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MINIMAX DETECTION OF A SIGNAL IN THE HETEROSCEDASTIC GAUSSIAN WHITE
NOISE

M. S. Ermakov∗ UDC 519.21

We consider the problem of signal detection in the heteroscedastic Gaussian white noise when the set of alternatives
is essentially nonparametric. In this setting, we find a family of asymptotically minimax tests. The results are
extended to the case of testing a parametric hypothesis against nonparametric sets of alternatives. Bibliography: 8
titles.

1. Introduction and main results

Assume that we observe a realization of the random process Y (t), t ∈ (0, 1), defined by the stochastic
differential equation

dY (t) = S(t)dt + εq(t)dw(t), ε > 0, (1)

where dw(t) is the Gaussian white noise and q(t) is a weight function. The noise q(t)dw(t) is usually called
the heteroscedastic Gaussian white noise (see [2, 6]). This model naturally arises in the theory of statistical
inferences. One can show the local asymptotic equivalence of this model and the models of statistical inferences
about the density and regression (see [1, 8]). Problems of estimation in the heteroscedastic Gaussian white noise
were analyzed in [2, 6]. Problems of nonparametric hypothesis testing for this model were not studied, though
similar models were investigated in another setting (see [4, 5]). The goal of this paper is to show that the results
do not essentially differ from the case q(t) = 1 studied in [3].

Assume that

S(t) =
∞∑

j=1

sjφj(t), S = {sj}∞1 ∈ U =
{

S = {sj}∞1 ,
∞∑

j=1

ajs
2
j ≤ P0, sj ∈ R1

}
, (2)

where φj(t) is an orthonormal system of functions in L2(0, 1) and P0 > 0 and aj > 0 are given numbers. In the
case of the trigonometric system of functions and a2j = a2j+1 = 1+(2πj)2β , β > 0, this information corresponds
to the assumption that the signal belongs to a ball in the Sobolev space.

The problem is to test the hypothesis H0 : S(t) = 0, t ∈ (0, 1), against the alternatives

S ∈ Vε = {S : ||S||2 > ρε, S ∈ U}, (3)

where ||S||22 =
∞∑

j=1
θ2
j . We suppose that ρε → 0 as ε → 0.

For any test Mε, denote by αε(Mε) its type I error probability and by βε(Mε, θ) its type II error probability
for an alternative θ ∈ Vε. Set βε(Mε) = sup

S∈Vε

βε(Mε, S).

We say that a family of tests Kε with type I error probabilities α(Kε) = α, 0 < α < 1, is asymptotically
minimax if for any family of tests Mε with α(Mε) ≤ α,

lim sup
ε→0

{βε(Kε) − βε(Mε)) ≤ 0.

Our results are obtained under the following assumptions (cf. [4]).

(A1) The sequence aj is increasing, and there exists δ > 0 such that aj/jδ → ∞ as j → ∞.
(A2) There exists c, 0 < c < 1, such that

lim inf
t→∞

Z(ct)
Z(t)

> 0. (4)
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Here Z(t) stands for the number of elements {aj : aj < t, 1 ≤ j < ∞}.
It follows from (A2) that there exists γ > 0 such that aj < Cjγ .

(A3) sup{at+1/at : t > j} → 1 as j → ∞.

(A4) There exists C > 0 such that for all j

sup{|φj(x)| : x ∈ (0, 1)} ≤ C < ∞.

For any p, h ∈ L2(0, 1) and any j, j1, denote

(p, h) =

1∫

0

ph dx, pj = (p)j = (p, φj), pjj1 = (pφj)j1 .

(A5) 0 < c < q(x) < C < ∞ for all x ∈ (0, 1).

(A6) There exist τ > 1
2 and C > 0 such that for all j

∞∑

r=1

|j − r|2τ(q)2jr < C, (5)

∞∑

r=1

|j − r|2τ(q2)2jr < C. (6)

In [4], we pointed out that (6) can be replaced by simpler sufficient assumptions.
Denote by Φ(x) the distribution function of the standard normal distribution. For z ∈ R1, set (z)+ = max(z, 0)

and denote by [z] the integer part of z. For an event D, denote by χ(D) the indicator of this event. Let C, c
denote positive constants.

