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A PRIORI PROPERTIES OF SOLUTIONS OF NONLINEAR EQUATIONS
WITH DEGENERATE COERCIVITY AND L1-DATA

A. A. Kovalevsky UDC 517.9

Abstract. A Dirichlet problem for a second-order nonlinear elliptic equation in the general divergent form
with a right-hand side from L1 is considered. The high-order coefficients in the equation are assumed to
satisfy the degenerate coercivity condition. The main results concern a priori properties of summability
and some estimates of entropy solutions of this problem.

1. Introduction

We consider the Dirichlet problem for the equation

−
n∑

i=1

∂

∂xi
ai(x, u,∇u) + a0(x, u,∇u) = f in Ω, (1.1)

where Ω is a bounded open set in R
n, n ≥ 2, and f ∈ L1(Ω). We suppose that the high-order coefficients

in the equation have an arbitrary growth with respect to u and growth of order p− 1 with respect to ∇u,
p ∈ (1, n), and satisfy the conditions of degenerate coercivity and strict monotonicity. The results of
this paper mainly concern a priori properties of entropy solutions of problem (1.1). These results do
not require any restrictions on the growth and sign of the low-order coefficient. In the only theorem of
existence formulated at the end of the paper, it is supposed that the function a0(x, u,∇u) has growth of
order σ ∈ (0, p− 1) with respect to u and of order p with respect to ∇u, but still no conditions on its
sign are required.

Solvability and properties of solutions for equations of the form (1.1) with right-hand sides from L1(Ω) or
from some class of Radon measures were investigated in a number of works (e.g., see [1–4, 6–9, 12–14, 16]).
However, the conditions imposed on the coefficients of equations in these works are less general than the
assumptions made in the present paper. Moreover, as far as we know, the main results of the paper are
new not only in this general form, but also in the particular cases considered earlier.

The paper is organized as follows. In Sec. 2, we give some necessary definitions and formulate the results
concerning elements of the special functional set

◦
T 1,p(Ω) introduced in [3] for the investigation of second-

order equations with right-hand sides belonging to L1. Section 3 contains the problem statement for the
Dirichlet problem under consideration and definitions of different types of its solutions. Also, in Sec. 3
the relations between the types of solutions are established and one result concerning the summability
of entropy solutions is proved. Other a priori properties of summability and some estimates of entropy
solutions are proved in Sec. 4. In Sec. 5, the theorem of existence of entropy solutions is formulated and,
finally, in Sec. 6, we give some bibliographic comments.

It should be mentioned that the main results of this work were announced in [15].

2. Set of Functions
◦
T 1,p(Ω)

Let n ∈ N, n ≥ 2, Ω be a bounded open set in R
n, and p ∈ (1, n).
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For any k > 0, let Tk be a function over R such that

Tk(s) =

{
s if |s| ≤ k,

k sign s if |s| > k.

It is well known that if λ ≥ 1, u ∈
◦
W 1,λ(Ω), and k > 0, then Tk(u) ∈

◦
W 1,λ(Ω) and for any i ∈ {1, . . . , n},

we have
DiTk(u) = Diu · 1{|u|<k} almost everywhere in Ω. (2.1)

By
◦
T 1,p(Ω) denote the set of all functions u : Ω → R such that Tk(u) ∈

◦
W 1,p(Ω) for any k > 0.

Note that any function belonging to
◦
T 1,p(Ω) is measurable. Indeed, if u ∈

◦
T 1,p(Ω), then the function u

is measurable since the functions Tk(u), k ∈ N, are measurable and the sequence {Tk(u)} converges to u
in the pointwise sense.

It is obvious that ◦
W 1,p(Ω) ⊂

◦
T 1,p(Ω). (2.2)

For any u : Ω → R and x ∈ Ω, set k(u, x) = min {l ∈ N : |u(x)| ≤ l}.

Definition 2.1. Let u ∈
◦
T 1,p(Ω) and i ∈ {1, . . . , n}. Then by δiu denote the function over Ω such that

for any x ∈ Ω, we have
δiu (x) = DiTk(u,x)(u) (x). (2.3)

Proposition 2.1. Let u ∈
◦
T 1,p(Ω) and i ∈ {1, . . . , n}. Then for any k > 0, we have

DiTk(u) = δiu · 1{|u|<k} almost everywhere in Ω. (2.4)

The proof for this proposition is simple. It is based on the definition of functions Tk and Definition 2.1.
It follows from Proposition 2.1 that if u ∈

◦
T 1,p(Ω), then for any i ∈ {1, . . . , n}, we have DiTk(u) → δiu

almost everywhere in Ω. Hence, if u ∈
◦
T 1,p(Ω), then functions δiu, i = 1, . . . , n, are measurable.

Note also that it follows from (2.1), (2.2), and Proposition 2.1 that if u ∈
◦
W 1,p(Ω), then we have

δiu = Diu almost everywhere in Ω for any i ∈ {1, . . . , n}. Moreover, Eq. (2.1) and Proposition 2.1 imply

that if u ∈
◦
T 1,p(Ω) ∩

◦
W 1,1(Ω), then we have δiu = Diu almost everywhere in Ω for any i ∈ {1, . . . , n}.

Definition 2.2. If u ∈
◦
T 1,p(Ω), then by δu we denote the map from Ω to R

n such that we have
(δu (x))i = δiu (x) for any x ∈ Ω and i ∈ {1, . . . , n}.

Proposition 2.2. Let u ∈
◦
T 1,p(Ω), λ ∈ [1, p ], and |δu| ∈ Lλ(Ω). Then u ∈

◦
W 1,λ(Ω) and we have

Diu = δiu almost everywhere in Ω for any i ∈ {1, . . . , n}.
The proof of this proposition is based on Proposition 2.1 and the Sobolev inequality for functions

belonging to
◦
W 1,λ(Ω), λ ∈ [1, n).

Proposition 2.3. Let u ∈
◦
T 1,p(Ω) and v ∈

◦
W 1,p(Ω) ∩ L∞(Ω). Then

(1) u− v ∈
◦
T 1,p(Ω);

(2) if k > 0 and i ∈ {1, . . . , n}, then DiTk(u− v) = δiu− δiv almost everywhere in {|u− v| < k}.

Proof. It is obvious that there exists a set E ⊂ Ω of zero measure such that for any x ∈ Ω\E, we have

|v(x)| ≤ ‖v‖L∞(Ω). (2.5)

Choose some k > 0 and let k1 = k + ‖v‖L∞(Ω). For any j ∈ N, set

uj = Tj(u) − v. (2.6)
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Now let j ∈ N, j ≥ k1, and x ∈ {|uj | < k}\E. Then

|Tj(u(x)) − v(x)| < k. (2.7)

If |u(x)| > j, then by (2.5) and (2.7) we get

j = |Tj(u(x))| ≤ |Tj(u(x)) − v(x)| + |v(x)| < k1.

Hence, j < k1, which contradicts the initial assumption about j. Therefore, |u(x)| ≤ j. Then inequal-
ity (2.7) implies that |u(x)− v(x)| < k. Combining this with inequality (2.5), we obtain that |u(x)| < k1.
Then, by virtue of (2.6), we get

uj(x) = Tj(u(x)) − v(x) = u(x) − v(x) = Tk1(u(x)) − v(x).

Thus,
uj = Tk1(u) − v almost everywhere in {|uj | < k}.

Then, for any i ∈ {1, . . . , n}, we get

Diuj = DiTk1(u) −Div almost everywhere in {|uj | < k}.

From the above reasoning, we conclude that the sequence {Tk(uj)} is bounded in
◦
W 1,p(Ω). Hence,

since we have Tk(uj) → Tk(u − v) strongly in Lp(Ω), we see that Tk(u − v) ∈
◦
W 1,p(Ω). Since k > 0 is

arbitrary, we obtain u− v ∈
◦
T 1,p(Ω). This proves statement (1) of the proposition.

Now we prove statement (2). Let k > 0 and i ∈ {1, . . . , n}. Set k1 = k+‖v‖L∞(Ω). From (2.5), we get

{|u− v| < k}\E ⊂ {|u| < k1}. (2.8)

Then
Tk(u− v) = Tk1(u) − v almost everywhere in {|u− v| < k}.

Therefore,
DiTk(u− v) = DiTk1(u) −Div almost everywhere in {|u− v| < k}. (2.9)

Moreover, by virtue of Proposition 2.1 and embedding (2.8), we have

DiTk1(u) = δiu almost everywhere in {|u− v| < k}.

