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MEAN VALUES CONNECTED WITH THE DEDEKIND ZETA FUNCTION
O. M. Fomenko* UDC 511.466+517.863

For a cubic extension K3/Q, which is not normal, new results on the behavior of mean values of the Dedekind zeta
function of the field K3 in the critical strip are obtained.
Let M(m) denote the number of integral ideals of the field K3 of norm m. For the sums

ZM(m)2 and ZM(m)3

m<x m<x

asymptotic formulas are derived. Previously, only upper bounds for these sums were known. Bibliography: 23 titles.

1

This is a preparatory section. In connection with the results presented here, see [1, 2]. Consider the group
S3. The elements of S fall into the following three conjugacy classes: C; : (1); Cs : (1,2,3),(3,2,1); Cs3 :
(1,2),(2,3),(3.1). Hence there are three simple characters: the one-dimensional characters 1; (the principal
character) and o (the other character determined by the subgroup C; UC>), and the two-dimensional character
3. Ss is the Galois group of the non-Abelian extension Kg of degree 6 of Q, where K¢ is the normal closure
of a cubic field K3 over Q given by an irreducible polynomial f(z) = 2® + ax® + bx + ¢ of discriminant D.
The fields K> = Q(v/D) and K3 are the intermediate extensions fixed under the subgroups Az and {(1), (1,2)},
respectively. The extensions K»/Q, Kg/K>, and Kg/K3 are Abelian. The Dedekind zeta functions (for the
definition, see Sec. 2) satisfy the relations

CKo(s) = L¢1L¢2L3)3,

(k2 (8) = Ly Ly,

(ks (8) = Ly Ly,
((s) = Ly,

where
Ly, =L(s, 12, K¢/Q) = L(s, x, K2/Q),
Ly, =L(s,13, K¢/Q) = L(s, X", K5/ K>).
Here, the second column involves the Artin L-functions, and the third column involves the L-functions with

Hecke characters (more exactly, x(x) = (D/x)).
Below, we assume that

K>, K3, Kg are the fields indicated above, and D < 0; (%)

€ > 0 is an arbitrary fixed number.
The function L, can also be interpreted in another way [3]. Let p : S3 — GL»(C) be the irreducible
two-dimensional representation. Then p gives rise to a cuspidal representation m of GL2(Ag). Let

L(s,m) = Z a(n)n=?.

n=1
In particular, if p is odd, i.e., D < 0, then L(s,7) = L(s, F), where F' is a holomorphic primitive cusp form of
weight 1 with respect to I'o(|D]),

F(z) = am)e”, q=e".
n=1

As usual, L(s,w) denotes the L-function of the representation 7; L(s, F') denotes the Hecke L-function of the
form F. Thus, Ly, = L(s, F),
(i (s) = C(s)L(s, F). (1)

Formula (1) will be used below.
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2

This section improves known results connected with the behavior of the Dedekind zeta function of the cubic
field K3 in the critical strip. Let K, be an algebraic number field over Q of degree n. The Dedekind zeta function
of K, is defined by the relation

(i (s) = 3 (Na) ™,

a

where the summation runs over all nonzero integral ideals in K,,. If r; is the number of real conjugates of K,
2ry is the number of imaginary conjugates, and A is the discriminant of K, then the functional equation for
Ck, (s) may be written as

£(s) =&(1—s),
where 1
£(s) =" (5s)rrz(s)B*ngn (5),
with
B = 2rzﬂ,n/2(|A|)fl/2‘

The Dedekind zeta function admits analytic continuation to the entire complex plane, and it only has a simple

pole at s = 1 with residue
_2M(2m)"hR

res s _—
s:lCK"( ) ’U)\/W
where h is the class number of K,; R is the regulator of the field, and w the number of roots of unity. Let

s = o +it. The critical strip for (x, (s) is the strip 0 < o < 1, and the critical line is the line s = 1/2 + it.
As was proved by Kaufman [4, 5] and Heath-Brown [6],

1
(k. (5 + it) < tn/0FE (4 > 1), (2)

Also the mean square
T

/|<Kn(a+it>\2dt, 0<o <1,
1

was estimated (see [7, 8]). For K3 and the critical line, the upper bound obtained in [7] takes the form

T

LA 3/27. 3
/‘CK3<§+zt)‘ dt < T??10g> T.
1

Let o(K,,) be the lower bound of the numbers o such that

T
/ Cre, (o +it)|* dt < T
1

In [7, 8], it was shown that

1

The theorem below improves the above results in the case of K3.
Theorem 1. In the case of K3,
() Cr(3+it) <ed (=)
T 2 5
@ f ‘ng (% + zt)‘ dt < T3,
1

(i) o(Ky) < 3.
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The proof of assertion (i) immediately follows from the known estimates (¢ > 1)

o5 +it) <= (o)),

L(% +it,F) < 5+ (10)).

