SMALL DEVIATION PROBABILITIES FOR POSITIVE RANDOM VARIABLES

L. V. Rozovsky*

We deduce two lemmas that seem to be useful while studying small deviation probabilities for positive random variables. As an example, the so-called small balls problem is examined. Bibliography: 11 titles.

1. Results

Assume that a nonnegative random variable Z takes values in any neighborhood of zero with positive probability not equal to one.

For $u \geq 0$, set

$$\Lambda(u) = \mathbf{E}e^{-uZ}, \quad m(u) = -\left(\log\Lambda(u)\right)', \quad \sigma^2(u) = \left(\log\Lambda(u)\right)'',$$

$$Q(u) = -um(u) - \log\Lambda(u). \tag{1.1}$$

Recall that

$$m(u) = \mathbf{E}Z(u), \quad 0 < \sigma^2(u) = \mathbf{Var}Z(u), \tag{1.2}$$

where the distribution of the random variable $Z(u) \ge 0$ is conjugate to that of Z, i.e.,

$$\mathbf{P}(Z(u) \le r) = \int_{0}^{r} e^{-uy} d\mathbf{P}(Z \le y) / \Lambda(u), \quad r \ge 0.$$
(1.3)

Note (see [1, Lemma 2.1]) that m(u) is a monotone decreasing function on $(0, \infty)$, Q(u) is a monotone increasing function on $(0, \infty)$, and

$$m(0) = \mathbf{E}Z \le \infty, \quad m(\infty) = 0, \quad Q(0) = 0, \quad Q(\infty) = -\log \mathbf{P}(Z = 0).$$
 (1.4)

Lemma 1. For $0 < r \leq \mathbf{E}Z$,

$$e^{-Q(h)} \ge \mathbf{P}(Z \le r) \ge \frac{1}{2} e^{-2a(1+\sqrt{1+2Q(h)/a})} e^{-Q(h)},$$
 (1.5)

where $a = \sup_{u>0} \frac{u^2 \sigma^2(u)}{Q(u)}$ and h is the unique solution of the equation

$$m(h) = r. (1.6)$$

Remark 1. Denote $\rho(r) = \sup_{u \ge 0} (-ur - \log \Lambda(u))$. We have $\rho(r) = Q(h)$ provided that $0 < r \le \mathbf{E}Z < \infty$ and equality (1.6) holds; $\rho(0) = Q(\infty)$; $\rho(r) = +\infty$ for r < 0 and $\rho(r) = 0$ for $r > \mathbf{E}Z$. Thus, using Lemma 1, we obtain the following inequality, which is now valid for all r:

$$e^{-\rho(r)} \ge \mathbf{P}(Z \le r) \ge \frac{1}{2}e^{-2a(1+\sqrt{1+2\rho(r)/a})} e^{-\rho(r)}.$$

From (1.5) it follows (provided that $a \neq \infty$) that the values $\mathbf{P}(Z \leq r)$ and 1/Q(h) are small simultaneously; moreover, if Q(h) tends to infinity, then $\log \mathbf{P}(Z \leq r)$ is *approximately* equal to -Q(h). In other words, Lemma 1 allows one to find, under some additional assumptions, the asymptotics of the logarithm of the probability $\mathbf{P}(Z \leq r)$. The following result is a nice basis for the analysis of the asymptotic behavior of the probability itself.

Let (see (1.2)) $Z_0(u) = \frac{Z(u) - \mathbf{E}Z(u)}{\sqrt{\mathbf{Var}Z(u)}}, \ u > 0.$ Denote

$$\delta_{\varepsilon}(u) = \int_{0}^{1/\varepsilon} |\mathbf{E}e^{itZ_{0}(u)} - e^{-t^{2}/2}| dt, \quad \varepsilon > 0.$$

$$(1.7)$$

*St.Petersburg State Chemical Pharmaceutical Academy, St.Petersburg, Russia, e-mail: 1_rozovsky@mail.ru.

1072-3374/06/1371-4561 ©2006 Springer Science+Business Media, Inc.

UDC 519.21

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 320, 2004, pp. 150–159. Original article submitted November 1, 2004.

