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VANISHING THEOREMS IN AFFINE, RIEMANNIAN,
AND LORENTZ GEOMETRIES

S. E. Stepanov UDC 514.75

Abstract. In this survey, we consider one aspect of the Bochner technique, the proof of vanishing theorems
by using the Weitzenbock integral formulas, which allows us to extend the technique to pseudo-Riemannian
manifolds and equiaffine connection manifolds.
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Introduction

1. This paper is devoted to one of the most important analytic methods of global differential geometry,
which historically was common for proving so-called vanishing theorems. These theorems state the van-
ishing of some topological or geometric invariants (such as Betti numbers or the dimension of the Killing
vector space) of a closed Riemannian manifold (M, g) under certain restrictions on its curvature.

This method is based on the Weitzenbock formulas comparing rough Laplacians on sections of vector
bundles over a Riemannian manifold (M, g) since their difference is expressed through the curvature of
the manifold (see [16, pp. 77–83] and [13, pp. 261–279]).

Such formulas were initially obtained by Bochner for the study of harmonic vector fields and exterior
differential forms (see [23, 24]).

As was noted in [86], this idea traces back to Bernstein (about 1900); he found that for a harmonic
function f : R

n → R, the Laplacian satisfies the condition

Δ
1
2
‖∇f‖2 = ‖∇f‖2 ≥ 0. (1)
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This implies that the the energy 1
2‖∇f‖2 of the harmonic function f is a subharmonic function.

Arguing in a similar way, Bochner found (see [23]) that for a harmonic vector field ξ : M → TM on an
n-dimensional Riemannian manifold (M, g), the Hodge–de Rham Laplacian satisfies the condition

Δ
1
2
‖ξ‖2 = ‖∇ξ‖2 + Ric(ξ, ξ). (2)

Then Eq. (2) implies that Δ1
2‖ξ‖2 ≥ 0 only if the Ricci tensor of the manifold (M, g) satisfies the inequality

Ric ≥ 0 (see [42, pp. 68–72 and 97-99]).
The Bochner formula (2) immediately implies that

Δ = ∇∗∇− Ric (3)

for the rough Laplacian ∇∗∇ (see [16, p. 77]) and the Levi-Civita connection ∇ on (M, g). At present,
formula (3) is called the Weitzenbock formula (see [16, pp. 77-83] and [13, pp. 261–279]). This name dates
back to 1923 when the book [163] was published; this book contains a similar formula for p-forms. In
contemporary notation, this formula has the form (see [16, p. 77] and [42, p. 98])

Δ = ∇∗∇− Fp, (4)

where Δ is the Hodge–de Rham Laplacian on p-forms, ∇∗∇ is the rough Bochner Laplacian, ∇ is the Levi-
Civita connection on (M, g) extended to the bundle

∧pM of p-forms on (M, g), and Fp is a symmetric
endomorphism of

∧pM linearly depending on the curvature tensor (M, g).
Using the Stokes theorem, we obtain from (2) the following integral formula for a closed Riemannian

manifold (M, g) for the volume element η =
√

det gdx1 ∧ · · · ∧ dxn of the manifold (M, g) in a local
coordinate system x1, . . . , xn: ∫

M

‖∇ξ‖2η = −
∫

M

Ric(ξ, ξ)η. (5)

Formula (5) is called the integral Weitzenbock formula.
Assume that everywhere on (M, g), the Ricci tensor satisfies the inequality Ric ≥ 0 and Ric > 0 at at

least one point. Then Eq. (3) implies that any harmonic vector field vanishes, ξ = 0. In concordance with
the Hodge theory, this means that the first Betti number b1(M) of the manifold (M, g) vanishes; this is
the first Bochner vanishing theorem.

2. In works of Lichnerowicz, Nomizu, Chen, Yano, and others, the analytic Bochner method was sub-
stantially developed and successfully applied to complex, complete Riemannian, and Lorentzian manifolds.

At present, there are at least five surveys [14, 86, 137, 162, 166] in which results obtained by using
this method (the Bochner technique) are discussed. The monographs [24, 105, 167, 170] are devoted to
the Bochner technique. The Bochner technique is described and/or used in almost all monographs on
differential geometry published in the last three decades.

In 1982, Wu, a famous American mathematician, wrote: “By now, this technique has achieved the
status of being part of the basic vocabulary of every geometer” (see [166]).

Studies using the Bochner technique are constantly performed. At present there are more than hundreds
papers in which the Bochner technique was applied. Along with the classical fields of its applications,
theory of differential forms and geometry of submanifolds, in recent years, the technique has been actively
applied in global affine differential geometry, theory of differential-geometric structures, and theory of
mappings of Riemannian manifolds. Also, ways for its applications in relativistic physics have been
opened. It is important to note that a considerable part of these results was not reflected in books, and
only a certain part of the results was mentioned in surveys.

In Russia, the Bochner technique was purposefully applied starting from the later 1970s by members
of the Odessa school headed by professor N. S. Sinyukov for the study of geodesic mappings. Later
on, the author and his two collaborates started to study the subject. The results of their studies are
contained in two surveys published outside Russia; the first of them [137] is devoted to the global geometry
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of Riemannian structures of almost product and submersions, whereas the second [140] describes new
methods in the Bochner technique and their numerous applications.

It is worth mentioning that to the present, in Russian scientific literature, there are no surveys of works
carried out by using the Bochner technique. We think that this paper is necessary and hope that it will
be useful not only to geometers but to physicists studying the general relativity theory.

3. In the present survey, we consider only one aspect of the Bochner technique, the proof of vanishing
theorems by using the Weitzenbock integral formulas, which allow us to extend the technique to pseudo-
Riemannian manifolds and equiaffine connection manifolds. Simultaneously with this, we note that within
the framework of this technique, there exists another approach based on the application of the maximum
principle, which will be discussed below in more detail.

The present paper does not include results obtained by using the Bochner techniques in the theory
of differential-geometric structures on Riemannian manifolds and the geometry of mappings of Riemann-
ian manifolds (see [137]) and also in the global geometry of submanifolds of Riemannian and pseudo-
Riemannian manifolds to which many works are devoted for now. The latter direction will be partially
considered in Secs 2.1 and 3.1.

Chapter 1

VANISHING THEOREMS IN RIEMANNIAN GEOMETRY

1.1. Analysis of Main Problems

1.1.1. P. Berard characterized the Bochner technique as a method of proving vanishing theorems as
follows (see [14]): “As a matter of fact, the word technique might be misleading. On the one hand it is
not so easy to explain the technical details of the proofs in which S. Bochner’s ideas are used, and this
is not our purpose here; on the other hand, the ideas are quite simple. Indeed, the gist is to show that
some object (a harmonic form in the case of Betti numbers, a Killing vector field, . . . ) satisfies an elliptic
inequality provided that some curvature assumption is satisfied. The proofs then reduce to applying the
maximum principle or to integrating over the manifold.”

Applications of the maximum principle in the Bochner technique are discussed in the papers mentioned
above (see also [5]). Investigations in this direction are extensively performed in foreign countries; several
results were also obtain in Russia (see, e.g., [91, 114]). Note that there exist some versions of the maximum
principle (see, e.g., [55]) that still await applications; this matter requires a separate paper. In this paper,
we are interested in the method of proving the theorems by using integral Weitzenbock formulas, or, in
the figurative words of Berard, by “integration over a manifold.” We start with tho classical examples.

We present the first vanishing theorem, which can be stated by using the Gauss–Bonnet formula (see [60,
p. 325])

∫

M

Kds = 2πχ(M), (1.1.1)

where M is a closed, oriented surface in R
3 with Gaussian curvature K, Euler characteristic χ(M), and

area element ds. Formula (1.1.1) implies the following vanishing theorem.

Theorem 1.1.1. Let M be a closed, oriented surface. If K ≥ 0 and K 	= 0, then χ(M) > 0 and,
therefore, M is homeomorphic to the sphere S.

For the proof, it suffices to recall that a closed surface M is homeomorphic to the sphere S with p
handles and its topological invariant, the Euler characteristic, is χ(M) = 2(1 − p).

931



The second example of the vanishing theorem can be stated by using the Stokes formula
∫

M

divXη =
∫

∂M

g(X,N )η′, (1.1.2)

where X is a smooth vector field on a compact, oriented manifold (M, g) with oriented boundary ∂M
equipped with a field of outward, unit, normal vectors N and η and η′ are the volume elements of the
manifold (M, g) and its boundary ∂M , respectively.

We denote by Ric, Q, and H the Ricci tensor of the manifold (M, g), the second fundamental form,
and the mean curvature of its boundary ∂M , respectively, and by b1(M), bn−1(M), and b1(M,∂M),
bn−1(M,∂M) the absolute and relative Betti numbers, which are equal to the dimensions of one-
dimensional and (n−1)-dimensional absolute H1(M), Hn−1(M) and relative H1(M,∂M), Hn−1(M,∂M)
homology groups of the compact manifold (M, g) with boundary ∂M (see, e.g., [101, p. 51–60]). Now we
can formulate the following vanishing theorem (see [170, Chap. 7, Theorems 1.9 and 1.10]).

Theorem 1.1.2 (see [170]). Let (M, g) be a compact, oriented, Riemannian manifold with boundary ∂M .
Then the following assertions hold :

(1) if Ric > 0 and Q ≤ 0, then b1(M) = bn−1(M,∂M) = 0;
(2) if Ric > 0 and H ≤ 0, then bn−1(M) = b1(M,∂M) = 0.

For the proof, one must, first, use the Yano integral formulas
∫

M

[Ric(ξ, ξ) + g(∇ξ,∇ξ)]η =
∫

∂M

Q(ξ, ξ)η′,

∫

M

[Ric(ξ, ξ) + g(∇ξ,∇ξ)]η = (n− 1)
∫

∂M

g(ξ, ξ)Hη′,

which are versions of the Stokes formula (1.1.2) for harmonic vector fields ξ on the manifold (M, g) that
are tangent and orthogonal to ∂M , respectively (see [170, Chap. 7, Sec. 1, formula (1.17)]).

Next, one must apply the Duff–Spencer theorem (see [33]), which states that the first absolute Betti
number b1(M) is equal to the number of linearly independent harmonic vector fields on the manifold (M, g)
that are tangent to its boundary ∂M and the first relative Betti number b1(M,∂M) of the manifold M
modulo ∂M is equal to the number of linearly independent harmonic vector field on the manifold (M, g)
that are orthogonal to its boundary ∂M .

Recall that a vector field ξ on a closed manifold (M, g) is said to be harmonic (see [35, pp. 34–35])
if the 1-form ω dual to it is harmonic; by definition, this form satisfies the equation Δω = 0 with the
Hodge–de Rham Laplacian Δ on the Riemannian manifold (M, g) (see, e.g., [16, p. 54]).

If ∂M = 0, then either of the Weitzenbock formulas allows one to obtain the following vanishing
theorem, which is the cradle of the Bocher technique.

Theorem 1.1.3 (see [23]). Let (M, g) be a closed, oriented, Riemannian manifold. If Ric ≥ 0, then
b1(M) ≤ dimM . If Ric > 0, then b1(M) = 0.

1.1.2. A natural generalization of the class of harmonic 1-forms is the class of exterior differential
harmonic p-forms ω, or, in another terminology, covariant, skew-symmetric, harmonic tensor fields (see,
e.g., [5, pp. 240–241] and [35, pp. 54–55]). These forms are also defined by the condition Δω = 0. An
important role played by these forms in geometry and topology is emphasized by the classical Hodge
theorem for closed oriented manifold (M, g) and its generalization, the Duff–Spencer theorem for compact
oriented manifolds (M, g) with boundaries ∂M . These theorems state the relationships between the Betti
numbers of a manifold (M, g) and the dimension of the vector space of harmonic forms on it. Theorem 1.1.2
admits a generalization (see [170, Chap. 8, Theorems 3.4 and 3.5]) in which certain conditions imposed
on the curvature of the manifold (M, g) and the second fundamental form of the boundary ∂M guarantee
the vanishing of the absolute bp(M) and relative bn−p(M,∂M) Betti numbers for all 0 < p < n. A key
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role in the proof of this vanishing theorem is again played by integral Weitzenbock formulas for harmonic
p-forms on (M, g) that are tangent or normal to ∂M .

Investigations of harmonic forms, including investigations using the Bochner techniques, are constantly
carried out (see [18, 39, 84, 99, 173]).

The Bochner technique is also used for the investigation of Killing vector fields (see [171, pp. 35–36]
and [5, pp. 243–244]) and their generalizations, so-called exterior differential Killing p-forms, 1 ≤ p ≤ n−1;
in another terminology, Killing–Yano tensors (see [18, 19, 127, 145, 152, 171]). As is known, Killing
vector fields generate local one-parameter motion groups in (M, g) and hence have numerous applications
(see [7]). The interest in Killing forms was motivated by the needs of relativistic physics (see [9, 31, 32,
81]). For example, Killing–Yano tensors of valence 2 are used for the description and classification of
symmetries of the Dirac and Klein–Gordon–Fock equations (see [57, 102]).

