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MINIMAX DETECTION OF A SIGNAL IN THE HETEROSCEDASTIC GAUSSIAN WHITE
NOISE

M. S. Ermakov* UDC 519.21

We consider the problem of signal detection in the heteroscedastic Gaussian white noise when the set of alternatives
is essentially nonparametric. In this setting, we find a family of asymptotically minimazx tests. The results are
extended to the case of testing a parametric hypothesis against nonparametric sets of alternatives. Bibliography: 8
titles.

1. INTRODUCTION AND MAIN RESULTS

Assume that we observe a realization of the random process Y (¢), ¢ € (0,1), defined by the stochastic
differential equation
dY (t) = S(t)dt + eq(t)dw(t), €>0, (1)

where dw(t) is the Gaussian white noise and ¢(t) is a weight function. The noise ¢(t)dw(t) is usually called
the heteroscedastic Gaussian white noise (see [2, 6]). This model naturally arises in the theory of statistical
inferences. One can show the local asymptotic equivalence of this model and the models of statistical inferences
about the density and regression (see [1, 8]). Problems of estimation in the heteroscedastic Gaussian white noise
were analyzed in [2, 6]. Problems of nonparametric hypothesis testing for this model were not studied, though
similar models were investigated in another setting (see [4, 5]). The goal of this paper is to show that the results
do not essentially differ from the case ¢(¢) = 1 studied in [3].
Assume that

S(t) = Zsj%(t)» S={s;}"elU= {5 = {s;}3°, D _a;s] <P, s, € Rl}, (2)

=1

where ¢;(t) is an orthonormal system of functions in L2(0,1) and Py > 0 and a; > 0 are given numbers. In the
case of the trigonometric system of functions and az; = asj+1 = 1+ (275)%%, 3 > 0, this information corresponds
to the assumption that the signal belongs to a ball in the Sobolev space.

The problem is to test the hypothesis Hy: S(t) =0, t € (0, 1), against the alternatives

SeVe={5:]Sll2>pc,5 €U}, (3)

o0
where [|9]|3 = Zl 07. We suppose that p. — 0 as € — 0.
=

For any test M., denote by a.(M.) its type I error probability and by 8.(M., 6) its type II error probability
for an alternative 6 € V. Set G.(M.) = sup B.(M,, S).
SeVe

We say that a family of tests K. with type I error probabilities a(K.) = a, 0 < a < 1, is asymptotically

minimaz if for any family of tests M, with a(M) < «,

limsup{ﬁe(Ke) - Be(Me)) S 0.

e—0

Our results are obtained under the following assumptions (cf. [4]).

(A1) The sequence a; is increasing, and there exists § > 0 such that a;/j° — o0 as j — oo.
(A2) There exists ¢, 0 < ¢ < 1, such that

.. Z(ct)
hmtglgo m > 0. (4)
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Here Z(t) stands for the number of elements {a; : a; < t, 1 < j < co}.
It follows from (A2) that there exists v > 0 such that a; < Cj7.

(A3) sup{aiy1/ar :t > j} — 1 as j — oc.
(A4) There exists C' > 0 such that for all j

sup{|¢;j(x)| : z € (0,1)} < C < 0.

For any p,h € L2(0,1) and any j, j1, denote
1
(p» h) = /phdl’, p;j = (p)_] = (p» (bj)? Pjj = (p(bj)jl'
0

(A5) 0 <c<q(z) < C < oo forall z € (0,1).
(A6) There exist 7 > 1 and C > 0 such that for all j

oo
S li—r*(e)k < C,
r=1

0o
Z |] - T|2T(q2)?r <C.
r=1

In [4], we pointed out that (6) can be replaced by simpler sufficient assumptions.

(6)

Denote by ®(x) the distribution function of the standard normal distribution. For z € R, set (2)4 = max(z,0)
and denote by [z] the integer part of z. For an event D, denote by x(D) the indicator of this event. Let C, ¢

denote positive constants.

2 2

Consider the sequence £5 = £j, = (M — A2aj)+, where A; and Ay are determined by the equations

o0
> willdill® = pe,

=1

o0
> ardlla sl * = Po.
j=1

Set k = ke = max{j : k; # 0} and
k
A=Y Rl
1

Consider the test statistics

2

) =Y | | [awan) -,
0

Define the tests
K (Ye) = x(e *Te(Ye) > (240)'?a,),

where z,, is the critical value of K.