Lemma 2. For any positive r, h, s, and ε ,

$$\mathbf{P}(r-s < Z \le r) = \Lambda(h)e^{hr} \frac{1-e^{-hs}}{\tau\sqrt{2\pi}} \left(e^{-\beta^2/2} + \theta \left(\beta e^{-\beta^2/2}/\tau + 1/\tau^2 + \rho_{\varepsilon}(h,s)\right) \right),$$
(1.8)

where $|\theta|$ is bounded by some absolute constant,

$$\tau = h \,\sigma(h), \quad \beta = \frac{r - m(h)}{\sigma(h)}, \quad \rho_{\varepsilon}(h, s) = \delta_{\varepsilon}(h) + (1 + \delta_{\varepsilon}(h))(1 + \frac{1}{h \, s}) \,\tau\varepsilon.$$
(1.9)

In particular, if r = m(h), then $\beta = 0$ and

$$\mathbf{P}(r - s < Z \le r) = e^{-Q(h)} \frac{1 - e^{-hs}}{\tau \sqrt{2\pi}} \left(1 + \theta \left(1/\tau^2 + \rho_{\varepsilon}(h, s) \right) \right).$$
(1.10)

Note that (1.8) implies, besides (1.10), that for $0 < r < \mathbf{E}Z$, h satisfying (1.6), and any δ ,

$$\mathbf{P}(Z \le r + \delta/h) = e^{-Q(h)} \frac{e^{\delta}}{\tau \sqrt{2\pi}} \left(e^{-\delta^2/2\tau^2} + \theta \left((1 + \delta e^{-\delta^2/2\tau^2})/\tau^2 + \rho_{\varepsilon}(h, \infty) \right).$$
(1.11)

Remark 2. If $\delta_0(h) = \lim_{\varepsilon \searrow 0} \delta_{\varepsilon}(h) < \infty$, then (1.8) implies that for all positive s

$$\mathbf{P}(r-s < Z \le r) = \Lambda(h)e^{hr} \frac{1-e^{-hs}}{\tau\sqrt{2\pi}} \left(e^{-\beta^2/2} + \theta\left(\beta e^{-\beta^2/2}/\tau + 1/\tau^2 + \delta_0(h)\right)\right)$$
(1.12)

(and similar corollaries of (1.10), (1.11)). In particular,

$$\frac{d\mathbf{P}(Z \le r)}{dr} = \Lambda(h)e^{hr}\frac{h}{\tau\sqrt{2\pi}} \left(e^{-\beta^2/2} + \theta\left(\beta e^{-\beta^2/2}/\tau + 1/\tau^2 + \delta_0(h)\right)\right),$$

i.e., Lemma 2 also allows one to investigate the probabilities of small deviations in the local setting.

Now let us demonstrate that if the parameter $\tau = h \sigma(h)$ is bounded, the function $e^{-Q(h)}/\tau \sqrt{2\pi}$ from (1.10) can give an approximation of the probability $\mathbf{P}(Z \leq r)$ that is not quite satisfactory.

Let Z_j , j = 1, 2, ..., n, be independent random variables with distribution functions $F_j(x)$ such that

$$F_j(x) = l_j(x)x^{\alpha_j}, \quad x \searrow 0, \tag{1.13}$$

where α_i are some positive numbers and $l_i(x)$ are functions slowly varying at zero. Then for a fixed n,

$$P_n(r) = \mathbf{P}(Z_1 + \dots + Z_n \le r) \sim k_n \prod_{j=1}^n F_j(r), \quad r \searrow 0,$$
(1.14)

where $k_n = \prod_{j=1}^n \Gamma(1+\alpha_j)/\Gamma(1+\alpha)$ and $\alpha = \alpha_1 + \dots + \alpha_n$. (One can prove (1.14) by induction, using the properties of slowly varying functions.) On the other hand, if $Z = Z_1 + \dots + Z_n$, then (see (1.1))

On the other hand, if
$$Z = Z_1 + \cdots + Z_n$$
, then (see (1.1))

$$\Lambda(u) = \prod_{j=1}^{n} \Lambda_j(u), \quad m(u) = \sum_{j=1}^{n} m_j(u), \quad \sigma^2(u) = \sum_{j=1}^{n} \sigma_j^2(u), \quad Q(u) = \sum_{j=1}^{n} Q_j(u), \quad (1.15)$$

where

$$\Lambda_j(u) = \mathbf{E}e^{-uZ_j}, \quad m_j(u) = -\left(\log\Lambda_j(u)\right)', \quad \sigma_j^2(u) = \left(\log\Lambda_j(u)\right)'', \\ Q_j(u) = -um_j(u) - \log\Lambda_j(u).$$

