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RATIONAL-FRACTIONAL METHODS
FOR SOLVING STIFF SYSTEMS OF DIFFERENTIAL EQUATIONS

R. V. Slonevskii and R. R. Stolyarchuk UDC 517.91

Abstract. This paper proposes new numerical methods for solving stiff systems of first-order differential
equations not resolved with respect to the derivative. These methods are based on rational-fractional
approximations of the vector-valued function of solution of the system considered. The authors study
the stability of the constructed methods of arbitrary finite order of accuracy. Analysis of the results of
experimental studies of these methods by test examples of various types confirms their efficiency.

In many cases, modern numerical methods for solving the Cauchy problem for systems of differential
equations are based on the Taylor formula. The process of construction of numerical methods by using
these formulas consists in the choice of the method for approximating the derivative of the desired solution.
However, these so-called explicit methods have a number of deficiencies. In their implementation, there
arise certain computational difficulties, and they have a bounded stability region and cannot be applied
to solving stiff systems.

In this paper, we propose new numerical methods for the solution of stiff systems of first-order differen-
tial equations not resolved with respect to the derivative. These methods are based on rational-fractional
approximation of the vector-valued function of solution of the system considered.

We consider the Cauchy problem for the following system of differential equations not resolved with
respect to the derivative:

F (x, y, y′) = 0, y(x0) = y0, x0 ≤ x ≤ xk, (1)

where F is a smooth S-dimensional vector-valued function, x ∈ R, y ∈ R
S , and y′ ∈ R

S .
We assume that in a certain closed domain

D = {x0 ≤ x ≤ xk, ‖y‖D ≤ M1 < ∞, ‖y′‖D ≤ M2 < ∞},
‖y‖D = max

x
‖y(x)‖RS , ‖y′‖D = max

x
‖y′(x)‖RS ,

the function F (x, y, y′) is continuous and differentiable in all its arguments, the derivative Fy′ = ∂F
∂y′ exists

and is a nonsingular positive-definite matrix, and there exists the derivative
∥∥∂F

∂y

∥∥
D

≤ N1, which also is
a bounded positive-definite matrix.

Moreover, assume that
y′(x0) = y′0 (2)

is a known root of the equation F (x0, y0, y
′) = 0. Starting from the above conditions, we assume that

there exists a unique solution of problem (1) defined on the whole closed interval [x0, xk] of the range of x.
The reduction of the initial system (1) to the form resolved with respect to the derivative requires

the solution of a nonlinear system with respect to the variable y′; in most of the cases, this leads to large
computational expenditures at each step of integration.

Let us consider the methodology for constructing approximations of the solution (1), which uses
the rational-fractional structure of the approximations, allows us to construct an approximation of ar-
bitrary concordance order, and does not require the solution of the nonlinear system (1) with respect
to y′.
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Taking into account the obvious relation Fx+Fyy
′+Fy′y′′ = 0, where Fx = ∂F

∂x , we transform problem
(1), (2) to the form

y′′ = −F−1
y′ (Fyy

′ + Fx), y(x0) = y0, y′(x0) = y′0. (3)

We represent problem (3) in the form of the following extended first-order system:{
y′ = z, y(x0) = y0, z(x0) = y′0,

z′ = f(x, y, z),
(4)

where f(x, y, z) = −F−1
y′ (Fyz + Fx).

We construct rational-fractional approximations of problem (4) for yn+1 and zn+1 = y′n+1 separately.
It is known that rational-fractional approximations of solutions of stiff systems are described by the
expression

y
[p]
n+1 =

p∑
j=0

(−1)jCj
pa

j
phjJ j

nTp−j,n

(E − aphJn)p
, (5)

where Tk,n is the Taylor approximation of the solution of the kth order with respect to the grid node,
Ci

p is the binomial coefficient, ap is the parameter of approximation of the pth order of concordance, and
Jn is the Jacobi matrix of the initial system of equations defined by Jn = −F−1

y′
n

Fyn , which is common for
finding yn+1 and zn+1. In this case, an additional computational expenditure for finding the inverse matrix
F−1

y′
n

arises. For approximations of the first and second order, we can avoid this deficiency. In relation (5),
the division must be understood as the premultiplication of the inverse matrix of the denominator by the
vector of the numerator.

To reduce the computational expenditures, let us transform (5). Extract the summand yn from the
Taylor approximations Tk,n by introducing the notation

y
[p]
n+1 = yn + Fkn,

where

Fkn =
k∑

i=1

hi

i!
y(i)

n .

Then we can represent (5) in the form

y
[p]
n+1 = yn +

p−1∑
j=0

(−1)jCj
pa

j
phjJ j

nFp−j,n

(E − aphJn)p
. (6)

Expand the fractional part of this relation into the sum of elementary fraction in powers of the denomi-
nator:

y
[p]
n+1 = yn +

p∑
i=1

Ai

(E − aphJn)i
, (7)

where Ai are vectors of the expansion.
For the concordance of (5) with (4), find the vector coefficients Ai from the system of linear vector

equations
p−k∑
i=1

Ck
p−iAi = Ck

p Fp−k,n, k = 0, p − 1. (8)

The solution of system (8) has the form

Ai = Ci
p

i−1∑
j=0

(−1)jCj
i Fi−j,n, i = 1, p.
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Then (7) transforms to the form

y
[p]
n+1 = yn +

p∑
i=1

Ci
p

i−1∑
j=0

(−1)jCj
i Fi−j,n

(E − aphJn)i
. (9)

Let us consider first-order concordance rational-fractional transformations of the solution of the prob-
lem (3) for y

