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STUDENT’S t-TEST FOR GAUSSIAN SCALE MIXTURES

N. K. Bakirov∗ and G. J. Székely† UDC 519.21

A Student-type test is constructed under a condition weaker than normal. We assume that the errors are scale
mixtures of normal random variables and compute the critical values of the suggested s-test. Our s-test is optimal
in the sense that if the level is at most α, then the s-test provides the minimum critical values. (The most important
critical values are tabulated at the end of the paper.) For α ≤ .05, the two-sided s-test is identical with Student’s
classical t-test. In general, the s-test is a t-type test, but its degree of freedom should be reduced depending on α.
The s-test is applicable for many heavy-tailed errors, including symmetric stable, Laplace, logistic, or exponential
power. Our results explain when and why the P -value corresponding to the t-statistic is robust if the underlying
distribution is a scale mixture of normal distributions. Bibliography: 24 titles.

1. Introduction

Student’s classical t-test [22] is particularly vulnerable to long-tailed nonnormality. In this paper, a new
statistic is proposed to guard against this situation. The new test is optimal in the sense that it minimizes the
critical values in the family of Gaussian scale mixtures when the level is at most a given number. Our theorems
are closely related to the problems in [3, Sec. 6.1] and [2].

Let X1, X2, . . . , Xn be independent normal random variables with common mean µ and not necessarily equal
variances σ2

k (at least one of them nonzero), X =
∑n

k=1 Xk/n, S2
X =

∑n
k=1(Xk − X)2/(n − 1) �= 0, and

Tn =
√

n(X − µ)/SX .
If σ1 = σ2 = . . . = σn and

R =
nx2

x2 + n − 1
, (1)

then for x ≥ 0 and n ≥ 2,

P{|Tn| > x} = P{|tn−1| > x} = P

{
(
∑n

i=1 ξi)
2

∑n
i=1 ξ2

i

> R

}

,

where ξ1, ξ2, . . . , ξn are i.i.d. standard normal random variables and tn−1 is a t-distributed random variable with
degree of freedom n − 1. (For the idea of this equation, see [6, p. 1279].)

In the nonhomogeneous case, denote the supremum of the double-tail probability by

2sn−1(x) := sup
σk≥0

k=1,2,... ,n

P{|Tn| > x}. (2)

We also need the notation sn−1(x) = 1−sn−1(x) and the inverse transformation of (1): x =
√

R(n − 1)/(n − R).

Theorem 1. For arbitrary x ≥ 0 and n ≥ 2,

sn−1(x) = max
R<k≤n

P

{

tk−1 >

√
R(k − 1)
k − R

}

,

where sn−1(x) = 1/2 if 0 ≤ x < 1, sn−1(1) = 3/4, and sn−1(x) = tn−1(x) for x ≥
√

3(n − 1)/(n − 3).

Theorem 1 can easily be generalized to arbitrary scale mixtures of Gaussian errors. Their PDF has the form
∞∫

0

ϕ((x − µ)/σ)d F (σ), where ϕ is the standard normal PDF and F (σ) is an arbitrary CDF on the nonnegative

half-line. Concerning scale mixtures of normal distributions, see [7] and [11]. Scale mixtures are important in
finance and in many other areas of applications where the errors are heavy-tailed, e.g., symmetric stable. Normal
scale mixtures also include Student’s t, Laplace, logistic, exponential power distributions, etc. See, e.g., [13] and
[11].

Theorem 1 obviously implies the following result.
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Theorem 2. Let X1, X2, . . . , Xn be an i.i.d. sample from a Gaussian scale mixture, and let Yk be independent
normal (0, σ2

k) random variables, Y =
∑n

k=1 Yk/n, and S2
Y =

∑n
k=1(Yk − Y )2/(n − 1). Then

P

{√
n

X − µ

SX
> x

}

=
∫

Rn

P

{√
n

Y

SY
> x

} n∏

k=1

d F (σk) ≤ sn−1(x).

Let us introduce the notation

gk(R) = P






(∑k
i=1 ξi

)2

∑k
i=1 ξ2

i

> R





= P

{

|tk−1| >

√
R(k − 1)
k −R

}

and
∆k(R) = gk+1(R) − gk(R).

Proposition.
(i) For k = 2, 3, . . ., n − 1, there exists a unique point r(k) ∈ (1, k) such that ∆k(R) < 0 if R < r(k) and

∆k(R) > 0 if r(k) < R < k;

(ii) r(1) := 1 < r(2) < r(3) < . . . < r(n − 1) < r(n), i.e., the sequence r(k) is strictly increasing;

(iii) r(k) −→
k→∞

3.

