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NONLOCAL WELL-POSEDNESS OF THE MIXED PROBLEM
FOR THE ZAKHAROV-KUZNETSOV EQUATION
A. V. Faminskii UDC 517.956
ABSTRACT. The nonlocal well-posedness of the mixed problem for the Zakharov—Kuznetsov equation is

considered.

We consider the mixed problem in the domain
IIf = (0,T) x R%,

where T > 0 and R% = {(2,y) : > 0} = R4 x R, for the Zakharov-Kuznetsov equation

Ut + Uggy + Ugyy + UUy = f(t,x,y), (1)
u(O,:c,y) :uo(x,y), (x,y) GR?H (2)
u(tv 0, y) = ul(ta y)v (t,y) € St = (07T) x R. (3)

Equation (1) is one of the generalizations of the Korteweg—de Vries equation
Ut + Uggy + Uy = fa

which describes the propagation of nonlinear waves in a two-dimensional dispersive medium (see [12]).
The purpose of this paper is to prove the well-posedness of problem (1)—(3) for any 7' > 0. We set

LP = LP(R2)7 Hk = Hk(RQ) = WQIC(RQ)v LPH— = LP(R?F)7 H-IT- = Hk(R?i-)

To describe the properties of the boundary function u;, we also use the anisotropic Sobolev spaces of
fractional order

H*1*2 = Hyy* (R?) = {p(ty) « (14 A + [n]*2)ia(A, ) € L},

where 1 = F|u] denotes the Fourier transform of the function pu:

A = [ [ Ot yydray, e L
RQ

the symbol F~1[u] is used for the inverse Fourier transform.

For a domain 2 C R?, H*'2(Q) denotes the space of restrictions to 2 of the functions from H*1:52
with the natural norm.

For an integer k > 0, by Cl’f (2) we denote the space of bounded continuous functions on Q having all
partial derivatives up to order k. We set

_2 J— J—
Cp = CE(®®), Cf, =CF[®L), Gy(Q) =CY(@Q).

As usual, for a Banach space X and an interval I of the real line, L, (/; X') denotes the space of Bochner-
measurable, pth-power integrable (essentially bounded at p = +00) mappings from I to X. By Cy(I; X)
we denote the space of bounded continuous mappings from I to X (if I is a bounded interval, then we
omit the subscript b).

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications),
Vol. 38, Suzdal Conference—2004, Part 3, 2006.
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Definition 1. A function u(t,z,y) € Lo(IL}) is called a generalized solution to problem (1)-(3) if, for
any function ¢(t,x,y) such that

¢ € LOO(()?Ta H—?—): ¢t € Loo(07Ta L2,+)7 ¢|t:T: 07 ¢‘x:0: ¢m‘x:0: 07
the following equality is valid:

/ / / |:u(¢t + Pzzz + Gzyy) + %u%x + f¢] dx dy dt
s

+ // u0¢|t20 dx dy + // uquer:O dy dt = 0. (4)
RZ St

We prove the nonlocal well-posedness of the problem in a class Z (H;) of generalized solutions with
higher order of smoothness.

Definition 2. We say that a function u(t, z,y) belongs to Z(IL}) if
ue C([0,T); HY) N Ly(0,T; Cl}7+) N Ly(RY; Co(ST)),
DFu e Cy(RY; HAR/B327k(5)) k=0,1,2,
The main result of this paper is the following theorem.
Theorem 1. Suppose that ug € HL, u, € H2/3’2(ST), and f € L9(0,T} Hi) for some T > 0, and
u1(0,y) = up(0,y). Then problem (1)~(3) has a unique solution u(t,z,y) from the space Z(IL}), and

the mapping (ug,u1, f) — w is Lipschitz continuous on any ball in the norm of mappings from Hi X
H232(S7) x Lo(0,T; HL) to Z(ITL}).

