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1. Introduction

In [11, 16, 17], the first boundary-value problem for parabolic differential-difference equations with
translations with respect to spatial variables was considered. In [12], it is found that problems of
the above kind are related to nonlocal problems. The second boundary-value problem for parabolic
differential-difference equations was originally considered in [10]. Regions of dimension n > 1 are
considered in those papers. In [9], the first boundary-value problem was studied for n = 1. It is
proved in the above papers that, unlike parabolic equations, the smoothness of solutions may be
broken inside the region even in the case where the initial function is infinitely differentiable.

In [6, 17], the strong solvability is investigated. It turns out that the arising spaces of the initial
data are related to the well-known Kato problem on the square root of the operator constructed with
respect to a sectorial form (see [3, Ch. VI, Sec. 2, Remark 2.29]). In [9, 11], comprehensive classes of
functional-differential operators satisfying the Kato hypothesis are provided.

In this paper, we study the solvability and the smoothness of strong solutions of the third boundary-
value problem for parabolic differential-difference equations with translations with respect to spatial
variables for n > 2. The methods applied are based on the theory of elliptic functional-differential
equations (see [13, 18]).

Note that boundary-value problems for parabolic functional-differential equations arise in the theory
of nonlinear optical two-dimensional feedback systems (see, e.g., [8, 14, 15, 22]).

Parabolic functional-differential equations with time delay have been studied by many authors;
in [20, 21], the most general case, including variable delays in the higher derivatives is considered.

2. Problem Setting

No

1. Let @ be a bounded domain in R™ (n > 2). Let 0Q = U M; be its piecewise-smooth boundary,
i=1

where M; are (n — 1)-dimensional C°°-manifolds open and connected with respect to the topology
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of 0Q). Suppose that @ satisfies the cone condition in a neighborhood of any point z € K = 0Q \ |J M;;
i

in particular, it is diffeomorphic to a plane angle for n = 2.
Introduce bounded difference operators R;j, R;: Lao(R™) — Lo(R™) as follows:

(Riju)(z) = Z agjpu(x +h) (i,7=1,...,n),
heM

(Riu)(x) = Z apu(z+h) (i=0,1,...,n).
heM

Here a;j, and a;;, are complex numbers, while the set M consists of a finite number of vectors with
integer-valued coordinates.

Introduce linear operators Ig, Pg, R;jq, and R;q. The operator Ig: La(Q) — L2(R™) extends func-
tions outside @) by the identical zero, the operator Pg: La(R™) — Lo(Q) is the restriction of functions
to @, while the operators R;;q, Rig: L2(Q) — L2(Q) are defined as follows: R;jqo = PoRijlg, Rig =
PoR;1g.

Consider the differential-difference equation

n

ui(w,t) = Y (Rijoue,(z, 1)), + Y Riqua,(w, t) + Roqu(z, t) = f(z,t) ((z,t) € Qr)  (2.1)

ij=1 i=1
with the boundary condition

Z RijQug; cos(v, z;) +o(x)u =0 ((z,t) € I'p) (2.2)
i,j=1
and the initial condition
uli—o = p(x)  (z€Q), (2.3)
where Qr = Q x (0, 7),0 < T < 0o, 'y = (0Q \ K) x (0, T), v is the unit vector of the outer normal
to I'p, f € La(Qr), ¢ € L2(Q), 0 € C(0Q), and o > 0 in 0Q.
Let W¥(Q) be the Sobolev space of complex-valued functions from Lo(Q) such that all their gener-
alized derivatives up to the order k belong to Lo(Q); the norm in WQI“(Q) is introduced as follows:

1/2
i@ =4 Y [ IDe(@) do

la|<k g

Introduce in L2(Q) a sesquilinear form ag[v, w] with the domain W} (Q) as follows:

n

a’R[U’ ’LU] = Z (Riijxjawxi)LQ(Q) + Z (RiQ’Ump w)LQ(Q) + (ROQU7 w)LQ(Q) + (’U, w)Lz(aQ)‘ (24)
i,j=1 i=1

The difference operators R;jg, Rig, Rog: L2(Q) — L2(Q) are bounded. Therefore, there exists a
positive ¢y such that

larlv, w]| < collvllwygllwlwyg) — (v,we W5 (Q)). (2.5)

The sesquilinear form ag[v, w] is continuous in WQI(Q) with respect to w. Hence, there exists a
linear bounded operator Ag: W3 (Q) — [W34(Q)]’ such that

(Agv, @) = aglv, w] (v, w e WE(Q)), (2.6)

where [W3(Q)]’ is the space dual to W(Q).
Definition 2.1. The operator Ap is called strongly elliptic if there exist ¢; > 0 and ¢y > 0 such that
Re (Ao, v) > erllollys ) — cellollyg (v € WEQ)). (2.7)
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2. To formulate necessary and sufficient conditions of the strong ellipticity of the operator Ar in
algebraic terms, we have to introduce the following notation. The additive group generated by the set
M is denoted by G. Open connected components of the set @\ |J (0Q + h) are denoted by Q.

heG
Definition 2.2. Any set @, is called a subdomain. The set of all subdomains Q.. is called a partition
of the domain ) and is denoted by K.

The partition R is decomposed in nonintersecting classes in the following natural way. Subdomains
Qr,; Qr, € R belong to the same class if there exists a vector h € G such that Q,, = Q,, + h. Denote
the subdomains by @, where s is the class number (s = 1, 2, ...), while [ is the number of the
subdomain within the sth class. By virtue of the boundedness of ), each class consists of a finite
number N = N(s) of subdomains Q4 and we have N(s) < (diam @+ 1)". In general, the set of classes
is countable. Let hy denote a vector h € G such that Qs + h = Q4. Obviously, hg; = 0.

If v € W§(Q), then the function R;jqv can be outside W¥(Q). However, the following assertion is
valid (cf. [13, Sec. 8, Lemma 8.15]).

Lemma 2.1. Let v € WE(QY,)), where Q') C Qg and Q'; = Q’; + hg. Then Riqu € WE(Q',) and
(RijQu)a, (2) = (RijQua,)(2) (z € Q. p=1, ..., n).

Introduce the matrices R;js and R;s of order N(s) x N(s) with elements

ij 17 — Ngm — Ig M>
o S 23)
0, hsm - hsk ¢ Ma
; ihs h:hsm_hs Ma
T'iin = ih K < (29)
0, hsm — hs, & M.

Let R, denote the block matrices HRZ-jsH?j:l of order nN(s) x nN(s) (s = 1,2,...). Since Q
is a bounded domain, it follows from (2.8) that the number of different matrices Ry, is finite (k =
1,2, ..., Ny).

Lemma 2.2. Let the matrices R, + Ry, be positive definite for all k=1, 2, ..., N1, where R, are
Hermitian-adjoint matrices. Then (2.7) holds for any v from W3 (Q).