Corollary 1. (i) For R ∈ [r(k − 1), r(k)], k = 2, 3, . . . , n− 1,

sn−1(x) = P

{

tk−1 >

√
R(k − 1)
k −R

}

.

(ii) For R ≥ r(n − 1),
sn−1(x) = tn−1(x).

According to our Table 1, the one-sided level 0.025 s-critical values coincide with the classical t-critical values.
Splus can easily compute that r(2) = 1.726 and r(3) = 2.040; thus, according to Table 1, for the one-sided level
α = 0.125 critical values, sn−1(x) = t1(R) = 0.125 and, similarly, sn−1(x) = t2(R) = 0.1. One can also compute
that sn−1 = tmin(n−1,13) = .05.

Corollary 2. For x ≥ 0, the scale mixture counterpart of the standard normal CDF is

Φ∗(x) := lim
n→∞

sn(x) = sup
x2<k

P (tk−1 ≤ x
√

(k − 1)/(k − x2)) (∗)

(Φ∗(−x) = 1 − Φ∗(x)). For 0 ≤ x < 1, Φ∗(x) = .5; Φ∗(1) = .75; for x ≥
√

3, Φ∗(x) = Φ(x), where Φ(x) is the
standard normal CDF (Φ∗(

√
3) = Φ(

√
3) = 0.958). For quantiles between .5 and .875, the supremum in (∗) is

attained at k = 2, and thus in this interval Φ∗(x) = C(x/
√

(2 − x2)), where C(x) is the standard Cauchy CDF.
It is interesting to compare some critical values of Φ∗ and Φ (when they do not coincide): 0.95 = Φ(1.645) =
Φ∗(1.650), 0.9 = Φ(1.282) = Φ∗(1.386), 0.875 = Φ(1.150) = Φ∗(1.307) (see the last row of Table 1).

On the robustness of the t-statistic and on substitute t-statistics see, e.g., [24]. In this paper, it was found
that the “trimmed” t is distributed approximately as a t-variable with reduced degrees of freedom. This result
is similar to ours: s-statistics are t-type statistics with reduced degrees of freedom.

Our approach can also be applied to two-sample tests. In a forthcoming paper, the Behrens–Fisher problem
will be discussed for Gaussian scale mixture errors with the help of our function sn(x).

If the error distribution is not necessarily a scale mixture of normal distributions, but is symmetric and
unimodal, then, according to a classical result of Khintchin, the errors are scale mixtures of centered uniform
distributions (see, e.g., [9, p. 155]). Thus if random variables U1, U2, . . . , Un are independent and uniformly
distributed on [−1, 1], then our theorems suggest that in this case sn−1(x) should be replaced by

un−1(x) = max
R<k≤n

P

{
U1 + U2 + · · ·+ Uk
√

U2
1 + U2

2 + · · ·+ U2
k

>

√
R(k − 1)
k −R

}

.

We plan to return to this problem in another paper. For a related result, see [2].
Finally, on the history of Student’s test and on the problem of nonnormal errors see [10, 17, 19, 20, 1, 14, 21,

12, 24, 6, 18, 15, 8, 5, 23].
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Table 1. Critical x-values for the one-sided s-test

n-1 0.125 0.100 0.050 0.025

2 1.625 1.886 2.920 4.303

3 1.495 1.664 2.353 3.182

4 1.440 1.579 2.132 2.776

5 1.410 1.534 2.015 2.571

6 1.391 1.506 1.943 2.447

7 1.378 1.487 1.895 2.365

8 1.368 1.473 1.860 2.306

9 1.361 1.462 1.833 2.262

10 1.355 1.454 1.812 2.228

11 1.351 1.448 1.796 2.201

12 1.347 1.442 1.782 2.179

13 1.344 1.437 1.771 2.160

14 1.341 1.434 1.761 2.145

15 1.338 1.430 1.753 2.131

16 1.336 1.427 1.746 2.120

17 1.335 1.425 1.740 2.110

18 1.333 1.422 1.735 2.101

19 1.332 1.420 1.730 2.093

20 1.330 1.419 1.725 2.086

21 1.329 1.417 1.722 2.080

22 1.328 1.416 1.718 2.074

23 1.327 1.414 1.715 2.069

24 1.326 1.413 1.712 2.064

25 1.325 1.412 1.709 2.060

100 1.311 1.392 1.664 1.984

500 1.307 1.387 1.652 1.965

1, 000 1.307 1.386 1.651 1.962

2. Proof of Theorem 1

Let ξk = (Xk − θ)/σk be i.i.d. standard normal random variables. Then A := {|Tn| > x} = {R∑n
k=1 σ2

kξ2
k−

(
∑n

k=1 σkξk)2 < 0}. If R < 1, or, equivalently, |x| < 1, then the supremum in (2) is 2sn−1(x) = 1, and it is
reached when σ1 = σ2 = . . . = σn−1 = 0, σn �= 0. If x ≥ 1, or, equivalently, 1 ≤ R < n, then A = {(ξ, Gξ) < 0},
where ξ = (ξ1, ξ2, . . . , ξn)T

, G = D(RI −E)D, I is the n × n unit matrix,

D =







σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn





 , E =







1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1





 .