The conditions imposed on the boundary data in this theorem can be considered natural, because they
are determined by the properties of the differential operator Dy + D3 + DzDz. Indeed, let v(t,x,y) be a
solution from the space Cy(R?; H!) to the Cauchy problem for the equation

Vt + Vg + Vpyy = 0 (5)
with initial function vg € H!. Then
2/3 2\~
1o, ) gsse = AP + I o zm o ~ I Voo,

uniformly in z € R (see [5]).
The Zakharov—Kuznetsov equation is a special case of the equation

u — P(Dx)u +divx g(u) = f(t, X), (6)
where
X:(l’l,-..,l’n)7 P(Dx)zzaaDgll...Dgg, a:(a17_”7an)7 |Oé’:041+"‘+05n.
|or|=3

A mixed problem for Eq. (6), which is similar to (1)—(3) for z; > 0, was considered in [6]. The main
condition imposed on the operator P in [6] is as follows. If P(§) = > an&y™ ...£5m is the symbol of the
|al=3

operator P (here £ = (&1,...,&,)), then the operator Q(Dyx) with symbol Q(&) = P(§)/0¢; is elliptic.
Obviously, this condition holds for the operator —(D3 + Dtz), where X = (z,y). In [6], nonlocal
existence and uniqueness results for generalized solutions to the mixed problem for Eq. (6) were obtained.
As applied to problem (1)—(3), these solutions belong to weaker classes in comparison with the solutions
constructed in this paper.

The Cauchy problem for the Zakharov—Kuznetsov equation was studied in [4, 5, 8]. In [4, 8], more
general quasilinear equations of odd order were considered. In [5], classes in which the Cauchy problem
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for Eq. (1) with an initial function from the space H* is nonlocally well-posed were constructed for any
positive integer k.

The nonlocal solvability theory of the Cauchy problem for the Zakharov—Kuznetsov equation is based
on a priori estimates implied by conservation laws. If u(¢, z,y) is a sufficiently smooth solution to Eq. (1)
with f = 0, which decreases together with its derivatives at infinity, then

1
// u? dz dy = const, // (ui + uz — §u3) dx dy = const. (7)
R2

RQ

Similarly, for the mixed problem, multiplying Eq. (1) by 2u(t, z,y) and integrating the result over R?

we easily obtain the equality
_Ody = 2// fudz dy. (8)
- )

d 2 2 2 2 3
E//u dxdy%—/(ux—?uum%—uy—gu)
R R

Clearly, if u1 = 0, then equality (8) readily implies an a priori estimate for the solution in Lo . In
the case of inhomogeneous boundary conditions, obtaining such an estimate is obstructed by the term
Ulgzy|z—0. In this case, it is natural to pass to the new function U (¢, z,y) = u(t, z,y) — ¢ (t, x,y), where the
auxiliary function 1 is chosen so that |,—¢9 = u1. The function U satisfies the homogeneous boundary
conditions (3), but the equation becomes more complicated; it acquires variable coefficients depending on
1. Certainly, this approach supposes that the properties of the function w; must ensure the possibility of
extending it over H; in such a way that the corresponding analogue of equality (8) gives an estimate for
the solution u in the space Lo 4.

In [6], a solution to the linear equation (5) of boundary potential type was constructed (in fact, it was
constructed in a more general case for a linear analogue of Eq. (6)). This solution was used as the auxiliary
function . A similar approach was earlier applied to study mixed problems for the Korteweg—de Vries
equation (see, e.g., [7] and the references therein).

In [6], to construct the boundary potential, the function

Alw,y) = Foy [€H7) (a,y)

was introduced and studied. It was proved that A belongs to the space S (Ki) of restrictions to Ri of

the functions from the Schwartz space S(R?) of rapidly decreasing functions; at any point (z,y) € Ri, it
satisfies the equation
3A.. + Ay = z4A; 9)

moreover,

// Az, y) dz dy = % /A(O, Yy dy = 0. (10)
R2 R

Definition 3. For a function u(t,y), we set
t

J(t,z,y; p) = / /(3D§ +D)G(t — 7,2,y — 2)u(T, 2) dz dr, (11)
—oo R
where x > 0 and )
— T YN 1| it(eBren?

In the definition of the boundary potential J suggested in [6], the integral with respect to 7 was from
0 to ¢ (unlike in (11)). However, in this paper, we use the potential J only for functions p which are
compactly supported as ¢ — —oo uniformly in y.
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If w € Ly and p(t,y) = 0 for ¢ < 0, then, according to [6], the function J is defined and infinitely
differentiable, and it satisfies Eq. (5) for > 0. Moreover, it was shown in [6] that, for any 7" > 0, 29 > 0,
and 0 > 0 and any integers k, [, m > 0, the estimate

(1 + {L‘)BHDiDI;J(t, T, :U')HH’“(R) < C(Tv xo, 3, k, L, m)”:“’HL2 (13)

holds at ¢t < T and x > x¢. Moreover, if, e.g., u € C}, then the limit J(¢,0 + 0,%) = pu(t,y) exists. These
properties justify the use of the term boundary potential for the function J.
Let us find an alternative representation for J.

