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ON THE CHARACTERISTIC LIE ALGEBRAS
FOR EQUATIONS uxy = f(u, ux)

A. V. Zhiber and R. D. Murtazina UDC 517.957

Abstract. A new approach to classification of integrable nonlinear equations is proposed. The method is
based on description of the structure of the characteristic algebra. A basis of the characteristic algebra is
constructed for the sinh-Gordon equation.
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1. Introduction

The symmetry method is one of the ways to classify the integrable equations. This approach is very
effective for the evolutionary equations. However, the symmetry classification of hyperbolic equations
encounters serious technical difficulties even in the simplest situations (e.g., see [7,8]). Therefore effective
study of integrability for hyperbolic type systems requires another approach.

In the present paper, we solve the classification problem using the method based on the analysis of
structure of the characteristic Lie algebras. A notion of the characteristic Lie algebra has been introduced
in the paper [4] for hyperbolic type systems of the form

ui
xy = f i(u1, u2, . . . , un), i = 1, 2, . . . , n.

In [4] it is shown that the above system is exactly integrable in quadratures if the algebra is finite
dimensional, and the system is integrable by inverse scattering if the algebra admits a finite dimensional
representation.

An important classification result was obtained in the paper [5] for the exponential systems

ui
xy = exp(ai1u

1 + . . . + ainun), i = 1, 2, . . . , n. (1)

It was proved that the characteristic Lie algebra for system (1) is finite dimensional if and only if A = (aij)
is the Cartan matrix of a simple Lie algebra. Also, we note the papers [1,2,6], where the integrability was
analyzed using the characteristic Lie algebras and the method was applied to hyperbolic systems of form

ui
xy = ci

jku
juk

x, i = 1, 2, . . . , n. (2)

In particular, it was shown that system (2) possesses two characteristic algebras rather than one, and
these algebras are “glued” to a unique Lie algebra using the zero curvature relations.

Recently the notion of characteristic Lie algebras has also been defined for discrete hyperbolic equa-
tions (see [3]).
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In this paper we consider the following nonlinear equations,

uxy = f(u, ux). (3)

We show that a list of integrable equations can be obtained using the characteristic Lie algebras.
Consider the following set of independent variables u, u1, u1, u2, u2, . . ., un, un, . . ., where u1 = ux,

u1 = uy, u2 = uxx, u2 = uyy, . . .. Let us define the x-characteristic Lie algebra A for equation (3). To
this end, we formulate the definition of a symmetry.

Definition 1. A function F = F (u, u1, u1, u2, u2, . . . , un, un) is a symmetry of equation (3) if F satisfies
the determining relation

DDF =
∂f

∂u1
DF +

∂f

∂u
F,

where D (respectively, D) is the operator of total derivative with respect to x (respectively, y) by virtue
of Eq. (3). For example, we have

D =
∞∑

k=0

uk+1
∂

∂uk
+

∞∑

k=1

Dk−1(f)
∂

∂uk
. (4)

It is known (see [8]) that any symmetry F of equation (3) can be represented in the form

F = ϕ(u1, u2, . . . , un) + ϕ(u, u1, u2, . . . , un),

where ϕ and ϕ are two symmetries of equation (3).
We denote by � the set of local analytic functions that depend on a finite number of variables from

the set u, u1, u2, . . ., un, . . ., that is,

� = 〈ϕ = ϕ(u, u1, u2, . . . , un), n = 1, 2, . . .〉.
The operator D (see Eq. (4)) restricted onto this class of functions acts by the rule

Dϕ = u1
∂ϕ

∂u
+

∞∑

k=1

Dk−1(f(u))
∂ϕ

∂uk
.

Further, let X1 and X2 be the vector fields defined through

X1 =
∞∑

k=1

Dk−1(f)
∂

∂uk
, X2 =

∂

∂u
. (5)

We note that
D = u1X2 + X1. (6)

The x-characteristic Lie algebra for equation (3) is the algebra A generated by the elements X1

and X2.
Let Ln be the linear space of commutators of length n − 1, n = 2, 3, . . .. For example, the space L2

is the linear span of the vector fields X1 and X2. The space L3 is generated by the element [X1, X2], etc.

Then we can represent the characteristic Lie algebra A in the form A =
∞⋃
i=2

Li. The y-characteristic Lie

algebra A for equation (3) is defined similarly, A =
∞⋃
i=2

Li.