Consider the sequence κ2
j = κ2

jε = (λ1 − λ2aj)+, where λ1 and λ2 are determined by the equations

∞∑

j=1

κ2
j ||q2φj||2 = ρε, (7)

∞∑

j=1

ajκ
2
j ||q2φj||2 = P0. (8)

Set k = kε = max{j : κj �= 0} and

Aε = ε−4
k∑

1

κ4
j ||q2φj||2. (9)

Consider the test statistics

Tε(Yε) = ε−2
k∑

1

κ2
j








1∫

0

φj(t)dYε(t)




2

− ε2(q2)jj



 .

Define the tests
Kε(Yε) = χ(ε−2Tε(Yε) > (2Aε)1/2xα),

where xα is the critical value of Kε.
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Theorem 1. Assume that conditions (A1)–(A6) hold. Then the family of tests Kε, 0 < C1 < αε = α(Kε) <
C2 < 1, is asymptotically minimax. Let

0 < lim inf
ε→0

Aε ≤ lim sup
ε→0

Aε < ∞. (10)

Then xαε can be defined by the equation αε = 1 −Φ(xαε) and

βε(Kε) = Φ(xαε − (Aε/2)1/2)(1 + o(1)) (11)
as ε → 0.

Remark 1. In the case of the trigonometric system of functions, the multipliers ||q2φj ||2 in (7)–(9) vanish and
are replaced by 1

2 ||q2||2. This is due to the identity sin2(2πjt) + cos2(2πjt) = 1.

Remark 2. A similar setting was considered in [4] for the problem of nonparametric testing of hypotheses on
the density. Assume that we have a sample X1, . . . , Xn of independent identically distributed random variables
with density f(x). It is known that

f(x) = p(x) + q(x)
∞∑

j=1

θjφj(x).

One needs to test the hypothesis H0 : f = p against the alternatives Hεθ ∈ Vε, where Vε is defined by (3). In
this setting, the result is similar. The main difference is that ||q2φj||2 in (7)–(9) is replaced in [4] by ||pq−2φj||2.

In fact, Theorem 1 holds for a much wider set of alternatives

V ε =
{

S :
∞∑

j=1

κ2
jεs

2
j > ρε, S = {sj}∞1

}
(12)

with {κjε}∞1 satisfying rather weak assumptions.
Assume that for each ε > 0, we are given a sequence {κjε}∞1 satisfying the following assumptions.

(B1) For each ε > 0, the sequence κ2
jε is decreasing.

(B2) Relation (10) holds, and

lim
ε→0

∞∑

j=1

κ2
jε = 0.

The definition of Aε coincides with (9).
Define

kε = sup




k :
∑

j≤kε

κ2
jε ≤

1
2

∞∑

j=1

κ2
jε




 .

(B3) For any δ > 0,

lim
ε→0

sup
δkε<j<δ−1kε

∣∣∣∣∣
κ2

jε

κ2
j+1,ε

− 1

∣∣∣∣∣ = 0.

(B4)

lim
δ→0

lim
ε→0

∑
δkε<j<δ−1kε

κ2
jε||q2φj||2

∞∑
j=1

κ2
j,ε||q2φj||2

= 1, (13)

lim
δ→0

lim
ε→0

ε−4A−1
ε

∑

δkε<j<δ−1kε

κ4
jε‖q2ϕj‖ = 1. (14)

Theorem 2. Assume that conditions (B1)–(B4), (A4)–(A6) hold. Then the family of tests Kε is asymptotically
minimax in the problem of testing the hypothesis H0 : S = 0 against the alternatives Hε : S ∈ V ε. If
0 < α(Kε)(1 + o(1)) = α < 1, then the critical value xα is determined by the equation α = 1 − Φ(xα) and

βε(Kε) = Φ(xα − (Aε/2)1/2)(1 + o(1))
as ε → 0.

The proof of Theorem 2 is omitted, since it is essentially a slight modification of the proof of Theorem 1.
Similar results hold for the problem of testing parametric hypotheses against nonparametric sets of alterna-

tives.
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2. The problem of testing a parametric hypothesis
against nonparametric sets of alternatives

Assume that we need to test the hypothesis H0 : S(t) = S(t, θ), θ ∈ Θ, agaist the nonparametric sets of
alternatives

S ∈ Ṽε =
{

S : inf
θ∈Θ

||S − S(θ)|| > ρε, S ∈ Ũε

}
, (15)

where

Ũε =
{

S : S(t) = S(t, θ) +
∞∑

j=1

sjφj(t),
∞∑

j=1

ajs
2
j ≤ P0

}
.

