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SMALL DEVIATION PROBABILITIES FOR POSITIVE RANDOM VARIABLES

L. V. Rozovsky∗ UDC 519.21

We deduce two lemmas that seem to be useful while studying small deviation probabilities for positive random
variables. As an example, the so-called small balls problem is examined. Bibliography: 11 titles.

1. Results

Assume that a nonnegative random variable Z takes values in any neighborhood of zero with positive proba-
bility not equal to one.

For u ≥ 0, set
Λ(u) = Ee−uZ , m(u) = − (log Λ(u))′ , σ2(u) = (logΛ(u))′′ ,

Q(u) = −um(u) − log Λ(u).
(1.1)

Recall that
m(u) = EZ(u), 0 < σ2(u) = VarZ(u), (1.2)

where the distribution of the random variable Z(u) ≥ 0 is conjugate to that of Z, i.e.,

P(Z(u) ≤ r) =

r∫

0

e−uydP(Z ≤ y)/Λ(u), r ≥ 0. (1.3)

Note (see [1, Lemma 2.1]) that m(u) is a monotone decreasing function on (0,∞), Q(u) is a monotone increasing
function on (0,∞), and

m(0) = EZ ≤ ∞, m(∞) = 0, Q(0) = 0, Q(∞) = − logP(Z = 0). (1.4)

Lemma 1. For 0 < r ≤ EZ,

e−Q(h) ≥ P(Z ≤ r) ≥ 1
2
e−2a(1+

√
1+2Q(h)/a) e−Q(h), (1.5)

where a = sup
u>0

u2σ2(u)
Q(u) and h is the unique solution of the equation

m(h) = r. (1.6)

Remark 1. Denote ρ(r) = sup
u≥0

(−ur − log Λ(u)). We have ρ(r) = Q(h) provided that 0 < r ≤ EZ < ∞ and

equality (1.6) holds; ρ(0) = Q(∞); ρ(r) = +∞ for r < 0 and ρ(r) = 0 for r > EZ. Thus, using Lemma 1, we
obtain the following inequality, which is now valid for all r:

e−ρ(r) ≥ P(Z ≤ r) ≥ 1
2
e−2a(1+

√
1+2ρ(r)/a) e−ρ(r).

From (1.5) it follows (provided that a �= ∞) that the values P(Z ≤ r) and 1/Q(h) are small simultaneously;
moreover, if Q(h) tends to infinity, then logP(Z ≤ r) is approximately equal to −Q(h). In other words, Lemma 1
allows one to find, under some additional assumptions, the asymptotics of the logarithm of the probability
P(Z ≤ r). The following result is a nice basis for the analysis of the asymptotic behavior of the probability
itself.

Let (see (1.2)) Z0(u) = Z(u)−EZ(u)√
VarZ(u)

, u > 0. Denote

δε(u) =

1/ε∫

0

|EeitZ0(u) − e−t2/2| dt, ε > 0. (1.7)
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Lemma 2. For any positive r, h, s, and ε,

P(r − s < Z ≤ r) = Λ(h)ehr 1− e−h s

τ
√

2π

(
e−β2/2 + θ (β e−β2/2/τ + 1/τ2 + ρε(h, s))

)
, (1.8)

where |θ| is bounded by some absolute constant,

τ = h σ(h), β =
r − m(h)

σ(h)
, ρε(h, s) = δε(h) + (1 + δε(h))(1 + 1

h s ) τε. (1.9)

In particular, if r = m(h), then β = 0 and

P(r − s < Z ≤ r) = e−Q(h) 1 − e−h s

τ
√

2π

(
1 + θ (1/τ2 + ρε(h, s)

)
. (1.10)

Note that (1.8) implies, besides (1.10), that for 0 < r < EZ, h satisfying (1.6), and any δ,

P(Z ≤ r + δ/h) = e−Q(h) eδ

τ
√

2π

(
e−δ2/2τ2

+ θ ((1 + δ e−δ2/2τ2
)/τ2 + ρε(h,∞)

)
. (1.11)

