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EXISTENCE OF SOLUTIONS OF CERTAIN QUASILINEAR
ELLIPTIC EQUATIONS IN R

N WITHOUT CONDITIONS AT INFINITY

G. I. Laptev UDC 513.8+517.9

Abstract. This paper deals with conditions for the existence of solutions of the equations

−
n∑

i=1

DiAi(x, u, Du) + A0(x, u) = f(x), x ∈ R
n,

considered in the whole space R
n, n ≥ 2. The functions Ai(x, u, ξ), i = 1, . . . , n, A0(x, u), and f(x) can

arbitrarily grow as |x| → ∞. These functions satisfy generalized conditions of the monotone operator

theory in the arguments u ∈ R and ξ ∈ R
n. We prove the existence theorem for a solution u ∈ W 1,p

loc (Rn)
under the condition p > n.

1. Statement of the Problem and Formulation of the Result

This paper is devoted to the study of the solvability conditions of second-order, quasilinear, elliptic
equations in the space R

n, n ≥ 2. We use the methods developed for monotone operators and also the
compact operator method. The monotone operator theory was developed in the 1960s through the efforts
of many mathematicians and enables a wide class of higher-order partial differential equations of elliptic
type to be studied. The totalities of the method are given in [2,8,11]. We stress that the works mentioned
are devoted to equations considered in a bounded domain. If the domain considered is not bounded, then
it is assumed that the solution belongs to an appropriate Sobolev space Wm,p(Ω), which imposes certain
conditions on the solution as |x| → ∞. In recent years, there arose a considerable interest in solutions
that can arbitrarily grow as |x| → ∞. Especially, this remark refers to anti-coercive equations to which
a vast literature is devoted, in particular, [9].

Coercive equations in R
N without conditions at infinity are studied in relatively few works. The

subject originates from [1] in which the author proved the solvability of equations of the form

−∆u+ |u|q−1u = f(x), q > 0, x ∈ R
n.

In [10], in an unbounded domain Ω ∈ R
n, the author studied the equations∑

Di(aijDju) − a(x)|u|p−1u = f(x), p > 1, a ∈ L1
loc(Ω), a(x) ≥ a0 > 0.

The variational method for the equation

∆u = f(x, u), x ∈ R
n,

was applied in [5]. In [3], the author considered the Dirichlet problem for the equation

−
∑

(|uxi |αuxi)xi + c(x)u = f(x)

in an unbounded domain Ω with compact boundary ∂Ω. Here,

α > 0, c(x) ∈ L∞
loc(R

n), c(x) ≥ 0, f(x) ∈ L2
loc(R

n).

Some generalizations of the latter equation were studied in [6, 7].
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The present paper is devoted to the study of the solvability of the equation

−
n∑

i=1

DiAi(x, u,Du) +A0(x, u) = f(x), x ∈ R
n. (1)

Here,

Di =
∂

∂xi
(i = 1, . . . , n), Du = (D1u, . . . ,Dnu), n ≥ 2.

No conditions on the behavior of the solution as |x| → ∞ are imposed.
Let us list the conditions for the functions entering Eq. (1). It is assumed that the functions Ai(x, u, ξ),

i = 1, . . . , n, and A0(x, u) are defined for x ∈ R
n, ξ ∈ R

n, and u ∈ R and satisfy the Caratheodory
conditions, i.e., they are measurable in x and continuous in u, ξ for almost all x ∈ R

n. Moreover, these
functions satisfy the following restrictions.

1A. Monotonicity condition in the principal part. For almost all x ∈ R
n and all u ∈ R,

ξ, η ∈ R
n,

n∑
i=1

[Ai(x, u, ξ) −Ai(x, u, η)](ξi − ηi) > 0 (ξ �= η),

where ξ = (ξ1, . . . , ξn) and η = (η1, . . . , ηn).
2A. Coercivity condition. For almost all x ∈ R

n and all u ∈ R, ξ ∈ R
n,

n∑
i=1

Ai(x, u, ξ)ξi +A0(x, u)u ≥ a(x)|ξ|p + b(x)|u|q + h(x),

where n < p < q and the functions a(x) and b(x) are positive; moreover, a(x), a−1(x), b(x), b−1(x) ∈
L∞

loc(R
n), and h(x) ∈ L1

loc(R
n).

