lemma 8.6] that the operators RijQs = UsRijQU
−1
s and RiQs = UsRiQU

−1
s

are the operators of multiplication by the matrices Rij s and Ri s respectively. Then (5.5) implies that

aR[ξw, v0] =
∑

s

∫ ⎧⎨

⎩
(
η Fs, V

0
s

)−
n∑

i,j=1

(
ηxiRijsWsxj

, V 0
s

)

+
n∑

i,j=1

(
ηxjRijsWs, V

0
s xi

)
+

n∑

i=1

(
ηxiRisWs, V

0
s

)
⎫
⎬

⎭ dx, (5.7)

where Ws =
(
UsPsw

)
(x), V 0

s =
(
UsPsv0

)
(x), and Fs =

(
UsPsf0

)
(x) for x ∈ Ωs = Ωs1. Hereinafter we

integrate over the set Ωs.
Without loss of generality, we assume that y1 = 0, while the equation of the surface Γp1 ∩ B4δ(y1)

has the form xn = 0. Let W 1
2, δ be the space of vector-functions V =

(
Vp, Vq

)
, Vs ∈

N(s)∏
l=1

W 1
2 (Ωs), such

that esssuppVs ⊂ Ωs ∩B2δ(y1) and SV ∈ W 1
2 (Q), where (SV )(x) = Vsl(x − hsl) for x ∈ Ωsl and

(SV )(x) = 0 for x /∈ ⋃
s,l

Ωsl.

Define the operators δr±t as follows:

δr
±tW =

W (x1, . . . , xr ± t, . . . , xn) −W (x1, . . . , xr, . . . , xn)
±t ,

D(δr
±t) =

{
W ∈ L

N(s)
2 (Ωs) : esssuppW ⊂ Ωs ∩B3δ(y1)

}
.

Assign v0 = SV 0 and V 0 = δr−tV
1, where V 1 ∈ W 1

2, 3δ/2, 1 ≤ r ≤ n − 1, and 0 < t < δ. By
construction, we have v0 ∈ W 1

2 (Q). Since the operators −δr−t and δr
t are formally adjoint to each

other, it follows that (5.7) takes the form

aR[δr
t ξw, v0] =

∑

s

∫ ⎧⎨

⎩−(η Fs, δ
r
−tV

1
s

)
+

n∑

i,j=1

(
ηxiRijsWsxj

, δr
−tV

1
s

)

+
n∑

i,j=1

(
Rijsδ

r
t (ηxjWs), V 1

s xi

)
+

n∑

i=1

(
Risδ

r
t (ηxiWs), V 1

s

)
⎫
⎬

⎭ dx. (5.8)

Note that no translations orthogonal to the plane xn = 0 are used.
Assign V 1

s = δr
t1(ηWs) (0 < t1 < δ); obviously, V 1 ∈ W 1

2, 3δ/2. Denote the right-hand side of (5.8)
by I. Due to the Cauchy–Bunyakovskii inequality and [7, Ch. 3, Sec. 3, Theorem 4], we get

|I| ≤ k4

(∑

s

‖V 1
s ‖2

1,N

)1/2∑

s

(‖Ws‖1,N + ‖Fs‖0,N

)
, (5.9)

where ‖V 1
s ‖k,N =

{
N(s)∑
l=1

‖(V 1
s )

l
‖2

W k
2 (Ωs)

}1/2

, k = 0, 1.

Now we assign t1 = t, i.e., V 1
s = δr

t (ηWs). Due to the strong ellipticity condition, we have

Re aR[v1, v1] ≥ c1‖v1‖2
W 1

2 (Q) = c1
∑

s

‖V 1
s ‖2

1,N , (5.10)

where v1 = SV 1.
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It follows from (5.8)–(5.10) and Lemma 4.2 that
(∑

s

‖V 1
s ‖2

1,N

)1/2

≤ k5

∑

s

(‖Ws‖1,N + ‖Fs‖0,N

) ≤ k6

∑

s

‖Fs‖0,N . (5.11)

Now, by virtue of [7, Ch. 3, Sec. 3, Theorem 4], we obtain that (ηWs)xixr ∈ L
N(s)
2 (Ωs) for all i =

1, . . . , n, r = 1, . . . , n − 1. Hence, Wpxixr
∈ L

N(p)
2 (Qp1 ∩ Bδ(y1)) and the estimate ‖Wpxixr

‖0,N ≤
k7‖f0‖L2(Q) is valid.

