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ON THE SOLVABILITY OF A SINGULAR BOUNDARY-VALUE PROBLEM
FOR THE EQUATION f(t, x, x′, x′′) = 0

M. K. Grammatikopoulos, P. S. Kelevedjiev, and N. I. Popivanov
UDC 517.911+517.927.21

Abstract. In this work, we consider boundary-value problems of the form

f(t, x, x′, x′′) = 0, 0 < t < 1, x(0) = 0, x′(1) = b, b > 0,

where the scalar function f(t, x, p, q) may be singular at x = 0. As far as we know, the solvability of the
singular boundary-value problems of this form has not been treated yet. Here we try to fill in this gap.
Examples illustrating our main result are included.

1. Introduction

In this paper, we deal with the existence of positive solutions to the boundary-value problem (BVP)

f(t, x, x′, x′′) = 0, 0 < t < 1, (1.1)

x(0) = 0, x′(1) = b, b > 0, (1.2)
where the scalar function f(t, x, p, q) may be singular at x = 0, i.e., f may tend to infinity when x tends
to zero on the left- and/or on the right-hand side. In fact, we need f to be defined at least for

(t, x, p, q) ∈ [0, 1] × {
Dx \ {0}} ×Dp ×Dq,

where the sets Dx, Dp, Dq ⊆ R may be bounded. We also need Dx, Dp, and Dq to be such that 0 ∈ Dx,
0 ∈ Dq, and the sets D+

q = Dq ∩ (0,+∞), D−
q = (−∞, 0)∩Dq , and {y ∈ Dp : y > 0} are not empty and

also the first derivatives of f are continuous on a suitable subset of the domain of f.
Results on the solvability of various singular BVPs for ordinary differential equations whose main

nonlinearity does not depend on the highest derivative can be found, e.g., in [1–5, 7, 10–13, 15, 18–22, 28]
and the references therein. Papers [3, 22] deal with higher-order differential equations. In [3, 21, 22], the
main nonlinearity satisfies the Carathéodory conditions, while in [21], a differential equation with impulse
effects is considered. The results in [2–4, 10, 12, 20, 28] guarantee the existence of positive solutions.

The solvability of various nonsingular BVPs for second-order differential equations whose main non-
linearity depends on x′′ has been investigated in [6, 8, 14, 16, 17, 23–27]. The case where the main
nonlinearity of the equations is continuous on the set [0, 1] ×R3 is considered in [6, 8, 14, 16, 23–27],
while the case where the main nonlinearity is continuous on the set [0, 1]×Rn ×Rn ×Y, where Y ⊆ Rn,
is considered in [17]. The results in these works guarantee the existence of solutions that may change
their own sign.

As far as we know, the solvability of singular BVPs for equations of the form (1.1) has not been studied
yet. In this paper, we want to fill in this gap. In order to establish the existence of positive solutions to
the BVP (1.1), (1.2), we proceed as follows. For λ ∈ [0, 1] and n = 1, 2, . . ., we construct a family, say
(Φ)λ, of regular BVPs. For example, two-parameter families of BVPs have also been used in [4, 5, 19]. As
in [8, 13], suitable “barrier strips” yield a priori bounds independent of λ and n for x, x′, and x′′, where
x ∈ C2[0, 1] is an eventual solution to the family (Φ)λ. These bounds allow us to apply the topological
transversality theorem [9, Chapter I, Theorem 2.6] to prove the solvability of the family (Φ)1 for each
n = 1, 2, . . . . Finally, we establish a bound for x′′′n independent of n in an appropriate domain so that the
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Arzelà–Ascoli theorem yields a solution to the problem (1.1), (1.2) as the limit of a sequence of solutions
to the problems (Φ)1, n = 1, 2, . . . .

2. Basic Hypotheses

In order to obtain our results, we make the following three basic hypotheses.

H1. There are positive constants K, Q, Pi, i = 1, 2, 3, 4, and a sufficiently small ε > 0 such that

P3 + ε ≤ P1 ≤ b ≤ P2 ≤ P4 − ε, P1 < P2,

(0, P2 + ε] ⊆ Dx, [P3, P4] ⊆ Dp, [hq − ε,Hq + ε] ⊆ Dq,

where hq = −Q + P1 − b and Hq = Q + P2 − b, and the following “barrier strip” conditions are
satisfied:

f(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] ×D0
x × [P2, P4] ×D−

q , (2.1)

f(t, x, p, q) +Kq ≤ 0, (t, x, p, q) ∈ [0, 1] ×D0
x × [P3, P1] ×D+

q , (2.2)

q
(
f(t, x, p, q) +Kq

) ≤ 0, (t, x, p, q) ∈ [0, 1] × (0, P2 + ε] × [P1, P2] × {D−
Q ∪D+

Q}, (2.3)

where D0
x = Dx \ {0}, D−

Q = {z ∈ Dq : z < −Q} and D+
Q = {z ∈ Dq : z > Q}.

Remark 2.1. Since [−Q,Q] ⊂ [hq − ε,Hq + ε] ⊆ Dq, it follows that the sets D−
Q and D+

Q are not empty.

H2. The functions f(t, x, p, q) and fq(t, x, p, q) are continuous on the set [0, 1]× (0, P2 + ε]× [P1 − ε,
P2 + ε] × [hq − ε,Hq + ε] and there is a constant Kq > K such that

fq(t, x, p, q) ≤ −Kq, (t, x, p, q) ∈ [0, 1] × (0, P2 + ε] × [P1 − ε, P2 + ε] × [hq − ε,Hq + ε],

where K, Q, P1, P2, hq, Hq, and ε are as in H1.
H3. The functions ft(t, x, p, q), fx(t, x, p, q), and fp(t, x, p, q) are continuous for (t, x, p, q) ∈ [0, 1] ×

(0, P2 + ε] × [P1, P2] × [hq, Hq].

