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SMALL DEVIATION PROBABILITIES FOR POSITIVE RANDOM VARIABLES
L. V. Rozovsky* UDC 519.21

We deduce two lemmas that seem to be useful while studying small deviation probabilities for positive random
variables. As an example, the so-called small balls problem is examined. Bibliography: 11 titles.

1. RESULTS

Assume that a nonnegative random variable Z takes values in any neighborhood of zero with positive proba-
bility not equal to one.
For u > 0, set
Au) =Ee ", m(u) = - (logA(u)", o*(u) = (log A(u)”

Q(u) = —um(u) — log A(u).

Recall that
m(u) =EZ(u), 0<o*(u)= VarZ(u), (1.2)

where the distribution of the random variable Z(u) > 0 is conjugate to that of Z, i.e.,

Z(
P(Z /e_“ydP (Z <y)/A(u), r=>0. (1.3)
0

Note (see [1, Lemma 2.1]) that m(u) is a monotone decreasing function on (0, 00), Q(u) is a monotone increasing
function on (0, c0), and

m(0) =EZ < oo, m(oco) =0, Q0)=0, Q(x)=-logP(Z=0). (1.4)
Lemma 1. For0<r < EZ,

Q) > P(Z < r) > %e—2a(1+\/1+2Q(h)/a) Q). (1.5)

2
where a = sup % Q( ()u) and h is the unique solution of the equation
u>0

m(h) =r. (1.6)
Remark 1. Denote p(r) = sup(—ur — log A(u)). We have p(r) = Q(h) provided that 0 < r < EZ < oo and
u>0

equality (1.6) holds; p(0) = Q(c0); p(r) = 400 for r < 0 and p(r) = 0 for r > EZ. Thus, using Lemma 1, we
obtain the following inequality, which is now valid for all 7:

e > P(Z <) > —2a<1+\/1+2p<r>/a> o—p(r).

From (1.5) it follows (provided that a # oo) that the values P(Z < r) and 1/Q(h) are small simultaneously;
moreover, if Q(h) tends to infinity, then log P(Z < r) is approzimately equal to —Q(h). In other words, Lemma 1
allows one to find, under some additional assumptions, the asymptotics of the logarithm of the probability
P(Z < r). The following result is a nice basis for the analysis of the asymptotic behavior of the probability
itself.

Let (see (1.2)) Zo(u) = Z=LEZW)

v/ VarZ(u)

, u > 0. Denote

1/e
de(u) = / |EeitZo(w) e_t2/2| dt, ¢>0. (1.7)

*St.Petersburg State Chemical Pharmaceutical Academy, St.Petersburg, Russia, e-mail: 1_rozovsky@mail.ru.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 320, 2004, pp. 150-159. Original article submitted November
1, 2004.

1072-3374/06/1371-4561 (c)2006 Springer Science+Business Media, Inc. 4561



Lemma 2. For any positive r, h, s, and ¢,

1—ehs
Pir—-s<Z<r)= A(h)ehTW (€_B2/2 +6(3 €_B2/2/7’ +1/7% + pe(h, s))) , (1.8)
where || is bounded by some absolute constant,
r —m(h) 1
T=ho(h), B= EORE p=(h,8) = 6-(h) + (L + 6-(h)) (1 + ;%) 7e. (1.9)
In particular, if r = m(h), then § =0 and
P(T—S<Z<r):e_Q(h)1_76_hS (146 (1/7% + pe(h,s)) . (1.10)
= 7-\/% € )

Note that (1.8) implies, besides (1.10), that for 0 < r < EZ, h satisfying (1.6), and any 6,

)
< _ Q) _° —6%/272 —6%/27%\ /.2 _ _
P(Z<r+/h)=e W — (e +O((1+6e )/ +p5(h,oo)) (1.11)

Remark 2. If §p(h) = li{r(lJ d-(h) < oo, then (1.8) implies that for all positive s
€

—hs
wl—e

P(r—s<Z<r)=A(h)e (6_52/2+9(Be‘52/2/7+1/7‘2+(50(h))> (1.12)

TV2T
(and similar corollaries of (1.10), (1.11)). In particular,

dP(Z <)
dr

h
™27

i.e., Lemma 2 also allows one to investigate the probabilities of small deviations in the local setting.