III. To prove that Wpxnxn
∈ L

N(p)
2 (Qp1 ∩ Bδ(y1)), we assign V 0

q = 0 and take an arbitrary vector-

function V 0
p from

N(p)∏
l=1

C∞(Qp1 ∩Bδ(y1)). Then Wp is a generalized solution of the following system of

differential equations:

−
n∑

i,j=1

RijpWpxixj
+
∑

i

Ri,pWpxi
+R0pWp = Fp; (5.12)

here Fp ∈ L
N(p)
2 (Qp1 ∩ Bδ(y1)). By virtue of Lemma 2.3, the matrix Rnnp +R∗

nnp is positive definite.
Therefore, there exists an inverse matrix R−1

nnp. Hence, we have

Wpxnxn
= R−1

nnp

⎛

⎝−
∑

i+j<2n

RijpWpxixj
+
∑

i≤n

RipWpxi
+R0pWp − Fp

⎞

⎠ .

Thus, Wpxnxn
belongs to LN(p)

2 (Qp1 ∩Bδ(y1)) and the inequality ‖Wpxnxn
‖0,N ≤ k8‖f0‖L2(Q) holds.

Therefore, w belongs to W 2
2 (Qpi ∩Bδ(y)) and the inequality ‖w‖W 2

2 (Qpi∩Bδ(y)) ≤ k9‖f0‖L2(Q) holds.

2. Now we investigate the smoothness of strong solutions of parabolic differential-difference equa-
tions.

Let W 2k,k
2 (QT ) denote the space of functions v ∈ L2(QT ) such that all their generalized derivatives

up to the kth order with respect to t and all their generalized derivatives up to the 2kth order with
respect to x belong to L2(QT ). The norm in W 2k,k

2 (QT ) is defined as follows:

‖v‖
W 2k,k

2 (QT )
=

⎧
⎪⎨

⎪⎩

∑

2β+|α|≤2k

∫

QT

∣∣∣∣∣
∂|α|+βv(x, t)

∂xα1
1 . . . ∂xαn

n ∂tβ

∣∣∣∣∣

2

dx dt

⎫
⎪⎬

⎪⎭

1/2

.

Theorem 5.1. Let μn−1(K ∩ ∂Q) = 0, f ∈ L2(QT ), ϕ ∈ [D(AR), L2(Q)]1/2 , and u be a strong

solution of (2.1)–(2.3). Then u ∈ W 2, 1
2

((
Qsl\Kε

)× (0, T )
)

for any positive ε and any s = 1, 2, . . .,
l = 1, . . . , N(s).

Proof. It follows from the definition of the strong solution and from Eq. (2.1) that

ARu(·, t) = F (·, t),
where F (·, t) = f(·, t) − ut(·, t) ∈ L2(Q) for almost all t ∈ (0, T ).

It follows from Lemma 5.3 that u(·, t) ∈ W 2
2

(
Qsl\Kε

)
for almost all t ∈ (0, T ). Moreover, the

inequality
‖u(·, t)‖W 2

2 (Qsl\Kε) ≤ c‖F (·, t)‖L2(Q)

holds for almost all t ∈ (0, T ).
Squaring both sides of the latter inequality and integrating by parts from 0 to T, we get

‖u‖2
W 2, 0

2 ((Qsl\Kε)×(0, T )) ≤ 2c2
(
‖f‖2

L2(QT ) + ‖ut‖2
L2(QT )

)
.
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Thus, we obtain the assertion of the theorem.

Lemma 5.4. Let u be a strong solution of (2.1)–(2.3). Then u satisfies (2.1) a.e. in (Qsl\Kε)×(0, T ).

Proof. It follows from Lemma 2.1 and Theorem 5.1 that RijQuxj ∈ W 1
2

(
(Qsl \ Kε) × (0, T )

)
. Then,

integrating (3.3) by parts, we have

T∫

0

∫

Qsl

⎛

⎝ut −
n∑

i,j=1

(RijQuxj )xi +
n∑

i=1

RiQuxi +R0Qu

⎞

⎠ v̄ dx dt =

T∫

0

∫

Qsl

fv̄ dx dt

for all v ∈ C∞(Qsl × [0, T ]) such that supp v ⊂ (Qsl \ Kε) × [0, T ). This implies that u satisfies (2.1)
a.e. in (Qsl \ Kε) × (0, T ).

Corollary 5.1. Let the assumptions of Theorem 5.1 be satisfied. Let u be a strong solution of prob-
lem (2.1)–(2.3). Then u satisfies boundary condition

⎛

⎝
n∑

i,j=1

RijQuxj cos(ν, xi) + σ(x)u

⎞

⎠

∣∣∣∣∣∣
(∂Q\Kε)×(0, T )

= 0 (5.13)

for any ε > 0.

Proof. Let us prove that for any (x0, t0) ∈ (∂Q\Kε
) × (0, T ), there exists a positive δ such that u

satisfies boundary condition (5.13) in ΓT, δ = Γδ × (0, T ), where Γδ = Bδ(x0) ∩ ∂Q.
It follows from Lemma 5.3 that there exists a positive δ and indices s and l such that ω = Bδ(x0)∩

Q ⊂ Qsl\Kε and Γδ ∈ C∞. It follows from Theorem 5.1 and Lemma 2.1 that RijQuxj ∈W 1
2

(
ω×(0, T )

)
.