Lemma 1. Let p € Ly. Then, for any x > 0,
Ity yim) = Fot [ OO )] 0 v), (14)
where r(\,n) is the unique root of the equation
r—rn?+id=0
such that Rer < 0 for (A\,n) # (0,0) (it is assumed that r(0,0) = 0).

Proof. Let € = (A, n) be the function inverse to A = &3 + &n? for fixed . Making a suitable change of
variable on the right-hand side of (12), we obtain

Gtz y) = Fpf [or (A e | (1, ). (15)

Applying the formula for the Fourier transform of a convolution and using the Fourier transform of the
Heaviside function 6 (see, e.g., [10]), we see that (11) implies

FrylJN(\n) = Fry [(BDF + D)G(t, 2, )0(t) (A, m)E(A, )

1 . ~
=1 (ezwm) % (FIO)(A) x 5(n)))u(k,n)
1 i etre(C,m)
— | Lpmeam L i
2° +27rv'p'/ e K

R

because (3¢%(\,n) + n?)pa(A,n) = 1. To find the last integral, we make the change ¢ = 2% + zn? and
apply Jordan’s lemma. Since the equation 22 + 27> — X = 0 has one real root ¢()\,n) and two complex
conjugate roots, one of which (—ir(\,n)) belongs to the upper half-plane, it follows that

; 2.2
V. p. / mdz = 2 M) | pjetre(hn)

234+ 2m? — A
R
for > 0. This completes the proof of the lemma. O
Lemma 2. Suppose that i € H**2 and u(t,y) = 0 for t < 0. Then, for any T > 0,
1G5 )l zangy < Dl s (16)
Proof. First, let us prove that
1T -5 il < cllpll gz (17)
uniformly in ¢ € R. We use representation (14). For any nonnegative integers k and m, we have
DEDJ I (t, @, y; 1) = Fr) [(in)mrk(k, me MU )| (£, ). (18)
Let us make the change A\ = 3. The Parseval equality gives
3 ; —~
I DED Tz = || 5 / et i)k (93, e M9 yoRa|| (19)
: 7r
R Ly}
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In [2], it was proved that if some continuous function (¢) satisfies the condition Re~v(d) < —e|d| for
some € > 0 and any 9 € R, then

/ )2 f(9)dp < N o (20)
R La(R%)
It is easy to see that
Rer(hn) < —Y2 2, fr(ha)] < (A + ). @

Therefore, extending equality (19), we obtain
1DED Tl < elln™ (91 + Inl*Y R0 )|
< el (AP + |77|k))‘1/3ﬁ()‘,77)HL§m < callpll g2ss.2-
Next, by analogy with (17), we obtain the estimate
TGt gty < el (22)

Indeed, representation (14) and inequality (20) imply

Jsap 71|y < [ f 5w mian
’ R R

d
La(R%) 7

_3/H/eRer(ﬂ?’m)xﬁQ‘ﬁ(ﬂS’n)’dﬂ‘
R R

dn < P93 d
FaE2) 77_0]!\ (0%, )| £y roydn

< N3+ DA D)y < ol s
Moreover, it follows directly from the Parseval equality, equality (18), and inequalities (21) that
DGy, )l re-srsar || (14 W2 il 25 O A, )| o < ellpal g2z (23)

uniformly in z > 0 for £ < 2.
Finally, let us prove that

[l o000,y < (Dl 2z (24)
We set
. 1 T Y
B(e,y) = weA(e,y),  Rltaw)= 55B(75 7).

By virtue of (9), equality (11) implies

t
J(tal‘ay; /J’) = / /R(t - T,y — Z)/'L(Tv Z) dzdr
—00 R

“+o0o
- / / Riz.a, ) (ult — 7y — 2) — plty — 2)) d=dr (25)
0 R

+oo
+//R(T,.Z’,Z),U;(t,y—Z)dZdTEJl(t,[L',y,/,L)—i-Jg(t,m,y,,U,)
0 R
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First, we estimate J;. We have
‘Jl(tv'may; /’L)| + |Jlx(ta:l:7y; /J’)| + |J1y(ta:l:7y; /J’)|
< [ 1R, + 1Bal 1By 0y It = 729 = oy
R4
uniformly in y € R; here
c