3. An Auxiliary Result

For λ ∈ [0, 1] and n ∈ N, we construct the family of BVPs
⎧
⎨

⎩

K
(
x′′ − (1 − λ)(x′ − b)

)
= λ

(
K

(
x′′ − (1 − λ)(x′ − b)

)
+f

(
t, x, x′, x′′ − (1 − λ)(x′ − b)

))
,

x(0) =
1
n
, x′(1) = b,

(3.1)λ

which for λ = 1 includes the BVP (1.1), (1.2) and where the constant K > 0 is as in H1, when it is
satisfied. Relatively, the following proposition is fulfilled.

Lemma 3.1. Let H1 be satisfied and let x(t) ∈ C2[0, 1] be a solution to the family (3.1)λ. Then

0 <
1
n
≤ x(t) ≤ P2 +

1
n
, P1 ≤ x′(t) ≤ P2, hq ≤ x′′(t) ≤ Hq

for t ∈ [0, 1], n ∈ N, and n > 1/ε.

Proof. Let the number n ∈ N, n > 1/ε, be fixed and suppose that the set

S =
{
t ∈ [0, 1] : P2 < x′(t) ≤ P4

}

is not empty. The continuity of x′(t) and the boundary condition at t = 1 imply that there is an interval
[α, β] ⊆ S such that

x′(α) > x′(β). (3.2)
Then there is a γ ∈ [α, β] such that

x′′(γ) < 0.
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Without loss of generality, assume that x(γ) �= 0. Since x(t) is a solution to (3.1)λ, we have
(
γ, x(γ), x′(γ), x′′(γ) − (1 − λ)(x′(γ) − b)

)
∈ [0, 1] ×D0

x ×Dp ×Dq.

But x′(γ) ∈ (P2, P4] and x′′(γ) − (1 − λ)(x′(γ) − b) < 0. So,
(
γ, x(γ), x′(γ), x′′(γ) − (1 − λ)(x′(γ) − b)

)
∈ [0, 1] ×D0

x × (P2, P4] ×D−
q

and we obtain by H1 that

0 > K
(
x′′(γ) − (1 − λ)(x′(γ) − b)

)

= λ

(
K

(
x′′(γ) − (1 − λ)(x′(γ) − b)

)
+f

(
γ, x(γ), x′(γ), x′′(γ) − (1 − λ)(x′(γ) − b)

))
≥ 0,

which is impossible. Therefore,
x′(t) ≤ P2 for t ∈ [0, 1].

Similarly, the assumption that the set

S0 =
{
t ∈ [0, 1] : P3 ≤ x′(t) < P1

}

is not empty leads to a contradiction, and from this we conclude that

0 < P1 ≤ x′(t) for t ∈ [0, 1].

But the fact that x′(t) > 0 on [0, 1] means that x(t) ≥ 1/n for t ∈ [0, 1] and for fixed n ∈ N. On the other
hand, by the mean-value theorem, for each t ∈ (0, 1] there is a ξ ∈ (0, t) such that

x(t) − x(0) = x′(ξ)t,

from which it follows that
x(t) ≤ P2 + 1/n < P2 + ε for t ∈ [0, 1].

Suppose now that there is (t0, λ0) ∈ [0, 1] × [0, 1] such that

x′′(t0) − (1 − λ0)(x′(t0) − b) < −Q.
Then, using the fact that

(
t0, x(t0), x′(t0), x′′(t0)− (1−λ0)(x′(t0)− b)

)∈ [0, 1]× (0, P2 + ε]× [P1, P2]×D−
Q

and having in mind (2.3), we find that

0 > K
(
x′′(t0) − (1 − λ0)(x′(t0) − b)

)

= λ0

(
K

(
x′′(t0) − (1 − λ0)(x′(t0) − b)

)
+ f

(
t0, x(t0), x′(t0), x′′(t0) − (1 − λ0)(x′(t0) − b)

))
≥ 0.

The obtained contradiction shows that

−Q ≤ x′′(t) − (1 − λ)(x′(t) − b)

for each (t, λ) ∈ [0, 1] × [0, 1]. In a similar way, assuming that there exists (t1, λ1) ∈ [0, 1] × [0, 1] such
that

x′′(t1) − (1 − λ1)(x′(t1) − b) > Q

and using (2.1), we again lead to a contradiction. So, we see that

−Q ≤ x′′(t) − (1 − λ)(x′(t) − b) ≤ Q, (t, λ) ∈ [0, 1] × [0, 1],

which yields
hq = −Q+ P1 − b ≤ x′′(t) ≤ Q+ P2 − b = Hq, t ∈ [0, 1].
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4. An Appropriate Extension of the Main Nonlinearity

In order to prove our main result, it is necessary to extend the function f on the set [0, 1] × R3 in a
suitable way. With that end in view, we proceed as follows.