4517



Theorem 1. Assume that conditions (A1)—(A6) hold. Then the family of tests K., 0 < C1 < a. = a(K,) <
Cy < 1, is asymptotically minimax. Let

0 < lim in% Ac <limsup A, < 0. (10)

e—0

Then z,, can be defined by the equation a. =1 — ®(x,,.) and
Be(Ke) = ®(2a, — (A6/2)1/2)(1 +o0(1)) (11)
as e — 0.

Remark 1. In the case of the trigonometric system of functions, the multipliers ||¢%¢;||? in (7)—(9) vanish and
are replaced by 3||¢?||2. This is due to the identity sin®(2mjt) + cos®(2mjt) = 1.

Remark 2. A similar setting was considered in [4] for the problem of nonparametric testing of hypotheses on
the density. Assume that we have a sample X5, ..., X, of independent identically distributed random variables
with density f(x). It is known that

f(x) =p(z) +q(z) Z 0;¢i(x).

Omne needs to test the hypothesis Hy : f = p against the alternatives H.0 € V;, where V; is defined by (3). In
this setting, the result is similar. The main difference is that ||g?¢;||? in (7)—(9) is replaced in [4] by ||[pg~2¢;||*.

In fact, Theorem 1 holds for a much wider set of alternatives
V.= {S : Zm?esf > pe, S= {SJ}TO} (12)
j=1

with {k,.}° satisfying rather weak assumptions.

Assume that for each € > 0, we are given a sequence {k;¢}7° satisfying the following assumptions.
(B1) For each € > 0, the sequence m?e is decreasing.
(B2) Relation (10) holds, and

o0

. 2
lim » ki =0.

The definition of A, coincides with (9).
Define

(B3) For any 6 > 0,

K2
lim  sup £ 1|=0.
€0 5k <i<o~ ke | Ki41,e
(B4)
> Rlleole
lim lim 2SI <0k =1, (13)
6—0€e—0

o0
> w2 l1a20 1
£

e —d -1 42
lim lime™*AZY 7w ldes] = 1. (14)
Ske<j<6lke
Theorem 2. Assume that conditions (B1)—(B4), (A4)—(A6) hold. Then the family of tests K. is asymptotically
minimax in the problem of testing the hypothesis Hy : S = 0 against the alternatives H. : S € V.. If
0 < a(K:)(1+o0(l)) = a <1, then the critical value x,, is determined by the equation « =1 — ®(z,,) and
Be(Ke) = (20 — (A6/2)1/2)(1 +0(1))
as e — 0.
The proof of Theorem 2 is omitted, since it is essentially a slight modification of the proof of Theorem 1.

Similar results hold for the problem of testing parametric hypotheses against nonparametric sets of alterna-
tives.
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2. THE PROBLEM OF TESTING A PARAMETRIC HYPOTHESIS
AGAINST NONPARAMETRIC SETS OF ALTERNATIVES

Assume that we need to test the hypothesis Hy : S(t) = S(¢,0), 8 € O, agaist the nonparametric sets of
alternatives

Se‘Z:{S:eing||S—S(9)||>pe, SE(Z}, (15)
€

where

:{5:5( S(t,0) +ZSJ¢J i 2 <P }

Assume that © is an open bounded set in R?.

We say that a family of tests M., where ag(M.) = EgM. < o, 0 < a < 1, 0 € ©, is uniformly asymptotically
minimaz for the set of alternatives V. if the family of tests M. is asymptotically minimax for each fixed 6 € ©
in the problem of testing the simple hypothesis S = S(s, #) against the alternatives S € V..

Denote B(Ke,0) = sup{8(K., S), S € V.}.

We make the following assumptions.

(D1) For all 4, 62 € O, 0; # 65, the inequality ||S(01) — S(62)|] # 0 holds.

Assume that the signal S(¢,0) is continuously differentiable with respect to 6 € © and denote by Sy, (¢,0) =
%gi,e), 1 <i < d, its partial derivatives. Set Sy(t,6) = {Sy, (t,0)}¢.

Given vectors u, v € R?, denote their inner product by u'v.