Remark 2. If δ0(h) = lim
ε↘0

δε(h) < ∞, then (1.8) implies that for all positive s

P(r − s < Z ≤ r) = Λ(h)ehr 1 − e−h s

τ
√

2π

(
e−β2/2 + θ (β e−β2/2/τ + 1/τ2 + δ0(h))

)
(1.12)

(and similar corollaries of (1.10), (1.11)). In particular,

dP(Z ≤ r)
dr

= Λ(h)ehr h

τ
√

2π

(
e−β2/2 + θ (β e−β2/2/τ + 1/τ2 + δ0(h))

)
,

i.e., Lemma 2 also allows one to investigate the probabilities of small deviations in the local setting.
Now let us demonstrate that if the parameter τ = h σ(h) is bounded, the function e−Q(h)/τ

√
2π from (1.10)

can give an approximation of the probability P(Z ≤ r) that is not quite satisfactory.
Let Zj , j = 1, 2, . . . , n, be independent random variables with distribution functions Fj(x) such that

Fj(x) = lj(x)xαj , x ↘ 0, (1.13)

where αj are some positive numbers and lj(x) are functions slowly varying at zero. Then for a fixed n,

Pn(r) = P(Z1 + · · ·+ Zn ≤ r) ∼ kn

n∏
j=1

Fj(r), r ↘ 0, (1.14)

where kn =
n∏

j=1

Γ(1 + αj)/Γ(1 + α) and α = α1 + · · · + αn. (One can prove (1.14) by induction, using the

properties of slowly varying functions.)
On the other hand, if Z = Z1 + · · ·+ Zn, then (see (1.1))

Λ(u) =
n∏

j=1

Λj(u), m(u) =
n∑

j=1

mj(u), σ2(u) =
n∑

j=1

σ2
j (u), Q(u) =

n∑
j=1

Qj(u), (1.15)

where
Λj(u) = Ee−uZj , mj(u) = − (logΛj(u))′ , σ2

j (u) = (logΛj(u))′′ ,

Qj(u) = −umj(u) − log Λj(u).
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If condition (1.13) holds, then

Λj(u) ∼ Γ(1 + αj)Fj(1/u), mj(u) ∼ αj/u, σ2
j (u) ∼ αj/u2, u → ∞, (1.16)

whence
um(u) → α, u2σ2(u) → α, u → ∞.

Taking into consideration (1.15), (1.16), and the relation h ∼ α/r, r ↘ 0, following from (1.6), we obtain

e−Q(h)/(hσ(h)
√

2π) = ehr
n∏

j=1

Lj(h)/(hσ(h)
√

2π) ∼ ωαPn(r), r ↘ 0.

Here ωα =
(

e
α

)α Γ(1+α)√
2πα

> 1 for any finite α > 0 (and ωα → 1 as α → ∞). Thus the leading term in the
right-hand side of (1.10) and the asymptotics from (1.14) are indeed different.

In conclusion, we give an example of using relation (1.12).
Let {X} be a centered Gaussian vector taking values in a separable Hilbert space H. Then X =

∑
λ

1/2
j ξjej ,

where {ej} is an orthogonal basis in H, {λj} is a sequence of nonnegative nonincreasing numbers with finite
sum, and ξj are independent standard normal random variables.

Let a =
∑

αjej ∈ H, where
∑

α2
j < ∞, and r > 0. We are interested in estimates of the probabilities

P(r − s < Z ≤ r), where Z = ||X − a||2 =
∑

(λ1/2
j ξj − αj)2.

For γ > 0, denote (see [2])

Λ(γ) = E exp (−γZ) =
∏

(1 + 2γλj)−1/2 exp (−γα2
j/(1 + 2γλj)),

m(γ) =
∑

j

(
λj

1 + 2γλj
+

α2
j

(1 + 2γλj)2

)
,

σ2(γ) =
∑

j

σ2
j =

∑
j

(
2λ2

j

(1 + 2γλj)2
+

4λjα
2
j

(1 + 2γλj)3

)
.

