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SUFFICIENT CONDITION OF LOCAL REGULARITY FOR THE NAVIER–STOKES
EQUATIONS

W. Zajaczkowski∗ and G. A. Seregin∗∗ UDC 517.5

We prove a local regularity result for the non-stationary three-dimensional Navier–Stokes equations. Bibliography:
10 titles.

1. Introduction

In the papers [1–3], interesting point-wise sufficient conditions for local regularity of weak solutions to the
nonstationary three-dimensional Navier–Stokes equations are proved. These estimates are deduced from a new
version of the so-called Ladyzhenskaya–Prodi–Serrin (LPS) condition, and the regularity follows from smallness
of some mixed Lorentz norm of the velocity field. We should point out that the classical LPS condition is
formulated in terms of mixed Lebesgue spaces (see [4] and [5]).

In the present paper, we wish to obtain such point-wise conditions with the help of the local regularity theory
based on the notion of suitable weak solutions. To this end, we prove a sufficient condition for regularity in
terms of smallness of some functionals involving norms in mixed Lebesgue spaces only, see Theorem 1.2. As a
consequence of this theorem, we deduce the same point-wise conditions which cover all the cases of [1–3].

To formulate our result, we recall the definition of suitable weak solutions following F.-H.Lin [6]. For a more
general definition, we refer the reader to the celebrated paper of Caffarelli–Kohn–Nirenberg [7].

Definition 1.1. A pair of functions v and p is called a suitable weak solution to the Navier–Stokes equations
in a domain Q(z0, R) = B(x0, R)×]t0 − R2, t0[ (where z0 = (x0, t0) and B(x0, R) = {x : |x − x0| < R}) if the
following conditions hold:

v ∈ L2,∞(Q(z0, R))∩ W 1,0
2 (Q(z0, R)) and p ∈ L 3

2
(Q(z0, R)); (1.1)

the Navier–Stokes equations:
∂tv + v · ∇v −∆v +∇p = 0, div v = 0, (1.2)

hold in Q(z0, R) in the sense of distributions;
v and p satisfy the local energy inequality:

∫

B(x0,R)

ϕ(x, t)|v(x, t)|2dx + 2

t∫

t0−R2

∫

B(x0,R)

ϕ|∇v|2dxdt′

≤
t∫

t0−R2

∫

B(x0,R)

[
|v|2(∆ϕ + ∂tϕ) + v · ∇ϕ(|v|2 + 2p)

]
dxdt′ (1.3)

for a.a. t ∈ [t0 − R2, t0] and for all nonnegative smooth cut-off functions ϕ vanishing in a neighborhood of the
parabolic boundary of the cylinder Q(z0, R).

In the above definition, we use the following mixed Lebesgue and Sobolev spaces:

Lm,n(Q(z0, R)) = Ln(t0 −R2, t0; Lm(B(x0, R))),

where Lm = Lm,m, m, n ∈ [1,∞], and

W 1,0
2 (Q(z0, R)) = {u : u,∇u ∈ L2(Q(z0, R))}.

Now we formulate the main result.
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Theorem 1.2. Let v and p be a suitable weak solution to the Navier–Stokes equations in Q(z0, R). Assume
that real numbers l ≥ 1 and s ≥ 1 satisfy the condition

1
2
≥ 3

s
+

2
l
− 3

2
> max

{ 1
2l

,
1
2
− 1

s
,
1
s
− 1

6

}
. (1.4)

There exists a number ε > 0 that depends on s and l only and such that if the condition

Ms,l(z0, R) =
1

Rκ

t0∫

t0−R2

dt
( ∫

B(x0,R)

|v|sdx
) l

s

< ε, κ = l
(3

s
+

2
l
− 1

)
, (1.5)

is satisfied, then z0 is a regular point of v, i.e., there exists a number r ∈]0, R] such that v is Hölder continuous
in the closure of the cylinder Q(z0, r).