Now let us demonstrate that if the parameter 7 = ho(h) is bounded, the function e~ " /71/27 from (1.10)
can give an approximation of the probability P(Z < r) that is not quite satisfactory.
Let Z;, j =1,2,...,n, be independent random variables with distribution functions F;(x) such that

= A (P 0 (B 1/ 4 so(1)))

Fi(x) = li(x)z®, 2 \0, (1.13)

where «; are some positive numbers and /;(x) are functions slowly varying at zero. Then for a fixed n,

Pn(T)ZP(Z1+"'+ZnST)NknﬁFj(T)’ r\, 0, (1.14)

j=1

where k, = [[T(1 + o;)/T(1 + @) and @ = a1 + -+ + ap. (One can prove (1.14) by induction, using the
j=1
properties of slowly varying functions.)
On the other hand, if Z = Z; + - - -+ Z,, then (see (1.1))

A =[] A5, m() =Y miw). o> =Y oHw), Q)= Q) (1.15)

j=1

where
Aj(u) =Ee %, mj(u) = — (logAj(u))', o3 (u) = (log A;(u)”,

J

Qj(u) = —um;(u) —log A (u).
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If condition (1.13) holds, then
Aj(u) ~T(1+ aj)F;(1/uw), mj(u) ~a;/u, a?(u) ~ aj/u2, U — 00, (1.16)

whence
um(u) — o, u?c*(u) — o, u— oco.

Taking into consideration (1.15), (1.16), and the relation h ~ a/r, r \, 0, following from (1.6), we obtain

=M /(ho (h)v/2m) = " H L;(h)/(ho(W)V2m) ~ waPu(r), T\, 0.

Here wy, = (a)a F\(/l;—a) > 1 for any finite @« > 0 (and w, — 1 as & — o0). Thus the leading term in the

right-hand side of (1.10) and the asymptotics from (1.14) are indeed different.

In conclusion, we give an example of using relation (1.12).

Let {X} be a centered Gaussian vector taking values in a separable Hilbert space H. Then X = > )\;/ 2§j €j,
where {e;} is an orthogonal basis in H, {\;} is a sequence of nonnegative nonincreasing numbers with finite
sum, and &; are independent standard normal random variables.

Let a = Y aje; € H, where Za? < oo, and 7 > 0. We are interested in estimates of the probabilities

P(r—s<Z <r), where Z =||X —al|* = Z()\}ﬂg]’ — ;)%
For v > 0, denote (see [2])

A(y) =Eexp(—vZ) = [[(1 +29)) "% exp (—ya3 /(1 + 29)))),

Aj al
m = + ,
™ XJ: (1 R W G 27Aj)2> .17)
272 4r;a2 )

ZU _Z< 1+2;/\) +(1+;7ij)3

Theorem 1. Let A3 > 0. Then for any r, s > 0 and v > 0,

1—e™ 7%

yo(y)V2m

where 8 = (r — m(%))/o (), |0] < c/A1/A2 (1 +1log(A2/A3)), and c is an absolute constant.

Recall that if 7 is the solution of the equation m(y) = r, then 3 = 0.

Note that Theorem 1 allows one to refine known general results on the asymptotic behavior of the probability
that a Gaussian vector from a Hilbert space hits a sphere of small radius (see, for example, [3-9], and also
Theorem 4 of [2]).

Proof of Theorem 1. Let Z = ||X — a||? in (1.12). Then (see (1.2), (1.3), (1.7), and [2, p. 441]) the random
variable Z() has the same distribution as 2(631'/253' —w;)? with 8 = \;/(1+27v);), wj = aj/(14+2v)\;). Hence

P(r—s<||X —al> <r) = A(y)e"" (72 +0((ro) ™ + (o) ™). (118)

Eei*?0) = [](1 - 2it8;) ™"/ exp (itw? /(1 - 2itB;)). (1.19)

Set (see (1.17)) f(t) = Eexp (it(Z(vy) —m(y))/o(v)) and 7; = v3;. Keeping in mind that in the case under
consideration EZ(y) = m(y) and VarZ(y) = o2(%), (1.19) implies, by standard arguments, that

log f(t) = —t2/2+ 0(t/7)? ij'yZa? = —t2/24+ 0837, |t| <er,

where 7 =v0(y), 0] < ¢, and ¢, e are absolute positive constants. It follows that
ET
/|f(t) —e " Pldt< a7
0
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Now let us estimate I = [ |f(t)| dt. We have [ =7 f [1&;(w) du, where

ET
&i(u)=(1+ 4u27'j2)_1/4 exp (—2u’Tjw /(1 + 4u?7?)).
Using the equality 0% = 237 4 40;w? (see (1.17)), it is easy to prove that for § = 1/10,

&i(u) <ex (—(5u2720j2-), ur; <1,

& (u) <(e/(1+ 4u?r2) V4 exp (—64%02/72), wr; > L. (1.20)

Choose a positive integer n satisfying the condition

n n—1
Yotzots Yo
7j=1 7j=1

and set

1/7n

I=<r/ /)ng Ydu =TI, + I.