Proof. By virtue of [18, Lemma 1], there exists a positive k; such that

Re Z (RiijIjv vri)LQ(Q) > kl”’””%/%l(Q) - leUH%Q(Q) (ve W;(Q)) (2.10)
i,j=1
On the other hand, since the operators R;g are bounded (i =0, 1, ..., n), we have

n

Y (Rigue,, v) ) T (Rogvs 0) o) | < Rallvliw ) l19]lo(@)
=1

<k (Sl +e 2IvlEg) (211)

for all e > 0 and v € W3 (Q), where ks is positive and does not depend on v and .
Taking into account the nonnegativity of the latter term of (ov,v),(g) and choosing a positive &

such that koe? < k1/2, we obtain (2.7) with ¢; = k1/2 and ¢ = k1 + koe 2. O
Lemma 2.3. Let (2.7) hold for any v from W4 (Q). Then the matrices

n

> (Rijs + Rijs) &€

i,j=1
are positive definite for all s =1,2,... and 0 # £ € R".
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This assertion follows from [13, Sec. 9, Theorem 9.1].

In the sequel, we assume that the operator A corresponding to (2.1) is strongly elliptic. In this
case, it is natural to say that problem (2.1)—(2.3) is the third boundary-value problem for a parabolic
differential-difference equation.

3. Weak Solutions

1. Consider the space V = Lo (0, T; W%(Q)) . Its dual space is V' = Lo (O, T; [WQ(Q)]/> )
Define a bounded operator Lr: V — V' as follows:

Lrvu(-, t) = Agv(-, t) for almost all ¢t € (0, T).
Introduce the Hilbert space
WZ{U€V2 thV'}

with the norm
1/2

T T
lotbw = [ gyt [ Il g o
0 0

Here the derivatives are understood in the sense of distributions over Q.
Let f € V' and ¢ € Lo(Q).

Definition 3.1. A function u € W is called a weak solution of problem (2.1)—(2.3) if it satisfies the
equation
C;—;L + Lru = f for almost all ¢ € (0, T) (3.1)

and the initial condition
ult=0 = ¢. (3.2)

Note that, by virtue of [5, Ch. 1, Theorem 3.1 and Proposition 2.1}, we have W C C ([0, T, L2(Q)),
i.e., the trace u|i—o € L2(Q) is well defined.
In the sequel, we assume that c; = 0 in (2.7). Otherwise, we set u = z e®2*. Then problem (3.1), (3.2)

d
is equivalent to the problem d_i + (L +cal)z = e U f 24— = .

Theorem 3.1. Let the operator Ar be strongly elliptic. Then problem (2.1)—(2.3) has a unique weak
solution w € W for all f € V' and ¢ € L2(Q).

The proof follows from inequalities (2.5) and (2.7) and [4, Ch. 3, Theorem 1.2].

2. Suppose that f € Lo(Qr) and ¢ € Ly(Q). Then we can formulate the definition of the weak
solution of problem (2.1)—(2.3) by means of an integral identity.

Let WQk 2(Qr) be the space of functions u € Ly(Qr) such that all their generalized derivatives with
respect to & up to the kth order belong to L2(Q7); the norm in WQk ’O(QT) is defined as follows:

1/2

lolhgogn = 3 [ 150, 0 dod

lo<kQy

It is easy to see that V = W, "*(Qr) due to the Fubini theorem.
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Definition 3.2. A function u € Wy "(Qr) is called a weak solution of problem (2.1)~(2.3) if

/ — Uy + Z (RijQua, ) Ve, + Z(RiQUmi)@ + (Roqu)v p dx dt + /JU'I_} dSdt

Or i,j=1 =1 I'r
—/fﬁd:ndt—i—/w‘;]t:odx (3.3)
Qr Q

for all v € W}(Qr) such that v];—7 = 0.
Identity (3.3) can be obtained from Eq. (2.1) by means of formal integration by parts.

Theorem 3.2. If the operator Ag is strongly elliptic, f € Lo(Qr), and ¢ € La(Q), then Defini-
tions 3.1 and 3.2 are equivalent to each other.

Proof. Taking into account [5, Ch. 3, Theorems 4.1 and 4.2], we see that it suffices to prove that the
dv
dt
Let v € V,. Consider the functions &, € C*°[0, T] such that 0 < & (t) < 1, |{,.(t)| < Ck, and

set Vi = {v € Wi (Qr) : vli=r = 0} is dense in the space Vo = {v eV: eV, vjier=0;.

2
1, 0<t<T-—Z=,
Ei(t) = k
0, T-1<t<T

It is easy to check that £, v — v in Vs, as k — oo. Smoothing out the functions & v with respect to
t, we obtain a sequence of W3 (Q)-valued functions vy (¢) infinitely differentiable with respect to ¢t and
such that their supports are subsets of [0, T'). By construction, vy — v in V, and vy € V. ]

4. Strong Solutions

1. To prove the existence of a strong solution, i.e., a solution differentiable with respect to t, we
use the semigroup theory.

Definition 4.1. A strongly continuous operator semigroup {73} (¢ > 0) in a Hilbert space H is called
contractive if | Ty <1 (¢t > 0).

Introduce the notation A, = {z € C: |arg z| < w}, where 0 < w < 7.
Definition 4.2. A family of linear bounded operators {7} (z € A,) in H is called an analytic
semigroup in A, if

(1) the function z — T is analytic in A,;
(2) we have Tp =1 and lim T,z =z (z € H);
z—0,z€A,
(3) the relation T}, 1., = T, Ts, (21, 22 € A,) is valid.
A semigroup {T;} (t > 0) is called analytic if there exists an angle A, such that there exists an
analytic continuation T, of the operator-function 73 to A,,.

Definition 4.3. A sesquilinear form alv, w] is called a sectorial form with vertex ~y if its range is a
subset of an angle of the kind

{CeC:largC-m<}, 0<6<F 7R

Lemma 4.1. Let the operator Ar be strongly elliptic. Then the form arlv, w| is sectorial with ver-
tez 0.
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Proof. By assumption, we have ¢; = 0 in (2.7). It follows from (2.5) and (2.7) that
| Tmagfo, vl < larfo, o]] < collvly g < kRearlv, o,
where k = cy/cy.
This means that there exists 0 < 0 < g such that the inequality
| Imaglv, v]| < (tanf) Realv, v]
holds for any v € W} (Q). This yields the assertion of the lemma. O

Definition 4.4. We say that a linear operator A is m-sectorial with top -y if there exists a € R such
that the operator B = A + ol satisfies the following conditions:

there exists a bounded operator (B 4 AI)~! for Re A > 0 and
[(B+ X7 < (ReA)™!, ReA >0

There exists 6 € [0, ) such that the numerical range of the operator A is a subset of the angle

|arg(¢ — ) < 0.