We can compute the eigenvalues λk, k = 1, 2, . . . , n, of the matrix G from its characteristic equation f(λ) :=
det(G − λI) = 0.

The following lemma is proved in the Appendix.

Lemma 1.

f(λ) =

(

1 −
n∑

k=1

σ2
k

Rσ2
k − λ

)
n∏

k=1

(
λ − Rσ2

k

)
= 0. (3)
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This equation has a single negative root, because for λ < 0 only the first factor in (3) can be zero, and the
sum in the first factor decreases monotonically from n/R > 1 (when λ = 0) to 0 as λ → ∞. For definiteness,
denote the unique negative root of (3) by λn; thus all the other roots λk are nonnegative (k = 1, 2, . . . , n − 1).
Since the sum of the roots of (3) is equal to the negative of the coefficient of λn−1 in the expansion of (3), we
have

n∑

k=1

λk = (R − 1)
n∑

k=1

σ2
k. (4)

The following lemma is also proved in the Appendix.

Lemma 2. Let ξi, i=0, 1, . . . , n, be i.i.d. standard normal random variables. Then for every n and arbitrary
µ1, µ2, . . . , µn≥0,

P

{

ξ2
0 ≥

n∑

k=1

µiξ
2
i

}

=
1
π

∞∫

0

d t√
t(1 + t)

√∏n
k=1(1 + (1 + t)µi)

.

This means that

P{A} = P

{
n∑

k=1

λkξ2
k < 0

}

= P






ξ2
n

n−1∑

k=1

λk

|λn|ξ
2
k

> 1





=

∞∫

0

t−
1
2 (1 + t)−1 d t

π

√
n−1∏

k=1

(
1 + λk

|λn| (1 + t)
)

. (5)

The event A does not change if we multiply every σk by the same positive constant; thus we may assume
without loss of generality that

n∑

k=1

σ2
k

Rσ2
k + 1

= 1. (6)

This means that λn = −1 and thus

n−1∏

k=1

(

1 +
λk

|λn|
(1 + t)

)

= (1+t)n−1

(
n∏

k=1

(
1

1+t
+λk

))/(
1

1+t
− 1
)

=
(1+t)n

t

∣
∣
∣
∣f

(

− 1
1+t

)∣
∣
∣
∣ ,

hence, after the change of variables s = −1/(1 + t) in (5), we obtain

P{A} =
1
π

1∫

0

s
n
2 −1 d s
√

f(−s)
=

1
π

1∫

0

√
R s

n
2 −1 d s

√(
n∑

k=1

xk

xk+s
− R

)
n∏

k=1

(xk + s)

, (7)

where xk = Rσ2
k. Condition (6) now has the form

n∑

k=1

xk

xk + 1
= R. (8)

First we show that 2sn(1) = 1/2 for all n. By the integral representation (5), we have the inequality

P

{

ξ2
n >

n−1∑

k=1

λkξ2
k

}

≤ P

{

ξ2
n > ξ2

1

n−1∑

k=1

λk

}

.

On the other hand, by (4) and (8),

n−1∑

k=1

λk = 1 +
(

1 − 1
R

) n∑

k=1

xk ≥ 1 +
(

1 − 1
R

)

n
R

n − R
,
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therefore

sn−1(x) ≤ P

{

ξ2
n > ξ2

1

(

1 +
n(R − 1)
n − R

)}

= 1 − 2
π

arctan

√

1 +
n(R − 1)
n −R

.

Thus if x = R = 1, we obtain 2sn(1) ≤ 1/2, and the equality can be reached by choosing x1 = x2 �= 0,
x3 = x4 = . . . = xn = 0.

Finally, consider the most important case R > 1. Assume that the supremum of (7) is attained at some finite
point x = (x1, x2, . . . , xn). With the notation

U(x, s) =
s

n
2 −1

√
R

√
P (x, s)

∏n
k=1(xk + s)

, P (x, s) =
n∑

k=1

xk

(xk + 1)(xk + s)
,

we can rewrite (7) in the following way:

P{A} =
1
π

1∫

0

U(x, s)√
1 − s

d s.