The sphere of applications of the Bochner technique is steady broadening. For example, as generaliza-
tions of Killing vector fields and Killing forms, affine Killing vector and tensor fields were introduced and
studied using the Bochner technique (see [113]).

Conformal Killing vector fields generating one-parameter groups of conformal infinitesimal transforma-
tions in (M, g) were studied by using the Bochner technique in the 1950s (see [171]). Their generalization,
conformal Killing p-forms, introduced in the late 1960s (see [54, 146]) and studied by using the Bochner
technique, have aroused the interest of geometers (see [50, 63, 131, 143]). These forms and conformal
Killing vector fields (see [66, 67]) are also applied in relativistic physics (see [128, 136]).

The Bochner technique was successfully applied for studying closed conformal Killing p-forms (called
also flat p-forms, see [126, 128] and used in relativistic physics, see [128, 136]), projective Killing (see [51,
147, 148]), special projective Killing (see [149]), and other p-forms and tensor fields (see, e.g., [30, 115,
168]).

1.1.3. Together with the theory of exterior differential forms, the theory of symmetric tensor fields
(or, in another terminology, symmetric differential forms) was developed. The results of these studies
are contained in a number of monographs (see, e.g., [13, 16, 35, 81, 103]). The most developed theory is
constructed for Killing and Codazzi symmetric tensors.

Killing symmetric p-tensors ϕ or Killing symmetric differential p-forms are defined as fields of covariant
symmetric tensors of valence p (1 ≤ p ≤ n) satisfying the equation δ∗ϕ := sym(∇ϕ) = 0. The local
geometry of these tensors is elaborated in a large amount of literature (see [16, 29, 35, 73, 100, 144,
150]). These fields are extensively used in geometry and physics (see, e.g., [81, 104]). For example,
coordinates admitting the separation of variables for the Hamilton–Jacobi equation in a Lorentz manifold
are connected with eigenvectors of symmetric Killing tensors of second order (see [165]).

A series of vanishing theorems for symmetric Killing tensors is known (see [122, 126, 138]).
Codazzi tensors of valence p or Codazzi symmetric differential p-forms are no less popular than Killing

tensors (see, e.g., [16]). An example of such tensors is the second fundamental form of a hypersurface in
a space of constant curvature, which satisfies the Codazzi equations (this is the reason for the name of
these tensors).

Some vanishing theorems for symmetric Codazzi tensors are known (see [16, 122]).
The theory of harmonic symmetric p-forms is developed (see [117, 119, 121]). These forms satisfy

the equation �ϕ = 0, where � = δδ∗ − δ∗δ is the Laplacian and δ is the operator formally conjugate
to δ∗. Components of harmonic p-forms on a locally flat Riemannian manifold (M, g) are harmonic
functions; this property is also typical for harmonic exterior differential p-forms. The Weitzenbock formula
∇∗∇ϕ−�ϕ = Bp(ϕ) holds. It is proved that for p = 1, the kernel of the operator � consists of infinitesimal
harmonic transformations (see [121, 141]). The corresponding vanishing theorem is proved.

Conformal symmetric Killing tensors and relative harmonic tensors also occur in the literature (see [26,
64]); they can also be studied using the Bochner technique.
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1.1.4. The above list of definitions and theorems of local and global theory of vector fields, differential
exterior and symmetric p-forms, and their applications in physics can lead to disappointment in the
Bochner technique and this branch of geometry.

For example, this happened in the geometry of almost Hermitian manifolds up to the moment when
the accumulations of facts in the theory had been accomplished by the Gray–Hervela classification of
manifolds of this type (see [40]). For this, an irreducible decomposition of the covariant derivative ∇Ω of
the fundamental form Ω of an almost Hermitian manifold was found and then sixteen classes of almost
Hermitian manifolds were segregated by stepwise vanishing of components of irreducible representations.
All known manifolds were included into this scheme and a series of new manifolds was obtained.

This approach is used in Sec. 1.2 for presentation of the local theory of exterior differential forms
(see [131, 136, 143]).

In Sec. 1.3, we present some universal integral Weitzenbock formulas that allow one to prove a series
of vanishing theorems for exterior and symmetric forms.

In Sec. 1.4, we describe eventual applications for the geometry of compact, almost Hermitian manifolds.
In concluding this section, we note that the conditions of vanishing theorems usually contain the

requirement of sign-definiteness of the sectional, Ricci, or scalar curvature of a Riemannian manifold. In
this case, some problems on the existence and geometric structure of such manifolds appear; the answers
can be found, for example, in [151].

1.2. Local Geometry of Exterior Differential and Symmetric Forms

1.2.1. Let M be a C∞-manifold with linear connection ∇ without torsion. We consider the C∞M -
module Diff(ΛpM,T ∗M⊗ΛpM) of first-order linear differential operators on the space C∞ΛpM of C∞M -
sections of the bundle ΛpM of exterior differential p-forms.

A first-order linear differential operator D on the space C∞ΛpM of C∞M -sections is said to be fun-
damental (see [120]) if its principal symbol (with respect to the connection ∇ extended to the bundle
ΛpM of p-forms on M) is a projector to a pointwise GL(n,R)-irreducible subbundle of the tensor bundle
T ∗M ⊗ ΛpM . For the operator of exterior differentiation d : C∞ΛpM → C∞Λp+1M , these operators are

D1 =
1

p+ 1
d and D2 = ∇− 1

p+ 1
d.

For any exterior differential p-form ω, the GL(m,R)-irreducible decomposition ∇ω = D1ω + D2ω
pointwise holds. This implies that D1 and D2 are generalized GL(n,R)-gradients (see [52, 53]). Each
of them is R-linear but is not linear with respect to multiplication by functions in the ring C∞M . The
kernel of D1 consists of closed forms and the kernel of D2 consists of Killing p-forms (see [130]). These
forms compose two vector spaces Dp(M,R) and Kp(M,R) over the field R or, in other words, R-modules,
which, in their turn, are submodules of the R-module Ωp(M,R) of exterior forms on the manifold M .

In [130], it is proved that

dimKp(M,R) ≥ n!
p!(n− p)!

on an n-dimensional manifold M with an equiprojective GL(n,R)-structure (see also Chap. 3).
In a local coordinate system x1, . . . , xn on a locally flat manifold M , the components ωi1...ip of a Killing

p-form ω have the form (see [48, 120])

ωi1...ip = Kki1...ipx
k +Ki1...ip

for arbitrary constants Kki1...ip and Ki1...ip that are skew-symmetric with respect to all their subscripts.
Therefore, on a locally flat manifold M , the following relation holds:

dimKp(M,R) =
(n+ 1)!

(p+ 1)!(n− p)!
.

Similar expressions for components of Killing 2-forms were obtained in [145] for Euclidean spaces and
in [58] for Minkowski spaces.
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1.2.2. Let C∞ΛpM be the space of C∞-sections of the bundle ΛpM of exterior differential p-forms over
an n-dimensional (1 ≤ p ≤ n−1) Riemannian manifold (M, g). The problem of the search for fundamental
differential operators (in the sense of Sec. 1.2.1) such that their principal symbols (with respect to the
Levi-Civita connection ∇ extended to the bundle ΛpM of p-forms on M) are projectors on a pointwise
O(n,R)-irreducible subbundle of the tensor bundle T ∗M ⊗ΛpM is equivalent (see [13]) to the problem of
the search for a basis of the space of natural first-order Riemannian differential operators defined on the
space C∞ΛpM and taking their values in the space of homogeneous tensors.

Such a basis (see [13, 128, 136]) consists of three operators of the form

D1 =
1

(p+ 1)
d, D2 =

1
(n− p+ 1)

g ∧ d∗, D3 = ∇− 1
p+ 1

d− 1
n− p+ 1

g ∧ d∗,

where d∗ : C∞ΛpM → C∞Λp−1M is the codifferentiation operator formally conjugate to the operator d
and

(g ∧ d∗ω)(X0, X1, . . . , Xp) =
p∑

a=2

(−1)ag(X0, Xa)(d∗ω)(X1, . . . , Xa−1, Xa+1, . . . , Xp)

for arbitrary ω ∈ C∞ΛpM and X0, X1, . . . , Xp ∈ C∞TM . Each of these operators is R-linear but is
not linear with respect to multiplication by functions of the ring C∞M . Therefore, the kernels of the
operators D2 and D3 form R-modules Fp(M,R) and Tp(M,R), which are submodules of the R-module
Ωp(M,R). They consist of co-closed and conformal Killing p-forms, respectively (see [54, 146]).

For an arbitrary exterior differential p-form ω, the following O(n,R)-irreducible decomposition holds:

∇ω = D1ω +D2ω +D3ω; (1.2.1)

this implies that D1, D2, and D3 are generalized O(m,R)-gradients (see [52, 53]).
The condition ω ∈ kerD1 ∩ kerD3 characterizes a p-form ω as a flat form (see [126, 128]); therefore,

the R-module of flat p-forms is

Pp(M,R) = Tp(M,R) ∩ Dp(M,R).

In [128], it is proved that

P∗(M,R) =
⊕

p≥0

Pp(M,R)

is a skew-commutative, associative algebra, which is a subalgebra in D∗(M,R) =
⊕

p≥0
Dp(M,R).

The condition ω ∈ kerD3 ∩ kerD2 characterizes a p-form ω as a Killing form (see [35]); therefore, the
R-module of Killing p-forms is

Kp(M,R) = Tp(M,R) ∩ Fp(M,R).

The condition ω ∈ kerD1∩kerD2 characterizes a p-form ω as a harmonic form (see [90, 171]); therefore,

Hp(M,R) = Dp(M,R) ∩ Fp(M,R).

We denote by Cp(M,R) the vector space of covariantly constant (or, in other words, parallel) p-forms.
The following diagram holds (see [131, 136, 143]):

Dp(M,R) Pp(M,R)

Ωp(M,R) Tp(M,R) Hp(M,R) Cp(M,R)

Fp(M,R) Kp(M,R)

�

������

������
�

������

������

������

������

�

�
������

������
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In this diagram, the writing Fp(M,R) → Kp(M,R) means that the R-module Kp(M,R) is a submodule
of the module Fp(M,R).

Fix a local orientation of a manifold (M, g) and consider the action of the Hodge operator (see [85, 90])
such that ∗ : C∞ΛpM ∼= C∞Λn−pM is an isomorphism and

∗2 = (−1)p(n−p) idΛpM . (1.2.2)

The following isomorphisms are obvious:

∗ : Ωp(M,R) ∼= Ωn−p(M,R), ∗ : Cp(M,R) ∼= Cn−p(M,R).

The codifferentiation operator d∗ : C∞ΛpM → C∞Λp−1M is defined by the relation (see [85, 90])

d∗ = (−1)np+n+1 ∗ d∗; (1.2.3)

therefore, by (1.2.2), we obtain the isomorphism

∗ : Fp(M,R) ∼= Dn−p(M,R). (1.2.4)

From this isomorphism, we obtain the well-known isomorphism of the R-modules of harmonic forms:

∗ : Hp(M,R) ∼= Hn−p(M,R). (1.2.5)

The following isomorphism of the R-modules of conformal Killing forms is also well known:

∗ : Tp(M,R) ∼= Tn−p(M,R) (1.2.6)

(see [63, 132]). Finally, (1.2.3) and (1.2.5) imply the isomorphism

∗ : Pp(M,R) ∼= Kn−p(M,R) (1.2.7)

of the R-modules of flat and Killing forms (see [136]).
On a manifold with constant curvature C 	= 0, the (pointwise) sum (see [54])

Tp(M,R) = Pp(M,R) ⊕ Kp(M,R)

holds. Therefore, taking isomorphism (1.2.7) into account, we obtain the inequality

dimTp(M,R) ≥ 2n!
p!(n− p)!

.

On a locally flat, n-dimensional Riemannian manifold (M, g), components of flat and conformal Killing
p-forms ω in a local orthonormal coordinate system x1, . . . , xn of the manifold have the following expres-
sions:

ωi1...ip = x[i1Pi2...ip] + Pi1...ip ,

ωi1...ip = Akji1...ipx
kxj +Bji1...ipx

j + Ci1...ip ,

where Pi2...ip , Pi1...ip , and Ci1...ip are arbitrary constants skew-symmetric with respect to all their subscripts
and Akji1...ip and Bji1...ip are arbitrary constants skew-symmetric with respect to the subscripts i1, . . . , ip
and satisfying some additional symmetry conditions (see [48, 128, 136]).