The space W (Q) is complete. Hence, the form ag[v, w] is closed. It follows from Lemma 4.1 and
the first representation theorem (see [3, Ch. VI, Sec. 2, Theorem 2.1]) that there exists an m-sectorial
operator Ag: D(Ar) — L2(Q), D(Ar) C La2(Q), with vertex 0 and such that

arlv, w] = (Arv, W)@ (v € D(AR), w € W3(Q)); (4.1)
moreover, D(Ag) is dense in W3 (Q). Note that (4.1) can be written as
Arv = Arv (v e D(AR)) (4.2)

(by virtue of (2.6)).
Introduce a scalar product in D(Ag) as follows:

(v, W)pag) = (ARV, ARW) 1,(Q) + (V, W) Ly(0)-
Since the operator Ap is closed, it follows that D(Ag) is a Hilbert space.
Theorem 4.1. The operator (—Ag) generates an analytic contractive semigroup.

Proof. The operator Ag is m-sectorial and its vertex is 0. It follows from [3, Ch. IX, Sec. 1, Theo-
rem 1.24] that the operator (—Ag) generates an analytic contractive semigroup. O

The next auxiliary result, which follows from [5, Ch. 2, Theorem 9.1], is used to investigate the
smoothness of strong solutions of problem (2.1)—(2.3) (Definition 4.5).

Lemma 4.2. The equation

.ARU) = f(] (43)
has a unique solution w € D(AR) for any function fy € L2(Q) and
lwllwz@) < CllfollLaa) (4.4)

where a positive C' does not depend on fy.

2. Now we investigate the existence and uniqueness of the strong solution of problem (2.1)-(2.3).
Introduce Hilbert space

W(AR) = {w € Ly(0, T; D(AR)) : w; € La(Qr)}

with the scalar product
T

T T
(v, W)wi(Ar) :/ (Arv, ARw) 1, 0) dt+/ U, W)Ly(Q )dH/(”tv We) 1,(Q) At;
0 0 0
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where the derivatives are treated in the sense of distributions over Q7.

Definition 4.5. A weak solution wu(z, t) of problem (2.1)—(2.3) is called a strong solution if u €
W(AR).

Let X and Y be Hilbert spaces such that X is continuous and densely embedded into Y. For any
¥ € Y and any positive ¢, we define the functional
K (t,v; X, V) =inf (g% + £ 92]})

Here v1 € X and 95 € Y are such that ¢ = ¢ + o.
Introduce the interpolation space

1/2

(X, Y]y = ¢eY:/t—2K2(t, ¥; X,Y) dt < oo
0

with the norm
o 1/2

[l = § 1015 + [ 625 ¢ s X, Y) de
0
(see, e.g., [19] for detailed treatment of interpolation theory).

Theorem 4.2. For any [ € Ly(Qr) and ¢ € [D(Ar), L2(Q)]; )5, problem (2.1)~(2.3) has a unique
solution. It is defined by the relation
t

u(z, t) = Typ(x) + /Tt_sf(x, s)ds, (4.5)
0
where {1} (t > 0) is an analytic semigroup generated by (—AR).

Proof. Let us treat problem (2.1)—(2.3) as an abstract Cauchy problem for a parabolic equation in the
space La2(Q). By virtue of [1, Ch. 1, Theorem 3.7], problem (2.1)—(2.3) has a unique strong solution if
and only if the following condition is satisfied:

T
[ 14rTiol gt < . (4.6)
0

That solution is presented by (4.5). Due to Theorem 4.1, the semigroup {7} } generated by the operator
(—Ag) is analytic and contractive. Then [19, Ch. 1, Theorem 1.14.5] implies that inequality (4.6)
holds if and only if ¢ € [D(Ar), L2(Q)]; 5 - O

5. Smoothness of Strong Solutions in Cylindrical Subdomains
1. Consider the sets
K= U {@n0oQ+m)nl0Q+mN\oQ+m]}

h1,ho€G

and
Ke={zeR": p(z, K) <e},
where € > 0. For simplicity, we assume that K C K.
We need the following auxiliary results (see [13, Sec. 7, Lemmas 7.3-7.5]).

Lemma 5.1.

(1) Let 2° € 0Qgq N OQ. Suppose that there exists a sequence {x*} such that z¥ — 20 as k — oo
and z* € Q. (sk, k) # (s, 1). Then a° € K.
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(2) Let 2° € QN OQu NIQgm, (p, 1) # (g, m). Suppose that there exists a sequence {z*} such that
z* — 20 as k — 0o and z* € @Sklk, (sk, lk) # (p, 1), (g, m). Then 2° € K.

Let T') denote connected (with respect to the topology of 0Q)) components of the set 0Q \ K.
Obviously, I', € C°°.

Lemma 5.2. Let there exist h € G such that (U + h) N Q # &. Then either Ty + h C Q or there
exists I', C 0Q \ K such that ')y + h =T,

By virtue of Lemma 5.1, we can decompose the set {I',+h: I'y+h C Q,p=1,2,...; he G}into
classes as follows: sets I',, + h1 and I',, + ha belong to the same class if

(1) there exists h € G such that I'y, + hy =T, + ho + h;

(2) if T'p, + h1, T'p, + ho C 0Q, then the directions of the inner normals to 0Q at the points

x €Iy, +hiand x — h € I'), + ho coincide.

The set I', C 0Q belongs to at most one class, while the set I', + h C @ can belong to no more than
two classes. Denote the set I', + h by I',;, where r is the class number, while j is the number of
the element within the given class (1 < j < J = J(r)). Without loss of generality, we assume that
Loy oo, Doy CQ Uy gy, -2 Iy COQ (0 < Jy = Jo(r) < J(r)).

To prove the smoothness theorem for strong solutions of problem (2.1)-(2.3) in cylindrical subdo-
mains, we have to investigate the smoothness of generalized solutions of the second boundary-value
problem for strongly elliptic differential-difference equations.

Lemma 5.3. Suppose that p,—1(KNOQ) =0, fo € L2(Q), and w satisfies (4.3). Let ¢ > 0. Then
w e W3 (QSZ\E) (s=1,2,...,01=1,...,N(s)) and

Il (o) < elloll o (1)
where ¢ = ¢(g) > 0 does not depend on fo.

Proof. The first part of the lemma follows from [2, Sec. 14, Theorem 2|. However, we will need
inequality (5.1). This is why we present the complete proof.

I. It follows from the proof of [13, Sec. 11, Theorem 11.1] that if a subdomain g is such that
Qg C Qq, then w € W2(,;) and

lwllwza,) < Fllwllwgg) + I1folla@)

where k1 = k1(Qg) > 0 does not depend on fy and w. It follows from the latter inequality and
from (4.4) that

lwllwz,) < Fallfollra@) (5.2)
where ko = k2(Qg) > 0 does not depend on fy and w.