Assign
H1

ω(QT ) =
{
v ∈W 1

2 (QT ) : v(x, t) = 0 (x ∈ Q \ ω), v|t=T = 0
}
.

Then, integrating (3.3) by parts and taking into account that, by virtue of Lemma 5.4, the function
u satisfies (2.1) a.e. in ω × (0, T ), we obtain the relation

∫

ΓT, δ

⎛

⎝
n∑

i,j=1

RijQuxj cos(ν, xi) + σ(x)u

⎞

⎠ v̄ dx dt = 0

for all v ∈ H1
ω(QT ). This implies that u satisfies (5.13) in ΓT, δ.

3. The following example shows that the smoothness of solutions can be broken at boundaries of
neighboring cylindrical subdomains. As we see from Example 5.2, Theorem 5.1 is, in general, not valid
for ε = 0.

Example 5.1. Consider the problem

ut(x, t) −
∑

i=1,2

(RQuxi(x, t))xi = f(x, t) ((x, t) ∈ QT ), (5.14)

∑

i=1,2

RQuxi cos(ν, xi) + σu = 0 ((x, t) ∈ ΓT ), (5.15)

u|t=0 = ϕ(x) (x ∈ Q), (5.16)

where Q = (0, 2) × (0, 2), ΓT = (∂Q \ K) × (0, T ), the set K consists of the points (0, 0), (0, 2),

(2, 0), and (2, 2), and RQ = PQRIQ, where Rv(x) = v(x1, x2)+
1
2
v(x1 +1, x2)+

1
2
v(x1 − 1, x2). The

partition R of the set Q consists of the following (single) class of subdomains: Q11 = (0, 1)×(0, 2) and
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Q12 = (1, 2)×(0, 2). The set K consists of the following six points: (s−1, m) (s = 1, 2, 3; m = 0, 2).
The function σ is such that

σ|x1=0 = ξ(x2), σ|x1=2 = σ|x2=0 = σ|x1=2 = 0,

where ξ ∈ Ċ∞(R), 0 ≤ ξ(x2) ≤ 1, ξ(x2) = 1 for x2 ∈ (1/2, 3/2), and ξ(x2) = 0 for x2 �∈ (1/4, 7/4).
The matrix

R1 =

⎛

⎜⎜⎝

1 1/2 0 0
1/2 1 0 0
0 0 1 1/2
0 0 1/2 1

⎞

⎟⎟⎠

is positive definite. Thus, the operator AR corresponding to problem (5.14)–(5.16) is strongly elliptic.
Introduce a function v(x) as follows:

v(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(
4
3
x1 + 1

)
η(x1)ξ(x2) (x ∈ Q11),

−2
3
(x1 − 1)η(x1 − 1)ξ(x2) (x ∈ Q12),

where η ∈ Ċ∞(−1/3, 1/3) and η(x1) = 1 for x1 ∈ (−1/4, 1/4)).
It is easy to check that v ∈ W 1

2 (Q), v ∈ W 2
2 (Q1i) (i = 1, 2), − ∑

i=1,2
(RQvxi)xi

∈ L2(Q), and
( ∑

i=1,2
RQvxi cos(κ, xi) + σu

)∣∣∣∣
(∂Q\K)

= 0, where κ is the unit vector of the outer normal to ∂Q \ K.

Therefore, the function u(x, t) = tv(x) is a strong solution of problem (5.14)–(5.16) for f(x, t) =
v(x) − t

∑
i=1,2

(RQvxi(x))xi
∈ L2(QT ) and ϕ(x) = 0. By construction, we have

ux1

∣∣
x1=1−0

�= ux1

∣∣
x1=1+0

.

Thus, the smoothness of strong solutions may be broken at the boundary between the neighboring
subdomains Q11 × (0, T ) and Q12 × (0, T ).

Example 5.2. Consider the problem

ut(x, t) −
∑

i=1,2

(RQuxi(x, t))xi = f(x, t) ((x, t) ∈ QT ), (5.17)

∑

i=1,2

RQuxi cos(ν, xi) = 0 ((x, t) ∈ ΓT ), (5.18)

u|t=0 = ϕ(x) (x ∈ Q), (5.19)

where the domain Q ⊂ R
2 has the boundary ∂Q ∈ C∞ coinciding with the boundary of the square

(0, 4/3)× (0, 4/3) outside the disks B1/8

(
(i4/3, j4/3)

)
(i, j = 0, 1), RQ = PQRIQ, and the difference

operator acts as follows: Rv(x) = 2v(x1, x2) + v(x1 + 1, x2 + 1) + v(x1 − 1, x2 − 1).
Introduce the following notation:

Γ12 = {x ∈ ∂Q : x1 < 1/3, x2 < 1/3} , Γ11 = Γ12 + (1, 1),

Γ22 = {x ∈ ∂Q : 1 < x1, 1 < x2}, Γ21 = Γ22 − (1, 1).