In this paper we analyze the dimensions of the spaces Ln and Lm with n, m = 3, 4, 5, 6. We show that
the right-hand sides of equations (3) are completely determined if the growth of the dimensions is not
greater than one. The list of equations we obtain coincides with the known list of integrable equations.
We obtain a complete description of the characteristic Lie algebra for the sinh-Gordon equation, see
Theorem 1 in Sec. 3.
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2. The Klein–Gordon Equations

In this section, we consider the following equations:

uxy = f(u). (7)

First we recall the result of the paper [7]. It was shown that nonlinear equation (7) which possesses
higher symmetries can be reduced to one of the following equations:

uxy = eu, (8)

uxy = sinu, (9)

uxy = eu + e−2u. (10)

The total derivative operator D acts on the set of functions � by the rule

D =
∞∑

i=0

ui+1
∂

∂ui
.

The following statement is valid.
Lemma 1. Let Z be the vector field

Z = α1
∂

∂u1
+ α2

∂

∂u2
+ α3

∂

∂u3
+ . . . , αi = αi(u, u1, u2, . . .), i = 1, 2, 3, . . . .

Then [D, Z] = 0 if and only if Z = 0.

Proof. We have

[D, Z] =
(

D(α1)
∂

∂u1
+ D(α2)

∂

∂u2
+ D(α3)

∂

∂u3
+ . . .

)
−

(
α1

∂

∂u
+ α2

∂

∂u1
+ α3

∂

∂u2
+ . . .

)
= 0.

Hence we conclude that

α1 = 0, D(α1) − α2 = 0, D(α2) − α3 = 0, . . .

and thus αi = 0 for i = 1, 2, 3, . . ..

Further, since D and D commute and in view of [D, D] = fX2 + u1[D, X2] + [D, X1] we arrive at

[D, X1] = −fX2, [D, X2] = 0. (11)

We note that the operators X1 and X2 are linearly independent if f(u) �= 0. Let X3 = [X2, X1]. Using
the Jacobi identity and Eq. (11), we obtain

[D, X3] = −fuX2. (12)

By definition, we set

Ln =
n⋃

i=2

Li, n = 3, 4, . . . .

Lemma 2. The dimension of the linear space L3 is equal to 2 if and only if

X3 − cX1 = 0,

where c = const. Thus the right-hand side of Eq. (7) acquires the form

f(u) = αecu,

where α = const �= 0.
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Proof. Assume that dimL3 = 2. Recall that

X3 = fu
∂

∂u1
+ fuuu1

∂

∂u2
+ . . . ,

and hence X3 = c(u)X1. Lemma 1 and formulas (11)–(12) yield

[D, X3 − cX1] = −fuX2 − D(c)X1 + cfX2 = 0.

The above relation is equivalent to the following system of the equations:

fu − cf = 0, D(c) = 0.

Hence c = const and f = αecu.

This argument shows that the nonlinear equation (7) with the two-dimentional characteristic Lie
algebra A is reduced to the Liouville equation (8).

Assume that X4 = [X2, X3] and X5 = [X1, X3]. Using the Jacobi identity and (11), (12) we obtain

[D, X4] = −fuuX2, [D, X5] = fuX3 − fX4. (13)

Further on, we assume that the dimension of the linear space L3 is equal to 3. We claim that the
cases dimL4 = 3 cannot be realized. Indeed, if dimL4 = 3, then

X4 = c1X1 + c2X3 and X5 = c1X1 + c2X3, (14)

where ci = ci(u, u1, u2, . . .) and ci = ci(u, u1, u2, . . .), i = 1, 2. By lemma 1 and formulas (11)–(13), the
first relation (14) is equivalent to

D(c1) = 0, c1f − fuu + c2fu = 0, D(c2) = 0.

Therefore c1, c2 = const and
fuu − c2fu − c1f = 0. (15)

The second relation (14) is equivalent to the following system of equations:

D(c1) + c1f = 0, c1f + c2fu = 0, D(c2) + c2f − fu = 0.

The third equation implies that c2 = const, and hence fu = c2f . Thus the reasonings are reduced to the
case dimL3 = 2, which has already been considered.