Therefore, it suffices to prove that for any y € 0Qp \ K, there exists a ball Bs(y) such that

w € W2(Qpi N Bs(y)) and
lwllwz@unssw) < ksllfollra@) (5.3)
where k3 = k3(Qpi, ) > 0 does not depend on fy and w.

II. Fix a class of subdomains s = p. Let h,; be a vector satisfying the condition Qp = Qp1 + Ay
(I=1,..., N(p)), hp1 = 0. Introduce points y', ... ,yV®) such that y' =y — hpi + hpi, where y' = y.
It follows from the definition of the sets I'y; that there exists a unique r such that J(r) = N(p)
and we have (after the corresponding renumbering of the sets @; and I'y;) the following inclusions:
y'eT, C 0Qu \ K, Ty CQ for 1 <1< Jy=Jy(r), and I';; C 0Q for Jo+1 <1< J(r).

There exists a unique subdomain Qg # @p1 such that Iy C 0Qg. Change the numeration of
subdomains of the gth class to obtain the inclusion I';; C 0Qy (I =1,..., Jo).
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Introduce the points z!,...,2N@ as follows: 2! = y' + hy. By construction, z! € 9Qy, \ K and
q q

d=yleQfor1 <1< Jy, 2 €0Q for Jy+1<1< N(q), and (U {yl}> N ( U {zl}> = .
1>Jo I>Jo

Consider the balls Bys(2*), where 2P = ¢!, 2% = 2! (1=1,...,N(s); s = p, q.) Using Lemma 5.1
and the fact that K C K, we can choose § > 0 so small that 40 < mi? min{p(z*, K), 1/2}, the sets
S

0Qq N Bys(x*') are connected and belong to the class C*°, Bys(x*!) € Ty U QpUQq for 1 <1 < Jy,
and Bys(2*) N Q = Bys(z) N Qg for Jo+1 <1< N(s) (s =p, q).
By definition, the function w satisfies the integral identity

n n
Z /Rijwaj Uy, dx + Z/Riwai vdr+ /ROQw Tdr + /aw vdS = /fo v dz (5.4)
e =1Q Q 9Q Q

for all v € WH(Q).
Introduce the function

N(p) N(g)
E@) =Y mlx+hp)+ Y n(@+he),
=1 I=Jo+1

where n € C®°(R™), 0 < n(z) < 1, n(z) = 1 for 2 € Bs(y"'), and n(z) = 0 for = ¢ Bays(y).
Let v = &vg, vg € W(Q), in (5.4). Then, using the Leibnitz formula, we get

S [ 3 (Ruque) 6, o+ 3 [ () 67 de+ 3 [ (Rogu) 67 da

s,l o i,7=1 s,l Q s,l Qu

tfowenas=3 [ hewdo-3 [ 3 (Rugus,) &1 o

0Q oty Sha,, w1

where Qg = Qg N Bys(x*!). Hereinafter we can sum over [ = 1,...,N(s), s =p, q.
Applying the Leibnitz formula to the first and second terms again, we get

(IR[EU), UO] = Z / Jo §vo dx — Z / Z (leQwI]) &2, 00 dx

s,l Q. s,l Quy i,7=1
n n
+)° / > (Rijow) &, Tos, dz+ Y / > (Riqw) &,75 dz. (5.5)
s,l Qus i,7=1 s,l Qus =1

Let Lo (U le) be the subspace of functions from Ly (Q) vanishing outside |J Qg (I =1,..., N(s)).
l l

The operator of the orthogonal projection on Lo (U Q sl> is denoted by Ps. Introduce an isomorphism
l
N(s) N(s)
USZ LQ <U Qsl) — L2 (Qsl) = H LQ(QSl) as fOHOWS:
I I=1

(Usu)l(z:) =u(z+hg) (r€ Qs1). (5.6)
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It follows from [13, Sec. 8, Lemma 8.6] that the operators R;;qs = U, RijqU, ' and Rigs = Uy RigU; !
are the operators of multiplication by the matrices R;j, and R;, respectively. Then (5.5) implies that

n

agl[éw, vo] = Z/ (77 F, Vso) - Z (nmiRijSWSI'j7 Vso)

t,j=1

n

+ > (0 RigsWe, V2,) + ) (ne, RisWe, V) b da, (5.7)
i,j=1 i=1

where W, = (USPSw) (z), VO = (USPSU[)) (), and Fs = (USPSfO) (z) for x € Qs = Q1. Hereinafter we
integrate over the set Q.
Without loss of generality, we assume that ' = 0, while the equation of the surface Ly N Bus(yh)

N(s)
has the form x,, = 0. Let W} ; be the space of vector-functions V = (V,,, Vg), Vs € [] W3(fs), such
’ I=1

that esssupp Vs C Qs N Bas(yt) and SV € W(Q), where (SV)(x) = Vg (x — hyg) for z € Qg and
(SV)(z) =0 for = ¢ |JQg.
s,l
Define the operators 0’ as follows:
W(xy,..., op £ty xp) = W(x1, ..oy Tpyoony Tp)
+t ’
N(s)

D(dy,) = {W € Ly " (Q) : esssuppW C QN ng(yl)}.

Assign vg = SVY and V0 = §", V! where V! € VV21 35/2) 1<r<n-1,and 0 < t < 4. By
construction, we have vg € W3 (Q). Since the operators —¢", and ] are formally adjoint to each
other, it follows that (5.7) takes the form

n

ar[07éw, vo] = / —(n Fe, 6" V) + ) (02, RijsWey,, 07,V

s i,j=1

+ 3 (RigsSt (n;Ws), Vi) + D (Risd (e, W5), Vi) b dz. (5.8)

ij=1 i=1

Note that no translations orthogonal to the plane z,, = 0 are used.
Assign V! = 67 (nW,) (0 < t; < §); obviously, V! € W] 35/2- Denote the right-hand side of (5.8)
by I. Due to the Cauchy-Bunyakovskii inequality and [7, Ch. 3, Sec. 3, Theorem 4], we get

1/2
1< k(3R N) (Wl + 1B lo), (5.9)

. N(s) s 1/2
where [V = { T 1020, b o £=0.1

Now we assign t; = t, i.e., V! = 87 (nW;). Due to the strong ellipticity condition, we have
2 12
Reagfvr, v1] > erllor iy ) = 1 D IV IE s (5.10)
S
where v; = SV1.
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It follows from (5.8)—(5.10) and Lemma 4.2 that

1/2
(Z HVQH?,N> <ks Y (IWallin + [ Fsllon) < ks [1Fsllon- (5.11)

s

Now, by virtue of [7, Ch. 3, Sec. 3, Theorem 4], we obtain that (nWs)z,4, € Lév(s)(ﬂs) for all i =
1,...,n,r=1,...,n — 1 Hence, W, € Lév(p)(Qpl N Bs(y')) and the estimate W, llon <
k?HfOHLg(Q) is valid.