Pass to the proof of assertion (ii). First we obtain the estimate

T
]. . 4 §+
‘L<§+zt,F)‘ dt < T3+, 3)
1
We use the following known results:
T
1 2
/‘L(i +it,F)‘ dt ~ CTlogT, (4)
1
T
1 6
/‘L<§ +it,F)‘ dt < T, (5)

1
see [11] and [12], respectively.
In connection with (5), we note that this estimate was originally obtained by Jutila for a holomorphic cusp
form F'(z) of even weight with respect to the full modular group. His proof can readily be extended to our case.
By virtue of (4) and (5), we have

1/2

I 4 I > YV 6 ;
/‘L(§+it,F)‘ dtg{/‘L(§+it,F>‘ dt} {/‘L(§+it,F>‘ dt} <(Tlog T)/2(T?+%)1 /2 < T3+,
1 1 1

and estimate (3) is proved.
Recall the following classical result of Ingham [13] :

[l 4 Tlog" T
. 0g
= t dt ~ ———.
/‘C<2 i )‘ 272
1
Using (3) and Ingham’s asymptotics, we derive

T T
/‘CKg(%Ht,F)rdt:/‘c(%ﬂt)L(%ﬂt,F)rdt
1

1 / 1 V27 1 4 N 1/2 5
S{/‘C(i +it)] dt} {/’L(iﬂ‘t,F)’ dt} < (Tlog! T)V2(T3/2+)1/2  Th+e,
! 1

and assertion (ii) is proved.
In order to prove assertion (iii), we use the inequalities

T
/|C(o+it)|4dt<<T (7> %)
1

T

. 4 . )
/|L(a+zt,F)| dt < T (0> 2).
1

The latter inequality is due to Ivic [14], who proved it in the case of a holomorphic cusp form F' of even weight
with respect to the full modular group; his proof can be extended to our case.
As above, the assertion desired is obtained by using the Cauchy inequality.
For completeness, we state one more fact (cf. [8]), which is an immediate corollary of the general Matsumoto
result [15, Theorem 2].
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Proposition 1. For % <o <1,

T
/|CK3 (O' + Zt)|2 dt = C(O’)T + O(T3(170)+5)‘
1

Proof. Represent (x,(s) in the form (see Sec. 3)

Cra(8) = S M(m)m™, (6)

3

Consider the expansion

where A > 0 is a constant, and, for % <oy <1,

o1+1i00

1 x?
R@) =5 [ Gal% ds

Let 8 be the lower bound for the numbers b such that

2X
/ IR(z)2de < X120+,
X

By Theorem 2 in [15], for max {B, %} <o <1,
T
/ |Ciey (0 + i) [ dt = e(0)T + O(T>( =)/ (1=Fuey
1

where 81 = max {§,0}. As is known [16], 5 < %, and the result follows.

3

Consider representation (6), where M (m) is the number of nonzero integral ideals of the field K5 of norm m
(the same notation is preserved for an arbitrary field K,,). In the present section, new facts on the distribution
of values of this function are presented. Note that the function M (m) is multiplicative.

Factorization (1) readily implies the formula

d|m
where a(d) is the dth Fourier coefficient of F'. In particular,

M(p) =1+ a(p).

The values of M (p) can be computed using the results in [17]. More exactly, the following assertion is valid.
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Proposition 2. Consider the field K3. Then M(p) =1 if (=D /p) = —=1. If (—=D/p) = 1, then p = pp’ in Ky;
in this case, M (p) = 3 if p splits completely in Kg, and M(p) = 0 if p remains prime in K.

For any field K,,, the asymptotics
Z M(m) =cx + O(:Ul_2/("+1))
m<x

is classical (Landau).

Pass to the problem on the mean square of the function M (m), which was first considered by Chandrasekharan
and Narasimhan in [7]. Further results were obtained by Chandrasekharan and Good in [8]. In [7], the following
estimate was proved: for any field K,

Z M(m)* < ar:(log;:n)n_1
m<x
If K, is normal, then we have the asymptotics [8] (I > 2 integer)
3" M(m)' = zP(logz) + O(«' =27 "+9),
m<x

where P is a suitable polynomial of degree n'~! — 1.
We obtain the asymptotics for the field K3 (which is nonnormal).

Theorem 2. For the field K3, we have the relation
Z M(m)* = Cizlogx + Cox + O(x%ﬁ),
m<zx

where C1 > 0 and Cy are constants.