Now assume that dimL4 = 4. Using Lemma 1 and formulas (11)–(13), we obtain the following two
cases. First we have

X4 = c1X1 + c2X3 + c3X5

and therefore,

D(c1) − c1c3f = 0, fuu − c1f − c2fu = 0, D(c2) + c3fu − c2c3f = 0. (16)

Secondly, we have
X5 = c1X1 + c2X3 + c3X4;

then we obtain

D(c1) = 0, c1f + c2fu + c3fuu = 0, D(c2) − fu = 0, D(c3) + f = 0. (17)

The first and the third equations in system (16) imply that c1, c2 = const; indeed, otherwise we have fu =
c2f and thence dimL3 = 2. We note also that the function f satisfies the equation fuu − c2fu − c1f = 0.
Finally, if system (17) is valid, then f = 0.

Now we formulate the assertion.
Lemma 3. The dimension of the space L4 generated by the operators X1, X2, X3, X4, and X5 is equal
to 4 if and only if the function f satisfies the equation

fuu − pfu − qf = 0, (18)

where p, q = const and fu �= βf . Then we also have X4 = pX3 + qX1.
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In what follows we assume that the assumptions of Lemma 3 hold. Let us introduce the operators of
length 4: we set

X6 = [X1, X5] and X7 = [X2, X5].
Using the Jacobi identity, it is easily shown that X7 = pX5. Therefore dimL5 ≤ 5.
Remark 1. If X7 = 0, then p = 0 and equality (18) acquires the form

fuu − qf = 0.

Then equation (7) is reduced to the sinh-Gordon equation (9).
Using formulas (11)–(13), we conclude that

[D, X6] = (fu − 2pf)X5. (19)

It can easily be verified that dimL5 = 5.
Now we introduce the operators of length 5: we set

X8 = [X3, X5], X9 = [X1, X6], X10 = [X2, X6].

As X8 = −pX6 + X10, dimL6 ≤ 7.
Furthermore, it follows easily that formulas (12)–(14) and (19) imply

[D, X9] = −fX10 + (fu − 2pf)X6, [D, X10] = (q − 2p2)fX5. (20)

If dimL6 = 5, we have the following system of relations:

X9 = c1X1 + c2X3 + c3X5 + c4X6, X10 = c1X1 + c2X3 + c3X5 + c4X6.

By Lemma 1 and formulas (11)–(13), (19), (20), the first relation is equivalent to

D(c1) − qc3f = 0,

c1f + c2fu = 0,

D(c3) + c3fu − pc3f = 0,

D(c3) + c4fu − 2pc4f = 0,

D(c4) − fu + 2pf = 0.

The fifth equation implies that c4 = 0 fu = 2pf . Then X3 = 2pX1, and hence dimL3 = 2. As dimL3 = 3,
the assumption dimL6 = 5 does not hold.
Lemma 4. The dimension of the space L6 is equal to 6 if and only if

X10 = 0.

Proof. Assume that dimL6 = 6. Then we obtain two possible cases: First we have

X9 = c1X1 + c2X3 + c3X5 + c4X6 + c5X10

and therefore,
D(c1) − qc3f = 0, c1f + c2fu = 0, D(c2) + c3fu − pc3f = 0,

D(c3) + c4fu − 2pc4f + c5fuu − c5pfu − 2c5p
2f = 0, D(c4) − fu + 2pf = 0, D(c5) + f = 0.

(21)

Secondly, we have
X10 = c1X1 + c2X3 + c3X5 + c4X6 + c5X9

and hence,
D(c1) − c3qf − c1c5f = 0, c1f + c2fu = 0, D(c2) + c3fu − c3pf − c2c5f = 0,

D(c3) − (q − 2p2)f + c4(fu − 2pf) − c3c5f = 0, D(c4) − c4c5f = 0, D(c5) − c2
5f = 0.

(22)

Consider the last equation in system (21); we see that f = 0. Let us rewrite system (22) in the form

c3q = 0, c1f + c2fu = 0, c3(fu − pf) = 0, −(q − 2p2)f + c4(fu − 2pf) = 0,

3116



where c1, c2, c3, c4 = const and c5=0.
If c3 �= 0, then the function f satisfies the equation fu = pf , and hence dimL2 = 2. If c3 = 0, then

c4 = 0 (indeed, we have dimL2 = 2 otherwise) and from the fourth equation it follows that q = 2p2.
According to Eq. (21), we have X10 = 0. Thus, the necessity is proved.