3A. Growth conditions. For i = 1, . . . , n and x ∈ R
n, u ∈ R, and ξ ∈ R

n,

|Ai(x, u, ξ)| ≤ a1(x)|ξ|p−1 + b1(x)|u|q/p′ + h1(x),

where p+ p′ = pp′, a1(x), b1(x) ∈ L∞
loc(R

n), and h1(x) ∈ Lp′
loc(R

n);

|A0(x, u)| ≤ a0(|u|)h0(x),

where the function a0(t) increases and is continuous for t ≥ 0, h0(x) ∈ Lq′
loc(R

n).
1f. f(x) ∈ Lq′

loc(R
n).

Here and in what follows, we use the traditional notation for the spaces of Lebesgue integrable
functions. Let Ω ⊂ R

n be a bounded domain. All measurable functions u(x), x ∈ Ω, with finite norm

‖u‖p
Lp(Ω) =

∫
Ω

|u(x)|p dx, 1 ≤ p <∞,

compose the Banach space Lp(Ω). All measurable functions u(x), x ∈ R
n, with finite norm ‖u‖Lp(Ω) for any

bounded domain Ω ∈ R
n compose the space Lp

loc(R
n), which is no longer a Banach space. The Sobolev

space W 1,p(Ω) consists of all measurable functions u(x), x ∈ Ω, having measurable partial derivatives
Du(x) with finite norm

‖u‖W 1,p(Ω) = ‖Du‖Lp(Ω) + ‖u‖Lp(Ω).

We say that u(x) ∈ W 1,p
loc (Ω) if the function u(x) is measurable on R

n and, moreover, u(x) ∈ W 1,p(Ω)
for any bounded domain Ω ⊂ R

n. If p > 1, then the duality between the spaces Lp(Ω) and Lp′(Ω) is
denoted by (f, u) =

∫
Ω

f(x)u(x) dx, u ∈ Lp(Ω), f ∈ Lp′(Ω). Also, by (f, u) we denote the duality between

the spaces W 1,p(Ω) and its dual
(
W 1,p(Ω)

)∗. The space of continuously differential compactly supported
functions on R

n is denoted by C1
0 (Rn).
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Definition 1. A function u(x) ∈ W 1,p
loc (Rn) is called a solution of Eq. (1) if the following identity holds

for any function ψ(x) ∈ C1
0 (Rn):∫

Rn

( n∑
i=1

Ai(x, u,Du)Diψ +A0(x, u)ψ
)
dx =

∫
Rn

fψ dx.

Now let us formulate the main result of the paper.

Theorem 1. Let Conditions 1A–3A and 1f hold. Then Eq. (1) has a solution in the sense of Definition 1.

Remark 1. We can take the right-hand side of Eq. (1) in the form

f(x) =
n∑

i=1

Difi(x) + f0(x),

where fi ∈ Lp′
loc(R

n) and f0 ∈ Lq′
loc(R

n). Such a form of the function f(x) formally looks more general
than that in Condition 1f. In this case, the functions Difi(x) must be included into the summands
DiAi(x, u,Du) of Eq. (1). Conditions 1A–3A allow us to do this.

2. Approximations by Bounded Domains

In the space R
n, we consider a bounded domain Ω with Lipschitzian boundary ∂Ω, which ensures the

possibility of application of the Sobolev embedding theorems. Let two numbers p, q ∈ (1,∞) be fixed.
The main role for what follows is played by the space

X = {u(x) ∈ Lq(Ω), Du(x) ∈ Lp(Ω)}
with the norm

‖u‖X = ‖Du‖Lp(Ω) + ‖u‖Lq(Ω).

We can give a more clear characteristic of the space introduced.

Lemma 1. If q > p > n, then X = W 1,p(Ω).

Proof. In the case where Ω is a bounded domain, the following inequality holds for any q ≥ 1:

‖u‖Lq(Ω) ≤ c1‖u‖C(Ω).

Since p > n, the space W 1,p(Ω) is continuously embedded in C(Ω), i.e.,

‖u‖C(Ω) ≤ c2‖u‖W 1,p(Ω).

Combining the presented inequalities, we obtain

‖u‖X = ‖Du‖Lp(Ω) + ‖u‖Lq(Ω) ≤ ‖u‖W 1,p(Ω) + c‖u‖W 1,p(Ω) = (1 + c)‖u‖W 1,p(Ω).