For a fixed n ∈ N, we construct the functions

ϕ =

⎧
⎪⎨

⎪⎩

f(t, (2n)−1, p, q), (t, x, p, q) ∈ [0, 1] × (−∞, (2n)−1) × [P1 − ε, P2 + ε] × [hq − ε,Hq + ε],
f(t, x, p, q), (t, x, p, q) ∈ [0, 1] × [(2n)−1, P2 + ε) × [P1 − ε, P2 + ε] × [hq − ε,Hq + ε],
f(t, P2 + ε, p, q), (t, x, p, q) ∈ [0, 1] × (P2 + ε,∞) × [P1 − ε, P2 + ε] × [hq − ε,Hq + ε],

where hp, Hp, ε, and Pi, i = 1, 2, are the constants of H1.

Remark 4.1. Observe that any other function considered below, which involves the function ϕ, depends
on this fixed value of n ∈ N. But, for the sake of simplicity, in the sequel we will omit all n-indexes.

Some properties of the function ϕ are described by the following two lemmas.

Lemma 4.1. Let H2 be satisfied. Then ϕ(t, x, p, q) and its derivative ϕq(t, x, p, q) are continuous on
Ωx ≡ [0, 1] ×R× [P1 − ε, P2 + ε] × [hq − ε,Hq + ε] and ϕq(t, x, p, q) ≤ −Kq for (t, x, p, q) ∈ Ωx.

Proof. Clearly, ϕ(t, x, p, q) and

ϕq =

⎧
⎪⎨

⎪⎩

fq(t, (2n)−1, p, q), (t, x, p, q) ∈ [0, 1] × (−∞, (2n)−1) × [P1 − ε, P2 + ε] × [hq − ε,Hq + ε],
fq(t, x, p, q), (t, x, p, q) ∈ [0, 1] × [(2n)−1, P2 + ε) × [P1 − ε, P2 + ε] × [hq − ε,Hq + ε],
fq(t, P2 + ε, p, q), (t, x, p, q) ∈ [0, 1] × (P2 + ε,∞) × [P1 − ε, P2 + ε] × [hq − ε,Hq + ε],

are continuous on Ωx. Moreover, in view of H2,

fq(t, x, p, q) ≤ −Kq, (t, x, p, q) ∈ [0, 1] × [(2n)−1, P2 + ε] × [P1 − ε, P2 + ε] × [hq − ε,Hq + ε].

In particular, for (t, p, q) ∈ [0, 1] × [P1 − ε, P2 + ε] × [hq − ε,Hq + ε], we have

fq(t, (2n)−1, p, q) ≤ −Kq, fq(t, P2 + ε, p, q) ≤ −Kq.

Consequently,

ϕq(t, x, p, q) ≤ −Kq, (t, x, p, q) ∈ [0, 1] ×R× [P1 − ε, P2 + ε] × [hq − ε,Hq + ε].

Lemma 4.2. Let H1 be satisfied. Then the function ϕ(t, x, p, q) has the following “barrier strip” properties

ϕ(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] ×R× {P2} × [hq − ε, 0), (4.1)

ϕ(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × [hq − ε,−Q], (4.2)

ϕ(t, x, p, q) +Kq ≤ 0, (t, x, p, q) ∈ [0, 1] ×R× {P1} × [0, Hq + ε], (4.3)

ϕ(t, x, p, q) +Kq ≤ 0, (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × [Q,Hq + ε]. (4.4)

Proof. In particular, by the definition of ϕ, we see that

ϕ(t, x, p, q) = f(t, x, p, q), (t, x, p, q) ∈ [0, 1] × [(2n)−1, P2 + ε] × [P2, P2 + ε] × [hq − ε, 0).

Now, since [(2n)−1, P2 + ε] ⊆ D0
x, [P2, P2 + ε] ⊆ [P2, P4], and [hq − ε, 0) ⊆ D−

q , in view of H1, we get

f(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] × [(2n)−1, P2 + ε] × [P2, P2 + ε] × [hq − ε, 0).

Therefore,

ϕ(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] × [(2n)−1, P2 + ε] × [P2, P2 + ε] × [hq − ε, 0). (4.5)

Next, having in mind H1 and the fact that (2n)−1 ∈ D0
x, [P2, P2 + ε] ⊆ [P2, P4], and [hq − ε, 0) ⊆ D−

q , we
see that

f(t, (2n)−1, p, q) +Kq ≥ 0, (t, p, q) ∈ [0, 1] × [P2, P2 + ε] × [hq − ε, 0).
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But, since the definition of ϕ implies

ϕ(t, x, p, q) = f(t, (2n)−1, p, q), (t, x, p, q) ∈ [0, 1] × (−∞, (2n)−1) × [P2, P2 + ε] × [hq − ε, 0),

we conclude that

ϕ(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] × (−∞, (2n)−1) × [P2, P2 + ε] × [hq − ε, 0). (4.6)

In a similar way, we obtain

ϕ(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] × (P2 + ε,∞) × [P2, P2 + ε] × [hq − ε, 0),

which, together with (4.5) and (4.6), gives (4.1). Note that the same reasoning as above yields (4.3).
To prove (4.2), observe first that, by the definition of ϕ,

ϕ(t, x, p, q) = f(t, x, p, q), (t, x, p, q) ∈ [0, 1] × [(2n)−1, P2 + ε] × [P1, P2] × [hq − ε,−Q),

and then, using (2.1), we obtain

ϕ(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] × [(2n)−1, P2 + ε] × [P1, P2] × [hq − ε,−Q).

Moreover, (2.1) implies that

f(t, (2n)−1, p, q) +Kq ≥ 0, f(t, P2 + ε, p, q) +Kq ≥ 0

for (t, p, q) ∈ [0, 1] × [P1, P2] × [hq − ε,−Q) and, by the definition of ϕ, we derive

ϕ(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] ×
{

(−∞, (2n)−1) ∪ (P2 + ε,∞)
}
× [P1, P2] × [hq − ε,−Q).