Now we prove the sufficiency. Let X10 = 0. Since X8 = −pX6, we obtain dimL6 ≤ 6. If dimL6 = 5,
then X9 is a linear combination of the operators X1, X3, X5, and X6, but we have shown above that
dimL3 = 2 in this case.

Assume that the condition q = 2p2 in Eq. (18) holds; then Eq. (7) can be transformed to the Tsitseika
equation (10).

3. Characteristic Algebra for the sinh-Gordon Equation

In this section, we obtain the description of the x-characteristic Lie algebra A for the equation

uxy = eu + e−u. (23)

Let us introduce the multiple commutators

Xi1...in = adi1 . . . adin−1 Xin , adj Y = [Xj , Y ].

Then the linear space Ln is the linear span of the elements Xi1...in , where ik = 1, 2, k = 1, . . . , n.
Consider the elements

Yn = X1...121, Zn = X21...121.

Theorem 1. Consider the sinh-Gordon equation (23); we have

dim Ln =
{ 2 if n = 2k,

1 if n = 2k − 1,
k = 3, 4, . . . . (24)

The linear space L2k−1 is generated by the vector field X1...121, and the space L2k is generated by the vector
fields X1...121 and X21...121.

Proof. Recall that the elements X1, X2, and X3 were defined in Sec. 2. For convenience, set X4 = [X1, X3].
Then the space L5 is the linear span of the elements [X1, X4] and [X2, X4]. Using the Jacobi identity and
the relations

[D, X1] = −(eu + e−u)X2, [D, X2] = 0, [D, X3] = −(eu − e−u)X2,

[D, X4] = −(eu + e−u)X1 + (eu − e−u)X3,
(25)

we obtain
[D, [X2, X4]] = 0.

Continuing this line of reasoning and using Lemma 1, we obtain [X2, X4] = 0. Hence L5 is generated by
the element [X1, X4] = X1121.

We set X5 = [X1, X4]. Then we have [D, X5] = (eu + e−u)X4. The space L6 is the linear span of the
elements [X1, X5], [X2, X5], and [X3, X4]. Using the Jacobi identity, we obtain

[X3, X4] = [X2, X5].

This implies that L6 is generated by the elements [X1, X5] = X11121 and [X2, X5] = X21121.
Further let [X1, X5] = X6. Then we have

[D, X6] = −(eu − e−u)X5 + (eu + e−u)[X2, X5], [D, X21121] = (eu + e−u)X4.

The linear span L7 is generated by the elements [X1, X6], [X2, X6], [X3, X5], [X1, X21121], and
[X2, X21121]. Using the Jacobi identity, we deduce that

[X3, X5] = −[X1, X21121] + [X2, X6].

It is easily shown that
[D, [X2, X21121]] = (eu − e−u)X4 = [D, X5].
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Consequently, [X2, X21121] = X5. We note also that

[D, [X1, X21121]] = −(eu + e−u)[X2, X21121] + (eu + e−u)X5,

[D, [X2, X6]] = −(eu + e−u)[X2, X21121] + (eu + e−u)X5,

whence we have [X1, X21121] = [X2, X6] and [X2, X6] = 0. This proves that L7 is generated by the element
[X1, X6] = X111121.

Set Xi+1 = [X1, Xi]; then we see that

[D, Xi+1] = (eu − e−u)Xi − (eu + e−u)[X2, Xi], (26)

[D, [X2, [X2, Xi]]] = (eu − e−u)Xi−1 + (eu + e−u)[X2, Xi−1], (27)

[Xj , Xi−j+3] = 0, j = 3, 4, . . . , (28)

[Xj , X21...121] = 0, j = 3, 4, . . . . (29)

Note that
[D, [X2, Xi+1]] = −(eu + e−u)[X2, [X2, Xi]] + (eu + e−u)Xi,

[D, [X1, [X2, Xi]]] = −(eu + e−u)[X2, [X2, Xi]] + (eu + e−u)Xi.
(30)

This shows that

[X2, Xi+1] = [X1, [X2, Xi]]. (31)

Assume that L2k−1 is generated by the element [X1, X2k−2]. Note that

[X2, X2k−2] = 0.