This means that W 1,p(Ω) ⊂ X. Conversely, since q > p, it follows that

‖u‖Lp(Ω) ≤ c‖u‖Lq(Ω),

whence
‖u‖W 1,p(Ω) = ‖Du‖Lp(Ω) + ‖u‖Lp(Ω) ≤ ‖Du‖Lp(Ω) + c‖u‖Lq(Ω) ≤ (1 + c)‖u‖X .

Hence X ⊂W 1,p(Ω), which completes the proof of the lemma.

Now we pass to the description of the operators of the problem. Our goal is to show that under
Conditions 1A–3A, the differential expression

Au = −
n∑

i=1

DiAi(x, u,Du) +A0(x, u) (2)

defines a bounded, continuous operator from W 1,p(Ω) into the dual space
(
W 1,p(Ω)

)∗ for any bounded
domain Ω. Let us project Conditions 1A–3A and 1f on a bounded domain Ω. In other words, we assume
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that the functions Ai(x, u, ξ), i = 1, . . . , n, A0(x, u), and also f(x) introduced early are defined only for
x ∈ Ω. In the case considered, we can represent Conditions 1A–3A and 1f as follows.

1AΩ. For almost all x ∈ Ω and all u ∈ R, and ξ, η ∈ R
n,

n∑
i=1

[Ai(x, u, ξ) −Ai(x, u, η)](ξi − ηi) > 0 (ξ �= η).

2AΩ. For almost all x ∈ Ω and all u ∈ R, and ξ ∈ R
n,

n∑
i=1

Ai(x, u, ξ)ξi +A0(x, u)u ≥ cΩ(|ξ|p + |u|q) + h(x),

where n < p < q, the constant cΩ is positive, and h(x) ∈ L1(Ω).
3AΩ. For almost all x ∈ Ω, all u ∈ R, ξ ∈ R

n, and certain constants C1Ω, C2Ω,

|Ai(x, u, ξ)| ≤ C1Ω|ξ|p−1 + C2Ω|u|q/p′ + h1(x), i = 1, . . . , n;

|A0(x, u)| ≤ a0(u)h0(x), a0 ∈ C(R), h0(x) ∈ Lp′(Ω).

1f. f(x) ∈ Lq′(Ω).
All the written conditions are consequences of Conditions 1A–3A and 1f. Therefore, Condition 1AΩ is

obvious. In Condition 2AΩ, the constant cΩ > 0 arises as a consequence of the condition a−1(x), b−1(x) ∈
L∞

loc(R
n). The constants C1Ω and C2Ω appear as a consequence of the local boundedness of the functions

a1(x) and b1(x) in Condition 3A.
For comparison, let us write conditions from [4, 16.16 (3), p. 119] in the case p > n considered:

2|Ai(x, u, ξ)| ≤ c1(|u|)(g1(x) + |ξ|p−1), g1 ∈ Lp′(Ω), i = 1, . . . , n;

|A0(x, u)| ≤ c0(|u|)g0(x), g0 ∈ L1(Ω),
(3)

where c0 and c1 are nonnegative continuous functions. Under conditions (3), the formal differential
operator (2) defines a bounded continuous operator A defined on the space W 1,p(Ω) and assuming its
values in the dual space

(
W 1,p(Ω)

)∗ [4, Theorem 16.14, p. 115]. This operator is defined by the form

(Au, v) =
∫
Ω

( n∑
i=1

Ai(x, u,Du)Div +A0(x, u)v
)
dx, u, v ∈W 1,p(Ω). (4)

Obviously, Conditions 3AΩ imply conditions (3), and, therefore, the following assertion holds.

Lemma 2. Under Conditions 3AΩ, the formal differential operator (2) defines a bounded continuous
operator A defined on the space W 1,p(Ω) and assuming the values in the dual space X∗. This operator is
defined by form (4).

We now turn to the corresponding differential equation

−
n∑

i=1

DiAi(x, u,Du) +A0(x, u) = f(x), x ∈ Ω, (5)

which is considered in a bounded domain Ω ∈ R
n. According to Lemma 2, we can represent this equation

in the operator form Au = f , where the operator A is defined by (4). Recall that the specification of
a form defines certain boundary conditions on ∂Ω, which we do not explicitly write now, since they do
not play a special role in the case considered.