II. To prove that W, € LN(p)(Qpl N Bs(y')), we assign qu = 0 and take an arbitrary vector-
N(p)
function V) from H C>®(Qp1 N Bs(y')). Then W, is a generalized solution of the following system of

differential equatlons

- Z RijpWo,. +ZR,prm + Ro,W,, = F; (5.12)
3,j=1

here F), € Lév (Qp1 N Bs(yY)). By virtue of Lemma 2.3, the matrix Ry, + R},

Therefore, there exists an inverse matrix Rm%p Hence, we have

np 18 positive definite.

prnxn = R;np Z RijppW, Prix; + ZRprx + RopWp — Fp
i+j<2n i<n
Thus, Wy, . belongs to L;V(p)(Qpl N Bs(y')) and the inequality W, o llo.n < Esll follL,(q) holds.
Therefore, w belongs to W2(Q,; N Bs(y)) and the inequality lwllwz,inBsw) < k‘9||f0||L2 (@) holds.
U

2. Now we investigate the smoothness of strong solutions of parabolic differential-difference equa-
tions.

Let W22 k’k(QT) denote the space of functions v € Lo(Q7) such that all their generalized derivatives
up to the kth order with respect to ¢ and all their generalized derivatives up to the 2kth order with
respect to x belong to La(Qr). The norm in W;k’k(QT) is defined as follows:

1/2
lollyrsom =9 > /

26+|a] <2kg).,

2
dz dt
Dx . 896%"8#3 v

Theorem 5.1. Let pin—1(K N 0Q) = 0, f € Lo(Qr), ¢ € [D(Ar), L2(Q)]; )5, and u be a strong
solution of (2.1)—(2.3). Then u € VV22’1 ((Qs\K?) x (0, T)) for any positive € and any s =1, 2, ...,
l=1,..., N(s).
Proof. 1t follows from the definition of the strong solution and from Eq. (2.1) that
Aru(-, t) = F(-, 1),

where F(-, t) = f(-, t) —w(:, t) € L2(Q) for almost all t € (0, T').

It follows from Lemma 5.3 that u(, t) € W3 (Qsl\ﬁ) for almost all ¢ € (0, T'). Moreover, the
inequality

[uCs Ollwz @) < ClEC Do)

holds for almost all ¢ € (0, T).

Squaring both sides of the latter inequality and integrating by parts from 0 to 7', we get

2 2 2 2
lelliyz.o ((Quaie) <0, 1) = 2€ (HfHL2<QT> + H“t”Lz(QT))-
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Thus, we obtain the assertion of the theorem. Il

Lemma 5.4. Let u be a strong solution of (2.1)—(2.3). Then u satisfies (2.1) a.e. in (QSZ\ICE)X(O, T).

Proof. Tt follows from Lemma 2.1 and Theorem 5.1 that R;jqu., € 4% ((Qsl \ K¢) ) Then,
integrating (3.3) by parts, we have
" T
/ / U — ZJQU:L”]')M + Z RZ'QU%. + ROQU vdr dt = / / fodxdt
0 Qu W= 1 = 0 Qu
for all v € C*(Q,; x [0, T]) such that supp v C (Qg \ K¢) x [0, T'). This implies that u satisfies (2.1)
a.e. in (Qgq \ K¢) x (0, T). O

Corollary 5.1. Let the assumptions of Theorem 5.1 be satisfied. Let u be a strong solution of prob-
lem (2.1)—(2.3). Then u satisfies boundary condition

Z RijQuaz; cos(v, ;) + o(z)u =0 (5.13)
=1 (9Q\K=) x(0,T)
for any e > 0.
Proof. Let us prove that for any (xg, to) € (OQ\F) x (0, T), there exists a positive § such that u
satisfies boundary condition (5.13) in I'r s = I's x (0, T'), where I's = Bs(x0) N 0Q.
It follows from Lemma 5.3 that there exists a positive § and indices s and [ such that w = Bs(zp) N

Q C Qu\K®and I's € C*°. It follows from Theorem 5.1 and Lemma 2.1 that R;jqu., € 4% (wx (0, T) )
Assign

HY(Qr) = {ve W3(Qr): v(z,t) =0 (z € Q\ D), v|s—r = 0}.

Then, integrating (3.3) by parts and taking into account that, by virtue of Lemma 5.4, the function
u satisfies (2.1) a.e. in w x (0, T'), we obtain the relation

Z RijQij cos(v, x;) +o(x)u | vdedt =0

Ty \WI=1

for all v € H!(Qr). This implies that u satisfies (5.13) in I'z 5. O

3. The following example shows that the smoothness of solutions can be broken at boundaries of
neighboring cylindrical subdomains. As we see from Example 5.2, Theorem 5.1 is, in general, not valid
for e = 0.

Example 5.1. Consider the problem

u(z, t) — Z (RQUI«;(J:7 )z, = [z, 1) ((z, t) € Qr), (5.14)
i=1,2
> Rqug, cos(v, z;) +ou=0 ((z, t) €Tr), (5.15)
i=1,2
uli=o = ¢(z) (z€Q), (5.16)

where @ = (0, 2) x (0, 2), I'r = (0Q \ K) x (0, T'), the set K consists of the points (0, 0), (0, 2),
1 1

(2,0), and (2, 2), and Rg = PoRIg, where Rv(x) = v(x1, x2)+ 51}(:31 +1, zo) + Ev(xl —1, x9). The

partition R of the set @) consists of the following (single) class of subdomains: Q1; = (0, 1) x (0, 2) and
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Q12 = (1, 2) x (0, 2). The set K consists of the following six points: (s—1, m) (s =1, 2, 3; m =0, 2).
The function ¢ is such that

Olzi=0 = &(x2), Olz,=2 = O|py=0 = Olzy=2 =0,

where £ € C®(R), 0 < &(z2) < 1, E(x2) = 1 for x5 € (1/2, 3/2), and &(x3) = 0 for o & (1/4, 7/4).
The matrix
1 1/2 0 0
/2 1 0 0
0 0 1 1/2
0 0 1/2 1

is positive definite. Thus, the operator A corresponding to problem (5.14)—(5.16) is strongly elliptic.
Introduce a function v(x) as follows:

Ry =

(30 +1) et e Qu)

—g(xl — Dz — 1)¢(x2) (z € Q2),

3
where n € C*®°(—1/3, 1/3) and n(z;) = 1 for z; € (—1/4, 1/4)).

It is easy to check that v € W3(Q), v € Wi(Qu) (i =1,2), — > (Rgus,), € L2(Q), and
i=1,2 ‘

v(x) =

= 0, where s is the unit vector of the outer normal to 0Q) \ K.