Combining this with (2.9), we derive the relation

DiTk(u− v) = δiu− δiv almost everywhere in {|u− v| < k},

which proves statement (2).

Example 2.1. Let y ∈ Ω, ρ > 0, and let B1 and B2 be closed balls with centers at y and radii ρ and ρ/2,
respectively. Suppose that B1 ⊂ Ω and let function ϕ ∈ C1(Ω) be such that 0 ≤ ϕ ≤ 1 in Ω, ϕ = 1 in B2,
and ϕ = 0 in Ω\B1. Let λ ≥ n and u be a function over Ω such that

u(x) =

{
|x− y|−λ ϕ(x) if x ∈ Ω\{y},

0 if x = y.

Then u ∈
◦
T 1,p(Ω) \ L1(Ω).

This example and embedding (2.2) show that the set
◦
T 1,p(Ω) is wider than the space

◦
W 1,p(Ω).

Now we formulate one general result for the summability of functions u : Ω → R. This result depends on
a qualified estimate of measures of the sets {|u| ≥ k}, k ∈ N, and will be used to establish the summability

of elements of the set
◦
T 1,p(Ω) satisfying some family of integral estimates.
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Lemma 2.1. Let u be a measurable function over Ω, M > 0, γ > 0, and for any k ∈ N, let

meas {|u| ≥ k} ≤Mk−γ . (2.10)

Then, for any λ ∈ (0, γ), we have u ∈ Lλ(Ω) and
∫

Ω

|u|λ dx ≤ 2γ+(γ+λ)/(γ−λ)M + meas Ω. (2.11)

Proof. Fix some λ ∈ (0, γ) and set λ1 = 2/(γ − λ). By virtue of estimate (2.10), for any k ∈ N, we have
∫

{kλ1≤|u|<(k+1)λ1}

|u|λ dx ≤ 2γ+λ1λMk−2.

Hence, summing up with respect to k on both sides of this inequality, we conclude that u ∈ Lλ(Ω) and
estimate (2.11) is true.

Next, set p∗ = np/(n − p). Recall (e.g., see [10]) that
◦
W 1,p(Ω) ⊂ Lp∗(Ω) and there exists a positive

constant cn,p depending only on n and p such that for any function u ∈
◦
W 1,p(Ω), we have

( ∫

Ω

|u|p∗ dx
)1/p∗

≤ cn,p

( ∫

Ω

|∇u|p dx
)1/p

. (2.12)

Lemma 2.2. Let u ∈
◦
T 1,p(Ω), M ≥ 1, and 0 < θ < p. Suppose that the following inequality holds for

any k ≥ 1: ∫

{|u|<k}
|δu|p dx ≤Mkθ. (2.13)

Then, for any k ≥ 1, we have

meas {|u| ≥ k} ≤ cp
∗

n,pM
n/(n−p) k−n(p−θ)/(n−p), (2.14)

meas {|δu| ≥ k} ≤ (cp
∗

n,p + 1)Mn/(n−θ) k−n(p−θ)/(n−θ). (2.15)

Proof. Let k ≥ 1. We have Tk(u) ∈
◦
W 1,p(Ω). Then, from inequality (2.12), it follows from Proposition 2.1

and inequality (2.13) that
∫

Ω

|Tk(u)|p
∗
dx ≤ cp

∗
n,p

( ∫

{|u|<k}
|δu|p dx

)p∗/p

≤ cp
∗

n,pM
n/(n−p) kθn/(n−p). (2.16)

Since |Tk(s)| = k for s ∈ R, |s| ≥ k, we have

kp∗meas {|u| ≥ k} ≤
∫

Ω

|Tk(u)|p
∗
dx.

Combining this with (2.16), we derive inequality (2.14).
Next, set

k1 = M1/(n−θ) k(n−p)/(n−θ).

Since k1 ≥ 1, analogously to (2.14), we have

meas {|u| ≥ k1} ≤ cp
∗

n,pM
n/(n−p) k

−n(p−θ)/(n−p)
1 . (2.17)

Moreover, from inequality (2.13), we obtain
∫

{|u|<k1}
|δu|p dx ≤Mkθ

1. (2.18)
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It is obvious that

meas {|δu| ≥ k} ≤ meas {|u| ≥ k1} + meas {|u| < k1, |δu| ≥ k}. (2.19)

If x ∈ {|u| < k1, |δu| ≥ k}, then k ≤ |δu| (x), Therefore, taking inequality (2.18) into account, we get

kp meas {|u| < k1, |δu| ≥ k} ≤
∫

{|u|<k1}
|δu|p dx ≤Mkθ

1.

Combining this with inequalities (2.17) and (2.19) yields

meas {|δu| ≥ k} ≤ cp
∗

n,pM
n/(n−p) k

−n(p−θ)/(n−p)
1 +Mk−p kθ

1. (2.20)

Observe that, by the definition of k1, we have

Mn/(n−p) k
−n(p−θ)/(n−p)
1 = Mn/(n−θ)k−n(p−θ)/(n−θ),

Mk−pkθ
1 = Mn/(n−θ)k−n(p−θ)/(n−θ).

Combining these equations with (2.20), we derive inequality (2.15).

Lemmas 2.1 and 2.2 imply the following result.

Lemma 2.3. Let u ∈
◦
T 1,p(Ω), M ≥ 1, and 0 < θ < p. Suppose that the following inequality holds for

any k ≥ 1: ∫

{|u|<k}
|δu|p dx ≤Mkθ.

Let 0 < λ < n(p− θ)/(n− θ). Then
∫

Ω

|u|λ(n−θ)/(n−p) dx ≤ C1M
n/(n−p),

∫

Ω

|δu|λ dx ≤ C2M
n/(n−θ),

where C1 and C2 are positive constants depending only on n, p, meas Ω, θ, and λ.

3. Dirichlet Problem for Equations with L1-data.
Types of Solutions and Relations between Them

For any i ∈ {1, . . . , n}, let ai be a Carathéodory function over Ω × R × R
n. Assume that for any

k > 0, there exist ck > 0 and gk ∈ L1(Ω) (gk ≥ 0) on Ω such that the following inequality is true for
almost all x ∈ Ω and all s ∈ R, |s| ≤ k, and ξ ∈ R

n:
n∑

i=1

|ai(x, s, ξ)|p/(p−1) ≤ ck|ξ|p + gk(x). (3.1)

Also, assume that there exist p1 ∈ [ 0, p− 1), p2 ∈ [ 0, p− p1), c1, c2 > 0, and g1 ∈ L1(Ω) such that g1 ≥ 0
on Ω and the following inequality is true for almost all x ∈ Ω and any s ∈ R and ξ ∈ R

n:
n∑

i=1

ai(x, s, ξ)ξi ≥
c1|ξ|p

(1 + |s|)p1
− c2p2(1 + |s|)p2 − g1(x). (3.2)

Finally, assume that the following inequality is true for almost all x ∈ Ω and all s ∈ R and ξ, ξ′ ∈ R
n

(ξ �= ξ′):
n∑

i=1

[ ai(x, s, ξ) − ai(x, s, ξ′)](ξi − ξ′i) > 0. (3.3)
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Let a0 be a Carathéodory function over Ω × R × R
n and f ∈ L1(Ω).

Consider the following Dirichlet problem:

−
n∑

i=1

∂

∂xi
ai(x, u,∇u) + a0(x, u,∇u) = f in Ω, (3.4)

u = 0 on ∂Ω. (3.5)

Definition 3.1. We call a function u ∈
◦
W 1,1(Ω) a weak solution of problem (3.4), (3.5) if

(1) ai(x, u,∇u) ∈ L1(Ω) for any i ∈ {1, . . . , n};
(2) a0(x, u,∇u) ∈ L1(Ω);
(3) for any function v ∈ C∞

0 (Ω), we have
∫

Ω

{ n∑

i=1

ai(x, u,∇u)Div + a0(x, u,∇u)v
}
dx =

∫

Ω

fv dx.

Definition 3.2. We call a function u ∈
◦
T 1,p(Ω) a T -solution of problem (3.4), (3.5) if

(1) ai(x, u, δu) ∈ L1(Ω) for any i ∈ {1, . . . , n};
(2) a0(x, u, δu) ∈ L1(Ω);
(3) for any function v ∈ C∞

0 (Ω), we have
∫

Ω

{ n∑

i=1

ai(x, u, δu)Div + a0(x, u, δu)v
}
dx =

∫

Ω

fv dx.