If condition (1.13) holds, then

$$\Lambda_j(u) \sim \Gamma(1+\alpha_j) F_j(1/u), \quad m_j(u) \sim \alpha_j/u, \quad \sigma_j^2(u) \sim \alpha_j/u^2, \quad u \to \infty,$$
(1.16)

whence

$$um(u) \to \alpha, \quad u^2 \sigma^2(u) \to \alpha, \quad u \to \infty.$$

Taking into consideration (1.15), (1.16), and the relation $h \sim \alpha/r$, $r \searrow 0$, following from (1.6), we obtain

$$e^{-Q(h)}/(h\sigma(h)\sqrt{2\pi}) = e^{hr} \prod_{j=1}^{n} L_j(h)/(h\sigma(h)\sqrt{2\pi}) \sim \omega_{\alpha} P_n(r), \quad r \searrow 0$$

Here $\omega_{\alpha} = \left(\frac{e}{\alpha}\right)^{\alpha} \frac{\Gamma(1+\alpha)}{\sqrt{2\pi\alpha}} > 1$ for any finite $\alpha > 0$ (and $\omega_{\alpha} \to 1$ as $\alpha \to \infty$). Thus the leading term in the right-hand side of (1.10) and the asymptotics from (1.14) are indeed different.

In conclusion, we give an example of using relation (1.12).

Let $\{X\}$ be a centered Gaussian vector taking values in a separable Hilbert space H. Then $X = \sum \lambda_j^{1/2} \xi_j e_j$, where $\{e_j\}$ is an orthogonal basis in H, $\{\lambda_j\}$ is a sequence of nonnegative nonincreasing numbers with finite sum, and ξ_j are independent standard normal random variables.

Let $a = \sum \alpha_j e_j \in H$, where $\sum \alpha_j^2 < \infty$, and r > 0. We are interested in estimates of the probabilities $\mathbf{P}(r-s < Z \le r)$, where $Z = ||X - a||^2 = \sum (\lambda_j^{1/2} \xi_j - \alpha_j)^2$.

For $\gamma > 0$, denote (see [2])

$$\Lambda(\gamma) = \mathbf{E} \exp\left(-\gamma Z\right) = \prod (1 + 2\gamma\lambda_j)^{-1/2} \exp\left(-\gamma \alpha_j^2 / (1 + 2\gamma\lambda_j)\right),$$

$$m(\gamma) = \sum_j \left(\frac{\lambda_j}{1 + 2\gamma\lambda_j} + \frac{\alpha_j^2}{(1 + 2\gamma\lambda_j)^2}\right),$$

$$\sigma^2(\gamma) = \sum_j \sigma_j^2 = \sum_j \left(\frac{2\lambda_j^2}{(1 + 2\gamma\lambda_j)^2} + \frac{4\lambda_j \alpha_j^2}{(1 + 2\gamma\lambda_j)^3}\right).$$

(1.17)

Theorem 1. Let $\lambda_3 > 0$. Then for any r, s > 0 and $\gamma > 0$,

$$\mathbf{P}(r-s<||X-a||^{2} \le r) = \Lambda(\gamma)e^{\gamma r} \frac{1-e^{-\gamma s}}{\gamma \,\sigma(\gamma)\sqrt{2\pi}} \left(e^{-\beta^{2}/2} + \theta\left((\gamma \,\sigma(\gamma))^{-1} + (\gamma \,\sigma(\gamma))^{-2}\right)\right), \tag{1.18}$$

where $\beta = (r - m(\gamma))/\sigma(\gamma)$, $|\theta| \le c \sqrt{\lambda_1/\lambda_2} (1 + \log(\lambda_2/\lambda_3))$, and c is an absolute constant.

Recall that if γ is the solution of the equation $m(\gamma) = r$, then $\beta = 0$.

Note that Theorem 1 allows one to refine known general results on the asymptotic behavior of the probability that a Gaussian vector from a Hilbert space hits a sphere of small radius (see, for example, [3–9], and also Theorem 4 of [2]).