(1.17)

Theorem 1. Let λ3 > 0. Then for any r, s > 0 and γ > 0,

P(r − s < ||X − a||2 ≤ r) = Λ(γ)eγr 1 − e−γ s

γ σ(γ)
√

2π

(
e−β2/2 + θ ((γ σ(γ))−1 + (γ σ(γ))−2)

)
, (1.18)

where β = (r − m(γ))/σ(γ), |θ| ≤ c
√

λ1/λ2 (1 + log (λ2/λ3)), and c is an absolute constant.

Recall that if γ is the solution of the equation m(γ) = r, then β = 0.
Note that Theorem 1 allows one to refine known general results on the asymptotic behavior of the probability

that a Gaussian vector from a Hilbert space hits a sphere of small radius (see, for example, [3–9], and also
Theorem 4 of [2]).

Proof of Theorem 1. Let Z = ||X − a||2 in (1.12). Then (see (1.2), (1.3), (1.7), and [2, p. 441]) the random
variable Z(γ) has the same distribution as

∑
(β1/2

j ξj −ωj)2 with βj = λj/(1+2γλj ), ωj = αj/(1+2γλj). Hence

EeitZ(γ) =
∏

(1 − 2itβj)−1/2 exp (itω2
j /(1− 2itβj)). (1.19)

Set (see (1.17)) f(t) = E exp (it(Z(γ) −m(γ))/σ(γ)) and τj = γβj . Keeping in mind that in the case under
consideration EZ(γ) = m(γ) and VarZ(γ) = σ2(γ), (1.19) implies, by standard arguments, that

log f(t) = −t2/2 + θ(t/τ)3
∑

τjγ
2σ2

j = −t2/2 + θt3/τ, |t| ≤ ετ,

where τ = γ σ(γ), |θ| ≤ c, and c, ε are absolute positive constants. It follows that

ετ∫

0

|f(t) − e−t2/2| dt ≤ c1/τ.
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Now let us estimate I =
∞∫
ετ

|f(t)| dt. We have I = τ
∞∫
ε

∏
ξj(u) du, where

ξj(u) = (1 + 4u2τ2
j )−1/4 exp (−2 u2τjγω2

j /(1 + 4u2τ2
j )).

Using the equality σ2
j = 2β2

j + 4βjω
2
j (see (1.17)), it is easy to prove that for δ = 1/10,

ξj(u) ≤ exp (−δu2γ2σ2
j ), uτj ≤ 1,

ξj(u) ≤(e/(1 + 4u2τ2
j ))−1/4 exp (−δγ2σ2

j /τ2
j ), uτj ≥ 1.

(1.20)

Choose a positive integer n satisfying the condition

n∑
j=1

σ2
j ≥ σ2/2 >

n−1∑
j=1

σ2
j

and set

I =
(

τ

1/τn∫

ε

+τ

∞∫

1/τn

) ∏
ξj(u) du = I1 + I2.

With the help of (1.20) we obtain

I1 ≤ τ

1/τn∫

ε

∏
j≥n

ξj(u) du ≤ τ

∞∫

ε

e−δu2γ2σ2/2du ≤ c/τ2.

Now let us estimate I2. We have to consider three cases: n = 1, n = 2, and n ≥ 3. Let us restrict ourselves to
the most general first case. Bearing in mind (1.20) and the inequality τj ≥ τn for j ≤ n, we obtain

I2 ≤ τ

∞∫

1/τ3

ξ1(u)ξ2(u)ξ3(u) du + τ

1/τ3∫

1/τ2

ξ1(u)ξ2(u) du + τ

1/τ2∫

1/τ1

ξ1(u) du = I21 + I22 + I23,

where

I21 ≤ τe1−δτ2/2τ2
1

∞∫

1/τ3

3∏
j=1

(1 + 4u2τ2
j )−1/4 du

and ∞∫

1/τ3

3∏
j=1

(1 + 4u2τ2
j )−1/4 du ≤ 1

τ1

√
τ1/2τ2 ≤ 1

τ1

√
λ1/2λ2;

I22 ≤ τ/τ1 e1−δτ2/2τ2
1
√

λ1/2λ2 log λ2/λ3; I23 ≤ τ/τ1 e1−δτ2/2τ2
1
√

2λ1/2λ2.