We can also describe Conditions 1AΩ and 2AΩ as the properties of the operators A introduced above.
Precisely, Condition 1AΩ defines an operator that is monotone in the principal part, and Condition 2AΩ
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implies its coercivity, which means the fulfillment of the following relation as |u‖W 1,p(Ω) → ∞:

(Au, u)
‖u‖W 1,p(Ω)

= ‖u‖−1
W 1,p(Ω)

∫
Ω

( n∑
i=1

Ai(x, u,Du)Diu+A0(x, u)u
)
dx→ ∞.

Therefore, the operator A : X → X∗ introduced in Lemma 2 is a bounded continuous operator
monotone in the principal part. For each function f ∈ (

W 1,p(Ω)
)∗, the equation Au = f has a solution

u ∈W 1,p(Ω) [4, Theorem 29.11, p. 207]. By Lemma 1, the identity W 1,p(Ω) = X holds, and the structure
of the function f(x) from Condition 1f shows that f ∈ X∗. All that was presented above leads to the
following assertion.

Theorem 2. In R
n, let Ω be a bounded domain with Lipschitzian domain ∂Ω and let Conditions 1AΩ–3AΩ

and 1fΩ hold. Then the operator equation Au = f , where the operator A is defined in Lemma 2, has
a solution u ∈ X satisfying the following identity for any function v ∈ X:∫

Ω

( n∑
i=1

Ai(x, u,Du)Div +A0(x, u)v
)
dx =

∫
Ω

fv dx.

3. Estimates for Solutions in Expanding Domains

As bounded domains Ω from the previous section, we choose the balls BN = {x ∈ R
n : |x| < N} of

integer radii N = 1, 2, 3, . . . . Then we can reformulate Theorem 2 as follows.

Lemma 3. Let Conditions 1A–3A and 1f hold. For each N = 1, 2, 3, . . . , in the ball BN , there exists
a solution uN ∈ XN = W 1,p(BN ) of the problem∫

BN

( n∑
i=1

Ai(x, uN , DuN )Div +A0(x, uN )v
)
dx =

∫
BN

fv dx, v ∈ XN . (6)

Thus, we have defined a sequence {uN , N ∈ N} of solutions of problem (6). Fix an integer m ∈ N

and introduce a truncating function ϕ ∈ C1
0 (Bm+2) with the condition ϕ(x) > 0 for |x| < m + 2. In

identity (6), we set v = uNϕ for N ≥ m+ 2 and represent the obtained result in the form∫
BN

( n∑
i=1

Ai(x, uN , DuN )(DiuN )ϕ+A0(x, uN )uNϕ

)
dx =

∫
BN

fuNϕdx−
∫

BN

n∑
i=1

Ai(x, uN , DuN )uNDiϕdx.

(7)

We stress the following important fact. With account for the factor ϕ ∈ C1
0 (Bm+2), all the integrals

in identity (7) are calculated over a fixed bounded set suppϕ ⊂ Bm+2. Let us estimate the left-hand side
of identity (7) from below using the coercivity Condition 2AΩ for Ω = Bm+2:∫

BN

( n∑
i=1

Ai(x, uN , DuN )(DiuN )ϕ+A0(x, uN )uNϕ

)
dx ≥ cm

∫
Bm+2

(|DuN |p + |uN |q)ϕ(x) dx− C0m. (8)

Here, cm = cΩ > 0 for Ω = Bm+2 and C0m =
∫

Bm+2

h(x)ϕ(x) dx. Let us estimate the right-hand of

identity (7). We begin with the last integral and represent it in the form∫
BN

n∑
i=1

Ai(x, uN , DuN )uNDiϕdx =
∫

Bm+2

n∑
i=1

Ai(x, uN , DuN )ϕ1/p′uNϕ
1/qϕ−(1/p′+1/q)Diϕdx.

Apply the Hölder inequality with three factors with exponents p′, q, and s = qp
q−p to the last integral.