It is known (see [138]) that on an n-dimansional Riemannian manifold (M, g) with nonzero constant
curvature C, an arbitrary conformal Killing p-form ω admits the representation

ω = ω′ − 1
pC

ω′′,

where ω′ and ω′′ are Killing p-form and (p − 1)-form, respectively. In [139], it is proved by using this
representation that there exists a local coordinate system x1, . . . , xn on (M, g) in which components of ω
have the form

ωi1...ip = e(p+1)ψ
(
A′
ki1...ipx

k +B′
i1...ip

) − 1
C
epψ

(
ψ[i1A

′′
|k|i2...ip]x

k + ψ[i1B
′′
i2...ip]

)
+

1
p
Ai1i2...ip
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for ψ =
1

2(n+ 1)
ln |det g|, ψi = ∂iψ, and arbitrary constants A′

ki1...ip
, A′′

i1...ip
, B′

i1...ip
, and B′′

i2...ip
skew-

symmetric with respect to all their subscripts.

1.2.3. Let M be a C∞-manifold with linear connection ∇ without torsion. Consider a C∞M -module
Diff(SpM,T ∗M⊗SpM) of first-order, linear differential operators on the space C∞SpM of C∞M -sections
of the bundle SpM of differential p-forms.

A first-order, linear differential operator D on the space C∞SpM of C∞M -sections is said to be
fundamental if its principal symbol (with respect to the connection ∇ extended to the bundle SpM) is a
projector on a pointwise GL(n,R)-irreducible subbundle of the tensor bundle T ∗M⊗SpM . The operators

D1 =
1

p+ 1
δ∗ and D2 = ∇− 1

p+ 1
δ∗ are fundamental operators (see [120]).

For any symmetric p-form ϕ, the following pointwise GL(n,R)-irreducible decomposition holds:

∇ϕ = D1ϕ+D2ϕ.

This implies that D1 and D2 are generalized GL(n,R)-gradients (see [52, 53]). The kernels of D − 1 and
D2 consist of Killing (see [130]) and Codazzi (see [69, p. 169], [16, p. 589], [122]) symmetric p-forms that
compose two submodules Wp(M,R) and Vp(M,R) of the R-module Sp(M,R) of symmetric differential
p-forms on the manifold M .

The symmetric multiplication turns the direct sum

W∗(M,R) =
⊕

p≥0

Wp(M,R)

into the subalgebra
S∗(M,R) =

⊕

p≥0

Sp(M,R)

of the graded, commutative, associative algebra of symmetric forms on M (see [144]).
On an n-dimensional manifold M with an equiprojective SL(n,R)-structure, we have

dimWp(M,R) ≥ (n+ p− 1)!
p!(n− p)!

(see [130, 138]).
In a local coordinate system x1, . . . , xn of a locally affine manifoldM , components ϕi1...ip of a symmetric,

Killing p-form ϕ have the form

ϕi1...ip =
p∑

q=0

Ai1...ipj1...jqx
j1 . . . xjq ,

where Ai1...ipj1...jq are arbitrary constants symmetric with respect to the groups of subscripts i1, . . . , ip
and j1, . . . , jq; the symmetrization with respect to the subscripts i1, . . . , ip, j1, . . . , jq−1 for q = 1, . . . , p
yields zero (see [73]). Then on the manifold M with an equiprojective SL(n,R)-structure, we have

dimWp(M,R) =
p(p+ 1)2(p+ 2)2 . . . (n+ p− 1)2(n+ p)2

p!(p+ 1)!

(see [120]).
On a locally affine manifold M in a local coordinate system x1, . . . , xn, a p-form ϕ with components

ϕi1i2...ip =
∂pf

∂xi1∂xi2 . . . ∂xip
is a Codazzi form for any f ∈ C∞M . It is known (see [69, p. 169]) that a

Codazzi 2-form ϕ on a manifold M with an equiprojective SL(N,R)-structure has the form

ϕ = ∇2f +
1

n− 1
f Ric

for any f ∈ C∞M .
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On a (pseudo) Riemannian manifold (M, g), there exists an interrelation between symmetric Killing
2-forms and exterior, differential Killing flat p-forms; it is useful for physics (see [128, 136] and [81,
pp. 339–340]). Let ω be an exterior differential p-form; we set

ϕ(X,Y ) =
∑

1≤i2<···<ip≤n
ω(X, ei2 , . . . , eip)ω(Y, ei2 , . . . , eip),

where X,Y ∈ TxM and {e1, . . . , en} is an orthonormal basis of the space TxM at an arbitrary point
x ∈ M . If ω is a Killing p-form, then the associated 2-form ϕ is a symmetric Killing form; if ω is a flat
p-form, then the form

ϕ′ = ϕ− 1
p
(traceg ϕ)g

is also a symmetric Killing form.

1.2.4. An analogue of the Hodge–de Rham Laplacian on the bundle SpM of symmetric forms is the
Laplacian � : C∞SpM → C∞SpM defined by the rule

� = δδ∗ − δ∗δ

(see [119, 144]). Compare it with the rough Laplacian ∇∗∇.
It is easy to see that these two operators coincide if (M, g) is a locally Euclidean space.
Further (see [119, 144]), the differential operator � − ∇∗∇ has order zero and can be defined by a

symmetric endomorphism Bp of the bundle SpM , where Bp can be algebraically (even linearly) expressed
through the curvature tensor on (M, g). This can be expressed by the Weitzenbock formula � = ∇∗∇+Bp.

For p ≥ 2, the explicit expression for � is sufficiently complicate but for p = 1, it has the form
� = Δ − 2Q (see [121]), where, in local coordinates, Qkj = gkiRij (Rij are local coordinates of the Ricci
tensor Ric). This form of the operator � was used by Yano (see [170, p. 40]) for the investigation of local
isometries of the manifold (M, g) preserving the metric g.

Recall that in a neighborhood U of an arbitrary point x ∈M , a vector field ξ generates a one-parametric
group of local automorphisms ft : U →M , t ∈ (−ε; ε) ⊂ R. In this case, we can define the Lie derivative

(Lε∇)t = ∇′(x) −∇(x),

where ∇′(x) = f∗t (∇(ft(x))).
An automorphism f : (M, g) → (M, g) is harmonic if and only if traceg(∇′(x) − ∇(x)) = 0 for all

x ∈M . Therefore, traceg(Lξ∇) = Δξ − 2Qξ. The following theorem holds.

Theorem 1.2.1 (see [121, 141]). The Yano differential operator � = Δ − 2Q acting on the space of
sections of the tangent bundle of a manifold (M, g) is a Laplacian of the form � = δδ∗−δ∗δ and its kernel
is a finite-dimensional vector space of local harmonic automorphisms of the manifold (M, g).

1.3. Vanishing Theorems in Geometry of Differential and Symmetric Forms

1.3.1. We consider the Hodge–de Rham Laplacian Δ = dd∗ + d∗d. It is known that on a closed,
oriented Riemannian manifold, the relation

ker Δ = Hp(M,R)

holds and, in addition,
dimHp(M,R) = bp(M) <∞

(see [85, pp. 79 and 178]). We obtain that the Poincaré duality theorem holds:

bp(M) = bn−p(M), 1 ≤ p ≤ n− 1.

Now we consider a second-order differential operator

D∗
3D3 : C∞ΛpM → C∞ΛpM,
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where D∗
3 is the operator formally conjugate to D3. The operator D∗

3D3 is strongly elliptic for all n ≤ 2p;
it coincides with the Laplacian for n = 2p. Moreover,

kerD∗
3D3 = Tp(M,R)

on closed, oriented manifolds (see [135, 160]). Therefore, by using (1.2.5), we obtain the following analogue
of the Poincaré duality theorem for Betti numbers on an n-dimensional, closed, oriented Riemannian
manifold (M, g):

tp = tn−p, tp = dimTp(M,R).
By isomorphism (1.2.6), we obtain

dimPn−p(M,R) = dimKp(M,R) <∞, 1 ≤ p ≤ n− 1.

1.3.2. We consider the Bochner ∇∗∇ (see [42, pp. 91 and 97]) and Hodge–de Rham Δ = d∗d+ dd∗ =
(d+ d∗)(d∗ + d) Laplacians related by the classical Weitzenbock formula

Δω = ∇∗∇ω + Fp(ω) (1.3.1)

(see [171, p. 52] and [163, pp. 393–397]), where

Fp(ω)(X1, . . . , Xp) =
p∑

a=1

Ric(ej , Xa)ω(X1, . . . , Xa−1, ej , Xa+1, . . . , Xp)

−
1...p∑

a<b

R(ej , ek, Xa, Xb)ω(X1, . . . , Xa−1, ej , Xa+1, . . . , Xb−1, ek, Xb+1, . . . , Xp)

for arbitrary ω ∈ C∞ΛpM , X1, . . . , Xp ∈ C∞TM , an orthonormal basis {e1, . . . , en}, and the curvature
R and Ricci Ric tensors of the manifold (M, g).

Using the identity ∫

M

g(∇ω,∇ω)η =
∫

M

g(∇∗∇ω, ω)η,

where (M, g) is a closed, oriented manifold, and the Weitzenbock formula (1.3.1), we obtain the following
integral formula: ∫

M

{

Fp(ω, ω) +
1
p
‖∇ω‖2 − 1

p(p+ 1)
‖dω‖2 − ‖d∗ω‖2

}

η = 0 (1.3.2)

(see [171, p. 58]), where Fp(ω, ω) = g(Fp(ω), ω) is a quadratic form Fp : C∞ΛpM ⊗ C∞ΛpM → C∞M
whose coordinates are the components of the curvature R and Ricci Ric tensors of the manifold (M, g).

Formula (1.3.2) implies that the inequality

Fp(ω, ω) > 0

is an obstruction for the existence of harmonic forms ω on a closed Riemannian manifold.
Meyer proved (see [68]) that the quadratic form Fp(ω, ω) is positive definite if the symmetric curvature

operator R̄ : C∞Λ2M → C∞Λ2M is positive definite; this operator is defined by the formula

ω̄ij = Rijklω
kl,

where ωkl are the local contravariant components of the form ω ∈ C∞Λ2M and Rijkl are the components
of the curvature tensor R (see [42, pp. 39 and 94–97] and [61, p. 333]). Therefore, the following theorem
holds.

Theorem 1.3.1 (see [166, 167]). Let (M, g) be a closed, oriented Riemannian manifold of dimension n
with positive definite curvature operator. Then for all 1 ≤ p ≤ n− 1, the following relation holds:

bp(M) = dimH(M,R) = 0.
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Note (see [44]) that a compact, four-dimensional Riemannian manifold (M, g) with positive definite cur-
vature operator is diffeomorphic to a sphere or a real projective space. Similar result for other dimensions
can be found in [42, pp. 39–52], [151], and [41, pp. 283–285].

It is easy to prove (see [61, p. 333]) that the positive definiteness of the curvature operator R̄ of (M, g)
implies the positive definiteness of the section curvature. Generally speaking, the inverse assertion is
invalid. A valid inverse assertion is proved in [25] for an n-dimensional Riemannian manifold (M, g)
isometrically embedded in R

n+2.

Corollary 1.3.1 (see [25]). Let (M, g) be a closed, oriented, n-dimensional Riemannian manifold with
positive section curvature isometrically embedded in R

n+2. Then for all 1 ≤ p ≤ n − 1, the following
relation holds:

bp(M) = dimHp(M,R) = 0.

A vanishing theorem for Killing forms similar to Theorem 1.3.1 can be proved (see [171, p. 59]) since for
a Riemannian manifold (M, g) isometrically embedded in R

n+2, the negative definiteness of the section
curvature implies the negative definiteness of the curvature operator R̄ (see [25]).

Formula (1.3.2) was obtained more than fifty years ago. It has been used for the study of harmonic
and Killing forms until now (see, e.g., [19, 20, 115]).

For example, by using the representation of the quadratic form Fp(ω, ω) in the form

Fp(ω, ω) =
n− 2p
n− 2

Rijω
ii2...ipωji2...ip +

p− 1
(n− 1)(n− 2)

Sωi1...ipωi1...ip −
p− 1

2
Wijklω

iji3...ipωkli3...ip

(see [171, p. 72]), where S is the scalar curvature and Wijkl is the Weyl tensor, the following assertions
are proved in [34].

Corollary 1.3.2 (see [34]). Let (M, g) be a compact, locally irreducible Riemannian manifold with non-
negative Ricci curvature. If n = 4 and S−6W2 ≥ 0 or n > 4 and S−(n−2)(n−1)W2 ≥ 0 for the operator
W2 on Λ2M induced by the Weyl tensor, then either the Betti numbers bp(M) vanish for 1 ≤ p ≤ n − 1
or the covering space for (M, g) is a compact symmetric space.

Corollary 1.3.3 (see [34]). Let (M, g) be a compact, locally irreducible Riemannian manifold such that
the sum of two minimal eigenvalues of its Ricci tensor Ric is nonnegative. If [Ric∧ Id,W2] = 0 and
(n− 2)(n− 1)W2 − S ≥ 0, then either the Betti numbers bp(M) vanish for 2 ≤ p ≤ n− 2 or the covering
space for (M, g) is symmetric.