< > Rquy, cos(s, ;) + au)
=1,2 (0Q\K)
Therefore, the function u(z, t) = tv(z) is a strong solution of problem (5.14)-(5.16) for f(x, t) =

v(xz) —t Y (RQue (1)), € La(Qr) and p(x) = 0. By construction, we have
i=1,2 ¢

Uy {m:l—o # Uzy ‘$1=1+0'

Thus, the smoothness of strong solutions may be broken at the boundary between the neighboring
subdomains Q11 % (0, T') and Q12 x (0, T').

Example 5.2. Consider the problem

ut($v t) - Z (RQUM(:E7 t))ﬂcz = f($7 t) ((SL‘, t) € QT)? (5'17)
i=1,2
Z Roug, cos(v, ;) =0 ((z, t) € I'p), (5.18)
i=1,2
uli=o = p(z) (z€Q), (5.19)

where the domain @ C R? has the boundary 0Q € C™ coinciding with the boundary of the square
(0, 4/3) x (0, 4/3) outside the disks By 5((i4/3, j4/3)) (i,j =0, 1), Rg = PRI, and the difference
operator acts as follows: Rv(z) = 2v(z1, x2) +v(x1 + 1, z2 + 1) +v(x; — 1, 22 — 1).
Introduce the following notation:
F12:{3}€8Q:a}1<1/3, $2<1/3}, F11:F12+(1,1),

F22:{$€8Q21<JJ1, 1<x2}, F21:F22—(1,1).
The partition R consists of the following two classes of subdomains:

(1) the domains @17 bounded by the curves I';y and T's1, and the domain Q12 bounded by the
curves I'1; and fgg,

(2) the domain Q2 = Q \ (@11 U Q15).
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The set K is a subset of Q; it consists of the following four points: g! = (1/3,0), ¢> = (4/3, 1),
= (0, 1/3), and g* = (1, 4/3). It is easy to prove that the operator Ay is strongly elliptic.
Introduce the function

10u; (x1 — 1/3, x2) + ug(x1 — 1/3, z2) (r € Q11),
v(x) = up(ry —4/3, 9 — 1) + 10us(x1 — 4/3, 22 — 1)  (z € Q12),
b(ui(r1 — 1/3, x2) + ug(x1 — 4/3, x5 — 1)) (r € Qa1),
where u; and ug are defined as follows: wuy(r, ¢) = &(r )r cos Ap, us(r, ©) = &(r)r* cos (¢ — 3m/2);

£€C®MR),0<E(r) <1,€&(r) =1,ifr <1/8, &(r) = 0, if » > 1/6; Mt = 2arccos2/7, b = 99/14;
(r, ) are the polar coordinates.
Therefore, we have

21uy(x1 — 1/3, x2) + 12ug(z1 — 1/3, 22) (r € Q11),
Rou(z) = < 12uy (21 — 4/3, 20 — 1) + 21ug(z1 — 4/3, 22 — 1)  (z € Q12),
2b(u1(x1 — 1/3, 1’2) + ’LLQ(Q?l — 4/3, To — 1)) (x S Q21>.
It is easy to check that v € W3 (Q) and — (Rvai)x, € L2(Q) (because 0 < A < 1). Therefore, the
i=1,2 ¢
function u(zx, t) = tv(x) is a strong solution of problem (5.17)—(5.19) with the following data f( t) =
v(x) —t Z (RQ%);E' € L2(Q) and ¢(z) = 0. Now we prove that u ¢ I/V2 ((QH N Bs(g 0,7))

1=1,2
for any § > 0. Let us prove that
Uz, ‘z1:1/3+0, 22<1/8 7 Uz, ‘1’1:1/3—0, 22<1/8"

It suffices to prove that

bul@‘ap:ﬂ'/?—O,TSl/S # (10u1, + uzy) ‘cp:w/2+0,r§1/8' (5.20)

Relation (5.20) is equivalent to the inequality
A A
—bsin 7” # —10sin 7” + sin Ar. (5.21)

Since A = 2arccos2/7 and b = 99/14, it follows that Condition (5.21) is satisfied. Hence, we proved

that u ¢ W5 ((Q N Byys(gh)) x (0, T)).
Thus, the smoothness of strong solutions of problem (2.1)-(2.3) may be broken near points of the
set K.

6. Smoothness of Strong Solutions at Boundaries between Neighboring Cylindrical
Subdomains

In this section, we use the notation introduced in the proof of Lemma 5.3.
For simplicity, we assume that y' = 0 and

Qp1 N Bys(0) = {x eR™: |z| <46, x, < 0},
OQp1 N Bas(0) = {z € R™ : || < 48, z, = 0}.
Introduce the sets 'yg; = g % (0, T), where vy = 0Qq N Bos(z).
By virtue of Lemma 5.4, the strong solution u of problem (2.1)-(2.3) satisfies Eq. (2.1) a.e. in

(Qq \ K¢) x (0, T). Multiply both sides of (2.1) by a function v € C°°(Qr) such that supp v C
U Bas(2P') x [0, T) (I =1, ..., Jo) and integrate over the regions Q4 N Bas(z""). Then, summing with
l
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respect to s = p, ¢ and integrating by parts, we have

0 Bys(xPt) wi=l

T
n
— /Z(RNJQ’U,Q;]‘W; — Rn]Q“:@Mg}) dt :/
0o J=1 0

Since u is a generalized solution of problem (2.1)—(2.3) and v is selected arbitrarily, it follows that

T n n
/ / —utr + Y (RijQua,)0x, + Y (Riqua,)0 + (ROQu)u} dz dt
=1

fodxdt + / ©U|=o dz.
Bag(zP) Bas(zP)

n

Z(RWQU%.\W; — anquj\7£> =0 (I=1,...,.Jo). (6.1)
j=1

Note that either N(p) # Jy or N(q) # Jo. For definiteness, we assume that N(q) # Jp. Due to
Corollary 5.1, the function u satisfies Condition (2.2) in 7% for [ > Jy, i.e., we have

mmwﬂwwwzzNJMWWmmm:OU:%+LWN@w:g@ (6.2)
1 Y at

n
]:
Let Ajs denote the matrices obtained from the matrices R, s by deleting the latter N(s) — Jy rows.
Let Bj, denote the matrices obtained from the matrices R, ;s by deleting the initial Jy rows. Introduce

the following vector-functions:
%:(USPSU) ‘,yTl; st: (USPsuwj>"YTl (jzl, ,n)

Let L' (L) denote the matrix (the vector) obtained from the matrix L;s (the vector Ls) by deleting
the latter N(s) — Jo columns (elements). Let L7, (L{) denote the matrix (the vector) obtained from
the matrix L;s (the vector L) by deleting the initial Jy columns (elements).