1
I Meatey = 2o o WEE N = 2

1 c
H‘R$<T7x7 )‘ + ’Ry(7'7x7')‘HL2(R) < M?ZIISHB(& )HHl(]R) < m

uniformly in = > 0. Since u(t — 7,-) = 0 for 7 > t, it follows that

' 1/2

T
1 2
Il a0,y ) < e(T) / ( / —llitt = 7.) = (e, gy ) dt
0

(26)

because W3 (Ry) = H*(R4) (see, e.g., [1]) and

1
[ 500~ 1OPa < o)
R+
for 1/p < s <1 (see [9]); we here use the Slobodetskii space
STy — Q) = F@)P
IxI
for s € (0,1) and p € [1, +00).

We estimate the term Jo separately for the function itself and its derivative with respect to y and for
the derivative with respect to z. First, we can represent Jo in the form

+oo
Jo(t, x,y; 1) = / / R(r,,2) (u(t,y — 2) — p(t,y)) dzdr
0 |z|<1
+o00 (27)
+ / / R(t,z,2) (,u(t, y—z) — ult, y)) dzdr + p(t,y)
0 |z[>1
= J3(t,z,y; 1) + Jalt, x,y5 1) 4 p(t,y),
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because the first equality in (10) implies

+oo
/ /R(T,x,z) dzdr = 3/ A&, m)dédn =1 (28)
0 R R2
for any = > 0. We have
|Z’1/2 P
H|J3’ + ’J3y|HL2(OTCb+ < Csup 4/3 1/3’ 1/3)‘ drdz HMHLz(Rt;HQ(Ry))
| |<1R+ (29)
<er [ sup|BEm)ldn / 2172z oz < eallnlon,
R 7 l2j<1
1/2
1 x
H|J4|+|J4y|HL2(O,T;Cb’+) <c ili% / (/ 7_4/3B(7_1/37 1/3)d7-> dz ||N||L2(Rt;H1(]Ry))
©lz>1 Ry (30)
. 1/2
<cr [ sup B& mldn ([ 1e1722) Clnllns < ol
R °° l2[>1

To estimate Jy,, we again apply (28) and represent Jy as

+o0o
JQ(taxvynu') = / /R(T,$,Z)(/,L(t,y—2)_/L(t,y)) dzdr
1 R

+/ | B2ty - 2) - ult) deds

0 |z|>1
; (31)
+0/ / R(r,z,2)(u(t,y — 2) — p(t,y) + zpy(t,y)) dzdr

|z|<1

1
—uyty//RT:rzzdsz+uyty// (1,2, 2)zdzdr + u(t,y)
0 R

0 |z|>1
= Js(t,z,y; ) + Jo(t, ,y; 1) + Jo(t, 2, y; 1) + py(t, ) (Js(@) + Jo(2)) 4 p(t, y).

It is easy to see that

“+o0
HJMHLQ(O,T;CI,,Q < 2?;18 / /|Rx(7ax’z)|d2d7'||#||L2(Rt;cb(]1%y))
1 R (32)

+o0o

dr
<c [spiBe&mldn [ Tl < el
R 1
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z
HJﬁxHLg(o,T;CH <2 / /75/3 2;1%) Be 5 m)’ dr dz || pl| Ly(re;04 (RY))
|z|>1 0 (33)
gc:/zup|nBAf,nndn [ 1l s il gy < enligon,
|z|>1

| ’3/2
HJ75EHL2(O,T;CI,+ = / / +5/3 ?;Ig Be (57 1/3)’ dr dz||p o (me; 2 vy
|z|]<1 O (34)
s@/égwwawm@/m*%mwmwﬂmms@mmm
R °° l2]<1

Setting B(z) = /Bx(:c, y)ydy, we see that B(0) = 0 by the second equality in (10); therefore,

R
1
sup |Jg(z)| < sup /—B (1—3) dr| <c / ( )dn < 400 (35)
>0 >0 /
+
and, moreover,
1
1
suplJo@) < [+ [ sup|Be(¢mnl dndr <+ (36)
x>0 T £>0
0 n[>7=1/3
Combining (25)—(27) and (29)—(36), we obtain (24). This completes the proof of the lemma. O

Remark 1. In proving Lemmas 1 and 2 and substantiating calculations, we can first assume that p €
C&°(R?) and then pass to the limit on the basis of the estimates obtained.