There exist different analogues of formula (1.3.2) for p-forms on a compact, oriented manifold (M, g)
with boundary ∂M (see [170]). For example, for an arbitrary p-form ω, which touches the boundary of
the manifold, the corresponding integral Weitzenbock formula has the form

∫

M

[
Up(ω, ω) + Zp(ω, ω) + Wp(ω, ω) − p(p+ 1)‖D1ω‖2 − (n− p)(p+ 1)‖D2ω‖2 + (p+ 1)‖D3ω‖2

]
η

=
∫

∂M

Qp(tω, tω)η′ (1.3.3)

(see [143]) for a quadratic form Qp : C∞Λp∂M ⊗ C∞Λp∂M → C∞M whose coefficients are components
of the second fundamental form Q of the boundary ∂M of the manifold (M, g) and a decomposition
Fp = Up + Zp +Wp irreducible with respect to actions of O(n,R) .

Recall that a p-form ω is said to be tangent to the boundary ∂M if

ω(N , X2, . . . , Xp) = 0∀X2, . . . , Xp ∈ C∞T∂M

(see [170, p. 126]).
Integral Weitzenbock formula (1.3.3), in contrast to (1.3.2), can be used for the study of four classes of

forms: harmonic, conformal Killing, Killing, and flat forms on compact, oriented Riemannian manifolds,
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manifolds of zero scalar curvature, Einstein manifolds, and conformally flat manifolds under one restric-
tion: the form must be tangent to the boundary of the manifold or ∂M = ∅. For example, the following
vanishing theorem holds.

Theorem 1.3.2 (see [135]). On an n-dimensional (n > 3), compact, oriented, conformally flat Riemann-
ian manifold (M, g) with convex boundary ∂M , there is no conformal Killing p-forms (1 ≤ p ≤ n − 1)
tangent to ∂M if the Ricci curvature of the manifold is negative.

For the proof, we note that for 2p ≤ n, the following inequality holds:

Up(ω, ω) + Zp(ω, ω) ≤ −rmax‖ω‖2 < 0, (1.3.4)

where −rmax is the maximal negative value of the Ricci curvature on (M, g). We also note that if the
boundary of the manifold (M, g) is convex, then the inequality Qp(tω, tω) ≥ 0 holds. This inequality,
(1.3.4), and the condition Wp(ω, ω) = 0 contradict the integral Weitzenbock formula (1.3.3). This implies
that dimT(M,R) = tp = 0 for 2p ≤ n. If we apply the relation tp = tn−p, then we obtain the required
result.

Similarly, by using the integral Weitzenbock formula (1.3.3), one can prove vanishing theorems for
harmonic, Killing, and flat p-forms on a compact, oriented manifold with boundary.

1.3.3. Let (M, g) be a closed, oriented Riemannian manifold and SpM be the bundle of symmetric
p-forms over (M, g). It is easy to prove that the fundamental operators D1 and D2 on the space of
C∞SpM -section of the bundle SpM have the form

D∗
1D1 =

1
(p+ 1)2

δδ∗, D∗
2D2 =

p

p+ 1

(

∇∗∇− 1
p+ 1

δδ∗
)

.

The operator D∗
1D1 is elliptic (see [103, p. 53]); hence, the operator D∗

2D2 is also elliptic. Therefore
(see [85, pp. 176–178] and [16, p. 632]), we have

dimWp(M,R) = wp <∞, dimVp(M,R) = vp <∞.

For symmetric differential forms, the following integral Weitzenbock formula holds (see [122, 126]):
∫

M

{

Bp(ϕ,ϕ) +
1

p(p+ 1)
‖δ∗ϕ‖2 − 1

p
‖∇ϕ‖2 − ‖δϕ‖2

}

η = 0, (1.3.5)

where Bp(ω, ω) is a quadratic form Bp : C∞SpM ⊗ C∞SpM → C∞M whose coefficients are the compo-
nents of the curvature R and Ricci Ric tensors of the manifold (M, g). It is proved in [122] that the sign
of the quadratic form Bp(ω, ω) is opposite to the sign of the second-type symmetric curvature operator
◦
R : C∞S2M → C∞S2M , which is defined in local coordinates by the formula

ϕ̄ij = Rikjlϕ
kl, ϕkl = gkigljgϕij ,

where gkl = (gkl)−1 (see [42] and [13, p. 278]). The following vanishing theorem holds.

Theorem 1.3.3 (see [122]). Let (M, g) be a closed, oriented, n-dimensional Riemannian manifold with
positive-definite curvature operator of second type. Then the relation

wp = dimWp(M,R) = 0

holds.

A similar assertion for Codazzi p-forms can be stated only in particular cases, for example, for forms
ϕ ∈ kerD2 ∩ ker δ or for traceless Codazzi p-forms (see [122]).

Note that for p = 2, the form

B2(ϕ,ϕ) =
1
2

∑

i<j

K(ei, ej)(λi − λj)2,
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where ϕ(ei, ej) = λiδij , δij is the Kronecker symbol, and {e1, . . . , en} is an orthonormal basis of the space
TxM at an arbitrary point x ∈M (see [16, p. 529]).

Corollary 1.3.4 (see [126]). Let ϕ be a symmetric Killing 2-form on a closed, oriented Riemannian
manifold (M, g) with nonpositive section curvature K. Then ∇ϕ = 0. If, in addition, K < 0 at some
point, then ϕ = λg, where λ = const.

In the considered case where p = 2, the co-closedness of a Codazzi 2-form is equivalent to the condition
that its trace is constant. Therefore, the following assertion holds.

Theorem 1.3.4 (see [16]). Any Codazzi 2-form with constant trace on a closed, oriented Riemannian
manifold (M, g) with nonnegative section curvature K is parallel. If, in addition, K > 0 at some point,
then ϕ = λg, where λ = const.

Let (M, g) be a compact, oriented Riemannian manifold with boundary ∂M such that at any point
x ∈ ∂M , a unit, orthogonal to ∂M , and outward directed vector Nx is given. If for a symmetric 2-form
ϕ, the condition ϕ(N , X) = 0 holds for all X ∈ T∂M , we say that ϕ is tangent to the boundary ∂M of
the manifold (M, g). In this case, ϕ satisfies the integral formula

∫

M

⎧
⎨

⎩

1
2

∑

i<j

K(ei, ej)(λi − λj)2 +
1

p(p+ 1)
‖δ∗ϕ‖2 − 1

p
‖∇ϕ‖2 − ‖δϕ‖2

⎫
⎬

⎭
η =

∫

∂M

Q2(tϕ, tϕ)η′

(see [138]). This formula allows one to prove the following vanishing theorem.

Theorem 1.3.5 (see [127, 138]). Let (M, g) be an n-dimensional, compact, oriented Riemannian mani-
fold with boundary ∂M equipped with a Killing 2-form ϕ, which is tangent to the boundary ∂M .

(1) If the manifold (M, g) has convex boundary and K ≤ 0, then either (M, g) is locally a Riemannian-
product manifold or ϕ = λg for λ = const.

(2) If the manifold (M, g) has convex boundary, K ≤ 0, and the inequality K < 0 holds at least at one
point, then ϕ = λg for λ = const.

(3) If the manifold (M, g) has strongly convex boundary and K ≤ 0, then ϕ = 0.

Note that the strongly convex boundary is the boundary ∂M of the manifold (M, g) whose second
fundamental form is strongly positive-definite.

We can easily state a similar theorem for Codazzi 2-forms with constant trace, which generalizes
Theorem 1.3.4.

Taking into account the relationship between symmetric and exterior Killing differential forms, we
obtain the following assertion.

Corollary (see [126, 138]). Let an n-dimensional, compact, oriented Riemannian manifold (M, g) with
boundary ∂M be equipped with an exterion Killing p-form, which is tangent for the boundary ∂M ,
1 ≤ p ≤ m− 1.

(1) If the manifold (M, g) has convex boundary and K ≤ 0, then ‖ω‖ = const and either (M, g) is
locally a Riemannian-product manifold or ω satisfies the relation

∑

1≤i2<···<ip≤n
ω(X, ei2 , . . . , eip)ω(Y, ei2 , . . . , eip) =

p!
n
‖ω‖2g(X,Y ), (1.3.6)

where X,Y ∈ TxM and {e1, . . . , en} is an orthonormal basis of the space TxM at an arbitrary point
x ∈M .

(2) If the manifold (M, g) has convex boundary, K ≤ 0, and the inequality K < 0 holds at least at one
point, then ω satisfies Eq. (1.3.6).

(3) If the manifold (M, g) has strongly convex boundary and K ≤ 0, then ω = 0.

Note that there exists a similar assertion for flat p-forms.
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1.3.4. Recall that the Laplacian � on the space C∞SpM is defined by the formula (see [117, 119])
� = δδ∗ − δ∗δ. The Weitzenbock formula � = ∇∗∇ + Fp has the form

(∇∗∇ϕ)i1...ip − (�(ϕ))i1...ip =
p∑

a=1

Rkiaϕi1...ia−1kia+1...ip − gkjglm
1...p∑

a<b

Riajibmϕi1...ia−1kia+1...ib−1jib+1...ip .

On a locally flat manifold (M, g), the equation �ϕ = 0 becomes
n∑

k=1

∂2ϕi1...ip
(∂xk)2

= 0;

therefore, all components of a symmetric p-form are harmonic functions and symmetric forms belonging to
the kernel of the Laplacian �, in analogy with exterior harmonic differential forms, are said to be harmonic
(see [117]). Denote the vector space of symmetric harmonic p-forms by Up(M,R). The following vanishing
theorem can be proved by using the Weitzenbock formula.

Theorem 1.3.6 (see [117, 119]). Let (M, g) be a closed, oriented, n-dimensional Riemannian manifold
whose second-type curvature operator is positive definitie. Then the relation

up = dimUp(M,R) = 0

holds.

Theorem 1.3.7 (see [121, 141]). Let (M, g) be a closed Riemannian manifold. The vector space of local,
harmonic automorphisms of this manifold is finite-dimensional. If Ric < 0, then it is zero-dimensional.

1.4. Applications to Hermitian Geometry

1.4.1. Consider exterior Killing differential forms and flat 2-forms of maximal rank on a 2n-
dimensional, closed Riemannian manifold (M, g). Note that a 2-form ω of maximal rank on such a
manifold exists if the manifold is oriented.

Recall that an almost Hermitian manifold (M,J, g) with Killing fundamental form Ω = (
√

2n‖ω‖)−1ω
is said to be approximately Kählerian (see, e.g., [40]).

Theorem 1.4.1 (see [126]). Let a 2n-dimensional, closed Riemannian manifold (M, g) be equipped with
a Killing 2-form ω of maximal rank. Let one of the following two conditions hold :

(1) either K < 0,
(2) or K > 0 and the manifold (M, g) is not a Riemannian-product manifold.

Then (M, g) is an approximately Kählerian manifold with fundamental form Ω = (
√

2n‖ω‖)−1ω.

If (M, g) is a manifold satisfying the conditions above, then a flat 2-form ω turns this manifold into an
almost Hermitian manifold with fundamental form Ω = (

√
2n‖ω‖)−1ω. However, a flat closed 2-form ω

annihilates the Nijenhuis tensor

N(X,Y ) = [wX,wY ] + w2[X,Y ] − w[X,wY ] + w[wX, Y ]

for g(wX, Y ) = ω(X,Y ) and all X,Y ∈ C∞TM (see [60]). Therefore, an almost Hermitian manifold
becomes a Kählerian manifold (see [61]).

Theorem 1.4.2 (see [126]). Let a 2n-dimensional, closed Riemannian manifold (M, g) be equipped with
a flat 2-form ω of maximal rank. Let one of the following two conditions hold :

(1) either K < 0,
(2) or K ≤ 0 and the manifold (M, g) is not a Riemannian-product manifold.

Then (M, g) is a Kählerian manifold with fundamental form Ω = (
√

2n‖ω‖)−1ω.

If this 2-form ω is recurrent, i.e., ∇ω = θ ⊗ ω for θ ∈ C∞T ∗M , then the following assertion holds.
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Theorem 1.4.3 (see [116, 118]). Any 2n-dimensional Riemannian manifold (M, g) with sign-definite
sectional curvature equipped with a recurrent 2-form of maximal rank is a Kählerian manifold.

All these assertions are generalizations of the following classical result of Shirokov [106]: an even-
dimensional Riemannian manifold equipped with a covariantly constant exterior differential 2-form is a
Kählerian manifold.