Now fix all the xk’s except xi = y and xj = z and consider xj = y as a function of z. By (8),

d y

d z
= −(y + 1)2

(z + 1)2
. (9)

Assuming z > 0, y > 0,

d P {A}
d z

= − ∆
2π

1∫

0

h (z, y, P (x, s))√
1 − s

U(x, s) d s, (10)

where
∆ =

z − y

(1 + z)2
,

f(z, y, v) =
α + βs

(z + s)(y + s)
− 2s

(
α + 1+s

2 β
)

(z + s)2(y + s)2v
, (11)

α = yz − 1, β = y + z + 2.

Define a functional L(h) as follows:

L(h) =
1
π

1∫

0

h(s)√
1 − s

U(x, s) d s.

Then

P{A} = L(1),
d P {A}

d z
= −∆

2
L(h),

d L(h)
d z

= −∆
2

L(h2) + L

(
d h

d z

)

. (12)

The following lemma is proved in the Appendix.

Lemma 3.
d h

d z
= ∆(h − h2).

Finally, if y > 0, z > 0 at the point of maximum x and z �= y, then, by the necessary condition for a maximum,
L(h) = 0, and, by Lemma 3 and (12),

d2P{A}
d z2

=
3∆2

4
L(h2) > 0,

which contradicts the maximality of P{A}. Thus at the point of maximum all nonzero xk’s are equal.

The only claim we have not proved is that sn−1(x) = tn−1(x) for x ≥
√

3(n − 1)/(n − 3). It follows from
Proposition 1 (iii).

The theorem is proved.
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3. Proof of Proposition 1

(i) It is easy to see that ∆k(k) = gk+1(k) > 0. On the other hand, (7) implies

gk(1) =
1
π

1∫

0

s−1/2(1 − s)−1/2d s
√(

1 + 1
s(k−1)

)k−1
,

where the integrand is strictly decreasing, whence ∆k(1) < 0 for all positive k. Thus ∆k(R) = 0 for at least
one R ∈ (1, k).

If we differentiate

∆k(R) =
2Γ
(

k+1
2

)

√
πkΓ
(

k
2

)

√
Rk

k+1−R∫

0

(

1 +
u2

k

)− k+1
2

d u− 2Γ
(

k
2

)

√
π(k − 1)Γ

(
k−1
2

)

√
R(k−1)

k−R∫

0

(

1 +
u2

k − 1

)− k
2

d u

with respect to R, we can see that ∆k(R) cannot have more than one zero.
(ii) For small k, the monotonicity of the function r(k) can be seen from computing the actual values of r(k).

Some approximate r-values are as follows: r(2) = 1.726, r(3) = 2.040, r(4) = 2.226, r(5) = 2.352, r(6) = 2.442,
r(7) = 2.510, r(8) = 2.568, r(9) = 2.607, r(10) = 2.642, . . . , r(20) = 2.881, r(120) = 2.967. For general k, let us
rewrite the definition of r(k), the equation ∆k(R) = gk+1(R) − gk(R) = 0, as follows:

2Γ
(

k
2

)

√
π(k − 1)Γ

(
k−1
2

)

√
R(k−1)

k−R∫

0

(

1 +
u2

k − 1

)−k
2

d u =
2Γ
(

k+1
2

)

√
πkΓ
(

k
2

)

√
Rk

k+1−R∫

0

(

1 +
u2

k

)− k+1
2

d u. (13)

This equation defines r(k) for all real numbers k > 1, and we can show that r′(k) > 0. We omit the details of
the proof, which is routine but long.

(iii) Let us now prove the most interesting part of Proposition 1. Rewrite Eq. (13) as follows:

Mk

p∫

0

Ak(u)d u =

q∫

0

Bk(u)d u, (14)

where

Mk : =
Γ2
(

k
2

)√
k

Γ
(

k−1
2

)
Γ
(

k+1
2

)√
k − 1

,

Ak(u) :=
(

1 +
u2

k − 1

)− k
2

,

Bk(u) :=
(

1 +
u2

k

)− k+1
2

= Ak(u) exp
{

2u2 − u4

4k2
+ o

(
1
k2

)}

,

p :=

√
R(k − 1)
k −R

, q :=

√
Rk

k + 1 −R
.

By Stirling’s formula, as z → ∞,

logΓ(z) = −z +
(

z − 1
2

)

log z + log
√

2π +
1

12z
+

θ

360|z|3 , |θ| ≤ 1;

thus

Mk = exp
{

− 1
4k2

+ O

(
1
k3

)}

.