Proposition 3.1. Let u be a T -solution of problem (3.4), (3.5) and let |δu| ∈ L1(Ω). Then u is a weak
solution of problem (3.4), (3.5).

Proof. Since u ∈
◦
T 1,p(Ω) and |δu| ∈ L1(Ω) by Proposition 2.2, we see that u ∈

◦
W 1,1(Ω) and we have

Diu = δiu almost everywhere in Ω for any i ∈ {1, . . . , n}. Hence, taking Definition 3.2 into account, we see
that conditions (1)–(3) of Definition 3.1 are fulfilled. Therefore, u is a weak solution of problem (3.4), (3.5).

Next, observe that if u ∈
◦
T 1,p(Ω), v ∈

◦
W 1,p(Ω) ∩ L∞(Ω), k > 0, and i ∈ {1, . . . , n}, then the function

ai(x, u, δu)(δiu − δiv) is summable over the set {|u − v| < k}. This follows from Proposition 2.1 and
inequality (3.1).

Definition 3.3. We call a function u ∈
◦
T 1,p(Ω) an entropy solution of problem (3.4), (3.5) if

(1) a0(x, u, δu) ∈ L1(Ω);
(2) for any v ∈ C∞

0 (Ω) and any k > 0, we have
∫

{|u−v|<k}

{ n∑

i=1

ai(x, u, δu)(δiu− δiv)
}
dx+

∫

Ω

a0(x, u, δu)Tk(u− v) dx ≤
∫

Ω

f Tk(u− v) dx.

Lemma 3.1. Let u be an entropy solution of problem (3.4), (3.5). Then the inequality in condition (2)

of Definition 3.3 holds for any v ∈
◦
W 1,p(Ω) ∩ L∞(Ω) and any k > 0.

One can prove this lemma, approximating a function v ∈
◦
W 1,p(Ω) ∩ L∞(Ω) by a sequence of smooth

functions uniformly bounded over Ω, applying the inequality from condition (2) of Definition 3.3 to the
functions of this sequence, and then proceeding to the appropriate limit, taking into account inequal-
ity (3.1) and Propositions 2.1 and 2.3.

Proposition 3.2. Let u be an entropy solution of problem (3.4), (3.5). Then
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(1) for any λ such that 0 < λ < n(p− 1 − p1)/(n− p), the function |u|λ is summable over Ω;
(2) for any λ such that 0 < λ < n(p− 1 − p1)/(n− 1 − p1), the function |δu|λ is summable over Ω.

Proof. Set σ1 = p1p2/(p−p2). By virtue of the inequalities p1 ≥ 0 and 0 ≤ p2 < p−p1, we have σ1 ≥ 0.
Moreover, we have

pp1

p− p2
= p1 + σ1. (3.6)

Set
M1 =

2p1c2p2

c1
, M2 =

2p1

c1

∫

Ω

[ g1 + |f | + |a0(x, u, δu)|]dx,

M3 = 2p2M1meas Ω +
[
(2cn,p)p2M1(1 + meas Ω)

]p/(p−p2)
.

Let k ≥ 1. By Definition 3.3, we have
∫

{|u|<k}

{ n∑

i=1

ai(x, u, δu)δiu
}
dx ≤

∫

Ω

[ f − a0(x, u, δu)]Tk(u) dx.

It follows from the latter inequality and from inequality (3.2) that

c1

∫

{|u|<k}

|δu|p
(1 + |u|)p1

dx ≤ c2p2

∫

{|u|<k}
(1 + |u|)p2dx+

∫

Ω

g1 dx+
∫

Ω

[ f − a0(x, u, δu)]Tk(u) dx.

Hence, taking into account that (1 + |u|)p1 ≤ (2k)p1 in the set {|u| < k} and |Tk(u)| ≤ k in Ω, we obtain
∫

{|u|<k}
|δu|p dx ≤M1k

p1

∫

{|u|<k}
(1 + |u|)p2 dx+M2k

p1+1. (3.7)

To estimate the first term on the right-hand side of inequality (3.7), suppose that p2 > 0. Using the
Hölder inequality, inequality (2.12), Proposition 2.1, and the Young inequality, we derive

2p2kp1M1

∫

Ω

|Tk(u)|p2 dx ≤ 2p2kp1M1(meas Ω)(p
∗−p2)/p∗

( ∫

Ω

|Tk(u)|p
∗
dx

)p2/p∗

≤ 2p2kp1M1(1 + meas Ω)cp2
n,p

( ∫

Ω

|∇Tk(u)|p dx
)p2/p

= (2cn,p)p2M1(1 + meas Ω)kp1

( ∫

{|u|<k}
|δu|p dx

)p2/p

≤
[
(2cn,p)p2M1(1 + meas Ω)

]p/(p−p2)
kp1p/(p−p2) +

p2

p

∫

{|u|<k}
|δu|p dx.

Then, taking relation (3.6) and the equation Tk(u) = u in the set {|u| < k} into account, we get

M1k
p1

∫

{|u|<k}
(1 + |u|)p2 dx ≤M3k

p1+σ1 +
p2

p

∫

{|u|<k}
|δu|p dx. (3.8)

It is obvious that the latter inequality is also true in the case where p2 = 0. Inequalities (3.7) and (3.8)
imply that ∫

{|u|<k}
|δu|p dx ≤ p

p− p2

[
M3k

p1+σ1 +M2k
p1+1

]
. (3.9)
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If σ1 ≤ 1, then from inequality (3.9), inclusion p1 ∈ [ 0, p − 1), and Lemma 2.3 we derive that state-
ments (1) and (2) are true.

Now let
σ1 > 1. (3.10)

Then, by virtue of the inequalities p1 ≥ 0 and 0 ≤ p2 < p− p1, we have

σ1 < p2, (3.11)

and, therefore,
p1 + σ1 < p. (3.12)

From (3.9), (3.10), (3.12), and Lemma 2.3 we see that

the function |u|λ is summable over Ω for any λ such that 0 < λ <
n(p− p1 − σ1)

n− p
. (3.13)

Set

σj = p2 −
n(p− p1 − σj−1)

n− p
, j = 2, 3, . . . . (3.14)

For any j ∈ N, we claim that
σj < p2. (3.15)

Let us prove this by induction. Since (3.11) is true, inequality (3.15) holds for j = 1. Suppose that
inequality (3.15) holds for some j ∈ N. Using relations (3.14) and the latter assumption, we obtain

σj+1 = p2 −
n(p− p1 − σj)

n− p
= p2 −

n(p− p1)
n− p

+
nσj

n− p

< p2 −
n(p− p1)
n− p

+
np2

n− p
= p2 −

n(p− p1 − p2)
n− p

.

Hence, taking into account that p2 < p − p1, we see that inequality (3.15) holds for j + 1. Therefore,
inequality (3.15) holds for any j ∈ N.

Next, let j ∈ N, j ≥ 2. By virtue of (3.14) and (3.15) we have

σj = p2 −
n(p− p1)
n− p

+
nσj−1

n− p
= σj−1 + p2 −

n(p− p1)
n− p

+
pσj−1

n− p

< σj−1 + p2 −
n(p− p1)
n− p

+
pp2

n− p
= σj−1 −

n(p− p1 − p2)
n− p

.

Thus, for any j ∈ N, j ≥ 2, the following inequality is true:

σj < σj−1 −
n(p− p1 − p2)

n− p
. (3.16)

This implies that for any j ∈ N, j ≥ 2, we have

σj < σ1 − (j − 1)
n(p− p1 − p2)

n− p
.

Therefore, there exist numbers j ∈ N such that σj < 1. Set

m = min {j ∈ N : σj < 1}.
Then σm < 1. Hence, by (3.10), we see that m ≥ 2. Moreover, it is obvious that σm−1 ≥ 1; therefore,

1 − σm ≤ σm−1 − σm . (3.17)

Set
α =

p2 − 1
p− p1 − p2

. (3.18)

By virtue of (3.10) and (3.11), we have α > 0.
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Choose a number ε such that

0 < ε < min
{

1,
1 − σm

αm(σm−1 − σm)

}
(3.19)

and for any j ∈ N, j ≥ 2, set
βj = σj + εαj(σj−1 − σj). (3.20)

Let j ∈ N, 2 ≤ j ≤ m. It is obvious that εαj > 0. If α ≤ 1, then, since we have ε < 1 by (3.19), we get
εαj < 1. If α > 1, then, using (3.17) and (3.19), we obtain εαj < αj−m ≤ 1. Thus, εαj < 1 in any case
and, therefore, εαj ∈ (0, 1).