The partition R consists of the following two classes of subdomains:
(1) the domains Q11 bounded by the curves Γ12 and Γ21, and the domain Q12 bounded by the

curves Γ11 and Γ22,
(2) the domain Q21 = Q \ (Q11 ∪Q12

)
.
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The set K is a subset of ∂Q; it consists of the following four points: g1 = (1/3, 0), g2 = (4/3, 1),
g3 = (0, 1/3), and g4 = (1, 4/3). It is easy to prove that the operator AR is strongly elliptic.

Introduce the function

v(x) =

⎧
⎪⎨

⎪⎩

10u1(x1 − 1/3, x2) + u2(x1 − 1/3, x2) (x ∈ Q11),
u1(x1 − 4/3, x2 − 1) + 10u2(x1 − 4/3, x2 − 1) (x ∈ Q12),
b(u1(x1 − 1/3, x2) + u2(x1 − 4/3, x2 − 1)) (x ∈ Q21),

where u1 and u2 are defined as follows: u1(r, ϕ) = ξ(r)rλ cosλϕ, u2(r, ϕ) = ξ(r)rλ cosλ(ϕ − 3π/2);
ξ ∈ Ċ∞(R), 0 ≤ ξ(r) ≤ 1, ξ(r) = 1, if r ≤ 1/8, ξ(r) = 0, if r ≥ 1/6; λπ = 2 arccos 2/7, b = 99/14;
(r, ϕ) are the polar coordinates.

Therefore, we have

RQv(x) =

⎧
⎪⎨

⎪⎩

21u1(x1 − 1/3, x2) + 12u2(x1 − 1/3, x2) (x ∈ Q11),
12u1(x1 − 4/3, x2 − 1) + 21u2(x1 − 4/3, x2 − 1) (x ∈ Q12),
2b(u1(x1 − 1/3, x2) + u2(x1 − 4/3, x2 − 1)) (x ∈ Q21).

It is easy to check that v ∈W 1
2 (Q) and −∑

i=1,2

(
RQvxi

)
xi

∈ L2(Q) (because 0 < λ < 1). Therefore, the

function u(x, t) = tv(x) is a strong solution of problem (5.17)–(5.19) with the following data: f(x, t) =
v(x) − t

∑
i=1,2

(
RQvxi

)
xi

∈ L2(Q) and ϕ(x) = 0. Now we prove that u /∈W 2,1
2

(
(Q11 ∩Bδ(g1)) × (0, T )

)

for any δ > 0. Let us prove that

ux1

∣∣
x1=1/3+0, x2≤1/8

�= ux1

∣∣
x1=1/3−0, x2≤1/8

.

It suffices to prove that

bu1ϕ

∣∣
ϕ=π/2−0, r≤1/8

�= (10u1ϕ + u2ϕ

)∣∣
ϕ=π/2+0, r≤1/8

. (5.20)

Relation (5.20) is equivalent to the inequality

−b sin
λπ

2
�= −10 sin

λπ

2
+ sinλπ. (5.21)

Since λπ = 2 arccos 2/7 and b = 99/14, it follows that Condition (5.21) is satisfied. Hence, we proved
that u /∈W 2,1

2

(
(Q ∩B1/8(g1)) × (0, T )

)
.

Thus, the smoothness of strong solutions of problem (2.1)–(2.3) may be broken near points of the
set K.

6. Smoothness of Strong Solutions at Boundaries between Neighboring Cylindrical
Subdomains

In this section, we use the notation introduced in the proof of Lemma 5.3.
For simplicity, we assume that y1 = 0 and

Qp1 ∩B4δ(0) =
{
x ∈ R

n : |x| < 4δ, xn < 0
}
,

∂Qp1 ∩B4δ(0) =
{
x ∈ R

n : |x| < 4δ, xn = 0
}
.

Introduce the sets γT
sl = γsl × (0, T ), where γsl = ∂Qsl ∩B2δ(xsl).

By virtue of Lemma 5.4, the strong solution u of problem (2.1)–(2.3) satisfies Eq. (2.1) a.e. in
(Qsl \ Kε) × (0, T ). Multiply both sides of (2.1) by a function v ∈ C∞(QT ) such that supp v ⊂⋃
l

B2δ(xpl)× [0, T ) (l = 1, . . . , J0) and integrate over the regions Qsl ∩B2δ(xpl). Then, summing with
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respect to s = p, q and integrating by parts, we have

T∫

0

∫

B2δ(xpl)

⎧
⎨

⎩−uv̄t +
n∑

i,j=1

(RijQuxj )v̄xi +
n∑

i=1

(RiQuxi)v̄ + (R0Qu)v̄

⎫
⎬

⎭ dx dt

−
T∫

0

n∑

j=1

(
RnjQuxj

∣∣
γT

pl
− RnjQuxj

∣∣
γT

ql

)
dt =

T∫

0

∫

B2δ(xpl)

fv̄ dx dt+
∫

B2δ(xpl)

ϕv̄|t=0 dx.