(D2) There exists w > 0 such that for all 61, 6 € ©
1S(62) — S(61) — Sp(601) (62 — 01)|* < C|0r — O]

(D3) There exists C' > 0 such that |[Sp,(+,0)||* < C for all 1 <i < d and € ©. The relation

(Sp, (-,0)¢*); — 0 as j— o0 (16)
holds uniformly in 6 € ©.
(D4) There exists a functional 6 : Ly(0, 1) — © such that 6(S) — 6 as ||S — S(#)|| — 0 uniformly in § € ©.
(D5) There exists an estimator 6, such that for any § > 0

Ps(|0. — 8(S)| > d€*/k) = o(1)
uniformly in S € V,. Here x = max{x;, 1 < j < oo}.

By Lemma 3.1 of [4], k2 = O(¢2?k~1/2). Thus, using (D5), we can obtain estimates of large deviation prob-
abilities for 6.. Note that these probabilities are considered for S not from the parametric set. In statistical
inference, the estimator A(Y,) can be interpreted as a functional 8(S) defined on a set including the realizations
of Y, corresponding to the set of all possible signals S, and we can consider large deviation probabilities of

0(Y.) —0(S) for all possible S. Note that in the similar assumption D4 in [5], the estimates of |f. — #(S)| can be
replaced by the more natural assumption that

Ps(|0c — ()| > 6e*/T)) = o(1)
uniformly in § € V.. Here the value of w > 0 is defined in [5]. One can made a similar change in condition E3
from [5].
(D6) There exists a function 7 such that y(u) — 0 as u — 0 and

Z%’(SJ(@l) —55(02))* < (101 — a]).

Let us introduce the test statistics
1 2

1(v,00 =Yz | | [os0av) - s | - )y |
j=1 0

where m?

We define the family of tests K. = x(e 2T(Y,0) > x(A)/?), where x,, is the solution of the equation o =
1—®(zq).

are defined as in Theorem 1.
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Theorem 3. Assume that conditions (A1)-(A6), (D1)—(D6), and (10) hold. Then the family of tests K. is
asymptotically minimax and

B(Ke) = ®(vq — (A6/2)1/2)(1 +0(1))

ase— 0.

3. PROOF OF THEOREM 1

Consider the matrix Q={g;;};%_, and the matrix A = A = {X\i;}55_;, where \;j = £3 if i = j and \j; = 0 if
i # j. Here m = (A5 — )\25(1])+, Where the parameters A\15 and \os are defined by the equatlons

Zf<~‘2||q2¢%||2 (1+8)pe, Zag ila?oill* = (1 = 0) P,

with 0 < 0 < 1. Consider the vector §{ = {{;}32,
variables with E¢; = 0, E{? = 1.
In this notation, Eq. (1) has the following form:

where &5, 1 < j < oo, are independent Gaussian random

Y =5+ eQt,

1
where S = {s;}1°, Y = {y;}°, and y; = [ ¢;dY-.
0

The proof of the lower bound is based on the well-known fact that the Bayes risk does not exceed the minimax
risk. We define a family of Bayes tests and show that the minimax risk is attained at this family.

Consider the Gaussian random vector ¢ = {(;}7° consisting of independent Gaussian random variables ¢;
with E¢; =0, EC]2 = 1 and the Gaussian random vector

n=ne = {n;}3° = Q*AY%C.

Denote by u.s the probability measure of the random vector 7.s. Define a Bayesian prior probability measure
Ve, as the conditional distribution of n.s given 75 € Q.

Lemma 1. For any § > 0,
lil% P(T]e € Qe) =1 (17)

Proof. The lemma follows from the Chebyshev inequality and the following relations:

E(Z’ﬁ') S @@ = Sl 11+ o), (18)

D oaim | =Y arilla*es]1*(1+o(1), (19)
j=1 =

o0 o0 o0 2 o0
Var [ 32 =2Z<Z )k ) =2 37 ((¢4);0)2KH(1 + o(1) —2Zm4||q¢>]|| (1+0(1)). (20)
j=1 jt=1 \k=1 Jt=1

Z t)%airy (1+o(1) —2Za illa*os 1P+ o(1)). (21)

The detailed proof of (18)7(21) is similar to the estimates of Lemma 2.2 from [4] and is omitted. O
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It follows from Lemma 1 that in further arguments, the Bayesian a priori probability measures v, can be
replaced by the probability measures . (see [3, 5]). Thus it suffices to solve the problem for ..