Proof. Note that the function

T(s) = Z M(m)*m™*

m=1
can be expressed by the Euler product

T(s) =[] (1+Mp)’p* + M@*)’p " + Mp*)’p > +---).

P
By comparing it with the Euler product of the product of L-functions
C(s)L(s,F)* L(s,F x F)
and using the formula
M(p)* = 1+ 2a(p) + a(p)*,

we obtain (o > 1)
T(s) = ((s)L(s, F)>L(s, F x F) - B(s), (7)

where L(s, F' x F') is the Rankin-Selberg convolution L-function of the form F' with itself [18], and
B(s) = [J(1+ Aep™ + Asp ® + ).
P
Using (7), one can readily show that the function T'(s) admits an analytic continuation into the half-plane o > 1
having as its only singularity a pole of second order at s = 1, because each of the functions ((s) and L(s, F' x F)
has a simple pole at s =1, and L(1,F) # 0, B(1) # 0. Tt is known [19] that on the half-line ¢t > 1,
1
(5 +it) < t¥*,
1 . Llie
L(5 +it, F) < 5+,

1
L(§ Fit,F x F) < i+,
2119



Therefore, by the convexity property in the strip % +e <0 <1+¢, the growth estimate

T(s) < (|t +1)20 7+ (8)

holds for |t| — co. By using the well-known inversion formula for Dirichlet series, we obtain

1 14e+4:iT s Lge

xr X
M(m)? = — T(s)=— )
> M(m) omi / (5) d5+0( T )
m<z 14+e—iT

Shifting the path of integration to the line ¢ = % + ¢ and performing necessary computations with the use of
estimate (8), we derive

Z M(m)2 = Clxlogl' + 021' + O($%+ET%+E + $1+6/T)_

m<zx

2
1

The proof of Theorem 2 is completed by setting T' = z 1.
In the case of a normal field K,,, after the appearence of [4-6] the asymptotics due to Chandrasekharan and
Good can be improved for n > 4. For simplicity, we restrict our considerations to the case [ = 2.

Theorem 3. For a normal field K, we have the relation

Z M (m)? = zP,(logz) + O(xl‘%%+6),

m<z

where Py, is a suitable polynomial of degree n — 1.

Let, as above,

T(s)= Y M(m)n "

m=1

Consider the factorization (see [7])
T(s) =k, (5)U(s), (9)

1. By virtue of (2), on the half-line

where U(s) denotes a Dirichlet series, which is absolutely convergent for o > 5

t>1,
1 n?
(K. (5 +it) <tere,
Using (9), we show that T'(s) admits an analytic continuation into the half-plane ¢ > 1 having as its only
singularity a pole of order n at s = 1. In the strip % +e <o <1+eg, for |t| — oo, the following growth estimate
is valid:

n2(1—0)

T(s) < (Jt|+1) °

Using the inversion formula for Dirichlet series and estimate (10), we prove Theorem 3.

n2
e (10)

In the case of the field K3, we can also treat the sum > M (m)3.

m<z

Theorem 4. For the field K3, we have the relation

Z M(m)? = zPs(logx) + O(m73/79+6),

m<x

where Ps is a suitable polynomial of degree 4.

We begin the proof with the notation
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We have
M(p)* =1+ 3a(p) + 3a(p)® + a(p)®. (11)

By virtue of (11), in the half-plane ¢ > 1 we have the relation
T®(s) = ((s)L(s, F)* L(s, F x F)*R™(s)B'(s),

where (cf. [20, 21])
R®(s) = L(s, F)’L(s,sym*F) - [ K (s);

B'(s) = [[(1+ Abp™ + Ahp™® +---);
p

L(s,sym3F) is the symmetric cube L-function of the form F (see [22, 23]), and
K(s) =14 Nop™ 2% + ... + Ngp 5%.

Consequently,
T®) (s) = ¢(s)L(s, F)*L(s, F x F)*L(s,sym*F)B"(s), (12)

where
B"(s) = H(l + AYp™2 + ApT3 4.,
P

Using (12), we show that 7()(s) admits an analytic continuation into the half-plane ¢ > 1 having as its only
singularity a pole of order 5 at s = 1. Note that although in most cases the function L(s,sym3F) is entire [23],
in our case it has a simple pole at s = 1.

In the strip 1 + & <o < 1+¢, for [t| — oo, the growth estimate

8 (1-0)+12e

T (s) < (|t| + 1)
is valid. Using the inversion formula for Dirichlet series and this estimate, we prove Theorem 4.
Translated by O. M. Fomenko.
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