Since u is a generalized solution of problem (2.1)–(2.3) and v is selected arbitrarily, it follows that
n∑

j=1

(
RnjQuxj

∣∣
γT

pl
− RnjQuxj

∣∣
γT

ql

)
= 0 (l = 1, . . . , J0). (6.1)

Note that either N(p) �= J0 or N(q) �= J0. For definiteness, we assume that N(q) �= J0. Due to
Corollary 5.1, the function u satisfies Condition (2.2) in γT

sl for l > J0, i.e., we have
n∑

j=1

(RnjQuxj + σu)
∣∣
γT

pl
=

n∑

j=1

(−RnjQuxj + σu)
∣∣
γT

ql
= 0 (l = J0 + 1, . . . , N(s); s = p, q). (6.2)

Let Ajs denote the matrices obtained from the matrices Rnjs by deleting the latter N(s) − J0 rows.
Let Bjs denote the matrices obtained from the matrices Rnjs by deleting the initial J0 rows. Introduce
the following vector-functions:

Vs = (UsPsu)
∣∣
γT

s1
; Wjs =

(
UsPsuxj

) ∣∣
γT

s1
(j = 1, . . . , n).

Let L′
js (L′

s) denote the matrix (the vector) obtained from the matrix Ljs (the vector Ls) by deleting
the latter N(s) − J0 columns (elements). Let L′′

js (L′′
s) denote the matrix (the vector) obtained from

the matrix Ljs (the vector Ls) by deleting the initial J0 columns (elements).
Also, introduce the square matrices σs of order (N(s)− J0) such that their elements are defined as

follows:

σp
ii = σ(x+ hp,J0+i)

∣∣
x∈γp1

, σq
ii = −σ(x+ hq,J0+i)

∣∣
x∈γq1

(i = 1, . . . , N(s) − J0),

and σs
ij = 0 for i �= j.

Then Conditions (6.1) and (6.2) have the following form:
n∑

j=1

(AjpWjp −AjqWjq) = 0, (6.3)

n∑

j=1

BjsWjs + σsV ′′
s = 0 (s = p, q). (6.4)

Introduce the vector-function

Z =

(
W ′

np −W ′
nq

W ′′
np

)
. (6.5)

By construction, we have
A′

jp = A′
jq (j = 1, . . . , n). (6.6)

Since u ∈W 1,0
2 (QT ), it follows that V ′

p = V ′
q . By virtue of Theorem 5.1, we have

W ′
jp = W ′

jq (j = 1, . . . , n− 1). (6.7)
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Using (6.6) and (6.7), we can write (6.3) and (6.4) as follows:

AnpZ = A′′
nqW

′′
nq −

∑

j<n

(
A′′

jpW
′′
jp −A′′

jqW
′′
jq

)
, (6.8)

BnpZ = −B′
npW

′
nq −

∑

j<n

(
B′

jpW
′
jp +B′′

jpW
′′
jp

)− σpV ′′
p , (6.9)

B′′
nqW

′′
nq = −B′

nqW
′
nq −

∑

j<n

(
B′

jqW
′
jq +B′′

jqW
′′
jq

)− σqV ′′
q . (6.10)

The strong ellipticity of the operator AR implies that Rnnq is positive definite. Therefore, there exists
an inverse matrix

(
B′′

nq

)−1
. Then (6.10) implies that

W ′′
nq = − (B′′

nq

)−1
B′

nqW
′
nq −

∑

j<n

((
B′′

nq

)−1
B′

jqW
′
jq +
(
B′′

nq

)−1
B′′

jqW
′′
jq

)
− (B′′

nq

)−1
σqV ′′

q . (6.11)

Using (6.11) in (6.8), we get

AnpZ = −A′′
nq

(
B′′

nq

)−1
B′

nqW
′
nq −A′′

nq

(
B′′

nq

)−1
σqV ′′

q

−
∑

j<n

(
A′′

jpW
′′
jp +A′′

nq

(
B′′

nq

)−1
B′

jqW
′
jq + (A′′

nq

(
B′′

nq

)−1
B′′

jq −A′′
jq)W

′′
jq

)
. (6.12)

Introduce the following vector-functions Hj of dimension mj (j = 1, . . . , n):

Hj =

⎛

⎜⎜⎝

W ′
jp

W ′′
jp

W ′′
jq

⎞

⎟⎟⎠ , mj = N(p) +N(q) − J0 (j = 1, . . . , n− 1),

Hn = W ′
nq, (mn = J0).