Note that the necessary condition
1
p′

+
1
q

+
1
s

= 1
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holds, and, moreover, (
1
p′

+
1
q

)
s = s− 1;

therefore,∣∣∣∣
∫

BN

n∑
i=1

Ai(x, uN , DuN )uNDiϕdx

∣∣∣∣

≤
( ∫

Bm+2

n∑
i=1

|Ai(x, uN , DuN )|p′ϕdx
)1/p′( ∫

Bm+2

|uN |qϕdx
)1/q( ∫

Bm+2

ϕ−s+1|Dϕ|sdx
)1/s

≤ ε

∫
Bm+2

n∑
i=1

|Ai(x, uN , DuN )|p′ϕdx+ ε

∫
Bm+2

|uN |qϕdx+ C(ε)
∫

Bm+2

ϕ−s+1|Dϕ|s dx. (9)

Here, we have used the Young inequality with an arbitrary exponent ε > 0. According to the growth
Condition 3AΩ for Ω = Bm+2, for i = 1, . . . , n, we can estimate the summands∫

Bm+2

|Ai(x, uN , DuN )|p′ϕdx

≤
∫

Bm+2

(
C1m|DuN |p/p′ + C2m|uN |q/p′ + h1(x)

)p′
ϕdx ≤ C3m

∫
Bm+2

(|DuN |p + |uN |q)ϕdx+ C4m, (10)

where C4m =
∫

Bm+2

|h1(x)|p′ϕ(x) dx. Here and in what follows, the symbols C with subscripts stands

for the constants independent of the number N ≥ m + 2, although it is possible that they depend on
a given m. Substituting estimate (10) in (9), we obtain

∣∣∣∣
∫

Bm+2

n∑
i=1

Ai(x, uN , DuN )uNDiϕdx

∣∣∣∣

≤ εnC3m

∫
Bm+2

(|DuN |p + |uN |q)ϕdx+ ε

∫
Bm+2

|uN |qϕdx+ εnC4m + C(ε)
∫

Bm+2

|Dϕ|sϕ−s+1 dx.

It is easy to estimate the remaining summand of identity (7):∣∣∣∣
∫

Bm+2

fuNϕdx

∣∣∣∣ ≤
∫

Bm+2

|f |ϕ1/q′ |uN |ϕ1/q dx ≤ ε

∫
Bm+2

|uN |qϕdx+ C(ε)
∫

Bm+2

|f |q′ϕdx.

Substituting all the presented estimates in identity (7), we obtain the inequality

(cm − εnC3m)
∫

Bm+2

|DuN |pϕdx+ (cm − 2ε− εnC3m)
∫

Bm+2

|uN |qϕdx ≤ C5m + C(ε)
∫

Bm+2

|Dϕ|s
ϕs−1

dx.

Choosing ε > 0 sufficiently small but fixed here, we obtain the estimate∫
Bm+2

(|DuN |p + |uN |q)ϕdx ≤ C6m

(
1 +

∫
Bm+2

|Dϕ|s
ϕs−1

dx

)
. (11)

Recall that the function ϕ(x) is compactly supported, and, therefore, we need to justify the existence
of the last integral in estimate (11). Choose a function ψ ∈ C1

0 (Bm+2) with the condition ψ(x) > 0 for
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x ∈ Bm+2 such that ψ(x) = 0 only on the boundary of the ball Bm+2. Let us verify that it suffices to
assume that ϕ(x) = ψs(x). Indeed, on the set |x| < m+ 2, we obtain

|Dϕ|s
ϕs−1

=
|sψs−1Dψ|s
ψs(s−1)

= ss|Dψ|s, ψ ∈ C1
0 (Bm+2).

The required fraction |Dϕ|sϕ−s+1 becomes a continuous, compactly supported function, and, therefore,
∫

Bm+2

|Dϕ|s
ϕs−1

dx ≤ ss

∫
Bm+2

|Dϕ|s dx ≡ C7m.

Finally, we obtain from estimate (11) that
∫

Bm+2

(|DuN |p + |uN |q)ψsdx ≤ Cm, (12)

where the constant Cm is independent of the number N ≥ m + 2. Choose a function ψ(x) such that
ψ(x) ≡ 1 for |x| ≤ m+ 1. Then estimate (12) implies the inequality

∫
Bm+1

(|DuN |p + |uN |q) dx ≤ Cm, N ≥ m+ 2. (13)

Let us formulate the result obtained.