Chapter 2

VANISHING THEOREMS IN LORENTZ GEOMETRY

2.1. Analysis of Main Problems

2.1.1. The progress in causality and singularity theories and in the study of black holes in general
relativity achieved in the last decades generated great interest in global Lorentz geometry among physicists
and mathematicians. As a rule, their attention was attracted by the well-known monograph of Beem and
Ehrlich [10], which bridges modern differential geometry “in the whole” and mathematical physics of
general relativity. This monograph and numerous papers on this matter study various synthetic methods
used by the authors, from classical and elementary to modern topological. For this reason, each chapter
of this monograph contains a comprehensive introduction, in which the authors explain the choice of the
methods used.

The endeavor to obtain a universal method for solving such problems led scientists to turn their atten-
tion to the Bochner technique, which was very productive in global Riemannian geometry. However, the
following obstruction appeared (see [92]): the Laplacian Δf = div(grad f) for a function f ∈ C∞M on
a Lorentz manifold (M, g) is not an elliptic operator and, therefore, the maximum principle underlying
the classical Bochner technique in inapplicable. In support of this, it suffices to recall that “harmonic
functions” on a compact Lorentz manifold, in contrast to the Riemannian case, are not constant. For
this reason, much effort was made to prove integral formulas for sections of different vector bundles over
Lorentz manifolds, which would serve as a tool for obtaining results similar to results in the Riemannian
case. Conventionally, we can indicate two main directions of investigations.

The representatives of the first direction study, using the traditional Bochner technique, the geometry of
(n − 1)-dimensional, closed, space-like submanifolds (M ′, g′) of a Lorentz manifold (M, g), whose metric
g′ is, by definition, positive definite (see [3, 4, 6, 8, 10, 12, 70, 82, 169]). As a rule, submanifolds of
constant or even zero mean curvature (so-called maximal submanifolds) are considered since this theme
for the Riemannian case is well developed. For example, in Yano’s monograph [170], the whole chapter is
devoted to the study of the geometry of such submanifolds. Investigations in this direction are important
since similar problems appear in general relativity and cosmology (see [28, 36, 45, 65]).

In their turn, the representatives of the second direction study vector fields and infinitesimal transfor-
mations of closed Lorentz manifolds by using integral formulas obtained by Bochner more than fifty years
ago (see [22, 23, 72, 92–94]). In this chapter, we focus our attention on this second direction.

2.1.2. Describe some peculiar properties of the version of the Bochner technique used in the present
chapter.

The applicability of the classical Bochner technique to Lorentz manifolds satisfying the closedness and
sign-definiteness conditions is restricted by a number of circumstances. For example, recall the following
well-known result of Galloway [38]: an n-dimensional (n ≥ 3), closed Lorentz manifold satisfying the
condition Ric(X,X) > 0 for all unit time-like vectors X ∈ C∞TM has no closed space-like hypersurfaces.
However, manifolds possessing such hypersurfaces are very important in physics (see [69]); therefore, it is
desirable to abjure the closedness condition for Lorentz manifolds. As a paradigm, the Hawking vanishing
theorem was chosen (see [47, p. 164]); this theorem is yet classical in general relativity.
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Theorem 2.1.1. The following conditions for the space-time (M, g) are mutually exclusive:

(1) there exists a closed, space-like hypersurface in M ;
(2) divN ≥ 0 for the unit normal vector field N in M ;
(3) Ric(ξ, ξ) ≥ 0 for any time-like vector ξ;
(4) (M, g) is complete with respect to time-like geodesics directed to the past.

To use the scheme prescribed by this theorem for the study of objects on manifolds with Lorentz
metrics “in the whole,” it is necessary to apply the Stokes theorem (see [69]), which allows one to ignore
the signature of the metric. Moreover, it is necessary to improve the obtained integral formulas by using
the group representation theory. As a result, a number of useful theorems appeared (see [47, 123, 133,
134, 142]).

2.1.3. Chapter 2 consists of four sections. Section 2.1 contains the analysis of main problems in Lorentz
geometry “in the whole.” In Sec. 2.2, we recall necessary facts of local Lorentz geometry. Section 2.3
is devoted to analogues of the Weitzenbock formulas on Lorentz manifolds and vanishing theorems for
conformal Killing vector fields, completely umbilic and maximal space-like hyper-distributions on Lorentz
manifolds. In Sec. 2.4, we discuss some possible applications in relativistic hydro- and electrodynamics.

2.2. Local Geometry of Time-Oriented Lorentz Manifolds

2.2.1. Consider an n-dimensional Lorentz manifold (M, g) with the metric g of signature (−++· · ·+)
and the Levi-Civita connection ∇.

Let a continuous, nonvanishing imaginary-unit vector field ξ be defined in a neighborhood U of the
manifold M . If U = M , then (M, g) is said to be a time-oriented Lorentz manifold or n-dimensional
space-time (see [10]).

Any tangent vector space E = TxM in the domain U of a vector space is the orthogonal sum of the
subspaces V = span{ξx} and H = V⊥. Denote by vx : TxM → V and hx : TxM → H the orthogonal
projectors; then the metric q = gx of the space E = TxM has the form q = qh ⊕ qv for qh = q(h, h) and
qv = q(v, v); moreover, qh is a positive-definite quadratic form on the (n−1)-dimensional vector space H.

The orthogonal group O(q) defined by the form q and acting on the vector space splits into the product
O(q) = O(qh) ×O(qv) of the orthogonal groups acting on H and V, respectively.

The imaginary-unit vector field ξ defined on the Lorentz manifold (M, g) a tensor field Aξ = −∇ξ of
type (1, 1) such that at any point x ∈ M , the tensor Aξ|x of the field Aξ belongs to the space E∗ ⊗ H.
By [123, 129], the following O(qh) ×O(qv)-irreducible decomposition holds for the space E∗ ⊗ H:

E∗ ⊗ H = Λ2H ⊕ S2
0H ⊕ Rqh ⊕ (V∗ ⊗ H∗).

Therefore, the tensor field Aξ can be represented as the following sum of four pointwise O(qh) × O(qv)-
irreducible tensor components:

g(AξX,Y ) = ω(X,Y ) + σ(X,Y ) +
1

n− 1
θg(hX, hY ) + g(ξ,X)g(Aξξ, Y ), (2.2.1)

where, in particular, ωx ∈ Λ2H, σx ∈ S2
0H, and (n− 1)−1θxg

h
x ∈ Rqh at any point x ∈ U . The following

relations hold:

ω(X,Y ) =
1
2

[g(hX,AξhY ) − g(AξhX, hY )] , (2.2.2)

σ(X,Y ) = − 1
n− 1

θgh(X,Y ) − 1
2

[g(hX,AξhY ) + g(AξhX, hY )] , (2.2.3)

θ = − traceAξ (2.2.4)

for any vector fields X,Y ∈ C∞TM .
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2.2.2. For an imaginary-unit vector field ξ on an n-dimensional Lorentz manifold (M, g), we consider
a space-like hyper-distribution H : x ∈ U → H ⊂ TxM for any points x of the domain U of the vector
field ξ. The integrability tensor A of the distribution H (see [89]) is defined by the formula

A(X,Y ) =
1
2
v[∇hXhY −∇hY hX]

for any X,Y ∈ C∞TM (see [124]). It is known (see [123, 134]) that A = −ω⊗ ξ and, therefore, ‖A‖2 ≤ 0.
The second fundamental form G of the distribution H is defined by the formula

G(X,Y ) =
1
2
v
[
∇hXhY + ∇nY hX

]

for all X,Y ∈ C∞TM (see [123, 133, 134]). The vector

Hh = (n− 1)−1 tracegh G

is called the mean-curvature vector of the distribution H (see [89]). If everywhere in the domain of the
distribution H we have A = 0 and Hh = 0, then the distribution H is integrable with (n−1)-dimensional
maximal submanifolds of the Lorentz manifold (M, g). The maximality (instead of the minimality) is
explained by the fact that the metric of the target space is a Lorentz metric (see, e.g., [28, 70]). Therefore,
if everywhere in the domain of the distributionH we have Hh = 0, then H is called a maximal distribution,
but not minimal as in the Riemannian case (see [116]).

A distribution H is said to be umbilic (see [116]) if everywhere in its domain, we have G = gh⊗H. An
integrable umbilic distribution H defines on (M, g) a fibration consisting of (n − 1)-dimensional umbilic
integral manifolds. Metrics of such manifolds (M, g) are described, for example, in [104].

Note that the traceless part G0 of the second fundamental form G of the hyper-distribution H is defined
by the formula

G0 = G− 1
n− 1

gh ⊗ tracegh G.

It is known (see [133, 134]) that G0 = −σ ⊗ ξ and, therefore, ‖G0‖2 ≤ 0. In addition, it is easy to prove
that θ2 = −‖ tracegh G‖2 ≤ 0.

2.3. Vanishing Theorems in Lorentz Geometry

2.3.1. For an imaginary-unit vector field ξ on an n-dimensional Lorentz manifold (M, g), the following
equation holds (see [133, 134]):

−div(Aξξ) = Ric(ξ, ξ) − ‖ω‖2 + ‖σ‖2 +
1

n− 1
θ2 + ξ(θ); (2.3.1)

for n = 4, it is called the Landau–Raychaudhuri equation (see [46]). For the vector field θξ, we have

div(θξ) = ξ(θ) + θ2;

therefore,

div(Aξξ − θξ) = Ric(ξ, ξ) − ‖ω‖2 + ‖σ‖2 − n− 2
n− 1

θ2. (2.3.2)

Consider an oriented domain U of a Lorentz manifold (M, g) with boundary ∂U . The volume element
in (M, g) is defined by the formula η =

√|det(g)|. An outward vector field N transversal to ∂U defines
an orientation of the boundary ∂U and a volume element η′ (see [130]). For Ω = trace[(Aξξ − θξ) ⊗ η],
by (2.3.2), the Stokes theorem

∫

U

dΩ =
∫

∂U

Ω
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takes the following form (see [123, 133, 134]):
∫

U

[

Ric(ξ, ξ) − ‖ω‖2 + ‖σ‖2 − n− 2
n− 1

θ2

]

η =
∫

∂U

trace
[
(Aξξ − θξ) ⊗ η

]
. (2.3.3)

If ∂U is an (n− 1)-dimensional, closed, time-like submanifold (see [10]) with orthogonal vectors of the
field N at all points and the imaginary-unit vector field ξ touches the boundary ∂U at any of its points,
then formula (2.3.3) can be written as follows (see [123, 133, 134]):

∫

U

[

Ric(ξ, ξ) − ‖ω‖2 + ‖σ‖2 − n− 2
n− 1

θ2

]

η =
∫

∂U

Q′(ξ, ξ)η′, (2.3.4)

where Q′ is the second fundamental form of the boundary ∂U (see [10]) defined by the Gauss equation

Q′(X ′, Y ′) = g(∇X′Y ′, N), X ′, Y ′ ∈ C∞T∂U.

Now let the boundary ∂U of a domain U of a Lorentz manifold (M, g) be an (n − 1)-dimensional,
space-like submanifold (see [10]). We also assume that a time-like, unit vector field ξ orthogonal to the
boundary ∂U at all points is defined in U . Then formula (2.3.3) takes the form

∫

U

[

Ric(ξ, ξ) − ‖ω‖2 + ‖σ‖2 − n− 2
n− 1

θ2

]

η = (n− 1)
∫

∂U

H ′η′, (2.3.5)

where H ′ = (n− 1)−1 traceg′ Q′ is the mean curvature of the boundary ∂U (see [123, 133, 134]).

2.3.2. A vector field ζ defined on a pseudo-Riemannian manifold (M, g) is called a conformal Killing
vector field if the one-parametric diffeomorphism group generated by it consists of local conformal trans-
formations (see [60]). This means that

(Lζg)(X,Y ) = g(AζX,Y ) + g(X,AζY ) = 2λg(X,Y ),

where Lζ is the Lie derivative along the vector field ζ, Aζ = −∇ζ is a tensor field, λ = −n−1 traceAζ ,
and X,Y ∈ C∞TM are arbitrary. If λ = 0 everywhere in U , then the diffeomorphism group consists of
local isometries and ζ is a Killing vector field (see [60]).

Assume that a time-like, conformal Killing vector field ζ does not vanish in a domain U ; we denote its
unit vector by ξ. We also assume that the domain U has time-like boundary ∂U such that the vector field
ξ is tangent to ∂U at all points. The integral formula (2.3.4) allows one to prove the following vanishing
theorem.

Theorem 2.3.1 (see [133, 134]). There is no n-dimensional (n ≥ 3) Lorentz manifolds (M, g) equipped
with a time-like, conformal Killing vector field ζ satisfying the following conditions:

(1) there exists a domain U with time-like boundary ∂U in (M, g);
(2) the vector field ζ does not vanish in U and touches ∂U at all points;
(3) Ric(ζ, ζ) ≤ 0 in U ;
(4) the second fundamental form of the boundary satisfies the inequality Q′(ζ, ζ) ≥ 0 everywhere except

for at least one point x ∈ ∂U where Q′(ζ, ζ) > 0.