Introduce the following vector-function of dimension N(p) −N(q) − 2J0:

V =

(
V ′′

p

V ′′
q

)

We will also need the block matrices

T j =

⎛

⎝
A′′

nq

(
B′′

nq

)−1
B′

jq A′′
jp A′′

nq

(
B′′

nq

)−1
B′′

jq −A′′
jq

B′
jp B′′

jp O

⎞

⎠ ,

Gj =
((
B′′

nq

)−1
B′

jq O
(
B′′

nq

)−1
B′′

jq

)
(j = 1, . . . , n− 1),

Tn =

⎛

⎝
A′′

nq

(
B′′

nq

)−1
B′

nq

B′
np

⎞

⎠ , Gn =
(
B′′

nq

)−1
B′

nq,

S1 =

⎛

⎝
O A′′

nq

(
B′′

nq

)−1
σq

σp O

⎞

⎠ , S =
(
O
(
B′′

nq

)−1
σq
)
.
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Then Eqs. (6.8)–(6.10) can be written as follows:

RnnpZ = −
n∑

j=1

T jHj − S1V, (6.13)

W ′′
nq = −

n∑

j=1

GjHj − SV. (6.14)

Let Λj
lk and Λ̃lk(x′) denote the matrices obtained from Rnnp by replacing the lth column by the kth

columns of the matrices T j and S1, respectively. Here x′ = (x1, . . . , xn−1).

Theorem 6.1. Let 1 ≤ l ≤ J0. Then the strong solution u of problem (2.1)–(2.3) belongs to the space
W 2,1

2 (Bδ(yl) × (0, T )) for all f ∈ L2(QT ) and ϕ ∈ [D(AR), L2(Q)]1/2 if and only if

det Λj
lk = 0 (j = 1, . . . , n; k = 1, . . . , mj), (6.15)

det Λ̃lk(x′) = 0 (k = 1, . . . , N(p) +N(q) − 2J0; |x′| < δ). (6.16)

Proof. Introduce the matrices

Λj =
∥∥det Λj

ik/detRnnp

∥∥ (i = 1, . . . , N(p); k = 1, . . . , mj);

Λ̃ =
∥∥det Λ̃ik/detRnnp

∥∥ (i = 1, . . . , N(p); k = 1, . . . , N(p) +N(q) − 2J0).

Then it follows from (6.13) that

Z = −
n∑

j=1

ΛjHj − Λ̃V. (6.17)

I (Sufficiency). Suppose that Conditions (6.15) and (6.16) are satisfied. Due to Theorem 5.1,
u ∈W 2,1

2

(
(Qsl ∩Bδ(xsl)) × (0, T )

)
(s = p, q), while it follows from (6.15)–(6.17) that

uxn

∣∣
γT

pl
= uxn

∣∣
γT

ql
(l = 1, . . . , J0).

This implies that u ∈W 2,1
2

(
Bδ(xsl) × (0, T )

)
.

II (Necessity). Let

u(x, t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t
(
U−1

s vs

)
(x)

(
x ∈ ⋃

l

Qsl, t ∈ (0, T ), s = p, q

)
,

0

(
x ∈ Q \⋃

s,l

Qsl, t ∈ (0, T ), s = p, q

)
,

(6.18)

where vs(x) =
(
As(x′)xn + Bs(x′)

)
η(xn) for x = (x′, xn) ∈ Qs1, As(x′) and Bs(x′) are smooth

vector-functions of order N(s), vanishing for |x′| > 2δ/3, η(xn) ∈ Ċ∞(−δ, δ), and η(xn) = 1 for
xn ∈ (−δ/3, δ/3). Then, we obviously have

Vs = Bs(x′), Wjs =
(
Bs(x′)

)
xj

(j < n), Wns = As(x′).

Note that u ∈W 1
2 (QT ) if and only if B′

p = B′
q. In the sequel, we assume that ϕ(x) = 0.

(a) Let det Λb
lr �= 0 (b < n, 1 ≤ r ≤ N(p)+N(q)−J0). Let e be a vector of dimensionN(p)+N(q)−J0

defined as follows: ek = δkr, where δkr is the Kronecker symbol. Let

Ap = −
n−1∑

j=1

(
xbξ(x′)

)
xj

Λj
r −
(
xbξ(x′)

)
Λ̃h, Bp =

(
xbξ(x′)

)
e1;

A′
q = 0, A′′

q = −
n−1∑

j=1

(
xbξ(x′)

)
xj
Gj

r −
(
xbξ(x′)

)
Sh, Bq =

(
xbξ(x′)

)
e2.
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Here h is the vector of dimension N(p) +N(q) − 2J0 with coordinates hk = ek+J0 , e
1 is the vector of

dimension N(p) with coordinates e1k = ek, and e2 is the vector of dimension N(q) with coordinates
(e1, . . . , eJ0 , eN(p)+1, . . . , eN(p)+N(q)−J0