Also, introduce the square matrices o® of order (N (s) — Jy) such that their elements are defined as
follows:

of =o(zx+ hp7J()+i>}$E,ypla ok =—o(z+ hq,JOH)‘gC@ql (t=1,..., N(s) = Jo),
and of; = 0 for ¢ # j.
Then Conditions (6.1) and (6.2) have the following form:
n
> (ApWip — AjgWig) = 0, (6.3)
j=1
n
ZBjsts +0°V/ =0 (s=p,q). (6.4)
j=1
Introduce the vector-function
W/ _ W/
7 = ( " "") . (6.5)
W,
By construction, we have
AL, = AL (j=1,...,n). (6.6)
Since u € Wy °(Qr), it follows that V, = V. By virtue of Theorem 5.1, we have
W, =Wl (=1...,n—1). (6.7)
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Using (6.6) and (6.7), we can write (6.3) and (6.4) as follows:

AnpZ = A3 Wiy = Z (A;‘IpWJ{; - A;'IGWJ{;) g (6.8)
j<n
BupZ = =B, Wy = Z (BipWip + BjpWip) — oV, (6.9)
j<n
BigWig = —BgWng — Z (BjgWijq + BjgWiq) — oV (6.10)
i<n

The strong ellipticity of the operator Ag implies that R, is positive definite. Therefore, there exists
' Then (6.10) implies that

an inverse matrix (Bj,)
Wy, =—(By )71 By Wy — Z <(B” )71 B Wi, + (B )71 B W”) — (B, )71 oV, (6.11)
ng ng ng"Vng ng ja"" ja ng ja"" ja ng - :
j<n
Using (6.11) in (6.8), we get

Ao =~ (L) Blyi¥i, = A0 (B) ™ o)
-1 —1
3 (AW AL (BB W, (AL, (BT B - AL (612)

i<n
Introduce the following vector-functions H? of dimension m; (j =1, ..., n):
/
ij
"
qu

H' =W, . (mn=Jo).

ng»

Introduce the following vector-function of dimension N(p) — N(q) — 2Jy:
Vl/
P
q

-1 -1
T _ A;/Lq (qu) B;'q A;'Ip A%q (ng) B;'/q o A;'/q
! " ’
ij ij o

We will also need the block matrices

&= ((B1,) "B, O (Bl) ' BY) (G=1....on—1),

A, (B) " B

n n -1
T = , . G"=(Bn) By
B,
O Al (Bl) o
Sy = o (i) . s=(0 (By)"0").

oP O
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Then Eqgs. (6.8)—(6.10) can be written as follows:

RpnpZ ==Y TIH/ - 8V, (6.13)
j=1
Wi, ==Y G/HI - SV. (6.14)
j=1

Let Agk and Ay (2') denote the matrices obtained from Ry, by replacing the Ith column by the kth
columns of the matrices 77 and S, respectively. Here 2’ = (21, ..., Tn_1).
Theorem 6.1. Let 1 <[ < Jy. Then the strong solution u of problem (2.1)—(2.3) belongs to the space
W3 (Bs(y') x (0, T)) for all f € Ly(Qr) and ¢ € [D(AR), La(Q)], j5 if and only if
detA, =0  (G=1,....n k=1,...,my), (6.15)
det Ay (z') =0  (k=1,..., N(p) + N(q) — 2Jo; |2'] < 9). (6.16)
Proof. Introduce the matrices
A = ||det Al /det Rupp|| (i=1, ..., N(p); k=1, ..., my);
A = ||det A/ det Rynp|| (i=1,..., N(p); k=1, ..., N(p) + N(q) — 2Jo).
Then it follows from (6.13) that

Z=-> NH —AV. (6.17)
j=1
I (Sufficiency). Suppose that Conditions (6.15) and (6.16) are satisfied. Due to Theorem 5.1,
ue Wit ((Qq N Bs(az®)) x (0, T)) (s = p, q), while it follows from (6.15)-(6.17) that

ux"‘ﬂz = uggn|x5 (l=1,...,Jy).

This implies that u € W' (Bs(z®) x (0, T)).
IT (Necessity). Let

t(U;lvs)(ar) (x eUQq, t€(0,T), s :p,q> ,
u(z, t) = : (6.18)

0 (.’L‘EQ\LJlel,tE(O, T)75:P7Q>>

where vs(z) = (As(2)xy + Bs(a!))n(zy) for @ = (2/, 2,) € Qs1, As(a’) and By(z') are smooth
vector-functions of order N(s), vanishing for |z/| > 20/3, n(z,) € C®(=46, ), and n(x,) = 1 for
xn € (—0/3, 6/3). Then, we obviously have
Vi = By(2'), Wjs = (Bs(x’))z_ (5 <n), Wps= Ag(a').
J

Note that u € W} (Q7) if and only if Bj, = B,. In the sequel, we assume that ¢(z) = 0.

(a) Let det AY. £ 0 (b <n,1 <r < N(p)+N(q)—Jo). Let e be a vector of dimension N (p)+N(g)—Jo
defined as follows: ey = dg,-, where dg, is the Kronecker symbol. Let

n—1
Ap ==Y (m€(@)), Al = (w€(@) AR, By = (wm&(a))eh
j=1
n—1
A= 0. 4] = = 3 (ko) G = (me)Sh. By = (mé(a!))e
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Here h is the vector of dimension N(p) + N(q) — 2J0 with coordinates hy = ek, j,, €' is the vector of
dimension N(p) with coordinates e} = ek, and e? is the vector of dimension N(q) with coordinates

(e1,... s €J0y EN(p)+15 - - s EN(p)+N(q)—J Jo); Al and GJ are the rth columns of the matrices AJ and G7

respectively; € € C®(R* 1), £(2') = 1 for 2/ € 41 N Bys/3(0) and £(z') = 0 for ' & vp1 N Bag/3(0).
By construction, u € W3 (Qr) N W22’1(Q31 x (0, 7)) (I =1,...,N(s), s = p, q) and supp u C

Bus(z%%) x [0, T]. Tt is easy to check that conditions (6.14) and (6.17) are satisfied. This means that

there exists f € Lao(Qr) such that u € W(AR) is a strong solution of problem (2.1)—(2.3). However,
we have

ul‘n‘ T = (Wnp)l # (qu)l = uxn
Tl

Therefore, u ¢ Wy (Bs(z?) x (0, T)).
(b) Let det A} #0 (1 <r < Jy) and
AL = (e— (A7) )E(a"), Ay = —(A})"E(a"), B, = 0;
A; = 6{(1"), Ag = _G:}{(l‘/)? By =0.