Now let us study the properties of the linear problem on H;, that is,

V¢ + Vggx + Vpyy = f(ta z, y)a (37)
U(O,$7y) = /UO(‘T)y)’ (38)
U(taoay) = Ul(t7y)' (39)
First, we introduce two potentials related to the Cauchy problem for Eq. (37):
ﬂm@wzﬁJ““MMmh) (40)
K(t)xvyaf) E/S(t—T,JJ,y,f(T,,))dT (41)
0

In what follows, we assume that if the functions vy and f are defined only on Ri and H;F, respectively,
then the potentials S and K are constructed for their extensions over the entire plane R? and the layer
I = (0,T) x R? with the same properties.

Lemma 3. Suppose thatvy € H}, vy € H?/32(87), and f € Ly(0,T; HY) for some T > 0, and v1(0,y) =
v0(0,y). Then problem (37)~(39) has a unique solution v(t,z,y) from the space Z(IL}.), and

1/6
ol sz y < o) (leollzry + ot llzrnzgsgy + 161 ooty (42)
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for any ty € (0,T]; here v is the function on H}' defined by
U(ta xz, y) = S(ta x,Y; UO) + K(tv x,y; f) + J(ta x,Yy; 6l)a (43)
where

:Jl(tay) = vl(tv y) - S(tvov?ﬁv()) - K(taoay; f)
fort €[0,T] and v1(t,y) =0 fort <O0.

Proof. The uniqueness of a generalized solution to problem (37)—(39) in the larger space Loo(0,7"; L2 )
was proved in [6] by the method of Holmgren.

The Cauchy problem (37), (38) was studied in [5]. In particular, it was shown that if Z'(IIy), where
I = (0,T) x R?, is the space of functions v(t, x,y) such that

v e C([0,T]; H") N Ly(0,T; Cy) N La(R*; Cy(St)),
Dfv € Cy(R*; H**7*(S1)),  k=0,1,2,
then problem (37), (38) has a solution v(¢, z,y) belonging to the space Z’'(Ily), and

191 201y < e(T) (lvoll e + 11 s 0,00;1) (44)
for any to € (0,77] (see [5]); moreover,
o(t,2,y) = S(t, 2, y3v0) + K(t, 2, y3 f). (45)

To determine the smoothness properties of v with respect to ¢, we prove the following auxiliary estimate:
if vg € H?® for some s € R, then

15C, -, 5 v0)ll oy mes st 0/3.541 () <)) < (T 8)|[voll s (46)

for any T' > 0. Indeed, let us represent the function S in the form

S(t, . s v0) =Frg ["E TG (€ m)] (2.9)
+ Foy | EHENT (€m0 = x(€ )] (@,9) = 1t y500) + Salt,ys o),

where x(&,7) is the characteristic function of the unit disk {¢2 4+ n? < 1}. The function S;, which is
infinitely smooth, is estimated in an obvious way; to estimate Sy, we make the change A\ = &3 + ¢5? and
obtain

Sa(t,z,y;v0) = Fr) [w(% e A5, (p(X,n),m) (1 = x(2(A,m), 77))} (t,y)
by analogy with (15). As a result, we have

(s41)/3~ d§ dn
ol =[] Q18+ 0P+ ) e P s < o)l

&4n?>1

for any .
To estimate the potential K, we use an idea from [3]. First, applying (46) with s = —1, we obtain the
uniform (in z) estimate

12
1K 25 )l s < ()t I1F | La0,40:-1)- (47)
Moreover,

t
Ki(t,2,y: f) = f(t,2,) /s oy (D + DD f(r, ) dr.
0

Again applying (46) with s = —1, we see that
1K Gy Pl zasig) < D Lao,t0:02) (48)
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uniformly in z. Interpolating (47) and (48), we obtain the uniform (in x) estimate

IG5 Dllesnsmogs,) < ATt 1l Laoom (49)
for s € [-1,2].
Combining (45), (46), and (49), we conclude that
~ 1/6
||D’£UHc,,(Rz;H(%k)/&O(sto)) <c(T) (||U0HH1 +t/ HfHLg(O,tO;Hl)) (50)

for k=0and k = 1.
By virtue of the compatibility condition, we have 7,(0,y) = 0. Therefore, o, € H?/32((—00,T] x R),
and, according to (44) and (50),
~ 1/6
1011 2732 ((—o0 o) xr) < ¢(T) (”UOHHl + il gers2isyy + ty/ Hf||L2(o,t0;H1))

for any to € (0,7]. The properties of the potentials S, K, and J (in particular, (16), (44), and (50))
imply that the function v defined by (43) is the required solution to problem (37)-(39). This completes
the proof of the lemma. O

In the following lemma, we obtain auxiliary integral inequalities for the solutions to problem (37)—(39),
which are analogues of the conservation laws (7).