); Λj
r and Gj

r are the rth columns of the matrices Λj and Gj

respectively; ξ ∈ Ċ∞(Rn−1), ξ(x′) = 1 for x′ ∈ γp1 ∩Bδ/3(0) and ξ(x′) = 0 for x′ �∈ γp1 ∩B2δ/3(0).
By construction, u ∈ W 1

2 (QT ) ∩ W 2,1
2 (Qsl × (0, T )) (l = 1, . . . , N(s), s = p, q) and supp u ⊂

B4δ(xsl) × [0, T ]. It is easy to check that conditions (6.14) and (6.17) are satisfied. This means that
there exists f ∈ L2(QT ) such that u ∈ W(AR) is a strong solution of problem (2.1)–(2.3). However,
we have

uxn

∣∣
γT

pl
= (Wnp)l �= (Wnq)l = uxn

∣∣
γT

ql
.

Therefore, u /∈W 2,1
2 (Bδ(xpl) × (0, T )).

(b) Let det Λn
lr �= 0 (1 ≤ r ≤ J0) and

A′
p =
(
e− (Λn

r )′
)
ξ(x′), A′′

p = −(Λn
r )′′ξ(x′), Bp = 0;

A′
q = eξ(x′), A′′

q = −Gn
r ξ(x

′), Bq = 0.

Here e is the vector of dimension J0 with coordinates ek = δkr.
As in case (a), there exists f ∈ L2(QT ) such that u ∈ W(AR) is a strong solution of problem (2.1)–

(2.3). However, we have
uxn

∣∣
γT

pl
= (Wnp)l �= (Wnq)l = uxn

∣∣
γT

ql
.

Hence, u /∈W 2,1
2 (Bδ(xpl) × (0, T )).

(c) Let det Λ̃lr(x′) �= 0 (1 ≤ r ≤ N(p) + N(q) − 2J0) for x′ = x′0. Without loss of generality, we
assume that x′0 = 0. Let

Ap = −
n−1∑

j=1

Λj
J0+rξxj (x

′) − Λ̃rξ(x′), B′
p = 0, B′′

p = e1ξ(x′);

A′
q = 0, A′′

q = −
n−1∑

j=1

Gj
J0+rξxj (x

′) − Srξ(x′), B′
q = 0, B′′

q = e2ξ(x′).

Here e1 is the vector of dimension N(p) − J0 with coordinates e1k = δkr, e
2 is the vector of dimension

N(q) − J0 with coordinates e2k = δk+N(p)−J0,r, while Λ̃r and Sr are the rth columns of the matrices Λ̃
and S respectively.

As in cases (a) and (b), there exists f ∈ L2(QT ) such that u ∈ W(AR) is a strong solution of
problem (2.1)–(2.3). However, we have

uxn

∣∣
γT

pl
= (Wnp)l �= (Wnq)l = uxn

∣∣
γT

ql
.

Hence, u /∈W 2,1
2 (Bδ(xpl) × (0, T )).

Example 6.1. Consider the problem

ut(x, t) −
∑

i=1,2

(RQuxi(x, t))xi = f(x, t) ((x, t) ∈ QT ), (6.19)

∑

i=1,2

RQuxi cos(ν, xi) + σu = 0 ((x, t) ∈ ΓT ), (6.20)

u|t=0 = ϕ(x) (x ∈ Q), (6.21)

whereQ = (0, 2)×(0, 1), Rv(x) = v(x1, x2)+γv(x1+1, x2)+γv(x1−1, x2), 0 < |γ| < 1, RQ = PQRIQ,
f ∈ L2(QT ), and ϕ ∈ [D(AR), L2(Q)]1/2 .
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Represent the boundary-value conditions (6.20) as follows:

− ux1(0 + 0, x2, t) − γux1(1 + 0, x2, t) + σ|x1=0

= ux1(2 − 0, x2, t) + γux1(1 − 0, x2, t) + σ|x1=2 = 0 (0 < x2 < 1), (6.22)

− ux2(x1, 0, t) − γux2(x1 + 1, 0, t) + σ|x2=0

= ux2(x1, 1, t) + γux2(x1 + 1, 1, t) + σ|x2=1 = 0 (0 < x1 < 1), (6.23)

− ux2(x1, 0, t) − γux2(x1 − 1, 0, t) + σ|x2=0

= ux2(x1, 1, t) + γux2(x1 − 1, 1, t) + σ|x2=1 = 0 (1 < x1 < 2). (6.24)

The partition R consists of the following (single) class of subdomains: Q11 = (0, 1) × (0, 1),
Q12 = (1, 2)×(0, 1). The set K consists of the following six points: (s−1, m) (s = 1, 2, 3; m = 0, 1).

Since the matrix

R1 =

⎛

⎜⎜⎝

1 γ 0 0
γ 1 0 0
0 0 1 γ
0 0 γ 1

⎞

⎟⎟⎠

is positive definite, it follows that the operator AR corresponding to problem (6.19)–(6.21) is strongly
elliptic.