[1]
n+1 and z

[1]
n+1 separately, taking into account that Jn = −F−1

y′
n

Fyn :

y
[1]
n+1 = yn +

F1ny

E + a1hF−1
y′

n
Fyn

, z
[1]
n+1 = zn +

F1nz

E + a1hF−1
y′

n
Fyn

, (10)

where, according to (4), F1ny = hzn and F1nz = −hF−1
y′

n
(Fynzn + Fxn). Premultiplying the fractional part

of (10) by the matrix F ′
yn

, we obtain

y
[1]
n+1 = yn +

hFy′
n
zn

Fy′
n

+ a1hFyn

, z
[1]
n+1 = zn − h(Fynzn + Fxn)

Fy′
n

+ a1hFyn

. (11)

From the restriction imposed on the function F (x, y, y′), we conclude that the matrix Qn = Fy′
n

+ a1hFyn

of denominators (11) is positive-definite and invertible.
Consider the stability conditions for approximations (11) by examining the model system

y′ + AY = 0, y(0) = y0, y′(0) = −Ay0, (12)

where A is a constant positive-definite matrix, Fy = A, F ′
y = E, and Fx = 0. For this model system,

approximations (11) become

y
[1]
n+1 = yn +

hzn

E + a1hA
, z

[1]
n+1 = zn − hAzn

E + a1hA
. (13)

If z0 = −Ay0, then we obtain by induction z
[1]
n = −Ay

[1]
n . Then we can represent (13) in the form

y
[1]
n+1 =

(E + (a1 − 1)hA)yn

E + a1hA
, z

[1]
n+1 =

(E + (a1 − 1)hA)zn

E + a1hA
. (14)

Approximations (14) has the following common operator function:

D(hA) =
E + (a1 − 1)hA

E + a1hA
. (15)

It follows from the definition of L- and A-stability that for a1 = 1, approximations (11) are L-stable,
and for a1 = 1

2 , approximations (11) are A-stable.
Similarly, for the solution yn+1, we can construct the second-order concordance approximation using

the first-order concordance approximation zn+1 for this purpose.
With account for (3) and (4), the values of the second-order accuracy Taylor approximation of yn+1

are defined by the relation

F2ny = hzn − h2

2
F−1

y′
n

(Fynzn + Fxn). (16)

Then the second-order concordance approximation has the form

y
[2]
n+1 = yn +

Fy′
n

Fy′
n

+ a2hFyn

(
2hzn − hFy′

n
zn + h2

2 (Fynzn + Fxn)
Fy′

n
+ a2hFyn

)
, z

[1]
n+1 = zn − h(Fynzn + Fxn)

Fy′
n

+ a2hFyn

. (17)

In the process of defining y
[2]
n+1, the use of the first-order concordance approximations y′n = zn does

not reduce the concordance order of yn+1.

2436



Let us find the stability conditions of approximations (17) by examining the model system (12). The
approximations of solutions of this system are described by the relations

y
[2]
n+1 = yn +

h(E + (2a2 − 1
2)hA)

(E + a2hA)2
zn, z

[1]
n+1 =

E + (a2 − 1)hA

E + a2hA
. (18)

If a2 = 1
2 , then approximations (15) have the A-stability property with the common operator function

D(hA) =
E − h

2A

E + h
2A

and have the form

y
[2]
n+1 =

E − h
2A

E + h
2A

yn, z
[1]
n+1 =

E − h
2A

E + h
2A

zn.

As a test problem, let us consider the equation y = ay′(y′2 − 1) with the initial conditions y(0) = 0.
Differentiating with respect to the argument x, we transform this implicit differential equation to the
explicit second-order differential equation

y′′ =
y′

a(3y′2 − 1)
. (19)

To ensure the uniqueness of solution, we complement the initial conditions by the condition y′(0) = 1,
which is a root of the initial equation. To solve the second-order equation (19), we reduce it to a system
of two first-order equations 


y′1 = y2, y1(0) = 0,

y′2 =
y2

a(3y2
2 − 1)

, y2(0) = 1.
(20)

In the process of solution using explicit linear numerical methods of Runge–Kutta type on the closed
interval [0; 1], it turned out that when the solution approaches the right endpoint of the closed interval,
the stiffness of the system increases and the integration step sequentially decreases. In this connection, the
solution of the transformed system (20) was performed using the rational-fractional numerical methods
for solving stiff systems. As a result, the approximate solution of system (20) was obtained on the whole
interval of integration with a sufficiently large step whose maximum value is hmax = 0,4096 and ensures
the required accuracy. The real error of the approximate solution, which was estimated using the given
exact solution of the test example in the parametric form

x = a

(
3
2
(p − 1)2 − ln p

)
, y = ap(p2 − 1),

does not exceed the admissible error on the whole interval of integration.
The study of other test examples also confirms the effectivity of using the rational-fractional nu-

merical methods of the order indicated above for solving stiff implicit differential equations with their
transformation to explicit equations of enlarged order.

To construct numerical methods on the basis of formulas of rational-fractional approximations of
higher order, it is necessary to point out the method for finding a sequence of partial sums of the Taylor
formula of accuracy from the first to the pth order. If for finding these sums, we use known methods
of Runge–Kutta type, then applying the formulas of rational-fractional approximations, it is easy to
construct one-step rational-fractional numerical methods.

If for approximating the partial sums of the Taylor series, we use linear multi-step methods, then
using the formulas of rational-fractional approximations, it is possible to construct multi-step rational-
fractional numerical methods. For this purpose, we can use, for example, the Adams–Bushford methods
or linear multi-step methods with a variable step of integration. It is appropriate to find higher-order
approximations by using multi-step methods.
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The stability of the constructed methods of arbitrary finite order of accuracy was studied. Analysis of
the results of experimental studies of these methods by examining various types of test examples justifies
their effectiveness.
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