Lemma 4. Suppose that the conditions of Lemma 3 hold and the function vy is extended over the entire
plane R? so that the extension belongs to the same class and v1(t,y) =0 fort < —1. Let

Vit z,y) = ot z,y) — J(t, 2, y301), (51)
where v is the solution to problem (37)~(39) from the space Z(IL}). Then, for anyt € (0,T),

/ Vit x y)d:z:dy+//V2 7,0, y)dyd7<//v0dxdy+2// fVdadydr +cl|vi3ps.  (52)

2 2
R R+ t

1 1
// (sz + Vy2 - §V3> p(x)dx dy + 3 ///(me + ny + Vy2y)p/(a:) dx dy dr
RE I

2 / / VVa(Vaa + Vil da dy dr < clp, [oolgy o o)

and

+2// (feVa + [, Vy pdxdydT—// fV2pdadydr o

oo [ [+ Vﬁ) »
St

where p(z) € C3(Ry) is a positive nondecreasing function on Ry.

dydr + ¢(p, [V lo(o.za.0) / / / (V2 + V2)pdu dy dr,

iy

Proof. The function V' is a solution to the problem of type (37)—(39) with the same right-hand side f,
initial function Vo(z,y) = vo(z,y) — J(0,z,y;v1) € H{(R2), and zero boundary function. Moreover, by
virtue of (17), we have

Vollss < lvolls + cllonllsarns
for k = 0 and k = 1. According to [11], if the functions Vj and f are smooth, then the corresponding mixed

problem has a smooth solution. In this case, inequality (52) is obtained similarly to (8) by multiplying
the equality (37) for V' by 2V (¢, x,y) and integrating the result.
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To derive (53), we multiply the equality (37) for V' by
—(2Vaa(t, 2,y) + 2V (t,2,y) + V(L 2,9)) p(2).

After integration, we obtain

d 2 2 1o 2 2 2
E// (Va4V} — §V )pdmdy+//(3VM+4V$y+Vyy)p'd$dy
R? R2

+/(Vq;2xlo + 2wavmpl _ VQTQPN)‘m:Ody — //(VwQ + Vy?)pl/l dx dy
R ]Ri

(54)
+2 // VVe(Vig + V) pda dy + // V2(Vay + Viyy)p' da dy
R2 R2
= 2//(fzvac + fyVy)pdx dy + 2/(fop)‘x:0dy - / fV2pdax dy.
= R i
The well-known interpolation inequality (see, e.g., [1])
-2 2
lgllL,. <e@Ival® 271972, (55)

where 2 < p < 400, yields

1
// V2 (Vi + Vi)' da dy| < 5//(V5x+%2y)p'dmdy+c// V4 da dy
RZ

R% R%
1
<3 //(vﬁx + V)P dedy + o //(ng + V) )pdax dy/ V2 dx dy;
R2 R2 R

thus, (54) implies (53) in the smooth case.
In the general case, the required inequalities are obtained by passing to the limit on the basis of (42).
This completes the proof of the lemma. ]

We return to the initial nonlinear problem. Theorem 1 is implied by the following two lemmas.

Lemma 5. If the conditions of Theorem 1 hold, then there exists a to > 0 depending on T, HUOHHL
luill gr2ss2 (5,9, and HfHLQ(QT;Hi) such that problem (1)~(3) on IIf has a unique generalized solution

u(t,z,y) belonging to the space Z(Hgg). The mapping (ug, u1, f) — u is Lipschitz continuous on any ball
in the norm of mappings HY x H?/32(Sy) x Ly(0,T; HL) — Z(I1).