Now from (3.20) and (3.16) we derive that for any j ∈ N, 2 ≤ j ≤ m, we have

σj < βj < σj−1 . (3.21)

Combining this with relations (3.14) and (3.15), we see that for any j ∈ N, 2 ≤ j ≤ m, we have

0 < p2 − βj <
n(p− p1 − σj−1)

n− p
. (3.22)

Then it follows from (3.22) and (3.13) that

the function |u|p2−β2 is summable over Ω. (3.23)

We claim that for any j ∈ N, 2 ≤ j ≤ m,

the function |u|p2−βj is summable over Ω. (3.24)

Clearly, it is true if m = 2. Let m > 2. Let us apply the method of induction. By virtue of (3.23),
statement (3.24) holds for j = 2. Suppose that statement (3.24) holds for some j ∈ N, 2 ≤ j ≤ m − 1.
By the definition of the number m, we have

σj ≥ 1. (3.25)

It follows from the latter inequality and from (3.21) that

βj > 1. (3.26)

Choose some k ≥ 1. Combining inequalities (3.7) and (3.26), we obtain
∫

{|u|<k}
|δu|p dx ≤ 2p2M1k

p1+βj

∫

{|u|<k}
(1 + |u|)p2−βj dx+M2k

p1+1

≤
{

2p2M1

∫

Ω

(1 + |u|)p2−βj dx+M2

}
kp1+βj ,

where the integral of the function (1 + |u|)p2−βj over Ω is finite due to the assumption. Hence, taking
inequality 0 < p1 + βj < p into account and applying Lemma 2.3, we conclude that

the function |u|λ is summable over Ω for any λ such that 0 < λ <
n(p− p1 − βj)

n− p
. (3.27)

We claim that

p2 − βj+1 <
n(p− p1 − βj)

n− p
. (3.28)

Indeed, using relations (3.14), we obtain

p2 − βj+1 = p2 − σj+1 + σj+1 − βj+1 =
n(p− p1 − σj)

n− p
+ σj+1 − βj+1

=
n(p− p1 − βj)

n− p
+
n(βj − σj)
n− p

+ σj+1 − βj+1, (3.29)
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and, by virtue of (3.20), we have

n(βj − σj)
n− p

+ σj+1 − βj+1 = εαj

[
n

n− p
(σj−1 − σj) − α(σj − σj+1)

]
. (3.30)

Inequalities (3.15) and (3.25) imply that

σj−1 − σj < p2 − 1. (3.31)

Moreover, combining relations (3.16) and (3.18), we obtain

n(p2 − 1)
n− p

< α(σj − σj+1). (3.32)

It follows from relations (3.29)–(3.32) that inequality (3.28) is true.
In addition, observe that p2 − βj+1 > 0 because of inequalities (3.22). Hence, taking inequality (3.28)

into account, we derive by statement (3.27) that the function |u|p2−βj+1 is summable over Ω. Therefore,
statement (3.24) is true for j + 1.

Now we conclude that statement (3.24) holds for any j ∈ N, 2 ≤ j ≤ m.
In particular, this implies that the function |u|p2−βm is summable over Ω. Moreover, by virtue of (3.20)

and (3.19), we have βm < 1. Then, using inequality (3.7), for any k ≥ 1 we establish an estimate
∫

{|u|<k}
|δu|p dx ≤

{
2M1

∫

Ω

(1 + |u|)p2−βm dx+M2

}
kp1+1 .

Hence, taking inequality 0 < p1 + 1 < p into account and applying Lemma 2.3, we conclude that
statements (1) and (2) of the proposition are true.

Proposition 3.3. Let u be an entropy solution of problem (3.4), (3.5). Let the function (1 + |u|)p2

be summable over Ω and ai(x, u, δu) ∈ L1(Ω) for any i ∈ {1, . . . , n}. Then u is a T -solution of
problem (3.4), (3.5).

Proof. By the assumptions of the proposition, we have u ∈
◦
T 1,p(Ω) and conditions (1) and (2) of Defini-

tion 3.2 are fulfilled.
We claim that condition (3) of Definition 3.2 holds. Let v ∈ C∞

0 (Ω). Choose k > max
Ω

|v| and set

Em = { |u− Tm(u) + v| < k} for any m ∈ N.

Let m ∈ N. Since Tm(u) − v ∈
◦
W 1,p(Ω) ∩ L∞(Ω), by Lemma 3.1 we have

∫

Em

{ n∑

i=1

ai(x, u, δu)(δiu−DiTm(u) +Div)
}
dx ≤

∫

Ω

[ f − a0(x, u, δu)]Tk(u− Tm(u) + v) dx. (3.33)

Using Proposition 2.1 and inequality (3.2), we obtain

∫

Em

{ n∑

i=1

ai(x, u, δu)(δiu−DiTm(u) +Div)
}
dx

=
∫

Em

{ n∑

i=1

ai(x, u, δu)Div

}
dx+

∫

Em∩{|u|≥m}

{ n∑

i=1

ai(x, u, δu)δiu
}
dx

≥
∫

Em

{ n∑

i=1

ai(x, u, δu)Div

}
dx− c2p2

∫

Em∩{|u|≥m}
(1 + |u|)p2 dx−

∫

{|u|≥m}
g1 dx.
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It follows from the latter relations and from inequality (3.33) that for any m ∈ N, we have
∫

Em

{ n∑

i=1

ai(x, u, δu)Div

}
dx ≤

∫

Ω

[ f − a0(x, u, δu)]Tk(u− Tm(u) + v) dx

+ c2p2

∫

{|u|≥m}
(1 + |u|)p2 dx+

∫

{|u|≥m}
g1 dx. (3.34)

It is obvious that
∞⋃

m=1
Em = Ω. Moreover, we have Em ⊂ Em+1 for any m ∈ N. Indeed, let m ∈ N and

x ∈ Em. The inclusion x ∈ Em+1 is obvious in the case where |u(x)| ≤ m+1. Suppose that |u(x)| > m+1.
In this case, if u(x) > 0, then u(x) > Tm+1(u(x)) and

−k < v(x) < u(x) − Tm+1(u(x)) + v(x) = u(x) − Tm(u(x)) − 1 + v(x) < k. (3.35)

If u(x) < 0, then u(x) < Tm+1(u(x)) and

−k < u(x) − Tm(u(x)) + v(x) + 1 = u(x) − Tm+1(u(x)) + v(x) < v(x) < k.

Combining this with (3.35), we see that if |u(x)| > m+1, then x ∈ Em+1 as well. Therefore, Em ⊂ Em+1.
Now we can conclude that meas (Ω\Em) → 0. Then, since functions ai(x, u, δu) are summable over Ω

by the assumptions of the proposition, we obtain
∫

Em

{ n∑

i=1

ai(x, u, δu)Div

}
dx→

∫

Ω

{ n∑

i=1

ai(x, u, δu)Div

}
dx. (3.36)

Next, by statement (1) of Proposition 3.2, we have meas {|u| ≥ m} → 0. Hence, since the functions
(1 + |u|)p2 and g1 are summable, we derive

∫

{|u|≥m}
(1 + |u|)p2 dx→ 0,

∫

{|u|≥m}
g1 dx→ 0. (3.37)

Finally, we have
∫

Ω

[ f − a0(x, u, δu)]Tk(u− Tm(u) + v) dx→
∫

Ω

[ f − a0(x, u, δu)]v dx. (3.38)

This is true because Tk(u − Tm(u) + v) → v in Ω and the functions f and a0(x, u, δu) are summable
over Ω.

By virtue of inequality (3.34) and relations (3.36)–(3.38), we see that for any function v ∈ C∞
0 (Ω), we

have ∫

Ω

{ n∑

i=1

ai(x, u, δu)Div

}
dx ≤

∫

Ω

[ f − a0(x, u, δu)]v dx.

Therefore, the following relation holds for any function v ∈ C∞
0 (Ω):

∫

Ω

{ n∑

i=1

ai(x, u, δu)Div

}
dx =

∫

Ω

[ f − a0(x, u, δu)]v dx.