Proof of Theorem 1. Let $Z = ||X - a||^2$ in (1.12). Then (see (1.2), (1.3), (1.7), and [2, p. 441]) the random variable $Z(\gamma)$ has the same distribution as $\sum (\beta_j^{1/2}\xi_j - \omega_j)^2$ with $\beta_j = \lambda_j/(1 + 2\gamma\lambda_j)$, $\omega_j = \alpha_j/(1 + 2\gamma\lambda_j)$. Hence

$$\mathbf{E}e^{itZ(\gamma)} = \prod (1 - 2it\beta_j)^{-1/2} \exp\left(it\omega_j^2 / (1 - 2it\beta_j)\right).$$
(1.19)

Set (see (1.17)) $f(t) = \mathbf{E} \exp (it(Z(\gamma) - m(\gamma))/\sigma(\gamma))$ and $\tau_j = \gamma \beta_j$. Keeping in mind that in the case under consideration $\mathbf{E}Z(\gamma) = m(\gamma)$ and $\mathbf{Var}Z(\gamma) = \sigma^2(\gamma)$, (1.19) implies, by standard arguments, that

$$\log f(t) = -t^2/2 + \theta(t/\tau)^3 \sum \tau_j \gamma^2 \sigma_j^2 = -t^2/2 + \theta t^3/\tau, \quad |t| \le \varepsilon \tau,$$

where $\tau = \gamma \sigma(\gamma)$, $|\theta| \le c$, and c, ε are absolute positive constants. It follows that

$$\int_{0}^{\varepsilon\tau} |f(t) - e^{-t^2/2}| \, dt \le c_1/\tau.$$

Now let us estimate $I = \int_{\varepsilon\tau}^{\infty} |f(t)| dt$. We have $I = \tau \int_{\varepsilon}^{\infty} \prod \xi_j(u) du$, where

$$\xi_j(u) = (1 + 4u^2 \tau_j^2)^{-1/4} \exp\left(-2 \, u^2 \tau_j \gamma \omega_j^2 / (1 + 4u^2 \tau_j^2)\right).$$

Using the equality $\sigma_j^2 = 2\beta_j^2 + 4\beta_j \omega_j^2$ (see (1.17)), it is easy to prove that for $\delta = 1/10$,

$$\xi_{j}(u) \leq \exp\left(-\delta u^{2} \gamma^{2} \sigma_{j}^{2}\right), \quad u\tau_{j} \leq 1, \xi_{j}(u) \leq (e/(1+4u^{2} \tau_{j}^{2}))^{-1/4} \exp\left(-\delta \gamma^{2} \sigma_{j}^{2} / \tau_{j}^{2}\right), \quad u\tau_{j} \geq 1.$$
(1.20)

Choose a positive integer n satisfying the condition

$$\sum_{j=1}^{n} \sigma_j^2 \ge \sigma^2/2 > \sum_{j=1}^{n-1} \sigma_j^2$$

and set

$$I = \left(\tau \int_{\varepsilon}^{1/\tau_n} +\tau \int_{1/\tau_n}^{\infty}\right) \prod \xi_j(u) \, du = I_1 + I_2.$$

With the help of (1.20) we obtain

$$I_1 \le \tau \int_{\varepsilon}^{1/\tau_n} \prod_{j\ge n} \xi_j(u) \, du \le \tau \int_{\varepsilon}^{\infty} e^{-\delta u^2 \gamma^2 \sigma^2/2} du \le c/\tau^2.$$

Now let us estimate I_2 . We have to consider three cases: n = 1, n = 2, and $n \ge 3$. Let us restrict ourselves to the most general first case. Bearing in mind (1.20) and the inequality $\tau_j \ge \tau_n$ for $j \le n$, we obtain

$$I_{2} \leq \tau \int_{1/\tau_{3}}^{\infty} \xi_{1}(u)\xi_{2}(u)\xi_{3}(u) \, du + \tau \int_{1/\tau_{2}}^{1/\tau_{3}} \xi_{1}(u)\xi_{2}(u) \, du + \tau \int_{1/\tau_{1}}^{1/\tau_{2}} \xi_{1}(u) \, du = I_{21} + I_{22} + I_{23} +$$