Corollary 1.3. Let v and p be a suitable weak solution to the Navier–Stokes equations in Q(z0, R). Let ϑ ∈ [0, 1]
be fixed.

There is a positive number ε1 that depends on ϑ only and such that if

|v(x, t)| ≤ ε1

|x − x0|1−ϑ|t0 − t| ϑ
2

(1.6)

for a.a. z = (x, t) ∈ Q(z0, R), then z0 is a regular point of v.

We would like to note that Corollary 1.3 includes the above-mentioned point-wise conditions of local regularity
as particular cases. For ϑ = 1, see (1.7) in [1], and for 0 ≤ ϑ < 1, see Theorem 1.2 in [2, 3].

2. Proof of Theorem 1.2

Due to invariance with respect to the natural scaling, we may assume that z0 = 0 and R = 1.
Let us introduce auxiliary functionals:

C(�) =
1
�2

∫

Q(�)

|v|3dz, A(�) = ess sup
−�2<t<0

1
�

∫

B(�)

|v(x, t)|2dx,

E(�) =
1
�

∫

Q(�)

|∇v|2dz, H(�) =
1
�3

∫

Q(�)

|v|2dz, and D(�) =
1
�2

∫

Q(�)

|p| 32 dz,

where Q(�) = Q(0, �), B(�) = B(0, �), B = B(1), and Q = Q(1). In this notation,

Ms,l(�) =
1
�κ

0∫

−�2

dt
( ∫

B(�)

|v|sdx
) l

s

.

The following lemma is but a consequence of interpolation and imbedding theorems.

Lemma 2.1. Assume that a function v has finite energy in Q, i.e.,

v ∈ L2,∞(Q) ∩ W 1,0
2 (Q). (2.1)

Let numbers s and l satisfy condition (1.4). Then the inequality

C(�) ≤ cAµ(�)(Ms,l(�))
1
q (E(�) + H(�))

1
q′ (2.2)

holds with

µ =
3
s

+ 2
l
− 2

2(3
s

+ 2
l
− 3

2
)
, q = 2l

(3
s

+
2
l
− 3

2

)
, and q′ =

q

q − 1
.
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In (2.2), the positive constant c depends on s and l only.

Remark 2.2. By condition (1.4), q > 1 and µ > 0.

Proof of Lemma 2.1. We are going to use the interpolation in Lebesgue spaces in the following way. By setting

λ =
1

2s(3
s

+ 2
l
− 3

2
)

and γ =
2
s

+ 1
l
− 1

2(3
s

+ 2
l
− 3

2
)
, (2.3)

we observe that the numbers λ and γ are positive and obey the following two identities:

λs + 2µ + 6γ = 3 and λ + γ + µ = 1. (2.4)

Applying identities (2.4) and the Hölder inequality, we see that
∫

B(�)

|v|3dx =
∫

B(�)

|v|λs|v|2µ|v|6γdx ≤
( ∫

B(�)

|v|sdx
)λ( ∫

B(�)

|v|2dx
)µ( ∫

B(�)

|v|6dx
)γ

.

Next, the imbedding theorem with the limit exponent is used:

( ∫

B(�)

|v|6dx
)1

6 ≤ c
( ∫

B(�)

(|∇v|2 +
1
�2

|v|2)dx
)1

2
.

Taking into account the definition of A, we derive from the latter relation the estimate
∫

B(�)

|v|3dx ≤ c�µAµ(�)
( ∫

B(�)

|v|sdx
)λ( ∫

B(�)

(|∇v|2 +
1
�2

|v|2)dx
)3γ

.

Integrating in time and applying the Hölder inequality, we deduce that

C(�) ≤ c�µ−2Aµ(�)
( 0∫

−�2

( ∫

B(�)

|v|sdx
)λq

dt
)1

q ×
( 0∫

−�2

( ∫

B(�)

(|∇v|2 +
1
�2

|v|2)dx
)3γq′

dt
) 1

q′
. (2.5)

By the choice of the numbers λ, γ, and q (see the assumptions of the lemma and relations (2.3) and (2.4)),

λq = l/s and 3γq′ = 1.