Assume that Θ is an open bounded set in Rd.
We say that a family of tests Mε, where αθ(Mε) = EθMε ≤ α, 0 < α < 1, θ ∈ Θ, is uniformly asymptotically

minimax for the set of alternatives Ṽε if the family of tests Mε is asymptotically minimax for each fixed θ ∈ Θ
in the problem of testing the simple hypothesis S = S(s, θ) against the alternatives S ∈ Ṽε.

Denote β(Kε, θ) = sup{β(Kε, S), S ∈ Ṽε}.
We make the following assumptions.

(D1) For all θ1, θ2 ∈ Θ, θ1 �= θ2, the inequality ||S(θ1) − S(θ2)|| �= 0 holds.
Assume that the signal S(t, θ) is continuously differentiable with respect to θ ∈ Θ and denote by Sθi (t, θ) =

∂S(t,θ)
∂θi

, 1 ≤ i ≤ d, its partial derivatives. Set Sθ(t, θ) = {Sθi(t, θ)}d
1.

Given vectors u, v ∈ Rd, denote their inner product by u′v.
(D2) There exists ω > 0 such that for all θ1, θ2 ∈ Θ

||S(θ2) − S(θ1) − S′
θ(θ1)(θ2 − θ1)||2 < C|θ1 − θ2|2+ω.

(D3) There exists C > 0 such that ||Sθi(·, θ)||2 < C for all 1 ≤ i ≤ d and θ ∈ Θ. The relation

(Sθi (·, θ)q2)j → 0 as j → ∞ (16)

holds uniformly in θ ∈ Θ.
(D4) There exists a functional θ : L2(0, 1) → Θ such that θ(S) → θ as ||S − S(θ)|| → 0 uniformly in θ ∈ Θ.
(D5) There exists an estimator θ̂ε such that for any δ > 0

PS(|θ̂ε − θ(S)| > δε2/κ) = o(1)

uniformly in S ∈ Ṽε. Here κ = max{κj, 1 ≤ j < ∞}.
By Lemma 3.1 of [4], κ2 = O(ε2k−1/2). Thus, using (D5), we can obtain estimates of large deviation prob-

abilities for θ̂ε. Note that these probabilities are considered for S not from the parametric set. In statistical
inference, the estimator θ̂(Yε) can be interpreted as a functional θ(S) defined on a set including the realizations
of Yε corresponding to the set of all possible signals S, and we can consider large deviation probabilities of
θ̂(Yε)− θ(S) for all possible S. Note that in the similar assumption D4 in [5], the estimates of |θ̂ε − θ(S)| can be
replaced by the more natural assumption that

PS(|θ̂ε − θ(S)| > δε2/(2+ω)) = o(1)

uniformly in S ∈ Ṽε. Here the value of ω > 0 is defined in [5]. One can made a similar change in condition E3
from [5].

(D6) There exists a function γ such that γ(u) → 0 as u → 0 and
∞∑

j=1

aj(sj(θ1) − sj(θ2))2 ≤ γ(|θ1 − θ2|).

Let us introduce the test statistics

T (Yε, θ̂ε) = ε−2
∞∑

j=1

κ2
j








1∫

0

φj(t)(dYε(y) − S(t, θ̂ε)dt)




2

− ε2(q2)jj



 ,

where κ2
j are defined as in Theorem 1.

We define the family of tests Kε = χ(ε−2T (Yε, θ̂ε) > xα(Aε)1/2), where xα is the solution of the equation α =
1 − Φ(xα).
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Theorem 3. Assume that conditions (A1)–(A6), (D1)–(D6), and (10) hold. Then the family of tests Kε is
asymptotically minimax and

β(Kε) = Φ(xα − (Aε/2)1/2)(1 + o(1))

as ε → 0.

3. Proof of Theorem 1

Consider the matrix Q={qij}∞i,j=1 and the matrix Λ = Λε = {λij}∞ij=1, where λij = κ2
j if i = j and λij = 0 if

i �= j. Here κ2
j = (λ1δ − λ2δaj)+, where the parameters λ1δ and λ2δ are defined by the equations

∞∑

j=1

κ2
j ||q2φj||2 = (1 + δ)ρε,

∞∑

j=1

ajκ
2
j ||q2φj||2 = (1 − δ)P0,

with 0 < δ < 1. Consider the vector ξ = {ξj}∞j=1, where ξj, 1 ≤ j < ∞, are independent Gaussian random
variables with Eξj = 0, Eξ2

j = 1.
In this notation, Eq. (1) has the following form:

Y = S + εQξ,

where S = {sj}∞1 , Y = {yj}∞1 , and yj =
1∫
0

φjdYε.