Lemma 4. Let Conditions 1A–3A and 1f hold. Fix a natural number m. Then for the sequence of
solutions uN , N = 1, 2, 3, . . . , constructed in Lemma 3, estimate (13) holds, in which the constant Cm

can depend on m but not on N ≥ m+ 2.

We use estimate (13) in several variants. So, it directly follows from it that ‖DuN‖Lp(Bm+1) ≤ Cm

and ‖uN‖Lq(Bm+1) ≤ Cm for N ≥ m+ 2. This implies that for N ≥ m+ 2,

‖uN‖Xm+1 = ‖DuN‖Lp(Bm+1) + ‖uN‖Lq(Bm+1) ≤ Cm, (14)

and inequality (10) implies the estimate

‖Ai(x, uN , DuN )‖Lp′ (Bm+1) ≤ Cm. (15)

It follows from (14) and the reflexivity of the space Xm+1 = W 1,p(Bm+1) that there exist a function
u(m) ∈ Xm+1 and a subsequence of integers Km ⊂ N such that uk → u(m) weakly in Xm+1 as k → ∞,
k ∈ Km, and Duk → Du(m) weakly in Lp(Bm+1). Therefore, since k → ∞, k ∈ Km,

uk ⇀ u(m) in Xm+1, Duk ⇀ Du(m) in Lp(Bm+1). (16)

The space Xm+1 = W 1,p(Bm+1) is compactly embedded in Lp(Bm+1) and also in C(Bm+1), since we
consider the case where p > n. Therefore, we can assume that the following strong convergence holds as
k → ∞, k ∈ Km:

‖uk − u(m)‖Lp(Bm+1) → 0, ‖uk − u(m)‖C(Bm+1) → 0. (17)

Thus, we have proved the following assertion.

Lemma 5. Let Conditions 1A–3A and 1f hold, and let a natural number m be fixed. Then there exist
a function u(m) ∈W 1,p(Bm+1) and a subsequence KM ⊂ N such that relations (16), (17) hold.

2390



4. Proof of Theorem 1

Our next goal is to perform the passage to the limit in identities (6), which are used only on the
set Km constructed in Lemma 5. These identities have the form

∫
Bk

( n∑
i=1

Ai(x, uk, Duk)Div +A0(x, uk)v
)
dx = (f, v), v ∈ Xk, k ∈ Km. (18)

Fix a function ϕ ∈ C1
0 (Bm+1) and substitute the product v = (uk − u(m))ϕ in identities (6); this is

possible if we assume that the function ϕ(x) is extended by zero outside the ball Bm+1, so that v ∈ Xk

for all k ≥ m+ 1. Let us write the resulting identities in detail taking into account that, in fact, all the
integrals are calculated only over the set Bm+1 for the subscripts k ∈ Km:

∫
Bm+1

n∑
i=1

Ai(x, uk, Duk)(Diuk −Diu
(m))ϕdx+

∫
Bm+1

n∑
i+1

Ai(x, uk, Duk)(uk − u(m))Dϕdx

+
∫

Bm+1

A0(x, uk)(uk − u(m))ϕdx = (f, (uk − u(m))ϕ). (19)

According to the construction of the subset Km ⊂ N, the weak convergence uk → u(m) in W 1,p(Bm+1)
holds, and hence (f, (uk − u(m))ϕ) → 0 as k → ∞, k ∈ Km.

Let us estimate other summands of the system of relations (19) taking into account the strong
convergence (17):

∣∣∣∣
∫

Bm+1

n∑
i=1

Ai(x, uk, Duk)(uk − u(m))Dϕdx
∣∣∣∣

≤ max
|x|≤m+1

|Dϕ|
n∑

i=1

‖Ai(x, uk, Duk)‖Lp′ (Bm+1)‖uk − u(m)‖Lp(Bm+1)

≤ C‖uk − u(m)‖Lp(Bm+1) → 0 (k → ∞, k ∈ Km).

Here, we have used estimate (15) for ‖Ai‖Lp′ (Bm+1). Furthermore, we have
∣∣∣∣

∫
Bm+1

A0(x, uk)(uk − u(m))ϕdx
∣∣∣∣

≤ max
|x|≤m+1

|ϕ(x)| ‖uk − u(m)‖C(Bm+1)

∫
Bm+1

|A0(x, uk)| dx

≤ C‖uk − u(m)‖C(Bm+1)a0(‖uk‖C(Bm+1)) → 0 (k → ∞, k ∈ Km).