Hence, from (2.5) it follows that

C(�) ≤ c�µ−2Aµ(�)�
1
q′ (E(�) + H(�))

1
q′

( 0∫

−�2

( ∫

B(�)

|v|sdx
) l

s

dt
)1

q

≤ c�µ−2Aµ(�)�
1
q′ (E(�) + H(�))

1
q′ (�κMs,l(�))

1
q .

Observing that

µ − 2 +
1
q′

+
κ

q
= 0,

we complete the proof. Lemma 2.1 is proved.
Now, we proceed with the proof of Theorem 1.2. Let us assume that conditions (1.4) and (1.5) are fulfilled.

We are going to show that if ε is sufficiently small, then z0 is a regular point of v. Estimates (2.2) and (1.5) and
Young’s inequality imply that

C(�) ≤ cAµ(�)εq(E(�) + H(�))
1
q′ ≤ cεq(E(�) + H(�) + Aµq(�)).
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It is easy to check that
µq ≤ 1 and H(�) ≤ A(�).

Hence,
C(�) ≤ cεq(E(�) + A(�) + 1) (2.6)

for any 0 < � ≤ 1.
For an appropriate choice of the cut-off function ϕ in the local energy inequality (1.3), we see that

A(R/2) + E(R/2) ≤ c(C
2
3 (R) + C(R) + D(R)) (2.7)

for any 0 < R ≤ 1.
The last main estimate is the so-called decay estimate for pressure:

D(�) ≤ c
[�

r
D(r) +

(r

�

)2

C(r)
]

(2.8)

for any 0 < � ≤ r ≤ 1. The reader can find a proof of inequality (2.8) in [8].
Set

E(�) = A(�) + E(�) + D(�).

Taking R = 2θ� in (2.7), replacing � by θ� and r by � in (2.8), and summing the results, we arrive at the estimate

E(θ�) ≤ c(C
2
3 (2θ�) + C(2θ�) + D(2θ�) + θD(�) +

1
θ2

C(�)). (2.9)

For 0 < θ < 1/2, we derive from the pressure estimate (2.8) the relation

D(2θ�) ≤ c(2θD(�) +
( 1

2θ

)2

C(�)). (2.10)

In addition, we observe that

C(2θ�) ≤ 1
4θ2

C(�). (2.11)

Now from (2.9)–(2.11) it follows that

E(θ�) ≤ c(θD(�) +
1
θ2

C(�) +
1
θ

4
3
C

2
3 (�)). (2.12)

To evaluate the right-hand side of (2.12), we make use of (2.6). As a result, we get the inequality

E(θ�) ≤ c
[
θE(�) +

εq

θ2
(E(�) + 1) +

ε
2q
3

θ
4
3

(E(�) + 1)
2
3

]
. (2.13)

Estimating the last term by the Young inequality, we derive from (2.13) the relation

E(θ�) ≤ c
[(

θ +
ε

q
2

θ2

)
E(�) +

ε
q
2

θ2

]
(2.14)

for any 0 < � ≤ 1 and any 0 < θ < 1/2.
Now we fix θ so that

cθ <
1
4
.

Choosing ε sufficiently small, we may assume that

c
ε

q
2

θ2
<

1
4
.
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Thus, we rewrite (2.14) in the following form:

E(θ�) ≤ 1
2
E(�) + c

ε
q
2

θ2
. (2.15)

Iterating (2.15), we obtain the inequalities

E(θk�) ≤ 1
2k

E(�) + c
ε

q
2

θ2
(2.16)

for any nonnegative integer k. On the other hand, according to (2.6),

C(θk�) ≤ cεq(E(θk�) + 1) ≤ cεq(
1
2k

E(�) + 1 +
ε

q
2

θ2
) ≤ c(

1
2k

E(�) +
ε

q
2

θ2
).