The proof of the lower bound is based on the well-known fact that the Bayes risk does not exceed the minimax
risk. We define a family of Bayes tests and show that the minimax risk is attained at this family.

Consider the Gaussian random vector ζ = {ζj}∞1 consisting of independent Gaussian random variables ζj

with Eζj = 0, Eζ2
j = 1 and the Gaussian random vector

η = ηεδ = {ηj}∞1 = Q2Λ1/2ζ.

Denote by µεδ the probability measure of the random vector ηεδ. Define a Bayesian prior probability measure
νε,δ as the conditional distribution of ηεδ given ηεδ ∈ Qε.

Lemma 1. For any δ > 0,
lim
ε→0

P (ηε ∈ Qε) = 1. (17)

Proof. The lemma follows from the Chebyshev inequality and the following relations:

E

( ∞∑

j=1

η2
j

)
=

∞∑

j=1

∞∑

k=1

(q2)jkκ2
j(q

2)kj =
∞∑

j=1

κ2
j ||q2φj ||2(1 + o(1)), (18)

E




∞∑

j=1

ajη
2
j



 =
∞∑

j=1

ajκ
2
j ||q2φj ||2(1 + o(1)), (19)

Var




∞∑

j=1

η2
j



 = 2
∞∑

j,t=1

( ∞∑

k=1

(q2)jkκ2
j(q

2)kt

)2

= 2
∞∑

j,t=1

((q4)jt)2κ4
t (1 + o(1)) = 2

∞∑

j=1

κ4
j ||q4φj ||2(1 + o(1)), (20)

and

Var




∞∑

j=1

ajη
2
j



 = 2
∞∑

j,t=1

( ∞∑

k=1

(q2)jkajκ
2
j(q

2)kt

)2

= 2
∞∑

j,t=1

((q4)jt)2a2
tκ

4
t (1 + o(1)) = 2

∞∑

j=1

a2
jκ

4
j ||q4φj||2(1 + o(1)). (21)

The detailed proof of (18)–(21) is similar to the estimates of Lemma 2.2 from [4] and is omitted. �
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It follows from Lemma 1 that in further arguments, the Bayesian a priori probability measures νε can be
replaced by the probability measures µε (see [3, 5]). Thus it suffices to solve the problem for µε.

By (A5), the matrix Q has the inverse matrix Q−1. Set Λ−1 =
{
λ−1

ij

}∞
i,j=1

, where we assume that 0−1 = 0.
Denote by I : L2(0, 1) → L2(0, 1) the identity operator.
The Bayesian a posteriori likelihoood ratio for the a priori distribution µεδ equals

C

∫
exp

{
− 1

2ε2
(Y − S)′Q−2(Y − S) − 1

2
S′Q−2Λ−1Q−2S +

1
2
Y ′Q−2Y

}
dµεδ

= C

∫
exp

{
1

2ε2
Y ′Q−2S − 1

2
S′(ε−2Q−2 + Q−2Λ−1Q−2S

}
dµεδ

= C

∫
exp

{
− 1

2ε2
||(I + ε2Q−1Λ−1Q−1)−1/2Q−1Y − (I + ε2Q−1Λ−1Q−1)1/2Q−1S||2

}
dµεδ

× exp
{
− 1

2ε2
Y ′Q−1(I + ε2Q−1Λ−1Q−1)−1Q−1Y

}

= C exp
{
− 1

2ε2
Y ′Q−1(I + ε2Q−1Λ−1Q−1)−1Q−1Y

}
.

(22)

Therefore, as a Bayesian statistics we can take

T a
ε (Y ) = Y ′Q−1(I + ε2Q−1Λ−1Q−1)−1Q−1Y.

Let us show that the difference between T a
ε (Y ) and Tε(Y ) is negligible. Denote Wε = ε−4Y ′ΛQΛQY . We have

|T a
ε (Y ) − Tε(Y ) − E0[Wε]| < |Wε − E0[Wε]|. (23)

Straightforward calculations yield

E0[Wε] = ε−4
∞∑

j,i,l=1

(q2)jiκ
2
jqjlκ

2
l qli = ε−4

∞∑

j,l=1

(q3)jlκ
2
jqjlκ

2
l = ε−4

∞∑

j=1

κ4
j(q

4)jj(1 + o(1)), (24)