Then the linear span L2k is generated by the elements [X1, X2k−1], [X2, X2k−1], [X3, X2k−2], . . ., [Xj , X21...121].
Using formulas (28) and (29), we see that that all these elements except the first two are equal to zero.
Thence L2k is generated by the elements [X1, X2k−1], [X2, X2k−1], and

[D, [X2, X2k−1]] = −(eu + e−u)[X2, [X2, X2k−2]] + (eu + e−u)X2k−2 = (eu + e−u)X2k−2.

Now assume that L2k is generated by the elements [X1, X2k−1], [X2, X2k−1], then L2k+1 is the
linear span of the elements [X1, X2k], [X2, X2k], [X1, [X2, X2k−1]], [X2, [X2, X2k−1]], [X3, X2k−1], . . .,
[Xj , X21...121]. Relations (28) and (29) imply that

[X3, X2k−1] = [X4, X2k−2] = . . . = [Xj , X21...121] = 0.

From Eqs. (26), (27) we obtain the equalities

[D, [X2, [X2, X2k−1]]] = (eu − e−u)X2k−2 + (eu + e−u)[X2, X2k−2] = [D, X2k−1].

We have proved that [X2, [X2, X2k−1]] = X2k−1.
Now, relations (30) and (31) acquire the form

[X2, X2k] = [X1, [X2, X2k−1]] = −(eu + e−u)X2k−1 + (eu + e−u)X2k−1 = 0.

Hence L2k+1 is generated by the element [X1, X2k]. We also see that equalities (24) hold. This is proved
by induction.

We have proved that the basis of the x-characteristic Lie algebra A consists of the elements X1, X2,
X21, Y3, Y4, Y5, Z5, Y6, Y7, Z7, . . ., Y2n, Y2n+1, Z2n+1, . . ..

Finally, we note that in the paper [6] the sinh-Gordon equation is represented as a quadratic system.
Another basis of the characteristic algebra is found in that paper.

3118



4. The Equations uxy = f(u, ux)

The x-characteristic Lie algebra A for equation (3) is generated by the vector fields

X1 =
∞∑

i=1

Di−1(f)
∂

∂ui
and X2 =

∂

∂u
.

The y-characteristic Lie algebra A is generated by the fields

Y1 = u1
∂

∂u
+

∞∑

i=1

D
i−1(f)

∂

∂ui
and Y2 =

∂

∂u1
.

Let us recall that

A =
∞⋃

i=2

Li, A =
∞⋃

i=2

Li, Ln =
n⋃

i=2

Li, Ln =
n⋃

i=2

Li, n = 3, 4, . . . ,

where Ln (respectively, Ln) is the linear span of the vector fields Xi1i2...in (respectively, Yi1i2...in); see
Sec. 3.

The classification of equations (3) is based on the following lemma.
Lemma 5. Let

X =
∞∑

i=1

αi
∂

∂ui
, αi = αi(u, u1, u1, u2, . . . , uni), i = 1, 2, . . . ,

Y =
∞∑

i=1

αi
∂

∂ui
, αi = αi(u, u1, u1, u2, . . . , uni), i = 1, 2, . . . .

Then [D, X] = 0 and [D, Y ] = 0 if and only if X = 0 and Y = 0, respectively.
The analysis of the linear spaces Ln, n = 3, 4 provides the following result.
dimL3 = 2: Then equation (3) has the form

uxy = uxR(u). (32)

dimL4 = 3: Then three cases are possible; we have either

uxy = R(ux), R′ − ux

R
= λ, λ = const, (33)

or
uxy = euR(ux), RR′ − ux = 0, (34)

or
uxy = s(u)ux + B, B = const �= 0. (35)

dimL4 = 4: Then we have either

uxy = s(u)ux + B(u), (36)

or
uxy = s(u)R(ux), R′ − α

ux

R
= λ, λ = const, (37)

or
uxy = euR(ux), (38)

where the function R satisfies the system

c′1R + 2c1R
′ = λuxc2

1R
2, c1(1 − λR)(uxR′ − R) + R′′ = 0.

Under the same assumption we may have also either

uxy = euR(ux), (39)
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where the function R satisfies the equations

R′′ + c3λ(R − uxR′) = 0, c3(R′ − c3uxλR) + c′3R = 0,

or, finally,
uxy = R(ux). (40)

The equations uxy = euR(ux) can be rewritten as

υy = eu, ux = ϕ(υ).