Theorem 1 follows from (1.12) and the above calculations. �

2. Proofs of Lemmas 1 and 2.

The proof of Lemma 1 essentially repeats the proof of Theorem 1 from [10]. However, we present it, because
the computations are rather short.

For any u ≥ 0,
P(Z ≤ r) = Λ(u)EeuZ̄I[Z̄ ≤ r], (2.1)

where Z̄ = Z(u) and the random variable Z(u) has the distribution (1.3). Hence

P(Z ≤ r) = e−Q(h) I(u), I(u) = Eeuσ(u)Z0(u)I[Z0(u) ≤ r − m(u)
σ(u)

] (2.2)
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(Z0(u) is defined before relation (1.7)).
Let h be the solution of Eq. (1.6). Then I(h) ≤ 1, and (2.2) with u = h implies

P(Z ≤ r) ≤ e−Q(h). (2.3)

If a = ∞, the lower bound is obvious. Now let a < ∞. If m(u) < r (or u > h), then

I(u) ≥ eu (m(u)−r)P
(
|Z0(u)| ≤ r − m(u)

σ(u)

)
≥ eu (m(u)−r)

(
1 − σ2(u)

(r − m(u))2

)
. (2.4)

For t ≥ h, put ξ(t) = t (r − m(t)). Obviously,

Q(u) − Q(h) = −
u∫

h

tm′(t)dt = ξ(u) +

u∫

h

(m(t) −m(h))dt ≤ ξ(u), h ≤ u < ∞. (2.5)

Denote ν = a +
√

a2 + 2aQ(h). Let u be the solution of the equation ξ(u) = ν (such a solution exists and is
unique, because the function ξ(t) monotonically grows from zero to infinity on [h,∞)). Then, by (2.5) and the
choice of ν,

Q(u) ≤ Q(h) + ξ(u) = Q(h) + ν, u (r − m(u)) = ξ(u) = ν,

σ2(u)
(r −m(u))2

=
u2σ2(u)
ξ2(u)

≤ a Q(u)
ν2

=
a(Q(h) + ν)

ν2
=

1
2
.

This, along with (2.2)–(2.4), implies Lemma 1. �
Proof of Lemma 2. Let h > 0. From (2.1) and (2.2) it follows that

P(r − s < Z ≤ r) = e−Q(h)

β∫

γ

eτt F (h)(dt), (2.6)

where β = (r − m(h))/σ(h), γ = (r − s − m(h))/σ(h), τ = hσ(h), and F (h)(t) is the distribution function of
Z0(h). Denote ∆(t) = F (h)(t) − Φ(t) (where Φ(t) is the standard normal distribution function). We have

β∫

γ

eτt F (h)(dt) =

β∫

γ

eτt Φ(dt) +

β∫

γ

eτt ∆(dt) = I + J. (2.7)

As in [11, (2.4)–(2.8)], we obtain

|J | ≤ c
eτβ − eτγ

τ
(δε(h) + ε (1 + δε(h)) (τ + 1/(β − γ)). (2.8)

Now let us consider the integral I. We have

√
2π I =

1
τ

eτβ

0∫

−µ

eu−(β+u/τ)2/2 du, (2.9)

where µ = τ(β − γ) = hs. Further,

e−(β+u/τ)2/2 = e−β2/2(1 − 4β/τ) +
1
2
(u/τ)2(e−t2/2)′′

∣∣∣∣
t=β+θu/τ

, 0 < θ < 1,

4565



whence

0∫

−µ

eu−(β+u/τ)2/2 du = e−β2/2(1 − e−µ − β

τ

0∫

−µ

tet dt) +
θ1

2τ2

0∫

−µ

t2et dt

= (1 − e−µ)(e−β2/2(1 + θ2β/τ) + θ3/τ2), (2.10)

where −1 < θ1 < 2e−3/2, 0 < θ2 < 1, |θ3| < 1.
Lemma 2 follows from (2.6)–(2.10). �
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