Var0[Wε] = ε−8
∞∑

j,i,l,j1,l1,i1=1

(q2)jj1κ
2
jqjlκ

2
l qliκ

2
j1qj1l1κ

2
l1ql1i1(q

2)ii1

+ε−8
∞∑

j,i,l,j1,l1,i1=1

(q2)ji1κ
2
jqjlκ

2
l qliκ

2
j1qj1l1κ

2
l1ql1i1(q

2)j1i = ε−8
∞∑

j,l,j1,l1,1=1

(q2)jj1κ
2
jqjlκ

2
l κ

2
j1qj1l1κ

2
l1(q

4)ll1

+ε−8
∞∑

j,l,j1,l1,1=1

(q3)jl1κ
2
jqjlκ

2
l κ

2
j1

qj1l1κ
2
l1

(q3)j1l = 2ε−8
∞∑

l,l1=1

(q4)2ll1κ4
l κ

4
l1

(1 + o(1))

≤ 2ε−8κ4
∞∑

l=1

||q4φl||2κ4
l (1 + o(1)) = o(1), (25)

Eη[Wε] = E0[Wε] + ε−4
∞∑

i,j,l,m=1

(q2)ijκ
4
jqjlκ

2
l qlm(q2)mi = E0[Wε]

+ε−4
∞∑

j,l=1

(q5)ljκ
4
jqjlκ

2
l = E0[Wε] + O



ε−4
∞∑

j=1

κ6
j



 = E0Vε + o(1). (26)

Varη[Wε] = Var0[Wε] + 2ε−8Sp [Q2ΛQ2ΛQΛQQ2ΛQ2ΛQΛQ] + 2ε−8Sp [Q2ΛQΛQQ2ΛQ2ΛQΛQ]

≤ Var0[Wε] + 2ε−8(sup
t

q12(t)Sp [Λ6] + sup
t

q10(t)Sp [Λ5]) = o(1). (27)

Here Sp [A] denotes the trace of an operator A.
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By (24)–(27) and the Chebyshev inequality, we obtain

|T a
ε (Y ) − Tε(Y ) −E0Vε| < |Vε − E0Vε| = oP (1), (28)

both in the case of the hypothesis and a Bayesian alternative.
In the case of alternative, we have

Y ′ΛY =
∞∑

j,k,l=1

(sj + qjkζk)κ2
j (sj + qjlζl) =

∞∑

j=1

s2
jκ

2
j + 2

∞∑

j=1

κ2
jsj

∞∑

j=1

qjkζk

+
∞∑

j=1

∞∑

k=1

qjkζkκ2
j

∞∑

i=1

qjiζi = J1(S) + J2(S) + J3 = J1 + J2 + J3. (29)

Straightforward calculations yield
Eθ[J2] = 0, E0[J2] = 0,

E0[J3] = ε2
∞∑

j,l=1

κ2qjlqlj = ε2
∞∑

j=1

κ2
j (q

2)jj,

Varθ[J2] = 4
∞∑

j,i,l=1

κ2
jθjqjiqilθlκ

2
l = 4

∞∑

j,l=1

κ2
jθj(q2)jlθlκ

2
l

≤ 4
∞∑

j=1

κ2
j |θj |

( ∞∑

l=1

κ4
l θ

2
l

)1/2

||q2φj|| ≤ 4Cκ2k1/2
∞∑

j=1

κ2
jθ

2
j ||q2φj|| = o




∞∑

j=1

κ2θ2
j ||q2φj||



 , (30)

Var0[J3] = Var0Y ′ΛY = 2
∞∑

j,i,l,m=1

κ2
jqjiqilκ

2
l (q

2)lmqmj

= 2
∞∑

j,l=1

κ2
jκ

2
l (q

2)2jl = 2
∞∑

j=1

κ4
j ||q2φj||2(1 + o(1)) = 2Aε(1 + o(1)). (31)

In the case of a Bayesian alternative, we obtain

ε−2Eη[Y ′ΛY ] = Aε(1 + o(1)) +
∞∑

j=1

κ2
j(q

2)jj,

ε−4Varη[Y ′ΛY ] = 2Aε + 4ε−4
∞∑

j=1

κ6
j(q

2)jj = 2Aε(1 + o(1)).

Note that

ε−4Varη[J2] = 4ε−4
∞∑

j=1

κ6
j (q

2)jj.

Since
Varθ[J2] = o(J2

1 ), Var [J3] = 2Aε(1 + o(1)) = O(J1),

it follows from the Chebyshev inequality that β(Kε, Sε) → 0 as ε → 0 provided that J1(Sε) → ∞ as ε → 0.
Thus, to prove Theorem 1, it suffices to show that the distribution of the statistics J3 is asymptotically normal.