Here, we have used the following sufficiently obvious chain of estimates on the set Bm+1:

a0(|uk|) ≤ a0( max
|x|≤m+1

|uk|) = a0(‖uk‖C(Bm+1)) ≤ C,

since

‖uk‖C(Bm+1) ≤ C‖uk‖W 1,p(Bm+1)

in the case p > n considered.
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We use the convergence presented above in identities (19); as a result, we obtain the following relation
as k → ∞, k ∈ Km: ∫

Bm+1

n∑
i=1

Ai(x, uk, Duk)(Diuk −Diu
(m))ϕdx→ 0.

Represent the obtained relation in the form
∫

Bm+1

n∑
i=1

(Ai(x, uk, Duk) −Ai(x, uk, Du
(m))(Diuk −Diu

(m))ϕdx

+
∫

Bm+1

Ai(x, uk, Du
(m))(Diuk −Diu

(m))ϕdx→ 0 (k → ∞, k ∈ Km). (20)

The growth Condition 3AΩ for Ω = Bm+1 implies

|Ai(x, uk, Du
(m))| ≤ C1m|Du(m)|p−1 + C2m|uk|q/p′ + h1(x), x ∈ Bm+1.

Since the function u(m) is fixed, we can represent the latter inequality in the form

|Ai(x, uk, Du
(m))| ≤ h2(x) + C|uk|q/p′ , x ∈ Bm+1, h2 ∈ Lp′(Bm+1).

The estimate obtained shows that the Nemytskii operator Ai

(
x, uk(x), Du(m)(x)

)
with respect to the

argument uk(x) is a bounded continuous operator from the space Lq(Bm+1) into Lp′(Bm+1).
It follows from (17) that uk → u(m) in C(Bm+1) and hence in Lq(Bm+1), and, therefore, by the

properties of the Nemytskii operator, the following convergence holds for all i = 1, . . . , n as k → ∞,
k ∈ Km:

Ai(x, uk, Du
(m)) → Ai(x, u(m), Du(m)) in Lp′(Bm+1). (21)

Recall that Duk → Du(m) weakly in Lp(Bm+1) by construction. In combination with the strong
convergence (21), this means that as k → ∞, k ∈ Km, for i = 1, . . . , n,∫

Bm+1

Ai(x, uk, Du
(m))(Diuk −Diu

(m))ϕdx→ 0.

Then (20) implies that as k → ∞, k ∈ Km,
∫

Bm+1

n∑
i=1

(
Ai(x, uk, Duk) −Ai(x, uk, Du

(m))
)
(Diui −Diu

(m))ϕdx→ 0. (22)

We have chosen the functions ϕ(x) satisfying the condition ϕ(x) > 0 for x ∈ Bm+1. Now, we also
assume that ϕ(x) ≡ 1 for |x| ≤ m. According to the monotonicity Condition 1A, the function under the
sign of the integral in (22) is nonnegative, and, therefore, the following relation holds for k ∈ Km:

lim
k→∞

∫
Bm

n∑
i=1

(
Ai(x, uk, Duk) −Ai(x, uk, Du

(m))
)
(Diuk −Diu

(m)) dx ≤ 0. (23)

As was shown in [8, Chap. 2, Sec. 2, Lemma 2.2, p. 196], (23) implies that Duk(x) → Du(m)(x)
almost everywhere in the domain Bm and that the weak convergence Ai(x, uk, Duk) → Ai(x, u(m), Du(m))
holds in the space Lp′(Bm) as k → ∞, k ∈ Km, so that the following relation holds for every function
v ∈W 1,p(Bm): ∫

Bm

n∑
i=1

Ai(x, uk, Duk)Div dx→
∫

Bm

n∑
i=1

Ai(x, u(m), Du(m))Div dx. (24)
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In particular, the convergence uk → u(m) in C(Bm+1) implies that the following relation holds for
every function v ∈W 1,p(Bm) as k → ∞, k ∈ Km:∫

Bm

Ai(x, uk)v dx→
∫

Bm

Ai(x, u(m))v dx. (25)

We use the presented relations for passing to the limit in identities (18); for this purpose, we fix
a natural m ∈ N and choose a function v ∈ C1

0 (Bm) such that for k ∈ Km, identities (18) become∫
Bm

( n∑
i=1

Ai(x, uk, Duk)Div +A0(x, uk)v
)
dx =

∫
Bm

fv dx, v ∈ C1
0 (Bm).