Thus, we see that

ϕ(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × [hq − ε,−Q).

Finally, by the same arguments, we conclude that

ϕ(t, x, p, q) +Kq ≤ 0, (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × (Q,Hq + ε].

Now, using the function ϕ, we introduce the function

Φ(t, x, p, q) =

⎧
⎪⎨

⎪⎩

ϕ(t, x, P1, q), (t, x, p, q) ∈ [0, 1] ×R× (−∞, P1) × [hq − ε,Hq + ε],
ϕ(t, x, p, q), (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × [hq − ε,Hq + ε],
ϕ(t, x, P2, q), (t, x, p, q) ∈ [0, 1] ×R× (P2,∞) × [hq − ε,Hq + ε],

whose properties are described by the following proposition.

Lemma 4.3. Let H2 be satisfied. Then Φ(t, x, p, q) and its derivative Φq(t, x, p, q) are continuous on
Ωp :≡ [0, 1] ×R×R× [hq − ε,Hq + ε] and Φq(t, x, p, q) ≤ −Kq for (t, x, p, q) ∈ Ωp.

Proof. Clearly, Φ(t, x, p, q) and

Φq(t, x, p, q) =

⎧
⎪⎨

⎪⎩

ϕq(t, x, P2, q), (t, x, p, q) ∈ [0, 1] ×R× (P2,∞) × [hq − ε,Hq + ε],
ϕq(t, x, p, q), (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × [hq − ε,Hq + ε],
ϕq(t, x, P1, q), (t, x, p, q) ∈ [0, 1] ×R× (−∞, P1) × [hq − ε,Hq + ε],

are continuous on Ωp. Moreover, by Lemma 4.1,

ϕq(t, x, p, q) ≤ −Kq, (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × [hq − ε,Hq + ε],

and, hence, it follows that
Φq(t, x, p, q) ≤ −Kq, (t, x, p, q) ∈ Ωp.
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In order to extend the main nonlinearity appropriately, we suppose that the condition H2 is satisfied.
We also assume that ψ is a function with the properties

Ψ(t, x, p, q) and Ψq(t, x, p, q) are continuous on [0, 1] ×R2 × [Hq + ε,∞),

Ψ(t, x, p,Hq + ε) = Φ(t, x, p,Hq + ε) and Ψq(t, x, p,Hq + ε) = Φq(t, x, p,Hq + ε) for (t, x, p) ∈ [0, 1]×R2,

and
Ψq(t, x, p, q) ≤ −Kq, (t, x, p, q) ∈ [0, 1] ×R2 × [Hq + ε,∞),

which is possible because, by Lemma 4.3, Φq(t, x, p,Hq + ε) ≤ −Kq for (t, x, p) ∈ [0, 1] ×R2.
Finally, suppose that Ψ is a function with the properties

ψ(t, x, p, q) and ψq(t, x, p, q) are continuous on [0, 1] ×R2 × (−∞, hq − ε],

ψ(t, x, p, hq − ε) = Φ(t, x, p, hq − ε) and ψq(t, x, p, hq − ε) = Φq(t, x, p, hq − ε) for (t, x, p) ∈ [0, 1] ×R2,

and
ψq(t, x, p, q) ≤ −Kq, (t, x, p, q) ∈ [0, 1] ×R2 × (−∞, hq − ε],

which is possible since, by Lemma 4.3, Φq(t, x, p, hp − ε) ≤ −Kq for (t, x, p) ∈ [0, 1] ×R2.

Now we are ready to extend the function f to the function defined in [0, 1] × R
3 by

fn(t, x, p, q) =

⎧
⎪⎨

⎪⎩

ψ(t, x, p, q), (t, x, p, q) ∈ [0, 1] ×R2 × (−∞, hq − ε),
Φ(t, x, p, q), (t, x, p, q) ∈ [0, 1] ×R2 × [hq − ε,Hq + ε],
Ψ(t, x, p, q), (t, x, p, q) ∈ [0, 1] ×R2 × (Hq + ε,∞).

The next two lemmas establish some useful properties of the functions fn and its derivative

(fn)q(t, x, p, q) =

⎧
⎪⎨

⎪⎩

ψq(t, x, p, q), (t, x, p, q) ∈ [0, 1] ×R×R× (−∞, hq − ε),
Φq(t, x, p, q), (t, x, p, q) ∈ [0, 1] ×R×R× [hq − ε,Hq + ε],
Ψq(t, x, p, q), (t, x, p, q) ∈ [0, 1] ×R×R× (Hq + ε,∞).

Lemma 4.4. Let H2 be satisfied. Then

fn(t, x, p, q) and (fn)q(t, x, p, q) are continuous on [0, 1] ×R3

and
(fn)q(t, x, p, q) ≤ −Kq, (t, x, p, q) ∈ [0, 1] ×R3.

Proof. Since the conclusion of this lemma follows from the properties of the functions ψ and Ψ and from
Lemma 4.3, the details of the proof are omitted.

Lemma 4.5. Let H1 and H2 be satisfied. Then the function fn has the following “barrier strip” properties:

fn(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] ×R× [P2, P2 + ε] × (−∞, 0),

fn(t, x, p, q) +Kq ≤ 0, (t, x, p, q) ∈ [0, 1] ×R× [P1 − ε, P1] × (0,∞), (4.7)
and

q
(
fn(t, x, p, q) +Kq

)
≤ 0, (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] ×

{
R \ [−Q,Q]

}
.