Thus, condition (3) of Definition 3.2 holds and we conclude that u is a T -solution of problem (3.4), (3.5).

Corollary 3.1. Let u be an entropy solution of problem (3.4), (3.5). Let the functions (1+ |u|)p2 and |δu|
be summable over Ω and ai(x, u, δu) ∈ L1(Ω) for any i ∈ {1, . . . , n}. Then u is a weak solution of
problem (3.4), (3.5).
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This result follows from Propositions 3.3 and 3.1.
Before we proceed further, note one useful remark.

Remark 3.1. If p1 < (p− 1)/(n− p+ 1), then we have

1 <
n(p− 1 − p1)

(n− 1 − p1)(p− 1)
. (3.39)

Proposition 3.4. Let

p1 <
p− 1

n− p+ 1
, (3.40)

p2 <
n(p− 1 − p1)

n− p
, (3.41)

0 < p < p∗(p− 1 − p1)/(p− 1), c > 0, g ∈ L1(Ω), and g ≥ 0 in Ω. For almost all x ∈ Ω, any s ∈ R,
and ξ ∈ R

n, let the following inequality hold:
n∑

i=1

|ai(x, s, ξ)|p/(p−1) ≤ c (|s|p + |ξ|p) + g(x). (3.42)

Let u be an entropy solution of problem (3.4), (3.5). Then

(1) ai(x, u, δu) ∈ Lλ(Ω) for any number λ such that

1 ≤ λ < min
{
p∗(p− 1 − p1)
p(p− 1)

,
n(p− 1 − p1)

(n− 1 − p1)(p− 1)

}
(3.43)

and any i ∈ {1, . . . , n};
(2) u is a T -solution of problem (3.4), (3.5).

Proof. First, observe that inequality (3.39) holds by virtue of inequality (3.40) and Proposition 3.1. This
inequality and the assumption on p imply that the set of numbers λ satisfying inequality (3.43) is not
empty.

Let λ satisfy inequality (3.43) and let i ∈ {1, . . . , n}. By virtue of (3.42) and the inequality λ(p−1) <
p, we have

|ai(x, u, δu)|λ ≤ (c+ 1)
[
|u|λ(p−1)p/p + |δu|λ(p−1)

]
+ g + 1 almost everywhere in Ω. (3.44)

Inequalities (3.43) imply that

λ(p− 1)p/p < n(p− 1 − p1)/(n− p), λ(p− 1) < n(p− 1 − p1)/(n− 1 − p1).

Then the functions |u|λ(p−1)p/p and |δu|λ(p−1) are summable over Ω by Proposition 3.2. Combining
this with (3.44), we deduce that ai(x, u, δu) ∈ Lλ(Ω), which proves statement (1). It follows from this
statement that we have ai(x, u, δu) ∈ L1(Ω) for any i ∈ {1, . . . , n}. Moreover, by inequality (3.41) and
Proposition 3.2, the function (1 + |u|)p2 is summable over Ω.

Thus, all the conditions of Proposition 3.3 are fulfilled, and, by this, statement (2) of the proposition
is true.

Corollary 3.2. Let p > 2 − 1/n,

p1 < min
{

n

n− 1

(
p− 2 +

1
n

)
,

p− 1
n− p+ 1

}
, (3.45)

p2 <
n(p− 1 − p1)

n− p
,
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0 < p < p∗(p− 1− p1)/(p− 1), c > 0, g ∈ L1(Ω), and g ≥ 0 in Ω. For almost all x ∈ Ω, all s ∈ R, and
all ξ ∈ R

n, the following inequality holds:
n∑

i=1

|ai(x, s, ξ)|p/(p−1) ≤ c(|s|p + |ξ|p) + g(x).

Let u be an entropy solution of problem (3.4), (3.5). Then u is a weak solution of problem (3.4), (3.5).

Proof. Since all the conditions of Proposition 3.4 are fulfilled, it follows by this proposition that u is a
T -solution of problem (3.4), (3.5). By virtue of (3.45), we have

p1 <
n

n− 1

(
p− 2 +

1
n

)
.

Then 1 < n(p− 1 − p1)/(n− 1 − p1). Combining this with statement (2) of Proposition 3.2, we see that
|δu| ∈ L1(Ω). Then, by Proposition 3.1, we conclude that u is a weak solution of problem (3.4), (3.5).

4. A Priori Properties of Summability and Estimates for Entropy Solutions

Let us begin with the following auxiliary result.

Lemma 4.1. Let h ∈ C1(R) and h(0) = 0. Let u ∈
◦
W 1,p(Ω) ∩L∞(Ω). Then h(u) ∈

◦
W 1,p(Ω) ∩L∞(Ω)

and Dih(u) = h′(u)Diu almost everywhere in Ω for any i ∈ {1, . . . , n}.
Proof. By the continuity of the function h in R and the inclusion u ∈ L∞(Ω), we obtain h(u)∈L∞(Ω).

Next, set m = ‖u‖L∞(Ω) + 1, and let {uj} be a sequence of functions belonging to C∞
0 (Ω) such that

uj → u strongly in W 1,p(Ω), (4.1)

uj → u almost everywhere in Ω, (4.2)
∀ j ∈ N |uj | ≤ m in Ω. (4.3)

Since h ∈ C1(R) and h(0) = 0, we have

{h(uj)} ⊂ C1
0 (Ω). (4.4)

From relations (4.2) and (4.3) and the inclusion h(u) ∈ L∞(Ω), we deduce that

h(uj) → h(u) strongly in Lp(Ω). (4.5)

Choose some i ∈ {1, . . . , n}. Since u ∈ L∞(Ω), Diu ∈ Lp(Ω), and the function h′ is continuous in R,
we have h′(u)Diu ∈ Lp(Ω). Taking inequalities (4.3) into account, we obtain (for any j ∈ N)

∫

Ω

|Dih(uj) − h′(u)Diu|p dx ≤ 2p

∫

Ω

|h′(uj) − h′(u)|p|Diu|p dx+
(
2 max

[−m,m]
|h′|

)p
∫

Ω

|Diuj −Diu|p dx.

Combining this with relations (4.1)–(4.3), we see that

Dih(uj) → h′(u)Diu strongly in Lp(Ω). (4.6)

It follows from relations (4.4)–(4.6) that the generalized derivative Dih(u) exists and Dih(u) = h′(u)Diu
almost everywhere in Ω.

Thus, we conclude that h(u) ∈ W 1,p(Ω). Moreover, relations (4.5) and (4.6) imply that h(uj)→h(u)

strongly in W 1,p(Ω). Hence, using (4.4), we see that h(u) ∈
◦
W 1,p(Ω).

Proposition 4.1. Let p2 = 0 and g1 = 0 in Ω. Let u be an entropy solution of problem (3.4), (3.5).
Let h ∈ C1(R), h(0) = 0, the function h be bounded in R, and h′ ≥ 0 in R. Then the function
|δu|ph′(u)/(1 + |u|)p1 is summable in Ω and the following inequality holds:

∫

Ω

|δu|p
(1 + |u|)p1

h′(u) dx ≤ 1
c1

∫

Ω

[ f − a0(x, u, δu)]h(u) dx. (4.7)
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Proof. Choose some k > sup
R

|h|. For any m ∈ N, set

vm = Tm(u) − h(Tm(u)), (4.8)

Em = { |u− Tm(u) + h(Tm(u))| < k }. (4.9)

Let m ∈ N. Since u ∈
◦
T 1,p(Ω), we have Tm(u) ∈

◦
W 1,p(Ω)∩L∞(Ω). Then h(Tm(u)) ∈

◦
W 1,p(Ω)∩L∞(Ω)

by Lemma 4.1 and, for any i ∈ {1, . . . , n}, we have

Dih(Tm(u)) = h′(Tm(u))Di Tm(u) almost everywhere in Ω. (4.10)

Clearly, vm ∈
◦
W 1,p(Ω) ∩ L∞(Ω). Then, by Lemma 3.1, we have

∫

Em

{ n∑

i=1

ai(x, u, δu)(δiu− δivm)
}
dx ≤

∫

Ω

[ f − a0(x, u, δu)]Tk(u− vm) dx. (4.11)

Using Proposition 2.1, inequality (3.2), relation (4.10), the inclusion {|u| < m} ⊂ Em, and the nonneg-
ativity of the function h′ in R, we obtain

∫

Em

{ n∑

i=1

ai(x, u, δu)(δiu− δivm)
}
dx

=
∫

Em

{ n∑

i=1

ai(x, u, δu)(δiu−DiTm(u))
}
dx+

∫

Em

{ n∑

i=1

ai(x, u, δu)Dih(Tm(u))
}
dx

≥
∫

Em

{ n∑

i=1

ai(x, u, δu)Dih(Tm(u))
}
dx =

∫

Em

{ n∑

i=1

ai(x, u, δu)Di Tm(u)
}
h′(Tm(u)) dx

=
∫

{|u|<m}

{ n∑

i=1

ai(x, u, δu)δiu
}
h′(u) dx ≥ c1

∫

{|u|<m}

|δu|p
(1 + |u|)p1

h′(u) dx.