Letting k ∈ Km tend to ∞ in these identities and applying relations (24) and (25), we obtain the following
relation for v ∈ C1

0 (Bm) in the limit:∫
Bm

( n∑
i=1

Ai(x, u(m), Du(m))Div +A0(x, u(m))v
)
dx =

∫
Bm

fv dx. (26)

Now, let us formulate the obtained result.

Theorem 3. Let Conditions 1A–3A and 1f hold. If the natural number m ∈ N is fixed, then the function
u(m) ∈W 1,p(Bm+1) introduced in Lemma 5 satisfies identity (26).

Now let us construct a function u ∈ W 1,p
loc (Rn) that is a solution of the initial Eq. (1). Fix a natural

number m = 1 and, in accordance with Lemma 5, construct the function u(1)(x) ∈ W 1,p(B2) and the
infinite set of natural numbers K1 ⊂ N such that uk(x) → u(1)(x) weakly in the space X2 as k → ∞,
k ∈ K1. Moreover, according to Theorem 3, identity (26) with m = 1 holds for the limit function u(1)(x).
Then we fix a number m = 2 and, in accordance with Lemma 5, construct the function u(2)(x) ∈ X3 and
the infinite set of natural numbers K2 ∈ N satisfying the additional condition K2 ⊂ K1 such that uk(x) →
u(2)(x) weakly in X3 as k → ∞, k ∈ K2. According to Theorem 3, the limit function u(2)(x) satisfies
identity (26) with m = 2. With account for the condition K2 ⊂ K1, on the set B1 = {x ∈ R

n : |x| < 1},
both limit functions coincide, i.e., u(2)(x) = u(1)(x) for |x| < 1. Now extract an infinite subset K3 ⊂ K2

from the set K2 such that according to Lemma 5, uk(x) → u(3)(x) weakly in X4 as k → ∞, k ∈ K3,
and, moreover, the limit function u(3)(x) satisfies the identity (26) for m = 3. With account for the
condition K3 ⊂ K2, the relation u(3)(x) = u(2)(x), |x| < 2, holds on the set B2. Clearly, we can perform
the described construction for all m = 1, 2, 3, . . . ; as a result, we construct a sequence of functions
u(1)(x), u(2)(x), u(3)(x), . . . , and, moreover, each of the function is an extension of the previous to a wider
set, precisely, u(m+1)(x) = u(m)(x) for |x| < m. As a result, as m → ∞, we define a unit function u(x),
x ∈ R

n, such that
u(x) = u(m)(x) ∈ Xm+1, |x| < m. (27)

This means that u ∈W 1,p
loc (Rn), and, by relations (27) and identities (26), the function u(x) satisfies each

of the following relations for m = 1, 2, 3, . . . :∫
Bm

( n∑
i=1

Ai(x, u,Du)Div +A0(x, u)v
)
dx =

∫
Bm

fv dx, v ∈ C1
0 (Bm). (28)

Fix a compactly supported function ψ(x) ∈ C1
0 (Rn). Its support is contained in a certain ball

Bm = {x ∈ R
n : |x| ≤ m}, m ∈ N, and, therefore, ψ(x) ∈ C1

0 (Bm), i.e., we can substitute this function for
v(x) in identity (28), which leads to the relation∫

Rn

( n∑
i=1

Ai(x, u,Du)Diψ +A0(x, u)ψ
)
dx =

∫
Rn

fψ dx.
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According to Definition 1, such a relation means that the constructed function u(x), x ∈ R
n, is a solution

of the initial Eq. (1). This completes the proof of Theorem 1.
Let us present an example of an equation for which the conditions of Theorem 1 hold:

−
n∑

i=1

Di(ai(x)|Diu|p−2Diu+ an+1(x)|u|ru) + a0(x)|u|q−2u = f(x), x ∈ Rn,

where the functions ai(x) are positive and ai, a
−1
i ∈ L∞

loc(R
n) for all i = 0, 1, . . . , n + 1. We assume that

n < p < q and r + 1 ≤ q
p′ .
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