Proof. The definitions of the functions Φ and fn imply that

fn(t, x, p, q) = ϕ(t, x, p, q), (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × [hq − ε,Hq + ε]. (4.8)

On the other hand, by Lemma 4.2,

ϕ(t, x, P2, q) +Kq ≥ 0, (t, x, q) ∈ [0, 1] ×R× [hq − ε, 0).

So, from the fact that

fn(t, x, p, q) = Φ(t, x, p, q) = ϕ(t, x, P2, q), p ≥ P2, q ∈ [hq − ε, 0),
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it follows that

fn(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] ×R× [P2, P2 + ε] × [hq − ε, 0). (4.9)

Observe that, by Lemma 4.4, for each (t, x, p, q) ∈ [0, 1] ×R× [P2, P2 + ε] × (−∞, 0), we have
(
fn(t, x, p, q) +Kq

)

q
= (fn)q(t, x, p, q) +K < (fn)q(t, x, p, q) +Kq ≤ 0,

which, together with (4.9), yields

fn(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] ×R× [P2, P2 + ε] × (−∞, 0).

Now note that the same reasoning as above yields (4.7).
Note also that, in particular, it follows from (4.8) that

fn(t, x, p, q) = ϕ(t, x, p, q), (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × (Q,Hq + ε],

from which, according to (4.3), we get

fn(t, x, p, q) +Kq ≤ 0, (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × (Q,Hq + ε]. (4.10)

In view of Lemma 4.4, for each (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × (0,∞) it follows that
(
fn(t, x, p, q) +Kq

)

q
= (fn)q(t, x, p, q) +K < (fn)q(t, x, p, q) +Kq ≤ 0.

So, by (4.10), we conclude that

fn(t, x, p, q) +Kq ≤ 0, (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × (Q,∞). (4.11)

Finally, observe that the inequality

fn(t, x, p, q) +Kq ≥ 0, (t, x, p, q) ∈ [0, 1] ×R× [P1, P2] × (−∞,−Q),

can be obtained in a similar manner.

Now, for λ ∈ [0, 1] and n ∈ N, n > 1/ε, consider the family of regular problems
⎧
⎨

⎩

K
(
x′′ − (1 − λ)(x′ − b)

)
= λ

(
K

(
x′′ − (1 − λ)(x′ − b)

)
+ fn

(
t, x, x′, x′′ − (1 − λ)(x′ − b)

))
,

x(0) =
1
n
, x′(1) = b.

(4.12)λ

The following two lemmas establish some useful properties of solutions to the family (4.12)λ.

Lemma 4.6. Let H1 and H2 be satisfied and let x(t) ∈ C2[0, 1] be a solution to the family (4.12)λ. Then
1
n
≤ x(t) ≤ P2 + ε, P1 ≤ x′(t) ≤ P2, hq ≤ x′′(t) ≤ Hq

for t ∈ [0, 1].

Proof. Since the conclusions of Lemma 4.5 hold, the proof of this lemma is similar to that of Lemma 3.1.

The next result is a direct consequence of Lemma 4.6 and the definition of the function fn.

Lemma 4.7. Let H1 and H2 be satisfied. Then each C2[0, 1]-solution to the family (4.12)λ is also a
solution to the family (3.1)λ, λ ∈ [0, 1].

Proof. Observe that, in view of Lemma 4.6, for each solution x(t) ∈ C2[0, 1] to (4.12)λ, we have
(
t, x(t), x′(t), x′′(t)

)
∈ [0, 1] × [n−1, P2 + ε] × [P1, P2] × [hq, Hq].

On the other hand, the definition of fn implies that

fn(t, x, p, q) = f(t, x, p, q), (t, x, p, q) ∈ [0, 1] × [n−1, P2 + ε] × [P1, P2] × [hq, Hq],

from which the assertion of the lemma follows immediately.
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We conclude this section by proving the following important assertion.

Lemma 4.8. Let H1 and H2 be satisfied. Then for each n ∈ N, n > 1/ε the problem (3.1)λ with λ = 1
has at least one solution in C2[0, 1].

Proof. Let n be fixed. Then, using Lemma 4.4, we conclude that the functions

F (λ, t, x, p, q) := λfn(t, x, p, q) + (λ− 1)Kq, Fq(λ, t, x, p, q) = λ(fn)q(t, x, p) + (λ− 1)K

are continuous for (λ, t, x, p, q) ∈ [0, 1]2 ×R3 and that

Fq(λ, t, x, p, q) < 0, (λ, t, x, p) ∈ [0, 1]2 ×R3.

On the other hand, according to Lemma 4.5, we have

fn(t, x, p,Hq) +KHq ≤ 0, (t, x, p) ∈ [0, 1] ×R2,

and
fn(t, x, p, hq) +Khq ≥ 0, (t, x, p) ∈ [0, 1] ×R2.

Thus, we see that F < 0 for q = Hq and F > 0 for q = hq. Thus, there is a unique function
V (λ, t, x, p) ∈ (hq, Hq), which is continuous on the set [0, 1]2 ×R2 and such that the equations

q = V (λ, t, x, p), (λ, t, x, p) ∈ [0, 1]2 ×R2,

and
F (λ, t, x, p, q) = 0, (λ, t, x, p, q) ∈ [0, 1]2 ×R3,

are equivalent. This means that for any λ ∈ [0, 1] the family (4.12)λ is equivalent to the family of BVPs
⎧
⎨

⎩

x′′ − (1 − λ)(x′ − b) = V (λ, t, x, x′), t ∈ [0, 1],

x(0) =
1
n
, x′(1) = b.