where

$$I_{21} \le \tau e^{1-\delta\tau^2/2\tau_1^2} \int_{1/\tau_3}^{\infty} \prod_{j=1}^3 (1+4u^2\tau_j^2)^{-1/4} \, du$$

and

$$\int_{1/\tau_3}^{\infty} \prod_{j=1}^3 (1+4u^2\tau_j^2)^{-1/4} \, du \le \frac{1}{\tau_1}\sqrt{\tau_1/2\tau_2} \le \frac{1}{\tau_1}\sqrt{\lambda_1/2\lambda_2};$$

$$I_{22} \le \tau/\tau_1 \, e^{1-\delta\tau^2/2\tau_1^2}\sqrt{\lambda_1/2\lambda_2} \, \log \lambda_2/\lambda_3; \quad I_{23} \le \tau/\tau_1 \, e^{1-\delta\tau^2/2\tau_1^2}\sqrt{2\lambda_1/2\lambda_2}$$

Theorem 1 follows from (1.12) and the above calculations. \Box

2. Proofs of Lemmas 1 and 2.

The proof of Lemma 1 essentially repeats the proof of Theorem 1 from [10]. However, we present it, because the computations are rather short.

For any $u \ge 0$,

$$\mathbf{P}(Z \le r) = \Lambda(u)\mathbf{E}e^{uZ}\mathbf{I}[\bar{Z} \le r], \qquad (2.1)$$

where $\overline{Z} = Z(u)$ and the random variable Z(u) has the distribution (1.3). Hence

$$\mathbf{P}(Z \le r) = e^{-Q(h)} I(u), \quad I(u) = \mathbf{E}e^{u\sigma(u)Z_0(u)}\mathbf{I}[Z_0(u) \le \frac{r - m(u)}{\sigma(u)}]$$
(2.2)

 $(Z_0(u) \text{ is defined before relation } (1.7)).$

Let h be the solution of Eq. (1.6). Then $I(h) \leq 1$, and (2.2) with u = h implies

$$\mathbf{P}(Z \le r) \le e^{-Q(h)}.\tag{2.3}$$

If $a = \infty$, the lower bound is obvious. Now let $a < \infty$. If m(u) < r (or u > h), then

$$I(u) \ge e^{u (m(u)-r)} \mathbf{P} \left(|Z_0(u)| \le \frac{r - m(u)}{\sigma(u)} \right) \ge e^{u (m(u)-r)} \left(1 - \frac{\sigma^2(u)}{(r - m(u))^2} \right).$$
(2.4)

For $t \ge h$, put $\xi(t) = t (r - m(t))$. Obviously,

$$Q(u) - Q(h) = -\int_{h}^{u} tm'(t)dt = \xi(u) + \int_{h}^{u} (m(t) - m(h))dt \le \xi(u), \quad h \le u < \infty.$$
(2.5)

Denote $\nu = a + \sqrt{a^2 + 2aQ(h)}$. Let u be the solution of the equation $\xi(u) = \nu$ (such a solution exists and is unique, because the function $\xi(t)$ monotonically grows from zero to infinity on $[h, \infty)$). Then, by (2.5) and the choice of ν ,

$$Q(u) \le Q(h) + \xi(u) = Q(h) + \nu, \quad u (r - m(u)) = \xi(u) = \nu,$$
$$\frac{\sigma^2(u)}{(r - m(u))^2} = \frac{u^2 \sigma^2(u)}{\xi^2(u)} \le \frac{a Q(u)}{\nu^2} = \frac{a(Q(h) + \nu)}{\nu^2} = \frac{1}{2}.$$

This, along with (2.2)–(2.4), implies Lemma 1. \Box

Proof of Lemma 2. Let h > 0. From (2.1) and (2.2) it follows that

$$\mathbf{P}(r - s < Z \le r) = e^{-Q(h)} \int_{\gamma}^{\beta} e^{\tau t} F^{(h)}(dt),$$
(2.6)

where $\beta = (r - m(h))/\sigma(h)$, $\gamma = (r - s - m(h))/\sigma(h)$, $\tau = h\sigma(h)$, and $F^{(h)}(t)$ is the distribution function of $Z_0(h)$. Denote $\Delta(t) = F^{(h)}(t) - \Phi(t)$ (where $\Phi(t)$ is the standard normal distribution function). We have

$$\int_{\gamma}^{\beta} e^{\tau t} F^{(h)}(dt) = \int_{\gamma}^{\beta} e^{\tau t} \Phi(dt) + \int_{\gamma}^{\beta} e^{\tau t} \Delta(dt) = I + J.$$
(2.7)