Combining this with inequality (4.11), we get (for any m ∈ N)
∫

{|u|<m}

|δu|p
(1 + |u|)p1

h′(u) dx ≤ 1
c1

∫

Ω

[ f − a0(x, u, δu)]Tk(u− vm) dx. (4.12)

Taking into account that Tk(u− vm) → h(u) in Ω and using the Fatou lemma, from inequality (4.12)
we deduce that the function |δu|ph′(u)/(1 + |u|)p1 is summable in Ω and inequality (4.7) is true.

Corollary 4.1. Let p2 = 0 and g1 = 0 in Ω. Let u be an entropy solution of problem (3.4), (3.5). Then
the following statements are true:

(1) if h ∈ C(R), h ≥ 0 in R, and
+∞∫
−∞

(1+ |t|)p1h(t) dt < +∞, then the function |δu|ph(u) is summable

in Ω;

(2) if h ∈ C1(R), h(0) = 0, and
+∞∫
−∞

(1 + |t|)p1 |h′(t)|p dt < +∞, then h(u) ∈ Lp∗(Ω).
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Proof. Let h ∈ C(R), h ≥ 0 in R, and
+∞∫
−∞

(1 + |t|)p1h(t) dt < +∞. Let h1 be a function over R such that

h1(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s∫

0

(1 + |t|)p1h(t) dt if s > 0,

0 if s = 0,

−
0∫

s

(1 + |t|)p1h(t) dt if s < 0.

Then h1 ∈ C1(R), h1(0) = 0, the function h1 is bounded on R, and h′1(s) = (1 + |s|)p1h(s) for any
s ∈ R. Hence, by Proposition 4.1, we deduce that the function |δu|ph(u) is summable over Ω. Therefore,
statement (1) is proved.

Now let h ∈ C1(R), h(0) = 0, and
+∞∫
−∞

(1 + |t|)p1 |h′(t)|p dt < +∞. Choose some k ∈ N. By Lemma 4.1,

we have h(Tk(u)) ∈
◦
W 1,p(Ω) and |∇h(Tk(u))| = |h′(Tk(u))| |∇Tk(u)| almost everywhere in Ω. Then,

using (2.12) and Proposition 2.1, we obtain

∫

Ω

|h(Tk(u))|p
∗
dx ≤ cp

∗
n,p

{ ∫

Ω

|h′(Tk(u))|p|∇Tk(u)|p dx
}p∗/p

= cp
∗

n,p

{ ∫

{|u|<k}
|h′(u)|p|δu|p dx

}p∗/p

. (4.13)

Due to the assumptions about h and statement (1), the function |h′(u)|p|δu|p is summable over Ω.
Then, applying the Fatou lemma, from (4.13) we derive that h(u) ∈ Lp∗(Ω). Therefore, statement (2) is
proved.

Proposition 4.2. Let p2 < n(p−1−p1)/(n−p) and let u be an entropy solution of problem (3.4), (3.5).
Let h ∈ C1(R), h(0) = 0, h and h′ be bounded in R, and h′ ≥ 0 in R. Then the function |δu|ph′(u)/(1 + |u|)p1

is summable over Ω and the following inequality holds:

∫

Ω

|δu|p
(1 + |u|)p1

h′(u) dx ≤ 1
c1

∫

Ω

[ f − a0(x, u, δu)]h(u) dx+
1
c1

∫

Ω

[ c2p2(1 + |u|)p2 + g1]h′(u) dx. (4.14)

Proof. Choose some k > sup
R

|h| and define the function vm and the set Em by (4.8) and (4.9) for any

m ∈ N .
Let m ∈ N. Reasoning analogously to the proof of Proposition 4.1, we see that h(Tm(u)) ∈

◦
W 1,p(Ω),

vm ∈
◦
W 1,p(Ω) ∩ L∞(Ω), and relations (4.10) and (4.11) hold.

It follows from the assumption about p2 and from Proposition 3.2 that the function (1 + |u|)p2 is
summable over Ω. Taking this into account and using Proposition 2.1, relations (3.2) and (4.10), the
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inclusion {|u| < m} ⊂ Em, and the fact that h′ is nonnegative and bounded in R, we obtain

∫

Em

{ n∑

i=1

ai(x, u, δu)(δiu− δivm)
}
dx

=
∫

Em

{ n∑

i=1

ai(x, u, δu)(δiu−DiTm(u))
}
dx+

∫

Em

{ n∑

i=1

ai(x, u, δu)Dih(Tm(u))
}
dx

=
∫

Em∩{|u|≥m}

{ n∑

i=1

ai(x, u, δu)δiu
}
dx+

∫

{|u|<m}

{ n∑

i=1

ai(x, u, δu)δiu
}
h′(u) dx

≥ c1

∫

{|u|<m}

|δu|p
(1 + |u|)p1

h′(u) dx−
∫

{|u|<m}
[ c2p2(1 + |u|)p2 + g1]h′(u) dx

−
∫

{|u|≥m}
[ c2p2(1 + |u|)p2 + g1] dx.

Combining this with (4.11), we get (for any m ∈ N)
∫

{|u|<m}

|δu|p
(1 + |u|)p1

h′(u) dx ≤ 1
c1

∫

Ω

[ f − a0(x, u, δu)]Tk(u− vm) dx

+
1
c1

∫

{|u|<m}
[ c2p2(1 + |u|)p2 + g1]h′(u) dx+

1
c1

∫

{|u|≥m}
[ c2p2(1 + |u|)p2 + g1] dx. (4.15)

Observe that statement (1) and Proposition 3.2 imply that meas {|u| ≥ m} → 0 as m → ∞. Then,
taking into account that Tk(u− vm) → h(u) in Ω and using the Fatou lemma, from (4.15) we derive that
the function |δu|ph′(u)/(1 + |u|)p1 is summable over Ω and inequality (4.14) holds.

Corollary 4.2. Let p2 < n(p− 1 − p1)/(n− p) and let u be an entropy solution of problem (3.4), (3.5).
Then the following statements are true:

(1) if h ∈ C(R), h ≥ 0 in R, and

+∞∫

−∞
(1 + |t|)p1h(t) dt < +∞, sup

t∈R

(1 + |t|)p1h(t) < +∞, (4.16)

then the function |δu|ph(u) is summable over Ω;
(2) if h ∈ C1(R), h(0) = 0, and

+∞∫

−∞
(1 + |t|)p1 |h′(t)|p dt < +∞, sup

t∈R

(1 + |t|)p1 |h′(t)|p < +∞, (4.17)

then h(u) ∈ Lp∗(Ω).

Proof. Let h ∈ C(R), h ≥ 0 in R, and inequalities (4.16) hold. We define the function h1 in the same
way as in the proof of Corollary 4.1. We have h1 ∈ C1(R), h1(0) = 0, h1 and h′1 are bounded in R, and
h′1 ≥ 0 in R. Then the function |δu|ph′1(u)/(1 + |u|)p1 is summable over Ω by Proposition 4.2. Hence,
taking into account that h′1(s) = (1 + |s|)p1h(s) for any s ∈ R, we deduce that |δu|ph(u) is summable
over Ω. Thus, statement (1) is proved.
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Now let h ∈ C1(R), h(0) = 0, and inequalities (4.17) hold. Then inequality (4.13) is true for any
k ∈ N. Moreover, by statement (1), the function |h′(u)|p|δu|p is summable over Ω. Hence, using the Fatou
lemma, we obtain that h(u) ∈ Lp∗(Ω). Thus, statement (2) is proved.