(4.13)λ

Note that F (0, t, x, p, 0) = 0 yields

V (0, t, x, p) = 0, (t, x, p) ∈ [0, 1] ×R2. (4.14)

Denote now C2
B[0, 1] := {x(t) ∈ C2[0, 1] : x(0) = 1/n, x′(1) = b} and define the maps

j : C2
B[0, 1] → C1[0, 1], jx = x,

Lλ : C2
B[0, 1] → C[0, 1], Lλx = x′′ − (1 − λ)(x′ − b), λ ∈ [0, 1],

and
Vλ : C1[0, 1] → C[0, 1], (Vλx) (t) = V (λ, t, x(t), x′(t)), t ∈ [0, 1], λ ∈ [0, 1].

Let us introduce the set

U =
{
x ∈ C2

B[0, 1] :
1
2n

< x < P2 + ε, P1 − ε < x′ < P2 + ε, hq − ε < x′′ < Hq + ε

}
,

which is a relatively open set in the convex set C2
B[0, 1] of the Banach space C2[0, 1]. Since Lλ, λ ∈ [0, 1],

is a continuous, linear, and one-to-one map of C2
B[0, 1] onto C[0, 1], we conclude that L−1

λ exists for
each λ ∈ [0, 1] and is also a continuous map. In addition, Vλ is a continuous map, while the natural
embedding j is a completely continuous map. Therefore, the homotopy

H : U × [0, 1] → C2[0, 1]

defined by H(x, λ) ≡ Hλ(x) ≡ L−1
λ Vλj(x) is a compact map. Moreover, the equations

L−1
λ Vλj(x) = x, Lλx = Vλjx

are equivalent, i.e., the fixed points of Hλ(x) are solutions to the family (4.13)λ. Further, obverse that
the solutions to (4.13)λ are not elements of ∂U, which means that Hλ(x) is an admissible map for all
λ ∈ [0, 1]. Moreover, in view of (4.14), H0(x) = n−1 + bt. Since n−1 +bt ∈ U, we can apply [9, Chapter I,
Theorem 2.2] to conclude that H0 is an essential map. By the topological transversality [9, Chapter I,
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Theorem 2.6], H1 = L−1
1 V1j is also an essential map. Consequently, the problem (4.13)λ with λ = 1 has

C2[0, 1]-solutions, which are also solutions to the problem (4.12)λ with λ = 1. Finally, by Lemma 4.7, the
solutions of the problem (4.12)λ with λ = 1 are also solutions to the problem (3.1)λ with λ = 1.

5. Main Result

Using the results of the previous sections, we are ready to prove our main result, which is the following
existence theorem.

Theorem 5.1. Let H1, H2 and H3 be satisfied. Then problem (1.1), (1.2) has at least one solution
x(t) ∈ C[0, 1] ∩ C2(0, 1] with the property x(t) > 0 on (0, 1].

Proof. Consider the sequence {xn(t)} ⊂ C2[0, 1] , where xn(t), n ∈ N, n > 1/ε, is a solution to (3.1)λ

with λ = 1. Note that, by Lemma 4.8, the above sequence exists and, by Lemma 3.1, for n ∈ N, n > 1/ε,
the elements of this sequence satisfy the bounds

1
n
≤ xn(t) ≤ P2 + ε, P1 ≤ x′n(t) ≤ P2, hq ≤ x′′n(t) ≤ Hq, t ∈ [0, 1]. (5.1)

Therefore, in view of H2 and H3, we conclude from the differential equation (3.1)1 that for t ∈ (0, 1) and h
small enough, we have

[−fq(t, xn(t), x′n(t), qnh(t))
] [
x′′n(t+ h) − x′′n(t)

]

= hft(T1h) + fx(T2h)[xn(t+ h) − xn(t)] + fp(T3h)[x′n(t+ h) − x′n(t)]

→ ft(Tn) + fx(Tn)x′n(t) + fp(Tn)x′′n(t) as h→ 0, (5.2)

where Tn ≡ Tn (t, xn(t), x′n(t), x′′n(t)) and the points T1h, T2h, T3h, and (t, xn(t), x′n(t), qnh(t)) tend to Tn.
Because of (5.1), (5.2) and in view of H2 and H3, it follows that x′′′n (t) exists for every t ∈ [0, 1], is given
by the formula

x′′′n (t) = {ft(Tn) + fx(Tn)x′n(t) + fp(Tn)x′′n(t)}/ [−fq(Tn)] , (5.3)

and is continuous on [0, 1].
Next, integrating the inequality P1 ≤ x′n(t) ≤ P2 from 0 to t with t ∈ (0, 1],we obtain

1
n

+ P1t ≤ xn(t) ≤ 1
n

+ P2t, t ∈ [0, 1]. (5.4)

Let the constant α belong to (0, 1). Then, in view of (5.4),

xn(t) ≥ P1α > 0, t ∈ [α, 1].