Proof. For an arbitrary to € (0,7], consider the mapping A defined on the Z (H:g) as follows: v = Au for
u € Z(IL)) if v € Z(IL} ) and the function v is a solution to the linear problem

Vt + Vggq + Vayy = f— uug, (56)
v],_o= uo, V] o= w1 (57)

Note that
el Ly 0,001 ) < el Loo,t0:0 ) 1ull oo o) 1)

2
+ |[ltaal + |“xy|ch(Ki;LQ(StO))H“‘|L2(Ri;6‘b(§t0)) S CHUHZ(H:B)
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on II;. According to Lemma 3, problem (56), (57) has a solution, and (42) implies
1/6 2
Ioll sy < 0+ 88 Nl ) (59)

where the constant ¢ depends on the same quantities as ty in the statement of the lemma. According

o (59), for sufficiently small ¢y, the mapping A takes each ball of sufficiently large (depending on ¢) radius
in the space Z (H;’)) to itself. Moreover, considering the corresponding mixed problem (with homogeneous
boundary conditions) for the difference of Au and Au, where v and u belong to such a ball, we see that
the mapping A is a contraction on this ball for sufficiently small to, because, by analogy with (58),

st = el 0 sty < @ (il gz y + 18z ) e = g

this readily implies the existence and uniqueness of a solution. Continuity is proved similarly. This
completes the proof of the lemma. O

Lemma 6. Suppose that the conditions of Theorem 1 hold and, for some T’ € (0,T], a function u(t,z,y)
from the space Z(ILL,) is a solution to problem (1)~(3) on ILL,. Then

lulleqorymty < (T lluoll gy s lurll gzrse sy 1 1y, ) (60)

Proof. Let ¢ denote various constants depending on the same quantities as the constant on the right-hand
side of (60). As in the proof of Lemma 4, we extend the function u; over the entire plane R? so that
lutl| g2 < cllurll gass.2g,) and ui(t,y) = 0 for t < —1. We set

Ut,x,y) = ult,z,y) — J(t,x,y;u1). (61)
Writing inequality (52) for the function U, we obtain

//UQIE:J:ycl:lcdy—i—//U2 dyd7<c—|—2/// — uuy )U dx dy dr (62)

for t € [0,7"]. Since U| _,= 0, it follows that

2// uu U dx dy = //(Jw2 + 2JJ,U) dz dy. (63)

2 2
RZ R%

Relations (16), (62), and (63) imply the estimate

lulleqorzs.s) + ] ol Lo, <@ (64)

Next, we apply inequality (53) with
pa) =2~ (1+2)" 12

to the function U. Taking into account the already obtained estimate (64), we see that

//(U2+U2——U3pdxdy+ /// Uz, + U2, + Up)p' dadydr
<c~l—c/// U2—|—U2 pdxdydT—I—///uuxUdefndydT—l—c//uluZ} o dydr (65)

+2///uu$ ) da:dydr+2// (JUy + udy)(Uzy + Uyy) pda dy dr.
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Inequalities (55), (16), and (64) imply

/// uu,Upde dy dr < /// (unUQp - é(Jp)xU?’ - %U4p') dx dy drt
Iy Iy
< E///(Um2 + U;)pdxdydT—i-E,
I

2///uuxep/dxdydT = —//u%(prl) ody dr — /// Usep' + Ugp”) da dy dr
I St
gZg/]/ﬁ@;ddxdym~+z/]/kaﬁ+Lgnnwdyd¢+5:
Iy Iy

1/2 1/2

ui‘:pzoéc /uixp,dl' /U§Pd$ +C/Uipdl’

+ + Ry

The obvious interpolation inequality

yields
t

//u%ui’xzo dydr < 8/// U2,p dx dy dr + c(e) /(1 + sup u‘f) / UZpdxdydr +¢,
yeR
St H+ RQ

0

where [|u1|z,01:0,®) < cllutllgzse (see, e.g., [1]) and € > 0 is arbitrarily small. Finally,

/// (JUz + udy)(Uge + Uyy)pda dy dr < — /// (U2, +U2 Vo' dx dy dr

t

—i—/ sup J2—|—J2 // U2p+u ) dx dy dr
5 (m,y)ERQ

< 6/// (U2, +U2 )p da;dydr—i—/’y(v‘)//ngda:dydT—i-E,
i

where |||z, 0.1 < & because p*(p) ! < e(1+ 2)3/2. Thus, inequalities (13) and (16) imply

T
/ sup [(1+2)%2(J2 + J?)]dr <@
7y)€R2

Combining the obtained inequalities, we derive estimate (60) from (65). This completes the proof of the
lemma. g

Remark 2. In classes of functions of higher order of smoothness, the well-posedness of problem (1)—(3)
can be proved for ug € H and u; € HGD/3:5+1(81) where s = 3k or s = 3k + 1 and k € N, by similar
methods.
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