This equation is reduced to
υxy = υxϕ(υ). (41)

The problem of integration of equations (32)–(34) and (38)–(40) is reduced to integration of the
ordinary differential equations; therefore these cases will not be considered. Now we analyze equations (36)
and (37).

Recall that the linear space L4 is generated by the operators

Y1, Y2, Y3 = [Y2, Y1], Y4 = [Y2, Y3], and Y5 = [Y1, Y3].

We have Y4 = 0 for equation (36), and for equation (37) we have

Y4 =
α

R2(u1)
(Y1 − u1Y3). (42)

Further, let Y6 = [Y2, Y5], Y7 = [Y1, Y5], Y8 = [Y2, Y7], Y9 = [Y1, Y7], and Y10 = [Y3, Y5]. We see that
Y6 = 0 and Y10 = Y8 for equation (36). Similarly, for equation (37) we have

Y6 = −αu1

R2
Y5, Y10 =

αu1

R2
Y7 + Y8.

Therefore dimL5 = 5, and dimL6 ≤ 7. Assume that dimL6 = 6; then equation (36) is reduced to
equation (32). Under the same assumption, for equation (37) we obtain

s′′ = 0 and α = 2λ2. (43)

If s = u, then equations (37) and (43) imply that

uxy = 3uR(ux), (ux − R)(R + 2ux)2 = 1. (44)

Equation (44) is related [9] to the equation υxy = eυ + e−2υ by the differential substitution

υ = −1
2

ln(ux − R).

Now we consider the x-characteristic Lie algebra and pay special attention to the linear spaces L3

and L4. Then we obtain the following assertion.
dimL3 = 2: Then equation (3) acquires the form

uxy = eαuR(ux), α = const . (45)

dimL4 = 3: Then we have
uxy = s(u)ux, (46)

where the function s satisfies the system

s′′ − c1s − c3s
′ = 0, c1s + c3s

′ = 0,

c′1 + c1s = 0, c′3 + c3s − s′ = 0, ci = consti, ci = ci(u), i = 1, 3.

dimL4 = 4: In this case, we have
uxy = s(u)ux

where the function s satisfies either the system

s′′ − c1s − c3s
′ = 0, c1 = αc5,

c′5 = c2
5s, c′3 + c5s

′ − c3c5s = 0, ci = ci(u), i = 1, 3, 5,
(47)
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or s satisfies the equations

s′′ + c1s + c3s
′ = 0, c′3 = s′,

c′5 = −s, c1 = const, c3 = c3(u), c5 = c5(u).
(48)

Under the same assumption dimL4 = 4 we may also have

uxy = s(u)R(ux), (49)

where the function s is such that

s′′ − c3s
′ − c1s = 0, c1, c3 = const . (50)

Equations (46)–(48) belong to the class defined by Eq. (41).
Let us consider equations(49) and (50) such that dimL4 = 4 and such that the function R(ux) is a

solution of the equation
R′ − ux

R
= β, β = const . (51)

Note that X4 = c1X1 + c3X3 and set

X6 = [X2, X5], X7 = [X1, X5], X8 = [X2, X7], X9 = [X1, X7], X10 = [X3, X5].

It is easily shown that X6 = c3X5 and X10 = −c3X7 + X8.
Assume that X4 = 0; then we have s(u) = u, and if X6 = 0, then we obtain s(u) = sin u.
We see that dimL5 = 5. The condition dimL6 = 6 for equations (49)–(51) is equivalent to s(u) = u.

Then we have also X8 = −X1 + uX3 + βX5.
If λ = 0 for the function s = sinu, then equations (49)–(51) are related to the equation υxy = sin υ

using the differential substitution υ = arcsinux + u. If s = u, then equations (49)–(51) are related to the
equation υxy = sin υ by using the differential substitution υ = arcsinux.

The structure of the x-characteristic Lie algebra for the equations

uxy = u
√

1 − u2
x and uxy = sinu

√
1 − u2

x (λ = 0)

is similar to the x-characteristic algebra of the sinh-Gordon equation (9), and the structure of the y-
characteristic algebra for equation (44) coincides with the structure of the characteristic algebra for the
Tsitseika equation (10).

We conclude that the list of integrable equations we have obtained coincides with the known list.
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