According to H3, using (5.1) and (5.3) we find that

|x′′′n (t)| ≤ |ft| + |fx||x′n| + |fp||x′′n|
Kq

≤ Cα, t ∈ [α, 1],

where the constant Cα does not depend on n. Now the Arzelà–Ascoli theorem guarantees the existence
of a subsequence {xnl

}∞l=1 converging uniformly on C2 [α, 1] to some function x ∈ C2[α, 1], which is a
solution of the differential equation (1.1) for t ∈ [α, 1]. The boundary condition x′(1) = b is obviously
satisfied. Thus, for t ∈ (0, 1], there exists a solution x(t) ∈ C2(0, 1] of the differential equation (1.1),
which satisfies the boundary condition x′(1) = b. Moreover, according to (5.4), we see that

0 < P1t ≤ x(t) ≤ P2t, t ∈ (0, 1), (5.5)

and thus x ∈ C[0, 1] and x(0) = 0, which implies that x(t) is a solution to the boundary-value prob-
lem (1.1), (1.2), for which, in view of (5.5), we have x(t) > 0 for every t ∈ (0, 1].
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6. Illustrative Examples

We conclude our investigation with the following examples, illustrating our main result.

Example 6.1. Consider the problem
⎧
⎪⎨

⎪⎩

exp
(
(t− 2)x′′

)
+ (x′ − 5)(x′ − 10) − 2x′′ − x′′

(
x(30 − x)

)2 = 0, 0 < t < 1,

x(0) = 0, x′(1) = 8.

It is easy to check that for K = 1, Q = 15, P1 = 7, P2 = 11, P3 = 6, P4 = 12, and for a sufficiently
small ε > 0, the hypothesis H1 is satisfied. Hence, the hypothesis H2 is satisfied for Kq = 2. Moreover,
Dx ≡ D0

x ≡ (−∞, 0) ∪ (0, 30) ∪ (30,∞), Dp ≡ Dq ≡ R, hq = −16, and Hq = 18. Obviously, the functions

ft(t, x, p, q) = q exp (q(t− 2)), fx(t, x, p, q) =
q(60 − 4x)

(
x(30 − x)

)3 , fp(t, x, p, q) = 2p− 15

are continuous for (t, x, p, q) ∈ [0, 1]× (0, 12]× [7, 11]× [−16, 18]. Therefore, the hypothesis H3 is fulfilled
and, by Theorem 5.1, the problem considered admits a C[0, 1] ∩ C2(0, 1]-solution.

Example 6.2. Consider the problem
⎧
⎪⎨

⎪⎩

√
225 − (x′)2 sinx′ − x′′

√
400 − (x′′)2

√
x(625 − x2)

− (x′′)3 − 0.5x′′ = 0, 0 < t < 1,

x(0) = 0, x′(1) = 5.

Here Dp = [−15, 15] and Dq = (−20, 20). Since x(0) = 0, we will investigate this problem only for
D0

x = (0, 25). Clearly, the function

f(t, x, p, q) =
√

225 − p2 sin p− q
√

400 − q2
√
x(625 − x2)

− q3 − 0.5q

is singular at x = 0 and satisfies the hypothesis H1 for K = 0.5, Q = 10, P1 = 4, P2 = 7, P3 = 3.5,
P4 = 7.5, and a sufficiently small ε > 0. The functions

f(t, x, p, q), fq(t, x, p, q) = − 1
√
x(625 − x2)

400
√

(400 − q2)2
− 3q3 − 0.5

are continuous on Ω ≡ [0, 1]×(0, 8+ε]×[4−ε, 7+ε]×[−11−ε, 12+ε].Moreover, fq(t, x, p, q) < −0.5−1/1500
for (t, x, p, q) ∈ Ω. Thus, H2 is satisfied for Kq = 0.5 + 1/1500. Now observe that the functions

ft(t, x, p, q) = 0, fx(t, x, p, q) =
q

2
√

400 − q2
625 − 3x2

√(
x(625 − x2)

)3

and
fp(t, x, p, q) = cos p

√
225 − p2 cos p− p

√
225 − p2

sin p

are continuous on the set [0, 1]×(0, 8]×[4, 7]×[−11, 12]. This means that H3 is also satisfied. Consequently,
by Theorem 5.1, the problem considered has a C[0, 1] ∩ C2(0, 1]-solution.

Example 6.3. Consider the boundary-value problem
{
f(t, x, x′, x′′) = 0, 0 < t < 1,
x(0) = 0, x′(1) = 5,

where

f(t, x, p, q) =

{
p+ e−q − (2 + t)q − 6, (t, x, p, q) ∈ [0, 1] × [0,∞) ×R2,

−q(x−2 + 1), (t, x, p, q) ∈ [0, 1] × (−∞, 0) ×R2.
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It is easy to check that for K = 1, Q = 10, P1 = 4, P2 = 7, P3 = 3, P4 = 8, and a sufficiently small
ε > 0, the hypothesis H1 is satisfied. Note also that the functions

f(t, x, p, q) = p+ e−q − (2 + t)q − 6, fq(t, x, p, q) = −e−q − (2 + t)

are continuous on the set Ω ≡ [0, 1]× (0, 8+ε]× [4−ε, 7+ε]× [−11−ε, 12+ε] and that fq(t, x, p, q) < −2
for (t, x, p, q) ∈ Ω. Thus, the hypothesis H2 is fulfilled for Kq = 2. Observe now that

ft(t, x, p, q) = −q, fx(t, x, p, q) = 0, fp(t, x, p, q) = 1

to conclude that H3 is satisfied. Thus, by Theorem 5.1, the above problem has a C[0, 1]∩C2(0, 1]-solution.