The latter inequality with � = 1 shows that

C(θk) ≤ c(
1
2k

E(1) +
ε

q
2

θ2
). (2.17)

Considering (2.16) with � = 1 and taking into account the definition of E , we see that

D(θk) ≤ 1
2k

E(�) + c
ε

q
2

θ2
. (2.18)

Adding (2.17) and (2.18), we show that

C(θk) + D(θk) ≤ c

2k
E(1) + c

ε
q
2

θ2
. (2.19)

Let us fix an arbitrary positive number ε0. We may choose a natural number k0 so large that

c

2k0
E(1) ≤ ε0

2
.

It remains to reduce ε so that
cε

q
2

θ2
<

ε0

2
.

From the latter relations and from (2.19) it follows that

C(θk0) + D(θk0) < ε0.

It was shown in [9] and [10], Lemma 2.2, that if we choose ε0 in an appropriate way, then the velocity v is Hölder
continuous in the closure of Q(θk0/2). Theorem 1.2 is proved.

3. Proof of Corollary 1.3

First we consider the case θ ∈ [0, 1[ (see [2] and [3]). Let l = 2 and

3 < s < min
{

4,
3

1 − θ

}
.

It can be verified that all the conditions of (1.4) are satisfied. According to (1.6), we can calculate the following
estimate directly:

Ms,2(z0, R) ≤ c
2
s

1 − θ

( 1
3 − s(1 − θ)

) 2
s

ε2
1.
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Choosing ε1 sufficiently small, we can provide the validity of (1.5). This implies that z0 is a regular point of v.
It remains to treat the case θ = 1 (see [1]). Here we let

l =
2

1 + δ

for some δ ∈]0, 1/3[ and choose s satisfying the condition

3
1 − δ

≤ s <
4

1 − δ
.

One can show that, for such a choice of parameters s and l, all the conditions of (1.4) are fulfilled. Now the
estimate of Ms,l takes the form

Ms,l(z0, R) ≤ c
l
s εl 1 + δ

δ
.

Repeating the previous arguments, we complete the proof of the corollary.

G. Seregin and W. Zajaczkowski are supported by the Agreement on Cooperation Between Polish and Russian
Academies of Sciences signed in Warsaw, Dec. 27, 2002, G. Seregin is supported by the RFBR (project 05-01-
00941-a), and W. Zajaczkowski is supported by the KBN Grant Number 2 P03A 002 23.

REFERENCES

1. S. Takahashi, “On interior regularity criteria for weak solutions of the Navier–Stokes equations,” Manuscripta
Math., 69, 237–254 (1990).

2. Z.-M. Chen and W. G. Price, “Blow-up rate estimates for weak solutions of the Navier–Stokes equations,” R.
Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 457, 2625–2642 (2001).

3. H. Kim and H. Kozono, “Interior regularity criteria in weak spaces for the Navier–Stokes equations,” Manus-
cripta Math., 115, 85–100 (2004).

4. J. Serrin, “On the interior regularity of weak solutions of the Navier–Stokes equations,” Arch. Rat. Mech.
Anal., 9, 187–195 (1962).

5. M. Struwe, “On partial regularity results for the Navier–Stokes equations,” Comm. Pure Appl. Math., 41,
437–458 (1988).

6. F.-H. Lin, “A new proof of the Caffarelly–Kohn–Nirenberg theorem,” Comm. Pure Appl. Math., 51, 241–257
(1998).

7. L. Caffarelli, R.-V. Kohn, and L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes
equations,” Comm. Pure Appl. Math., XXXV, 771–831 (1982).

8. G. A. Seregin, “On the number of singular points of weak solutions to the Navier–Stokes equations,” Comm.
Pure Appl. Math., 54, 1019–1028 (2001).

9. O. A. Ladyzhenskaya and G. A. Seregin, “On partial regularity of suitable weak solutions to the three-
dimensional Navier–Stokes equations,” J. Math. Fluid Mech., 1, 356–387 (1999).
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