€ 1/7n

With the help of (1.20) we obtain
1/7n 00
L <rt / H &i(u)du < 7/6_5“272”2/2du <c/T%
j>n

€ €

Now let us estimate I,. We have to consider three cases: n =1, n =2, and n > 3. Let us restrict ourselves to
the most general first case. Bearing in mind (1.20) and the inequality 7; > 7, for j < n, we obtain

1/73 1/72

I2<T/§1 )62(u)€3(u) du+7/§1 )62 (u du+7/§1 ) du = Iy + Iag + I3,
1/73 1/72 1/m1
where
3
Iy, < el 672 /277 / H 1+4u 1/4du
1/T3 J:1
and

3
/H 1+4u272 1/4du<—\/7'1/27'2<—\/)\1/2)\2,

1/73 77

122 S 7’/7’1 61_67— /27—12\/)\1/2)\2 log)\g/)\g; 123 S 7’/7’1 61_67—2/27—12\/ 2)\1/2)\2.

Theorem 1 follows from (1.12) and the above calculations. O

2. PROOFS OF LEMMAS 1 AND 2.

The proof of Lemma 1 essentially repeats the proof of Theorem 1 from [10]. However, we present it, because
the computations are rather short.
For any u > 0, B
P(Z <r)= Au)Ee"?1[Z < 7], (2.1)

where Z = Z(u) and the random variable Z(u) has the distribution (1.3). Hence

P(Z<r) =@M [(0),  I(u) = Be 20|z () < =0, (2.2)

o(u)
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(Zo(u) is defined before relation (1.7)).
Let h be the solution of Eq. (1.6). Then I(h) < 1, and (2.2) with u = h implies

P(Z <r)<e W, (2.3)

If a = oo, the lower bound is obvious. Now let a < co. If m(u) < r (or u > h), then

I(u) > et (@-1)p <|Z0(u)| < w> S o (m(u) =) (1 _ ("i) (2.4)

o(u)

For t > h, put £(t) =t (r — m(t)). Obviously,

Q(u)—Q(h):—/tm' +/ h))dt < &(u), h<u<oo. (2.5)
h

h

Denote v = a + /a? 4+ 2a@Q(h). Let u be the solution of the equation £(u) = v (such a solution exists and is
unique, because the function £(¢) monotonically grows from zero to infinity on [h,c0)). Then, by (2.5) and the
choice of v,

Qu) <Q(h) +&(u) = Q(h) + v, u(r—m(u)) =&(u) = v,

) o) _aQu) _a(Qh) +v) _ 1
rom)? S © 2 v 2

This, along with (2.2)—(2.4), implies Lemma 1. O
Proof of Lemma 2. Let h > 0. From (2.1) and (2.2) it follows that

B
Pir—s<Z<r)=e %W /e” FM(at), (2.6)

Y

where 3 = (r — m(h))/o(h), v = (r — s —m(h))/o(h), T = ha(h), and F")(t) is the distribution function of
Zo(h). Denote A(t) = FW(t) — ®(t) (where ®(t) is the standard normal distribution function). We have

B B B
/ e FMW (dt) = / et &(dt) + / et A(dt) =T+ J. (2.7)

8!
Asin [11, (2.4)—(2.8)], we obtain

e’ — e

] < ¢ ————(0:(h) + £ (1 + 8= (h)) (7 + 1/(5 = 7)) (2.8)

Now let us consider the integral I. We have
0
1
Vorl = =™’ / v (Hu/ 2 gy, (2.9)
T
—n

where u = 7(8 — ) = hs. Further,

, 0<0<1,

1
TR = (1 4B /) 4 (/) (e ) /
t=0p+0u/T
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whence

0 0 0

/e“_(5+“/7)2/2 du = €_B2/2(1 —e M- A / te' dt) + L2y /t2et dt
T 272

—p —p —p

= (1—e ") (e P 2(1+6,8/7) + 05/72), (2.10)

where —1 < 0, < 2e73/2, 0 < 6y < 1, |05] < 1.

Lemma 2 follows from (2.6)—(2.10). O
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