Example 6.4. Consider the problem
{
f(t, x, x′, x′′) = 0, 0 < t < 1,
x(0) = 0, x′(1) = 5,

where

f(t, x, p, q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

√
225 − p2 sin p− q3

√
400 − q2

√
30 − x

x
− 0.5q,

(t, x, p, q) ∈ [0, 1] × (0, 30] × [−15, 15] × (−20, 20),
√

225 − p2 sin p− q
√

400 − q2
1

√
x(x2 − 900)

− q,

(t, x, p, q) ∈ [0, 1] × [−30, 0) × [−15, 15] × (−20, 20).

The function f(t, x, p, q) satisfies the hypothesis H1 for K = 0.4, Q = 10, P1 = 4, P2 = 7, P3 = 3.5,
P4 = 8, and some sufficiently small ε > 0. Note that the functions

f(t, x, p, q) =
√

225 − p2 sin p− q3
√

400 − q2

√
30 − x

x
− 0.5q

and fq(t, x, p, q) are continuous on the set Ω ≡ [0, 1] × (0, 8 + ε] × [4 − ε, 7 + ε] × [−11 − ε, 12 + ε] and
fq(t, x, p, q) ≤ −0.5 for (t, x, p, q) ∈ Ω. Thus, the hypothesis H2 is fulfilled for Kq = 0.5. Further, observe
that the functions

ft(t, x, p, q), fx(t, x, p, q), fp(t, x, p, q)
are continuous on the set [0, 1] × (0, 8] × [4, 7] × [−11, 12]. Hence, the hypothesis H3 is also satisfied.
Therefore, in view of Theorem 5.1, we see that the above problem has a C[0, 1] ∩ C2(0, 1]-solution.

Acknowledgment. The research of Popivanov was partially supported by the Bulgarian NSF under
Grant MM-1504/05.

REFERENCES

1. R. P. Agarwal and D. O’Regan, “Boundary value problems with sign changing nonlinearities for
second order singular ordinary differential equations,” Appl. Anal., 81, 1329–1346 (2002).

2. R. P. Agarwal, D. O’Regan, V. Lakshmikantham, and S. Leela, “ An upper and lower solution theory
for singular Emden–Fowler equations,” Nonlinear Anal.: Real World Appl., 3, 275–291 (2002).

3. R. P. Agarwal, D. O’Regan, and S. Stanek, “Singular Lidstone boundary value problem with given
maximal values for solutions,” Nonlinear Anal., 55, 859–881 (2003).

4. R. P. Agarwal, D. O’Regan, and P. J. Y. Wong, Positive Solutions of Differential, Difference and
Integral Equations, Kluwer Academic, Dordrecht (1998).

1514



5. L. E. Bobisud and Y. S. Lee, “Existence of monotone or positive solutions of second-order sublinear
differential equations,” J. Math. Anal. Appl., 159, 449–468 (1991).

6. P. M. Fitzpatrick, “Existence results for equations involving noncompact perturbation of Fredholm
mappings with applications to differential equations,” J. Math. Anal. Appl., 66, 151–177 (1978).

7. W. Ge and J. Mawhin, “Positive solutions to boundary value problems for second order ordinary
differential equations with singular nonlinearities,” Results Math., 34, 108–119 (1998).

8. M. K. Grammatikopoulos, P. S. Kelevedjiev, and N. I. Popivanov, “On the solvability of a Neumann
boundary value problem,” Nonlinear Anal., To appear.

9. A. Granas, R. B. Guenther, and J. W. Lee, Nonlinear Boundary Value Problems for Ordinary Dif-
ferential Equations, Dissnes Math., Warszawa (1985).

10. Y. Guo, Y. Gao, and G. Zhang, “Existence of positive solutions for singular second order boundary
value problems,” Appl. Math. E-Notes, 2, 125–131 (2002).

11. Q. Huang and Y. Li, “Nagumo theorems of nonlinear singular boundary value problems,” Nonlinear
Anal., 29, 1365–1372 (1997).

12. D. Jiang, P. Y. H. Pang, and R. P. Agarwal, “Nonresonant singular boundary value problems for the
one-dimensional p-Laplacian,” Dynam. Systems Appl., 11, 449–457 (2002).

13. P. Kelevedjiev, “Existence of positive solutions to singular second order boundary value problems,”
Nonlinear Anal., 50, 1107–1118 (2002).

14. P. Kelevedjiev and N. Popivanov, “Existence of solutions of boundary value problems for the equa-
tion f(t, x, x′, x′′) = 0 with fully nonlinear boundary conditions,” Annuaire Univ. Sofia Fac. Math.
Inform., 94, 65–77 (2000).

15. H. Maagli and S. Masmoudi, “Existence theorems of nonlinear singular boundary value problems,”
Nonlinear Anal., 46, 465–473 (2001).

16. Y. Mao and J. Lee, “Two-point boundary value problems for nonlinear differential equations,” Rocky
Mauntain J. Math., 26, 1499–1515 (1996).

17. S. A. Marano, “On a boundary value problem for the differential equation f(t, x, x′, x′′) = 0,” J. Math.
Anal. Appl., 182, 309–319 (1994).

18. S. K. Ntouyas and P. K. Palamides, “The existence of positive solutions of nonlinear singular second-
order boundary value problems,” Math. Comput. Modelling, 34, 641–656 (2001).

19. D. O’Regan, Theory of Singular Boundary Value Problems, World Scientific, Singapore (1994).
20. P. K. Palamides, “Boundary-value problems for shallow elastic membrane caps,” IMA J. Appl. Math.,

67, 281–299 (2002).
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