6502



One can easily show that the sequence r(k), k = 1, 2, . . . , is bounded; thus it has a finite limit r∗.
If R = r∗ + o(1), we have

q = p +
√

r∗(1 − r∗)
2k2

+ o

(
1
k2

)

;

thus the k−2 order asymptotics of (14) is

√
r∗(1 − r∗)

2
e−

r∗
2 +

√
r∗∫

0

2u2 − u4 + 1
4

e−
u2
2 d u = 0.

Integration by parts shows that r∗ = 3.

4. Appendix

Proof of Lemma 1. It is sufficient to consider the case where σk �= 0 for all k. Then f(λ) = det (λI −G) =
det D2 det

(
λD−2 −RI + E

)
. Let ak := λσ−2

k − R. Then

det
(
λD−2 − RI + E

)
= det







a1 + 1 1 . . . 1
1 a2 + 1 . . . 1
...

...
. . .

...
1 1 . . . an + 1





 = det






a1 + 1 1 1 . . . 1
−a1 a2 0 . . . 0
−a1 0 a3 . . . 0
−a1 0 . . . . . . an






= (a1 + 1)a2a3 . . . an +
n∑

i=2

(−1)1+i(−1)1+i a2a3 . . . an

ai
=

n∏

i=1

ai

[

1 +
1
a1

+ +
1
a2

+ · · ·+ 1
an

]

,

which proves Lemma 1. �
Proof of Lemma 2 [16]. Denote

g(x) = P{ξ2
0 > x} =

1√
2π

∞∫

0

z−
1
2 e−

z
2 d z =

1√
2π

x
1
2 e−

x
2

∞∫

0

(1 + t)−
1
2 e−

tx
2 d t.

The latter integral is a degenerate Tricomi hypergeometric function (see [4, 6.5 (2) and (6)]):

Ψ(a, c, z) :=
1

Γ(a)

∞∫

0

ta−1(1 + t)c−a−1e−ztd t, Re a > 0, Re z > 0,

and
Ψ(a, c, z) = z1−cΨ(1 − c + a, 2− c, z).

Thus

∞∫

0

(1 + t)−
1
2 e−

tx
2 d t = Ψ

(

1,
3
2
,
x

2

)

= x− 1
2 Ψ
(

1
2
,
1
2
,
x

2

)

=
(

2
π

)1/2

x− 1
2

∞∫

0

t−
1
2 (1 + t)−1e−

tx
2 d t,

whence

g(x) =
1
π

∞∫

0

t−
1
2 (1 + t)−1e−

x(1+t)
2 d t .

For τ :=
∑n

k=1 µiξ
2
i ,

P

{

ξ2
0 ≥

n∑

k=1

µiξ
2
i

}

= Eg(τ) =

∞∫

0

t−
1
2 (1 + t)−1Ee−

τ(1+t)
2 d t =

1
π

∞∫

0

d t√
t(1 + t)

√∏n
k=1(1 + (1 + t)µi)

.
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Lemma 2 is proved. �
Proof of Lemma 3. It is easy to check that

(y + s)(z + s) = α + βs + (1 − s)2. (A1)

By (9), we have
d α

d z
= y + zy′ = ∆α,

d β

d z
= 1 + y′ = ∆β,

d

d z
((y + s)(z + s)) =

d

d z
(α + βs) = ∆(α + βs);

thus, for the first term in h,
d

d z

(
α + βs

(y + s)(z + s)

)

=
∆(1− s)2(α + βs)
(y + s)2(z + s)2

. (A2)

With V := P (x, s) and γ := 2s (α + (1 + s)β/2),

d V

d z
=

d

d z

1
1 − s

(
y

y + s
+

z

z + s

)

=
d

d z

1
1 − s

2α + βs + 2(1 − s)
(y + s)(z + s)

= − ∆γ

(y + s)2(z + s)2
;

therefore, for the second term in h,

d

d z

(
γ

(y + s)2(z + s)2V

)

=
∆γ

(y + s)2(z + s)2V

(
(1 − s)2 − (α + βs)

(y + s)(z + s)
+

γ

(y + s)2(z + s)2V

)

. (A3)

Finally, (A1), (A2), and (A3) imply Lemma 3. �
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23. G. J. Székely, Paradoxes in Probability Theory and Mathematical Statistics, Reidel, Dordrecht (1986).
24. J. W. Tukey and D. H. McLaughin, “Less vulnerable confidence and significance procedures for location

based on a single sample: Trimming/Winsorization,” Sankhyā, Ser. A, 25, 331–352 (1963).
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