Corollary 4.3. Let p2 < n(p− 1 − p1)/(n− p) and let u be an entropy solution of problem (3.4), (3.5).

Let β > 1. Then the function
|δu|p

(1 + |u|)p1+1[ ln(2 + |u|)] [ ln ln(3 + |u|)]β is summable over Ω.

Proof. Let h be a function over R such that

h(s) =
1

(1 + |s|)p1+1[ ln(2 + |s|)] [ ln ln(3 + |s|)]β

for any s ∈ R. We have h ∈ C(R), h > 0 in R, and inequalities (4.16) hold. Then |δu|ph(u) is summable
over Ω by statement (1) of Corollary 4.2. Therefore, the corollary is proved.

Corollary 4.4. Let p2 < n(p− 1 − p1)/(n− p) and let u be an entropy solution of problem (3.4), (3.5).
Let h ∈ C(R) and the following conditions be fulfilled: h is even, h ≥ 0 in R, h is nonincreasing in the
set [ 0,+∞), and

+∞∫

1

1
t

[h(t)](n−p)/n dt < +∞. (4.18)

Then the functions |u|n(p−1−p1)/(n−p)h(u) and |δu|n(p−1−p1)/(n−1−p1)[h(u)](n−p)/(n−1−p1) are summable
over Ω.

Proof. Let h1 be a function over R such that

h1(s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s∫

0

[h(t)]1/p∗

(1 + |t|)(p1+1)/p
dt if s > 0,

0 if s = 0,

−
0∫

s

[h(t)]1/p∗

(1 + |t|)(p1+1)/p
dt if s < 0.

We have
h1 ∈ C1(R), h1(0) = 0, (4.19)

∀ t ∈ R (1 + |t|)p1 |h′1(t)|p =
[h(t)](n−p)/n

1 + |t| . (4.20)

It follows from relations (4.18) and (4.20) that
+∞∫

−∞
(1 + |t|)p1 |h′1(t)|p dt < +∞. (4.21)

Since h is even and nonincreasing in [ 0,+∞), we have

∀ t ∈ R h(t) ≤ h(0). (4.22)

Combining the latter inequality and (4.20), we obtain

sup
t∈R

(1 + |t|)p1 |h′1(t)|p < +∞. (4.23)

Using relations (4.19), (4.21), and (4.23), by statement (2) of Corollary 4.2 we derive

h1(u) ∈ Lp∗(Ω). (4.24)
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Let s ∈ R. Since h is even and nonincreasing in the set [ 0,+∞), we have

|h1(s)| ≥
[h(s)]1/p∗ |s|

(1 + |s|)(p1+1)/p
. (4.25)

If |s| ≥ 1, then, using (4.25), we get

|s|1−(p1+1)/p[h(s)]1/p∗ ≤ 2 |h1(s)|. (4.26)

If |s| < 1, then, by virtue of (4.22), we obtain

|s|1−(p1+1)/p[h(s)]1/p∗ ≤ [h(0)]1/p∗ . (4.27)

Inequalities (4.26) and (4.27) imply that

|s|1−(p1+1)/p[h(s)]1/p∗ ≤ 2 |h1(s)| + [h(0)]1/p∗

for any s ∈ R. Then
|u|n(p−1−p1)/(n−p)h(u) ≤ 4p∗ |h1(u)|p

∗
+ 2p∗h(0) in Ω.

Hence, taking inclusion (4.24) into account, we conclude that |u|n(p−1−p1)/(n−p)h(u) is summable over Ω.
Next, set

q =
n(p− 1 − p1)
n− 1 − p1

, λ =
n− p

n− 1 − p1
.

Observe that q < p,
q(1 + p1)
p− q

=
n(p− 1 − p1)

n− p
, (4.28)

(λ− 1)
p

q
+ 1 =

n− p

n
. (4.29)

Let s ∈ R and ξ ∈ R
n. Using the Young inequality with parameters p/q and p/(p − q) and equa-

tions (4.28) and (4.29), we obtain

|ξ|q[h(s)]λ =
|ξ|q[h(s)]λ−1+q/p

(1 + |s|)(p1+1)q/p
(1 + |s|)(p1+1)q/p [h(s)](p−q)/p

≤ |ξ|p[h(s)](n−p)/n

(1 + |s|)p1+1
+ (1 + |s|)n(p−1−p1)/(n−p)h(s).

Then

|δu|n(p−1−p1)/(n−1−p1)[h(u)](n−p)/(n−1−p1)

≤ |δu|p[h(u)](n−p)/n

(1 + |u|)p1+1
+ (1 + |u|)n(p−1−p1)/(n−p)h(u) in Ω. (4.30)

It follows from the properties of the function h and from statement (1) of Corollary 4.2 that the

function
|δu|p[h(u)](n−p)/n

(1 + |u|)p1+1
is summable over Ω. Hence, taking into account that |u|n(p−1−p1)/(n−p)h(u)

is summable (as was proved above) and using inequalities (4.22) and (4.30), we deduce that the function

|δu|n(p−1−p1)/(n−1−p1)[h(u)](n−p)/(n−1−p1)

is summable over Ω.

Corollary 4.5. Let p2 < n(p−1−p1)/(n−p), the function u be an entropy solution of problem (3.4), (3.5),
and β > n/(n− p). Then the functions

|u|n(p−1−p1)/(n−p)

[ ln(2 + |u|)]n/(n−p)[ ln ln(3 + |u|)]β ,
|δu|n(p−1−p1)/(n−1−p1)

[ ln(2 + |u|)]n/(n−1−p1)[ ln ln(3 + |u|)]β(n−p)/(n−1−p1)

are summable over Ω.
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Proof. Let h be a function over R such that

h(s) =
1

[ ln(2 + |s|)]n/(n−p)[ ln ln(3 + |s|)]β
for any s ∈ R. The function h satisfies the conditions of Corollary 4.4, which completes the proof.

From Corollary 4.5, we derive the following result.

Corollary 4.6. Let p2 < n(p−1−p1)/(n−p), function u be an entropy solution of problem (3.4), (3.5),
and β > 1/(p− 1 − p1). Then

|u|
[ ln(2 + |u|)]1/(p−1−p1)[ ln ln(3 + |u|)]β ∈ Ln(p−1−p1)/(n−p)(Ω),

|δu|
[ ln(2 + |u|)]1/(p−1−p1)[ ln ln(3 + |u|)]β ∈ Ln(p−1−p1)/(n−1−p1)(Ω).

5. Existence Theorem

Theorem 5.1. Let p1 < (p− 1)/(n− p+ 1), p2 = 0, and g1 = 0 in Ω . Let c ≥ 0, 0 < σ < p− 1 − p1,
g ∈ L1(Ω), g ≥ 0 in Ω, ϕ ∈ C(R), ϕ ≥ 0 in R, and

+∞∫

−∞
(1 + |t|)p1ϕ(t) dt < +∞.

Suppose that the following inequality holds for almost all x ∈ Ω and all s ∈ R and ξ ∈ R
n:

|a0(x, s, ξ)| ≤ c
[
|s|σ + |ξ|σ

]
+ |ξ|p ϕ(s) + g(x). (5.1)

Then there exists an entropy solution of problem (3.4), (3.5).

The proof of this theorem contains a lot of technical details, which cannot be fully described within
the framework of this paper. Detailed proofs of this result and of the analogous result in the case where
p2 �= 0 and ϕ satisfies the additional condition sup

t∈R

(1 + |t|)p1ϕ(t) < +∞ will be published soon. Here we

just describe the main steps of the proof of Theorem 5.1. They are as follows.
First we consider the sequence of generalized solutions uj ∈

◦
W 1,p(Ω) ∩ L∞(Ω) of approximating prob-

lems

−
n∑

i=1

∂

∂xi
A

(j)
i (x, u,∇u) +A

(j)
0 (x, u,∇u) = fj in Ω, (5.2)

u = 0 on ∂Ω, (5.3)

where fj = Tj(f), while A(j)
i and A(j)

0 are functions on Ω × R × R
n such that

A
(j)
i (x, s, ξ) = ai(x, Tj(s), ξ), A

(j)
0 (x, s, ξ) = Tj(a0(x, s, ξ))

for any triple (x, s, ξ) ∈ Ω × R × R
n.