As in [11, (2.4)-(2.8)], we obtain

$$|J| \le c \, \frac{e^{\tau\beta} - e^{\tau\gamma}}{\tau} \, (\delta_{\varepsilon}(h) + \varepsilon \, (1 + \delta_{\varepsilon}(h)) \, (\tau + 1/(\beta - \gamma)).$$

$$(2.8)$$

Now let us consider the integral I. We have

$$\sqrt{2\pi} I = \frac{1}{\tau} e^{\tau\beta} \int_{-\mu}^{0} e^{u - (\beta + u/\tau)^2/2} \, du,$$
(2.9)

where $\mu = \tau(\beta - \gamma) = hs$. Further,

$$e^{-(\beta+u/\tau)^2/2} = e^{-\beta^2/2}(1-4\beta/\tau) + \frac{1}{2}(u/\tau)^2(e^{-t^2/2})'' \Big|_{t=\beta+\theta u/\tau}, \quad 0 < \theta < 1,$$

whence

$$\int_{-\mu}^{0} e^{u - (\beta + u/\tau)^2/2} du = e^{-\beta^2/2} (1 - e^{-\mu} - \frac{\beta}{\tau} \int_{-\mu}^{0} te^t dt) + \frac{\theta_1}{2\tau^2} \int_{-\mu}^{0} t^2 e^t dt$$
$$= (1 - e^{-\mu}) (e^{-\beta^2/2} (1 + \theta_2 \beta/\tau) + \theta_3/\tau^2), \qquad (2.10)$$

where $-1 < \theta_1 < 2e^{-3/2}, \ 0 < \theta_2 < 1, \ |\theta_3| < 1.$ Lemma 2 follows from (2.6)–(2.10). \Box

The research is supported by the Ministry of Education grant E02-1.0-219, RFBR grant 02-01-01099, and the "Leading Scientific Schools" grant NSh-2258.2003.1.

Translated by L. V. Rozovsky.

REFERENCES

- N. C. Jain and W. E. Pruitt, "Lower tail probability estimates for subordinators and nondecreasing random walks," Ann. Probab., 15, No. 1, 76–101 (1987).
- 2. M. A. Lifshits, "On the lower tail probabilities of some random series," Ann. Probab., 25, 424-442 (1997).
- G. N. Sytaja, "Certain asymptotic representations for a Gaussian measure in a Hilbert space," in: Theory of Random Processes [in Russian], No. 2, Naukova Dumka, Kiev (1974), pp. 94–104.
- I. A. Ibragimov, "Hitting probability of a Gaussian vector with values in a Hilbert space in a sphere of small radius," J. Sov. Math., 20, 2164–2174 (1982).
- 5. V. M. Zolotarev, "Asymptotic behavior of the Gaussian measure in l₂," J. Sov. Math., 24, 2330–2334 (1986).
- W. V. Li, "On the lower tail of Gaussian measures on l_p," in: Probability in Banach Spaces, 8, Birkhäuser Boston, Boston (1992), pp. 106–115.
- W. V. Li and W. Linde, "Small ball problems for non-centered Gaussian measures," Probab. Math. Statist., 14, 231–251 (1993).
- J. Kuelbs, W. V. Li, and W. Linde, "The Gaussian measure of shifted balls," *Probab. Theory Related Fields*, 98, 143–162 (1994).
- A. Dembo, E. Mayer-Wolf, and O. Zeitouni, "Exact behavior of Gaussian seminorms," Statist. Probab. Lett., 23, 275–280 (1995).
- L. V. Rozovsky, "On a lower bound for probabilities of large deviations for a sample mean under the Cramér condition," Zap. Nauchn. Semin. POMI, 278, 208–224 (2001).
- L. V. Rozovsky, "Probabilities of large deviations for some classes of distributions satisfying the Cramér condition," Zap. Nauchn. Semin. POMI, 298, 161–185 (2003).