T -
Yqu

Here e is the vector of dimension Jy with coordinates e = 0.
As in case (a), there exists f € La(Qr) such that u € W(AR) is a strong solution of problem (2.1)-
(2.3). However, we have

ul‘n"ygl = (Wnp)l # (qu)l = uﬂ?n‘,yg;'

Hence, u ¢ Wy (Bs(xP') x (0, T)).
(c) Let det Aj(2') #0 (1 <r < N(p) + N(q) — 2.Jp) for o' = z{. Without loss of generality, we
assume that z{, = 0. Let

n—1
Ap - Z A?]0+r€$j (x/) - AT§($/)7 B; = 07 B;g = 615(1'/);
j=1
A =0, A = ZGJW@;] S,£(), B, =0, B! = ().

Here e! is the vector of dimension N(p) — Jy with coordinates e,lC = 84y, €2 is the vector of dimension
N(q) — Jo with coordinates e? = &, N(p)—Jo,r» While A, and S, are the rth columns of the matrices A
and S respectively.

As in cases (a) and (b), there exists f € Lo(Qr) such that u € W(AR) is a strong solution of
problem (2.1)—(2.3). However, we have

Hence, u ¢ Wy (Bs(xP') x (0, T)). O
Example 6.1. Consider the problem
ut(xv t) - Z (Rqui((L‘, t))xz = f(xv t) ((.I, t) S QT)? (619)
i=1,2
Z Roug, cos(v, z;) +ou=0 ((z, t) € 'p), (6.20)
i=1,2
uli=0 = ¢(z) (z € Q), (6.21)

where @ = (0, 2)x(0, 1), Rv(z) = v(z1, x2)+yv(r1+1, x2)+yv(z1—1, 22),0 < || < 1, Rg = PoRIg,
f € Ly(Qr), and ¢ € [D(AR), L2(@)]y /5 -
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Represent the boundary-value conditions (6.20) as follows:

— Uy, (040, z2, t) —yuy, (1 +0, z2, t) + 0|z,=0
=uy, (2—0, 22, ) +yuy, (1 =0, 22, t) +0|p=2=0 (0<z2 <1), (6.22)
- ul‘z(:[;la 07 t) — YUg, (.’131 + 17 07 t) + U|x2:0
= Ug, (1, 1, t) Fyugy(z1+1, 1, t) +0ls=1 =0 (0<x1 <1), (6.23)
— Uy, (z1, 0, ) — YUz, (x1 — 1, 0, ) + 0|zy=0
= Ug, (1, 1, t) Fyug,(x1 — 1, 1, t) + 0lz=1 =0 (1 <1 <2). (6.24)
The partition R consists of the following (single) class of subdomains: Qi1 = (0, 1) x (0, 1),

Q12 = (1, 2) x (0, 1). The set K consists of the following six points: (s—1, m) (s=1, 2, 3;m =0, 1).
Since the matrix

1 ~ 0 0
|y 1 0 0
Bi=1¢ 01 ~y
0 0 v 1
is positive definite, it follows that the operator Ag corresponding to problem (6.19)—(6.21) is strongly

elliptic.
We have Q21 = Q12 and Q22 = Qq1. The matrices Ri11, Riie, T, T2, A}l, A%k (k=1, 2, 3), A1,
and A9 introduced above have the forms

_ _ (1~ 1 _ 2 2 (0 0 0
3111—3112—<7 1>’T_<’Y , T9 = 00 0/
2
(7 2 _ (0N 5 _( 0 v\ i _ [(—0lu=0 7
A11_<,y 1>7A1k_<0 1>’A11_<U|a¢12 1>,A12—< 0 1)

Obviously, we have det A}, = det A%k = 0. The smoothness-preserving conditions of Theorem 6.1

are formulated as follows: det Aj; = det Ay = 0, i.e., 0|zy=0 = 0lz;=2 = 0 for 0 < x5 < 1. We assume
that those conditions are satisfied, while the functions o|,,—¢ and o|,,—1 are sufficiently smooth and
their supports are subsets of (0, 2). Then Theorem 6.1 implies that

uxl |:I:1:1—O = uIl ‘11:14'_0 (625)

Thus, u € W3 (Qr) N W22’1((Q \ K¢) x (0, T)). Let us prove that u € W22’1(QT). Since u belongs to
ng((Q\ﬁ) x (0, T)) and satisfies condition (6.1), it follows that Rou,, € Wa((Q \ K¢) x (0, T)).
condition (6.1) and Lemma 2.1 imply that (Rguy,)s; = RQuaz, (i =1, 2), ie., Agu = —RgAu in
(Q\ K¢) x (0, T). Tt follows from (6.22) and (6.25) that

Uz ‘33120 = Tl ‘:plzl = Uay ‘m1:2' (626)
Make the change of variables: zj =z — 1 in (6.24) and z{ = 1 + 1 in (6.23) (note that |y| < 1). It
is easy to see that conditions (6.23) and (6.24) are equivalent to the following conditions:

Olzy=0(71) — Y0|zy=0(z1 + 1)

e (0<x <1),
sy = (6.27)
0lzy=0(21) — Y0|zy=0(z1 — 1) ,
2 1_722 1<z <2);
 Olap=1(z1) — V0[zy=1(z1 + 1) (0<z1 <1)
1—~2 ’
u.Z’Q IQZ]. = O" (6.28)
=1(21) = Y0 z=1(z1 — 1)
- 2 1_7”2”2 1<z <2).
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Since the matrix Ri1; is nondegenerate, it follows that the operator Rg: L2(Q) — L2(Q) has a
bounded inverse operator Rc_gl.

Thus, problem (6.19)—(6.21) is equivalent to the problem of finding a generalized solution u €
W(Qr) N W (Q\ K?) x (0, T)) of the equation

up — Au= (RS (f —w))(x, t) +ue  ((w, 1) € Qr) (6.29)

with nonlocal boundary-value conditions (6.26)—(6.28).

The smoothness theorem for generalized solutions of the third mixed problem for parabolic equations
(see [7, Ch. VI, Sec. 2, Theorem 4]) implies that u € W22’1(Qp x (0,7)) (0 < p < 1/4), where
Q" = (p, 2—p) x (0, 1). Therefore, the function w = &(x1)u(z; + 1, z2) + &{(z1 — 2)u(rr — 1, x2)
belongs to W' (Qr), where £ € C®(—1/4, 1/4) and &(x1) = 1 for 1 € (—1/8, 1/8). This yields that
v —Av € La(Q), vy, |$1:0 = Uy, ‘x1:2 =0, vy, ‘xQZO = (Ugs +’}/wcg2>}$2:0, Uy ‘m:l = (Ug, +7wx2)|$2:17
and v|i—¢ = ¢ + w|i=0, where v = u + yw.

It follows from the smoothness of generalized solutions of the third mixed problem for parabolic
equations in cylindrical domains that v € Wgz’l(QT), ie,ue W;’l(QT).
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