Substituting h(uj) for u in the integral identity corresponding to the approximating problem with the
right-hand side fj , where h ∈ C1(R) is any bounded function such that h(0) = 0 and h′ ≥ 0 in R, we
obtain (using Lemma 4.1 and inequalities (3.2) and (5.1)) the integral inequality, from which we derive a
series of uniform integral estimates for functions uj .

In particular, this allows us to prove the existence of the function u ∈
◦
T 1,p(Ω) and the increasing

sequence {jl} ⊂ N such that

ujl
→ u almost everywhere in Ω, (5.4)

∀ k > 0 Tk(ujl
) → Tk(u) weakly in

◦
W 1,p(Ω). (5.5)
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Then, using the integral identities corresponding to approximating problems (5.2), (5.3), inequali-
ties (3.1)–(3.3), and properties (5.4) and (5.5), we derive that

∀ i ∈ {1, . . . , n} Diujl
→ δiu in measure, (5.6)

∀ k > 0 Tk(ujl
) → Tk(u) strongly in W 1,p(Ω). (5.7)

From the above-mentioned uniform integral estimates for the functions uj (including a uniform estimate
for the integrals of |∇uj |p ϕ(uj) over Ω), inequality (5.1), and properties (5.4) and (5.6), we deduce that
a0(x, u, δu) ∈ L1(Ω).

Using the same uniform integral estimates for functions uj and properties (5.4), (5.6), and (5.7), we
pass to the limit in the integral identities corresponding to the approximating problems (5.2), (5.3). This
implies that u is an entropy solution of problem (3.4), (3.5).

To conclude, we consider an example of functions ai, i = 1, . . . , n, satisfying inequalities (3.1)–(3.3), and
an example of a function a0, satisfying inequality (5.1) with ϕ complying the conditions of Theorem 5.1.

Example 5.1. Let p > 2, α ∈ [ 0, p − 1), β ∈ R, γ ∈ (0, p − 1 − α), ψ be a nonnegative continuous
function over R, g0 ∈ Lp/(p−2)(Ω), and g0 ≥ 0 in Ω. For any i ∈ {1, . . . , n}, let ai be a function over

Ω × R × R
n such that ai(x, s, ξ) =

|ξ|p−2ξi
(1 + |s|)α

+ β|s|γ + g0(x)ψ(s)ξi for any triple (x, s, ξ) ∈ Ω × R × R
n.

Then inequalities (3.1)–(3.3) hold and

ck = 6p/(p−1)n, gk = (3|β|kγ)p/(p−1)n+ 3p/(p−1)n
(

max
[−k,k]

ψ
)p/(p−2)

g
p/(p−2)
0 ,

p1 = α, p2 =
(
γ +

α

p

) p

p− 1
, g1 = 0 in Ω.

Example 5.2. Let β > 1, β1, β2 ∈ R, 0 < σ < p− 1− p1, g ∈ L1(Ω), g ≥ 0 in Ω, and ϕ be a function
over R such that

ϕ(s) =
1

(1 + |s|)p1+1[ ln(2 + |s|)]β
for any s ∈ R. Let a0 be a function over Ω × R × R

n such that

a0(x, s, ξ) = β1|s|σ + β2|ξ|σ + |ξ|p ϕ(s) + g(x)

for any triple (x, s, ξ) ∈ Ω×R×R
n. Then ϕ complies with the conditions of Theorem 5.1 and a0 satisfies

inequality (5.1).

6. Bibliographic Comments

The set
◦
T 1,p(Ω) and some wider sets of functions were introduced in [3]. Equation (2.4) is used in [3]

for the definition of a gradient for elements of a function class containing the set
◦
T 1,p(Ω). The direct

definition of functions δiu for u ∈
◦
T 1,p(Ω) by (2.3) and the proof for Proposition 2.1 are given in [14].

Proposition 2.2 can be found in [12, 14]; the particular case for λ = p is given by [3, Lemma 2.2].
A statement similar to statement (1) of Proposition 2.3 is mentioned without a proof in [3, Sec. 2].
Lemma 2.1 is essentially proved in [11]. For the analogous results using more qualified estimates instead
of (2.10), see [12, 13]. For θ = 1, inequalities (2.14) and (2.15) under condition (2.13) were established

earlier in [3]. The proof of Lemma 2.2 is analogous to the one described in [3]. An analog of the set
◦
T 1,p(Ω)

suitable for investigation of the solvability of fourth-order nonlinear elliptic equations with right-hand sides
belonging to L1 is introduced in [11].

The idea of using inequality (3.1) allowing an arbitrary growth of the coefficients ai, i = 1, . . . , n,
with respect to s was inspired by [5], where an analogous inequality was introduced for coefficients of
a parabolic equation with L1-data. A particular case of the degenerate coercivity (3.2), where p = 2,
p2 = 0, and g1 ≡ 0, was considered, e.g., in [6] for a linear equation with respect to the gradient of
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the unknown function. In [1], the Dirichlet problem was considered for Eq. (3.4) with a zero low-order
coefficient and the following restrictions regarding ai, i = 1, . . . , n: these coefficients satisfy (3.2) with
p ∈ (1, n), p1 ∈ [ 0, p − 1), p2 = 0, and g1 ≡ 0, while their order of growth with respect to s and ξ is
not greater than p − 1. Conditions of the strict monotonicity of the form (3.3) are usual for proofs of
existence and (in some cases) uniqueness of entropy solutions (e.g., see [1, 3, 8, 16]). For Definition 3.1,
see, e.g., [8], and for Definitions 3.2 and 3.3, see [3]. For p1 = 0, Proposition 3.2 describes the properties of
summability actually obtained in [3] for entropy solutions of nonlinear elliptic equations with the standard
coercivity condition (p1 = 0, p2 = 0, and g1 ≡ 0). If p1 �= 0, but p2 = 0 and g1 ≡ 0, then the properties of
summability formulated in Proposition 3.2 were essentially established in [1] for entropy solutions which
are limits of solutions of the corresponding approximating problems. Here we considered the general case,
where the proof of Proposition 3.2 is more complicated than in the above-mentioned particular cases.
Propositions 3.3 and 3.4 and Corollary 3.2 generalize the results obtained in [3] for p1 = 0, p2 = 0, and
g1 ≡ 0.

As far as we know, Propositions 4.1 and 4.2 together with their corollaries formulated in Sec. 4 are new
even in the case where p1 = 0. In particular, even for p1 = 0, p2 = 0, and g1 ≡ 0, Corollary 4.6 gives
stronger results of summability than results obtained in [9] for weak solutions.

Note that estimates (4.7) and (4.14) play an important role in the investigation of the properties
of summability of entropy solutions under conditions of the form (5.1) for the function a0 and in the
improvement of the summability of f . On the whole, this is a subject of a separate publication.

If the high-order coefficients of Eq. (3.4) do not depend on u, have a growth of order p−1 with respect
to ∇u, and satisfy the standard coercivity condition (p1 = 0, p2 = 0, and g1 ≡ 0), while the low-order
coefficient a0 does not depend on ∇u, has an arbitrary growth with respect to u, and is nondecreasing
with respect to u, then the existence of an entropy solution of problem (3.4), (3.5) is proved in [3]. The
proof of Theorem 5.1 mainly follows the method used in [3]. However, in the case under consideration
the low-order coefficient without a fixed sign satisfying estimate (5.1) complexifies the necessary uniform
estimates of solutions of approximating problems. If the high-order coefficients of Eq. (3.4) have growth
of order not greater than p− 1 with respect to u, have growth of order p− 1 with respect to ∇u, and
satisfy the standard coercivity condition (p1 = 0, p2 = 0, and g1 ≡ 0), the low-order coefficient a0 satisfies
inequality (5.1) with c = 0 and ϕ ∈ L1(R), and the right-hand side of the equation is a bounded Radon
measure on Ω, then the existence of a T -solution of the Dirichlet problem is proved in [16]. This article
contains interesting (and similar to ours in some sense) methods of proving integral estimates of solutions
of the approximating problems and the ideas used in the proof of Theorem 5.1 concerning the proof of
strong convergence in W 1,p(Ω) for cross sections of such solutions. Finally, it should be mentioned that if
high-order coefficients of Eq. (3.4) satisfy the standard growth condition with respect to u and ∇u, while
p1 ∈ [ 0, p− 1), p2 = 0, g1 ≡ 0, and a0 ≡ 0, then the existence of entropy solutions of problem (3.4), (3.5)
was proved in [1].
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