We replace condition (3) by a weaker condition: the second fundamental form of the boundary takes
nonnegative values in all time-like directions; then it can be proved that the vector field ζ is recurrent.

Now we assume that a domain U has space-like boundary ∂U such that a time-like, conformal Killing
vector field ζ with unit vector ξ is orthogonal to ∂U . Formula (2.3.5) allows one to prove the following
theorem.

Theorem 2.3.2 (see [133, 134]). There is no n-dimensional (n ≥ 3) Lorentz manifolds (M, g) with time-
like, conformal Killing vector field ζ satisfying the following conditions:
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(1) there exists a domain U with space-like boundary ∂U in (M, g) in which the vector field does not
vanish and is orthogonal to the boundary at all points;

(2) Ric(ζ, ζ) ≤ 0 in U ;
(3) the mean curvature of the boundary is nonnegative except for at least one point, where it is positive.

We replace condition (3) by a weaker condition: the mean curvature of the boundary is nonnegative;
then the vector field ζ is recurrent (see [17]).

A time-like vector field ζ on a Lorentz manifold (M, g) is said to be harmonic (see [174]) if the tensor
field Aζ satisfies the conditions

g(AζX,Y ) − g(X,AζY ) = 0, traceAζ = 0

for any vector fields X,Y ∈ C∞TM . Assume that a time-like, harmonic vector field ζ does not vanish in
a domain U . Arguments similar to that for the case of conformal Killing vector fields allow one to prove
the following vanishing theorem.

Theorem 2.3.3 (see [133, 134]). There is no n-dimensional (n ≥ 3) Lorentz manifolds (M, g) equipped
with a time-like, harmonic vector field ζ satisfying the following conditions:

(1) there exists a domain U with time-like boundary ∂U in (M, g) such that the vector field ζ does not
vanish in U and touches ∂U at all points;

(2) Ric(ζ, ζ) ≥ 0 in U ;
(3) the second fundamental form of the boundary satisfies the inequality Q′(ζ, ζ) ≤ 0 everywhere except

for at least one point x ∈ ∂U where Q′(ζ, ζ) < 0.

2.3.3. Using the relation G0 = −σ ⊗ ξ, we rewrite formula (2.3.5) in the form
∫

U

[
Ric(ξ, ξ) + ‖A‖2 − ‖g0‖2 − (n− 1)(n− 2)‖Hh‖2

]
η = (n− 1)

∫

∂U

H ′η′

for a space-like distribution H defined in a domain U with space-like boundary ∂U such that H touches
∂U at all points. In this case, the boundary ∂U is a closed integral manifold of the distribution H.
Assume that H is a completely umbilic distribution. Then the following vanishing theorem holds.

Theorem 2.3.4 (see [123, 133, 134]). In an n-dimensional (n ≥ 3) Lorentz manifold, there is no do-
mains U with space-like boundaries such that the following conditions hold :

(1) the time-like Ricci curvature in the domain U is nonpositive;
(2) the boundary of the domain U has nonnegative mean curvature everywhere except for at least one

point where this curvature is positive;
(3) there exists an umbilic, space-like distribution in U such that the boundary ∂U is an integral man-

ifold of it.

Consider a maximal integrable distribution H in the domain U . Assume that one of the integral
manifolds (M, g) is a closed, simply-connected submanifold (M ′, h′) of the Lorentz manifold (M, g). Then
the following equation holds (see [134]):

∫

M ′

[
Ric(ξ, ξ) − ‖G0‖2

]
η′ = 0.

This equation implies the following vanishing theorem.

Theorem 2.3.5 (see [134]). There exists no fibrations consisting of maximal sections and possessing
closed fibers in a domain U of an n-dimensional (n ≥ 0) Lorentz manifold if the time-like Ricci cur-
vature is nonnegative at all points of U except for at least one point, where it is positive.
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2.4. Vanishing Theorems in Relativistic Hydrodynamics

2.4.1. In this section, we describe some results on dynamics of a relativistic fluid in a domain U of
the four-dimensional space-time (M, g) assuming that an imaginary-unit vector field ξ defined in this
domain is formed by time-like tangent vectors to streamlines of the relativistic fluid. The kinematics of
an infinitesimal volume element of the fluid is described by the following quantities (see [64, 69]): the
vorticity (or rotation) tensor (2.2.2), the tensor of (in-plane) shear (2.2.3), the expansion of fluid world
lines (2.2.4), and the vector field ξ′ = −Aξξ of 4-acceleration. Recall that a motion of a relativistic fluid
in a four-dimensional space-time is said to be rotationless if ω = 0, shearless if σ = 0, expansionless if
θ = 0, and rigid in the Born sense if σ = θ = 0 (see [91]).

By the Einstein equation Ric−2−1sg = T for the scalar curvature s of a Lorentz manifold (M, g) and
the energy-momentum tensor of matter T , we have

Ric(ξ, ξ) = ρ− 2−1s,

where ρ = T (ξ, ξ) is the mass-energy density of the fluid (see [69]). The quantities

ρ(U) =
∫

U

ρη, s(U) =
∫

U

sη

are called the total mass-energy density of the relativistic fluid in the domain U and the total scalar
curvature of the domain U of the space-time (M, g).

Let the fluid flow in the domain U and orthogonally pass the space-like boundary ∂U . Then the
following integral formula holds (see [134]):

ρ(U) − 1
2
s(U) =

∫

U

[

‖ω‖2 − ‖σ‖2 +
3
2
θ2

]

η + (n− 1)
∫

∂U

H ′η′, (2.4.1)

which is equivalent to formula (2.3.5).
If we assume that the domain U has time-like boundary ∂U , then we can easily obtain the following

integral formula for the fluid filling the domain U and flowing on ∂U (see [134]):

ρ(U) − 1
2
s(U) =

∫

U

[

‖ω‖2 − ‖σ‖2 +
3
2
θ2

]

η +
∫

∂U

Q′(ξ, ξ)η′, (2.4.2)

which is equivalent to formula (2.3.4).

2.4.2. The problem on Born-rigid motions of relativistic fluids has attracted the attention of scientists
for a long time (see [47]). However, since the system of differential equations is parabolic, this problem is
rather difficult. The Bochner technique allows one to find the conditions of existence of shearless motions,
including Born-rigid motions.

Consider a shearless flow of a fluid in the domain U , whose streamlines orthogonally intersect the
space-like boundary ∂U . In this case, by (2.4.1), the following theorem holds.

Theorem 2.4.1 (see [123, 133, 134]). For a four-dimensional space-time (M, g), the following conditions
are incompatible:

(1) there exists a domain U with space-like boundary ∂U having nonnegative mean curvature;
(2) there exists a shearless flow of the relativistic fluid filling the domain U and orthogonally intersecting

its boundary ;
(3) the double total mass-energy density of the relativistic fluid in the domain U is greater that the total

scalar curvature of this domain.

The condition of sign-definiteness of the mean curvature Hh of the boundary ∂U can be replaced by
the following stronger condition: ∂U is a maximal submanifold in (M, g).
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Consider a shearless flow of a relativistic fluid filling a domain U and streaming along its time-like
boundary ∂U . By (2.4.1), the following theorem holds.

Theorem 2.4.2 (see [123, 133, 134]). For a four-dimensional space-time (M, g), the following conditions
are incompatible:

(1) there exists a shearless flow of a relativistic fluid filling a domain U and streaming along its time-like
boundary ∂U ;

(2) for the normal vector field N of the boundary ∂U and the pressure p of the relativistic fluid, the
inequality N ≥ 0 holds;

(3) the double total mass-energy density of the relativistic fluid in the domain U is greater that the total
scalar curvature of this domain.

Rotationless and expansionless flows of relativistic fluids were also studied. Taking Theorem 2.3.3 into
account, we can state the following theorem.

Theorem 2.4.3 (see [134]). In a four-dimensional space-time, there is no rotationless and expansionless
(or compressionless) flows of relativistic fluids which orthogonally intersect a given three-dimensional,
simply-connected, space-like section at whose points the time-like Ricci curvature is nonnegative.

2.4.3. Consider a flow of a relativistic fluid in a domain U of a space-time (M, g) whose streamlines
orthogonally intersect a closed, simply-connected, umbilic section (M ′, g′). We assume that the relativistic
fluid is charged and the electromagnetic field is described by the “special Maxwell equations” of the form

(∇XF )(Y, Z) =
4π
3

[g(X,Z)g(J, Y ) − g(X,Y )g(J, Z)],

where F is the tensor of electromagnetic field, J is the current 4-vector, and X,Y ∈ C∞TM (see [125,
129]); therefore, F h = F (h, h) is the tensor of magnetic field strength. Then the following theorem holds.

Theorem 2.4.4 (see [134]). Let U be a domain of a space-time, where the sectional curvatures in all
space-like 2-directions are nonpositive. Let a flow of a charged fluid in U intersect a simply-connected,
completely umbilic section. If the electromagnetic field of the fluid is described by the special Maxwell
equations, then the norm of the tensor of magnetic strength is constant along this section.

If the flow is shearless, then the section (M ′, g′) is necessarily completely unbilic and, therefore, this
condition in Theorem 2.4.4 can be omitted.

Chapter 3

VANISHING THEOREMS IN AFFINE DIFFERENTIAL GEOMETRY

3.1. Analysis of Problems of Studies

3.1.1. Affine differential geometry is one of the important fields of geometry. Since the first works of
Blaschke in the first quarter of the last century it has attracted the attention of geometers. In Germany
(1923), in the Soviet Union (1959, 1960, and 1977), in Japan (1991), and in the USA (1994), books [2, 21,
80, 104, 107, 130] especially devoted to affine differential geometry were published. Starting from the first
Oberwolfach conference (1986; see [1]), international conferences devoted to affine differential geometry
were conducted.

It should be noted that whereas affine differential geometry was the traditional object of studies for
Russian mathematicians, which gradually lost its appeal at the end of the last century, on the contrary,
starting from that time, one observes a sharp increase in studies in the field of affine differential geometry
outside Russia.
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The impetus of this renewed interest was due to the lecture [74] of K. Nomizu, one of the classical
geometers, at Münster University (1982); the title of the lecture was “What is affine differential geometry?”
and Klingenberg in [56] call this title grandiose.

In his lecture, Nomizu suggested the concept according to which by affine differential geometry one
must understand the geometry of an n-dimensional smooth manifold M with n-form η nonvanishing on
M and torsion-free connection ∇ such that ∇η = 0.

After that, there arose a series of works of Nomizu (see, e.g., [75–79]), which ended with his book [80].
The well-known geometers such as Yau, Calabi, Simon, and others promote this new direction. The first
results of the studies carried out after that were summarized in the lecture [108] of Simon (1988), and
two years later (1990), this was done by Nomizu himself (see [76]). At present, there are tens of works of
the “new wave” devoted to affine differential geometry.

Also, in parallel with local affine differential geometry, differential geometry “in the large” of submani-
folds Mn of the affine space Am was developed outside Russia (see, e.g., [96, 98, 109, 110, 172]). Here, as a
rule, hypersurfaces Mn ⊂ An+1 with a metric, for example, the Berwald–Blaschke metric, were considered
and, therefore, their geometry is constructed similarly to that of hypersurfaces of Euclidean space.

One should not allow that this found no response in Russia. As an example, we mention the paper [87]
of Pogorelov in which he gave an answer to the following question posed by Calabi in his lecture at the
first Oberwolfach conference on affine differential geometry: “What is a complete, strictly convex, affine
minimal hypersurface Mn ⊂ An+1?” Note that minimal surfaces of the 3-dimensional affine space were
already studied (see, e.g., [107, pp. 227–231]). The elliptic paraboloid is known as their classical example.
It is interesting that the answer to the Calabi question is the same surface, but now for the case n ≥ 2.
Other results devoted to the geometry of surfaces of such a kind can be found in the survey [161].

In this paper, we give a review of results in global differential geometry of a submanifold M equipped
with the Nomizu structure (η,∇). The results considered have one specific feature: they are obtained by
using an affine analogue of the Bochner technique, which uses integral formulas that relate the curvature
of a manifold with actions of differential operators. Similar formulas were deduced by using the Stokes
formula and do not assume the existence of a metric on the manifold considered.

For the first time, this method was used by Grotemeyer (1952) who applied the Stokes formula to a
vector field ξ defined in a domain U of a surface M2 ⊂ A3 bounded by a smooth curve γ. The integral
formulas deduced by using this formula were applied for finding characteristics of two-dimensional spheres
(see [43]). Later on, the Stokes formula for a vector field ξ on a compact oriented manifold M with
boundary ∂M equipped with an affine connection was used by Ishihara. On the basis of this formula, the
formulas used for studying “in the large” infinitesimal affine transformations of a manifold and special
concircular vector fields were obtained (see [49]). In the former, as well as in the latter cases, these are
effective analogues of the Weitzenbock integral formulas, since their integrands contain curvatures of the
surface and the Ricci tensor of the manifold considered, respectively.