We have Q21 = Q12 and Q22 = Q11. The matrices R111, R112, T
1, T 2, Λ1

11, Λ2
1k (k = 1, 2, 3), Λ̃11,

and Λ̃12 introduced above have the forms

R111 = R112 =
(

1 γ
γ 1

)
, T 1 =

(
γ2

γ

)
, T 2 =

(
0 0 0
0 0 0

)
,

Λ1
11 =

(
γ2 γ
γ 1

)
, Λ2

1k =
(

0 γ
0 1

)
, Λ̃11 =

(
0 γ

σ|x1=2 1

)
, Λ̃12 =

(−γσ|x1=0 γ
0 1

)
.

Obviously, we have det Λ1
11 = det Λ2

1k = 0. The smoothness-preserving conditions of Theorem 6.1
are formulated as follows: det Λ̃11 = det Λ̃12 = 0, i.e., σ|x1=0 = σ|x1=2 = 0 for 0 < x2 < 1. We assume
that those conditions are satisfied, while the functions σ|x2=0 and σ|x2=1 are sufficiently smooth and
their supports are subsets of (0, 2). Then Theorem 6.1 implies that

ux1

∣∣
x1=1−0

= ux1

∣∣
x1=1+0

. (6.25)

Thus, u ∈ W 1
2 (QT ) ∩W 2,1

2 ((Q \ Kε) × (0, T )). Let us prove that u ∈ W 2,1
2 (QT ). Since u belongs to

W 2,1
2 ((Q \ Kε) × (0, T )) and satisfies condition (6.1), it follows that RQuxi ∈W 1

2 ((Q \ Kε) × (0, T )).
condition (6.1) and Lemma 2.1 imply that (RQuxi)xi = RQuxixi (i = 1, 2), i.e., ARu = −RQΔu in
(Q \ Kε) × (0, T ). It follows from (6.22) and (6.25) that

ux1

∣∣
x1=0

= −γux1

∣∣
x1=1

= ux1

∣∣
x1=2

. (6.26)

Make the change of variables: x′1 = x1 − 1 in (6.24) and x′′1 = x1 + 1 in (6.23) (note that |γ| < 1). It
is easy to see that conditions (6.23) and (6.24) are equivalent to the following conditions:

ux2

∣∣
x2=0

=

⎧
⎪⎪⎨

⎪⎪⎩

σ|x2=0(x1) − γσ|x2=0(x1 + 1)
1 − γ2

(0 < x1 < 1),

σ|x2=0(x1) − γσ|x2=0(x1 − 1)
1 − γ2

(1 < x1 < 2);
(6.27)

ux2

∣∣
x2=1

=

⎧
⎪⎪⎨

⎪⎪⎩

−σ|x2=1(x1) − γσ|x2=1(x1 + 1)
1 − γ2

(0 < x1 < 1),

−σ|x2=1(x1) − γσ|x2=1(x1 − 1)
1 − γ2

(1 < x1 < 2).
(6.28)
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Since the matrix R111 is nondegenerate, it follows that the operator RQ : L2(Q) → L2(Q) has a
bounded inverse operator R−1

Q .

Thus, problem (6.19)–(6.21) is equivalent to the problem of finding a generalized solution u ∈
W 1

2 (QT ) ∩W 2,1
2 ((Q \ Kε) × (0, T )) of the equation

ut − Δu =
(
R−1

Q (f − ut)
)
(x, t) + ut ((x, t) ∈ QT ) (6.29)

with nonlocal boundary-value conditions (6.26)–(6.28).
The smoothness theorem for generalized solutions of the third mixed problem for parabolic equations

(see [7, Ch. VI, Sec. 2, Theorem 4]) implies that u ∈ W 2,1
2 (Qρ × (0, T )) (0 < ρ < 1/4), where

Qρ = (ρ, 2 − ρ) × (0, 1). Therefore, the function w = ξ(x1)u(x1 + 1, x2) + ξ(x1 − 2)u(x1 − 1, x2)
belongs to W 2,1

2 (QT ), where ξ ∈ Ċ∞(−1/4, 1/4) and ξ(x1) = 1 for x1 ∈ (−1/8, 1/8). This yields that
vt−Δv ∈ L2(Q), vx1

∣∣
x1=0

= vx1

∣∣
x1=2

= 0, vx2

∣∣
x2=0

= (ux2 +γwx2)
∣∣
x2=0

, vx2

∣∣
x2=1

= (ux2 +γwx2)
∣∣
x2=1

,

and v|t=0 = ϕ+ w|t=0, where v = u+ γw.
It follows from the smoothness of generalized solutions of the third mixed problem for parabolic

equations in cylindrical domains that v ∈W 2,1
2 (QT ), i.e., u ∈W 2,1

2 (QT ).
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