This proof is similar to that of Lemma 3.7 in [4] and is omitted. �
Proof of Theorem 3. We begin with the proof of the lower bound. We have

T 1/2
ε (Yε − S(θ̂)) ≤ T 1/2

ε (Yε − S) + T 1/2
ε (S − S(θ(S))) + T 1/2

ε (S(θ(S)) − S(θ̂)). (32)
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The distribution of the statistics Tε(Yε −S) coincides with the distribution of the statistics Tε(Yε) in the case of
the zero hypothesis in the setting of Theorem 1.

We have

Tε(S − S(θ(S))) = ε−2
∞∑

j=1

κ2
j (sj − sj(θ(S)))2

≥ ε−2λ1

k∑

j=1

(sj − s(θ(S)))2 − ε−2λ2

k∑

j=1

aj(sj − s(θ(S)))2 = Γ1 − Γ2 = Γ, (33)

where sj(θ) = (S(θ))j . Now let us obtain an upper estimate for Γ2. Assume that

||S − S(θ(S))|| = o(1). (34)

Otherwise Aε = o(ε−2Tε(S − S(θ(S)))) and βε(Kε, S) → 0 as ε → 0.
Let θ̃ be such that ∞∑

j=1

aj(sj − sj(S(θ̃)))2 ≤ P0. (35)

Then ∣∣∣∣∣∣

∞∑

j=1

aj(sj − sj(θ(S)))2 −
∞∑

j=1

aj(sj − sj(θ̃(S)))2

∣∣∣∣∣∣

≤
( ∞∑

j=1

aj(sj−sj (θ(S))+sj −sj(θ̃(S)))2
)1/2( ∞∑

j=1

aj(sj(θ(S))−sj (θ̃(S)))2
)1/2

≤ 2P
1/2
0




∞∑

j=1

aj(sj(θ(S)) − sj(θ̃(S)))2




1/2

≤ 2P
1/2
0 γ1/2(|θ̃ − θ(S)|) = o(1), (36)

where the latter equality follows from (34) and (D4), (D6).
It follows from (33), (35), and (36) that

Γ ≥ ε−2λ1ρε − ε−2λ2P0(1 + o(1)) ≥ ε2Aε. (37)

We have

Tε(S(θ̂) − S(θ(S)) = ε−2
∞∑

j=1

κ2
j (sj(θ̂) − sj(θ(S)))2 ≤ ε−2κ2||S(θ̂) − S(θ(S))||2

≤ ε−2
(
κ||S(θ̂)−S(θ(S))−(θ̂ − θ(S))′Sθ(θ(S))||+κ|θ̂−θ(S)|||Sθ(θ(S))||

)2

≤ Cε−2κ2|θ̂ − θ(S)|2 = oP (ε2), (38)

where the latter equality follows from (D5).
It follows from (32), (33), (37), and (38) that β(KεS) ≤ βε(Kε)(1 + o(1)) for every S ∈ Ṽε.
The proof of the lower bound uses the same arguments as in [5]. Denote by µεδ the probability measure of

the random process S(θ0) + ηε. Set
ρηε = inf

θ
||S(θ0) + ηε − S(θ)||2.

Then the lower bound follows from the lemma given below.

Lemma 2.
ρηε

ρε
→ 1 + δ (39)

in probability as ε → 0.

The proof of Lemma 2 is similar to the proof of (4.26) in [5]. The main difference is that the smoothing kernel
is replaced by the delta function.
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Denote θ̃ε = arg minθ ||S(θ0) + ηε − S(θ)||. Since ||ηε||2 = ρε(1 + oP (1)) as ε → 0, it follows by (D1)–(D3)
that θ̃ε − θ0 = oP (1). Hence, arguing similarly to (4.50)–(4.59) in [5] and using (D1)–(D3), we obtain

ρηε = ||ηε||2(1 + o(1)) + 2

1∫

0

(θ̃ − θ0)′Sθ(t, θ0)ηε(t)dt + ||(θ̃ − θ0)′Sθ(t, θ0)||2(1 + o(1)).

Hence we will prove (39) if we show that

1∫

0

Sθi (t, θ0)ηε(t)dt = oP (ρ1/2
ε ) (40)

for 1 ≤ i ≤ d.
By (16), we obtain

E




1∫

0

Sθiηεdt




2

=
∞∑

j=1

κ2
j(Sθiq

2)2j = o(ρε).

This implies (39) and (40).
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