Further development of application of the affine analogue of the Bochner technique can be found in
the works [109] of Simon and [98] of Schwenk; in the (n + 1)-dimensional (n ≥ 2) affine space An+1,
they studied the global differential geometry of hypersurface Mn with the Blaschke metric by using the
Laplacian. After that, there arose a series of works of Russian geometers devoted to the affine analogue
of the Bochner formula (see [130, 153, 154, 156–159]), which we review here.

3.1.2. The present chapter consists of four sections. In Sec. 3.1, we analyze the problems of studies
in affine differential geometry “in the large.” In Sec. 3.2, we present the necessary facts from local affine
differential geometry. In Sec. 3.3, we present affine analogues of the Weitzenbock integral formulas, and
using them, we prove the vanishing theorems. In Sec. 3.4, we present applications of the obtained results
to Lorentz geometry.
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3.2. Local Equiaffine Differential Geometry of Vector Fields

3.2.1. Let M be a connected, differentiable C∞-manifold of dimension n and L(M) be the bundle of
linear frames on M with the structural group GL(n,R). We define the SL(n,R)-structure on M as the
principal SL(n,R)-subbundle of the bundle L(M). It is well known that the SL(n,R)-structure is exactly
the volume element η on M , i.e., an n-form η distinct from zero everywhere (see [59]).

There is the known problem of putting in correspondence to each G-structure on the manifold M a
uniquely defined linear connection ∇ reducible to G (see [27]).

A torsion-free linear connection ∇ reducible to SL(n,R) is said to be equiaffine (see [81]): it can be
characterized by the condition ∇η = 0. In this case, the pair (∇, η) is called the equiaffine structure
on M , and the geometry of M with the equiaffine structure (∇, η) is called affine differential geometry
(see [74]).

At each point x ∈ M , the curvature tensor R of the equiaffine connection ∇ admits the SL(n,R)-
invariant decomposition in the form

R =
1

n− 1
Ric∧ idTM +W,

where Ric is the Ricci tensor and W is the tensor of the Weyl projective curvature of the connection ∇
(see, e.g., [158]).

In accordance with this decomposition, we distinguish between two classes of equiaffine structures: the
Ricci-flat structures for which Ric ≡ 0 and the equiprojective structures for which W ≡ 0 (see [81]). In the
latter case, as is known (see [112]), the manifold M is projectively flat, i.e., it admits a diffeomorphism
onto an n-dimensional affine space which transforms geodesics of M into the corresponding straight lines.
Such a diffeomorphism is called a projective or geodesic mapping. Because of the group property of
projective mappings (see [112]), any two projectively flat manifolds admits a projective mapping onto
each other. Therefore, all manifolds with equiprojective structure belong to the same projective space
class (see [112]).

3.2.2. A self-diffeomorphism of the manifold M is an automorphism of the SL(n,R)-structure if and
only if it preserves the volume element η. Let X be a vector field on M . The function divX defined by
the equation (divX)η = LXη, where LX is the Lie derivative in the direction of X, is called the divergence
of X with respect to the n-form η (see [60]).

Obviously, X is an infinitesimal automorphism of the SL(n,R)-structure if and only if divX = 0. Such
a vector field X is said to be solenoidal.

For a vector field X, we define the tensor field AX = LX − ∇X as the field of endomorphisms of the
tangent bundle TM (see [60]). The formula traceAX = −divX is directly verified (see [2]).

At each point x ∈M , we have the SL(n,R)-invariant decomposition

AX =
(

− 1
n

divX
)

idTM +ȦX

(see [158]); in accordance with it, we distinguish between two classes of vector fields on M : solenoidal
vector fields that compose a subalgebra of the Lie R-algebra of vector fields on M (see [158]) and special
concircular vector fields for which, by definition (see, e.g., [97], p. 322), we have

AX =
(

− 1
n

divX
)

idTM .

It is directly verified that special concircular vector fields on the manifold M with the equiaffine
structure (η,∇) compose an R-module S(M,R). Moreover, the following theorem holds.

Theorem 3.2.1 (see [158]). An equiaffine structure (η,∇) on an n-dimensional manifold M is equipro-
jective if and only if on M there exist n linearly independent, special concircular vector fields.
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This assertion generalizes the fact well known for a Riemannian manifold of constant sectional curvature
(see [37]).

In conclusion of this subsection, we introduce one concept useful for what follows. The roots
λ1(x), . . . , λn(x) of the characteristic polynomial

P [λ(x)] = det[λ idTM −AX ](x)

are called the principal curvatures of a vector field X at a point x ∈M .
In the case of a special concircular vector field X, the following relation holds:

λ1(x) = · · · = λn(x) = − 1
n

traceAX ,

and for a solenoidal vector field X, we have

λ1(x) + · · · + λn(x) = 0

at any point x ∈M .
Integral curves of the vector field Y which defines the direction of the curvature of the field X at each

point x ∈ M , i.e., AXYx = λ(x)Yx, are called affine curvature lines of X. Moreover, the lines defined by
the vector field X and passing through points of the development of each its affine curvature line on the
tangent space compose a developed surface (see [155]).

3.2.3. Consider an n-dimensional C∞-manifold M with an equiaffine structure (η,∇) and an arbitrary
geodesic γ : J ⊂ R→M on M parameterized by an affine parameter t. In this case,

∇ dγ
dt

dγ

dt
= 0

for the tangent vector field dγ/dt of the geodesic γ.
Similarly to the Riemannian case (see [130]), a differential p-form ω on M is called a Killing form if

the (p− 1)-form

i dγ
dt
ω = trace

(
dγ

dy
⊗ ω

)

is covariantly constant along any geodesic γ. This means that dω = (p + 1)∇ω; the latter is equivalent
to the condition ∇ω ∈ C∞Λp+1M , where C∞Λp+1M is the space of sections of the bundle Λp+1M of
differential (p+ 1)-forms over M . Obviously, the set of Killing p-form composes an R-module denoted by
R
p(M,R).
On a manifoldM with an SL(n,R)-structure, we can define an affine analogue of the Riemannian Hodge

operator, the isomorphism ∗ : C∞ΛpTM → C∞Λn−pM of the vector bundle ΛpTM of skew-symmetric
p-tensors onto the bundle Λn−pM of exterior differential (n− p)-forms. In particular, we have

ω = ∗(ξ1 ∧ · · · ∧ ξp) = ∗alt(ξ1 ⊗ · · · ⊗ ξp),

that is,
ω = iξ1∧···∧ξpη.

Taking the covariant derivative of the differential p-form ω in direction of an arbitrary vector field, we
obtain ∇ω ∈ C∞Λn−p+1M whenever all ξ1, . . . , ξp are special concircular vector fields.

Theorem 3.2.2 (see [130]). Let M be an n-dimensional manifold with an equiaffine structure (η,∇) and
ξ1, . . . , ξp be p linearly independent special concircular vector fields on M for 0 < p < n. Then the
(n− p)-form ω dual to the tensor field ξ1 ∧ · · · ∧ ξp with respect to the volume n-form η is a Killing form.

Therefore,

dim R
p(M,R) ≥ n!

p!(n− p)!
on an arbitrary n-dimensional manifold M with an equiprojective structure (η,∇).
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As we already mentioned, if M is an n-dimensional manifold with a flat affine connection ∇, then in a
neighborhood of an arbitrary point x ∈ M of it, there always exists a local coordinate system x1, . . . , xn

in which the components ωi1...ip of the Killing p-form ω have the form

ωi1...ip = Kki1...ipx
k +Ki1...ip (3.2.1)

for arbitrary constants Kki1...ip and Ki1...ip are skew-symmetric in all their subscripts (see [114, 119]).
Let f : M → M̄ be a projective diffeomorphism of n-dimensional manifolds with equiprojective

SL(n,R)-structures and ω̄ be a Killing p-form on M̄ . Then it is directly verified that the p-form
ω = e−(p+1)ψ(f∗ω̄) is a Killing form for ψ = (n + 1)−1 ln(η̄/η). Taking (3.2.1) into account, we con-
clude that an arbitrary Killing p-form on a manifold M with an SL(n,R)-structure, i.e., a manifold
admitting a projective mapping onto the N -dimensional affine space, has the components

ωi1...ip = e(p+1)ψ(Kki1...ipx
k +Ki1...ip).

This implies the relation

dim R
p(M,R) =

(n+ 1)!
(p+ 1)!(n− p)!

.

It is easily verified that the operator ∗ defines an isomorphism between the spaces of special concircular
vector fields and Killing (n− 1)-forms.

Theorem 3.2.3 (see [130]). For an n-dimensional manifold M with an equiaffine structure (η,∇), the
spaces S(M,R) and R

n−1(M,R) are ∗-isomorphic.

3.3. Vanishing Theorems for Manifolds with an SL(n,R)-Structure

3.3.1. Let M be a compact, n-dimensional manifold with boundary. The boundary ∂M is a closed,
(n − 1)-dimensional submanifold of M whose tangent space Tx∂M is a subspace of TxM at each point
x ∈ ∂M .

Define a vector field N along ∂M as a section of the tangent bundle TM such that at each point
x ∈ ∂M , the vector Nx is transversal to Tx∂M .

The assignment of an SL(n,R)-structure on the n-dimensional manifold M implies that of an
SL(n− 1,R)-structure on ∂M . Indeed, let η denote the volume n-form of M . Then we can define
the volume form η′ on ∂M by setting η′(e2, . . . , en) = η(Nx, e2, . . . , en) for oriented adapted frames
{Nx, e2, . . . , en} such that Tx∂M = span{e2, . . . , en} at all points of x ∈ ∂M .

Let ∇ be an equiaffine connection on M . Then for arbitrary vector fields X ′ and Y ′ tangent to ∂M ,
the covariant derivative decomposes into the direct sum

∇X′Y ′ = ∇′
X′Y ′ +Q(X ′, Y ′)N ,

where the mapping (X ′, Y ′) → ∇X′y′ = PrT∂M ∇X′Y ′ defines the linear, torsion-free connection ∇′ on
∂M (see [75, 81]) and the mapping (X ′Y ′) → Q(X ′, Y ′)N defines the bilinear symmetric form Qx :
Tx∂M × Tx∂M → R at each point x ∈ ∂M . In accordance with the general theory (see [61, 81]), Qx is
called the second fundamental form of ∂M at the point x.

Note that the connection ∇′ and the form Q depend on the choice of the field N . For example, replacing
this field by another vector field Ñ = Z+fN framing the boundary of the manifold ∂M , for any nonzero
f ∈ C∞∂M and arbitrary X ′, Y ′, Z ′ ∈ C∞T∂M , we obtain

Q = fQ̃, ∇′
X′Y ′ = ∇̃′

X′Y ′ + Q̃(X ′, Y ′)Ñ .

Moreover, if the boundary ∂M is nondegenerate with respect to N , i.e., det[Q] 	= 0, then ∂M is also
nondegenerate with respect to the field Ñ = Z + fN . If Qx is identically equal to zero at each point
x ∈ ∂M , then the boundary is a totally geodesic submanifold of M (see [61]). As is seen from the above,
this property is independent of the choice of the field N . The following theorem is proved by using the
Stokes theorem.
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Theorem 3.3.1 (see [130]). Let M be a compact, n-dimensional manifold with boundary ∂M and an
equiaffine structure (η,∇). Then the following integral equation holds for ξ ∈ C∞TM :

∫

M

{
Ric(ξ, ξ) + trace(Aξ)2 − (traceAξ)2

}
η =

∫

∂M

i(traceAξ)ξ−Aξξη. (3.3.1)

Let ξ be a tangent vector field for ∂M ; then we can deduce the following integral equation from (3.3.1):
∫

M

{
Ric(ξ, ξ) + trace(Aξ)2 − (traceAξ)2

}
η =

∫

∂M

Q(ξ, ξ)η′. (3.3.2)

In particular, if ξ is a special concircular vector field defined on M and tangent to ∂M , then we have
∫

M

{

Ric(ξ, ξ) − n− 1
n

(div ξ)2
}

η =
∫

∂M

Q(ξ, ξ)η′. (3.3.3)

On the other hand, if ξ is a special concircular vector field defined on M and transversal to ∂M at each
point ∂M , then we can deduce the following integral equation from (3.3.1):

∫

M

{

Ric(ξ, ξ) − n− 1
n

(div ξ)2
}

η = −n− 1
n

∫

∂M

f(div ξ)η′, (3.3.4)

where ξ = Z ′ + fN for certain Z ′ ∈ C∞T∂M and f ∈ C∞∂M .

3.3.2. Let M be a compact, n-dimensional manifold, ω be an (n−1)-form on M , and N be an outward
vector field along ∂M . For an arbitrary point x ∈ ∂M of the boundary, we assume that X2, . . . , Xn are
linearly independent vectors from TxM . Then Xa = ea + λaNx for a = 2, . . . , n. As a result, we have

ω(X2, . . . , Xn) = tω +
n∑

a=2

(−1)a+1λa(nω)(e2, . . . , êa, . . . , en),

where tω = ω(e2, . . . , en) stands for the tangent component of the form ω and

(nω)(e2, . . . , êa, . . . , en) = ω(N , e2, . . . , êa, . . . , en)

are components of its normal component. The form ω ∈ C∞Λn−1M is said to be normal (tangent) to the
boundary ∂M if tω = 0 (respectively, nω = 0) at each point ∂M .

Consider a special concircular vector field ξ = ∗ω for a Killing (n− 1)-form ω normal to the boundary
∂M . In this case, the integral equation (3.3.3) holds. Therefore, the following theorem holds.

Theorem 3.3.2 (see [130]). Let M be a compact, n-dimensional manifold (n ≥ 2) with an equiaffine
structure (η,∇) and ω be a Killing (n− 1)-form defined on M and normal to the boundary ∂M .

(1) If for arbitrary X ∈ C∞TM and X ′ ∈ C∞T∂M , the inequalities Ric(X,X) ≤ 0 and Q(X ′, X ′) ≤ 0
hold, then ∇ω = 0.

(2) If for arbitrary X ∈ C∞TM and X ′ ∈ C∞T∂M , we have Ric(X,X) ≥ 0 and Q(X ′, X ′) ≤ 0 and
at at least one point x ∈M , the inequality Ric(X,X) < 0 holds, then ω is a 0-form.

The condition Ric(X,X) ≤ 0 in item (1) of Theorem 3.3.2 can be replaced by a stronger condition
assuming that the structure (η,∇) is Ricci-flat. In turn, the condition Q(X ′, X ′) ≥ 0 in items (1) and (2)
can be omitted assuming that the boundary ∂M is a totally geodesic submanifold in M and even ∂M = ∅.

Before considering the Killing form ω ∈ C∞Λn−1M tangent to the boundary of the manifold, we
formulate the following lemma.

Lemma (see [130]). Let M be a compact, n-dimensional manifold (n ≥ 2) with an equiaffine structure
(η,∇) and ξ be a special concircular vector field transversal to ∂M . Further, let div ξ ≤ 0 at all points
x ∈ ∂M , where ξx is outward directed and div ξ ≥ 0, where ξx is inward directed.

(1) If for all X ∈ C∞TM , we have Ric(X,X) ≤ 0, then ∇ξ = 0.
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(2) If for all X ∈ C∞TM , we have Ric(X,X) ≤ 0, probably, except for a single point x ∈M at which
Ric(X,X) < 0, then ξ is zero vector field.

Let ω ∈ C∞Λn−1M be a form tangent to the boundary ∂M of the manifold M , i.e., ω = tω along
∂M . Then the following relation holds for the vector field ξ = ∗ω: η(ξx, e2, . . . , en) = ω(e2, . . . , en) at
each point x ∈M . Moreover, if the form ω does not vanish on ∂M , then the vectors ξ are transversal to
it at all points. Taking into account all what was said above, we deduce the following assertion from the
lemma formulated above.

Theorem 3.3.3 (see [130]). Let M be a compact, n-dimensional manifold (n ≥ 2) with an equiaffine
structure (η,∇) and ω be a Killing (n− 1)-form defined on M and tangent to its boundary ∂M . Further,
let for the vector field ξ = ∗ω transversal to ∂M , div ξ ≤ 0 at all points x ∈ ∂M , where ξx is outward
directed, and div ξ ≥ 0, where ξx is inward directed. If for all X ∈ C∞TM , we have Ric(X,X) ≤ 0,
probably, except for a single point x ∈M at which Ric(X,X) < 0, then ω is a 0-form.

In conclusion, we formulate one more corollary which is obvious.

Corollary 3.3.1. Let M be a closed, n-dimensional manifold (n ≥ 2) with an equiaffine structure (η,∇).

(1) If for all X ∈ C∞TM , we have Ric(X,X) ≤ 0 on M , then every Killing (n − 1)-form on M is
covariantly constant.

(2) If for all X ∈ C∞TM , we have Ric(X,X) ≤ 0 on M and Ric(X,X) < 0 at at least one point, then
dim R

n−1(M,R) = 0.

For a solenoidal vector field ξ on a compact manifold M with an equiaffine structure (η,∇) tangent to
the boundary ∂M of the manifold M , integral formula (3.3.2) becomes

∫

M

{

Ric(ξ, ξ) +
n∑

i=1

(λ)2
}

η =
∫

∂M

Q(ξ, ξ)η′. (3.3.5)

Using the analysis of formula (3.3.5), we can formulate the following theorems.

Theorem 3.3.4 (see [130]). Let M be a compact manifold with an equiaffine structure (η,∇) and ξ be
a solenoidal vector field tangent to its boundary ∂M . Assume that one of the following two conditions
holds:

(1) Ric(ξ, ξ) ≥ 0 on M , Q(ξ, ξ) ≤ 0 along ∂M , and the principal curvatures of the field ξ are real at
each point of the manifold M ;

(2) Ric(ξ, ξ) ≤ 0 on M , Q(ξ, ξ) ≥ 0 along ∂M , and the principal curvatures of the field ξ are imaginary
at each point of the manifold M .

Then Ric(ξ, ξ) = 0 on M , Q(ξ, ξ) = 0 along ∂M , and ξ generates a nilpotent field of endomorphisms Aξ
of the tangent bundle TM .

Theorem 3.3.5 (see [130]). On a compact manifold M with an equiaffine structure (η,∇), there is no
solenoidal vector field ξ tangent to its boundary ∂M such that one of the following two conditions holds:

(1) the principal curvatures of the vector field ξ are real at each point of M , Ric(ξ, ξ) ≥ 0 on M , except
for at least one point at which Ric(ξ, ξ) > 0 and, moreover, Q(ξ, ξ) ≤ 0 along ∂M ;

(2) the principal curvatures of the vector field ξ are imaginary at each point of M , Ric(ξ, ξ) ≤ 0 on M ,
except for at least one point at which Ric(ξ, ξ) < 0 and, moreover, Q(ξ, ξ) ≥ 0 along ∂M .

The conditions Q(ξ, ξ) ≤ 0 and Q(ξ, ξ) ≥ 0 in both assertions can be replaced by a stronger condition
on the boundary ∂M : to be a totally geodesic submanifold or, moreover, ∂M = ∅. In turn, the conditions
Ric(ξ, ξ) ≥ 0 or Ric(ξ, ξ) ≤ 0 in the first assertion can be replaced by a stronger assumption on the
structure (η,∇) to be Ricci-flat.
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3.4. Application to Lorentz Geometry

3.4.1. Consider a pseudo-Riemannian n-dimensional manifold M with metric g of index k. The man-
ifold M has the equiaffine structure (η,∇) with η =

√|det(g)|dx1 ∧ · · · ∧ dxn, the volume form with
respect to a local coordinate system x1, . . . , xn on M , and the Levi-Civita connection ∇, which obviously
is an equiaffine connection.

We assume that the manifold M is a Lorentz manifold (see [60, p. 267]) and its metric g has the diagonal
form (−+. . .+). We will consider a compact manifold M ′ which is the closure of an open, n-dimensional
submanifold of the Lorentz manifold M . In particular, we will assume that M ′ = M .

Let ξ be a time-like unit vector field on M ′. In this case, each tangent space TxM ′ is the orthogonal
sum of the “vertical space” V = span{ξx} and the “horizontal space” H consisting of vectors orthogonal
to ξx.

Denote by ν : TxM → V and h : TxM → H the orthogonal projections. Then q = qh + qν for
q = gx, qh = ghx = gx(h, h), and qv = gνx = gx(ν, ν), where qh is a positive-definite quadratic form on the
(n− 1)-dimensional space H.

3.4.2. A self-diffeomorphism of a pseudo-Riemannian manifold M is an automorphism of the O(n, k)-
structure if and only if it preserves the metric g. We have

(Lζg)(X,Y ) = −[g(AζX,Y ) + g(X,AζY )]

for any vector fieldsX and Y onM . Obviously, ζ is an infinitesimal automorphism of the O(n, k)-structure
if and only if

g(AζX,Y ) + g(X,AζY ) = 0 (3.4.1)
(see [60], p. 223). In this case, ζ is called a Killing vector field on M .

Let ζ be a time-like Killing vector field and ξ be its unit vector. Then

g(AξX, ξ) = 0, g(AξhX, hY ) + g(hX,AξhY ) = 0, traceAξ = 0

for any X,Y ∈ C∞TM . The analysis of integral formula (3.3.1) allows us to conclude that the following
theorem holds in this case.

Theorem 3.4.1 (see [130]). An n-dimensional Lorentz manifold M does not admit a time-like Killing
vector field ξ if in M , there exists an oriented n-dimensional submanifold M ′ with space-like boundary ∂M ′
orthogonal to ξ such that at all its points, Ric(ξ, ξ) ≤ 0 except for at least one point at which Ric(ξ, ξ) < 0.

Note that the problem to what extent the curvature of a Lorentz manifold prevents the existence of
Killing vector fields on it constantly attracts the attention of geometers. So, in [11], it was proved that
on a space-time of nonnegative time-like sectional curvature, a time-like Killing vector field ξ is parallel
(i.e., ∇ξ = 0) since otherwise the space-time must be time-like and isotropically geodesically incomplete
simultaneously. In [89], it is proved that a time-like Killing vector field ξ on a closed manifold with
Ricci-flat metric must be parallel.

Now let a time-like vector field ξ on a Lorentz manifold M be harmonic (see [174]). In this case, the
following relations hold for the unit vector ξ of the field ξ:

g(AξX, ξ) = 0, g(AξhX, hY ) − g(hX,AξhY ) = 0, traceAξ = 0

for any X,Y ∈ C∞TM . The analysis of integral formula (3.2.1) allows us to conclude that the following
theorem holds in this case.

Theorem 3.4.2 (see [130]). An n-dimensional Lorentz manifold M does not admit a harmonic vector
field ξ if in M , there exists an oriented, n-dimensional submanifold M ′ with space-like boundary ∂M ′
orthogonal to ξ such that at all its points Ric(ξ, ξ) ≥ 0 except for at least one point at which Ric(ξ, ξ) > 0.

Note that among a large number of works devoted to the study of the existence “in the large” of
harmonic vector fields on a Riemannian manifold, there are practically no works devoted to the same
problem for Lorentz manifolds.
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3.4.3. Consider the topological product M = M1 ×M2 of a one-dimensional Riemannian manifold M1

with metric tensor g1 and an (n− 1)-dimensional Riemannian manifold M2 with metric tensor g2. Define
the metric tensor g of the manifold M by the formula g = −g1 ⊗ fg2, where f : M1 → (0,∞) is a certain
positive function such that f ∈ C∞M1. Such a manifold is called a curved Lorentz product (see [10, pp. 22
and 57–58]). Metrics of such a form are studied in the general relativity theory. A particular form of them
in which there is no closedness condition for M1 are the Robertson–Wacker models of “large blow-up”
and statictical Einstein model of the Universe (see [10, pp. 117–122]). The following theorem holds.

Theorem 3.4.3 (see [130]). On the topological product M = M1 ×M2 of a one-dimensional closed man-
ifold M1 and an (n − 1)-dimensional closed manifold M2, there is no metric of curved Lorentz product
such that in all time-like directions, the Ricci curvature of M is nonpositive and at least one of its point
is strictly negative.
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98. A. Schwenk, “Affinsphären mit ebenen Schttengrenzen,” in: Global Differential Geometry and Global
Analysis 1984 (D. Ferus, R. B. Gardner, S. Helgason, and U. Simon, eds.), Lect. Notes Math., 1156,
Springer-Verlag, Berlin (1985), pp. 296–315.

99. W. Seamon, “Harmonic 2-forms in four dimensions,” Proc. Amer. Math. Soc., 112, No. 2, 545–548
(1991).

100. Ya. L. Shapiro, “On one class of Riemannian spaces,” Tr. Semin. Vekt. Tenzor. Anal., 12, 203–212
(1963).

101. I. S. Shapiro and M. A. Ol’shanetskii, Lectures in Topology for Physicists [in Russian], Izhevsk
(1999).

102. V. I. Shapovalov, “Symmetries of the Dirac–Fock equations,” Izv. Vyssh. Uchebn. Zaved., Ser. Fiz.,
6, 57–63 (1975).

103. V. A. Sharafutdinov, Integral Geometry of Tensor Fields [in Russian], Nauka, Novosibirsk (1993).
104. R. N. Shcherbakov, Course of Affine and Projective Differential Geometry [in Russian], Tomsk

University, Tomsk (1960).
105. B. Shiffman and A.-J. Sommese, Vanishing Theorems in Complex Manifolds, Progr. Math., 56,
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