By (A5), the matrix @ has the inverse matrix Q1. Set A~! = {)\i_jl};.jzl, where we assume that 0~ = 0.

Denote by I : Ly(0,1) — Ly(0,1) the identity operator.

The Bayesian a posteriori likelihoood ratio for the a priori distribution s equals

1 1 1
C/ exp {—ﬁ(y - 8YQ 3y - S) - 5S'Q—2A—1Q—25 + 5Y'Q—W} dltes

1 1
= C/ exp {ﬁY'Q_ZS — 55’(6_262_2 + Q_2A_1Q_2S} des

1
C / exp {—2—2”(1 +EQTIATIQTTRQTY — (T 4+ 62Q‘1A‘1Q‘1)1/2Q‘15||2} dics
€
) (22
% eXp{——YIQ_l(I+62Q_1A_1Q_1)_1Q_1Y}
€
1
= Cexp {—?Y’Q‘l(l + 62Q_1A_1Q_1)_1Q_1Y} .
Therefore, as a Bayesian statistics we can take
Tﬁa(y) — YlQ—l(I + 62Q_1A_1Q_1)_1Q_1Y
Let us show that the difference between T(Y') and T.(Y) is negligible. Denote W, = ¢ ~4Y’AQAQY. We have
[TEY) = Te(Y) — Eo[We]| < [We — Eo[We]|. (23)

Straightforward calculations yield

o0

Wl = e! Z (q2)ji"€?%’l“l2qli =t Z (q )Jl“ qu“l =€ 42“ )j; (14 o(1)), (24)

Jit,l=1 j,l=1

o0

Varg [WE] = 6_8 Z (q2).7]1 ]qu'%l qlz'%]l dj11y '%ll diyiq (q2)ii1

Jyi,0,51,01,41=1

oo o0
-8 2 2 _ -8 2 4
+e E (q )Jll ]qjl'%l qlz'%]lqhh'%ll qlyiq (q )jli =€ E (q )le ]qjl'%l K/_hq]lll '%ll (q )”1
Jyi,0,51,01,41=1 J5lg1,l,1=1
o0
-8 3 2 2 .2 -8
+e E (q°)j1, K5 Q515 “jﬂjlll“zl( il = 2€ E i ki, (14 o(1))
J5lg1,l,1=1 Il1=1

e® 4leq 1Pk} (1 + 0(1)) = o(1), (25)

En[We] = Fy [We] + 6_4 Z (q2)ij"€?qjl“l2qlm(q2)mi = EO[WG]
i,7,l,m=1
et Z (q5)ljm?qjml Ey[W, e ? ZK = EoVe +o(1). (26)
=1
Var, [W,] = Varg[W,] + 26 ®Sp [Q*AQ?AQAQQ*AQ*AQAQ)] + 2¢3Sp [Q*AQAQQ*AQ? AQAQ)]
< Varg[We] + 2¢8(sup ¢*2(t)Sp [A®] + sup ¢'°(¢)Sp [A®]) = o(1). (27)
¢ ¢

Here Sp [A] denotes the trace of an operator A.
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By (24)—(27) and the Chebyshev inequality, we obtain
I TE(Y) = Te(Y) = EoVe| < |Ve — EoVe| = op(1), (28)

both in the case of the hypothesis and a Bayesian alternative.
In the case of alternative, we have

Y'AY = Z (SJ + qjka) SJ + quCl Zs - ZZK?SJ' quka
ok, I=1 J=1 =1
+ZZquCkF& quzCz = J1(8) + 2(S) + Js = S+ T2+ Js. (29)
7=1 k=1

Straightforward calculations yield
Ep[J2) =0, Eg[J2] =0

JS _6 ZK qjiqi; = € Z“ ]]7

7,l=1

Varg[Jg] =4 Z K?qujiqiﬂmf =4 Z mej(q2)j19ml2

yiyl=1 Ji=1
<4 k5101 (Z #9%) P61l < 4CkB2 S elId sl — o | SRRl | (30)
Jj=1 =1 j=1 j=1
Varo[J3] = VargY'AY =2 Z 3455057 (@) tmGmj
7,0,0,m=1
=2 Y BRI = 2Zm 14265121 + 0(1)) = 24.(1 + o(1)). (31)
Jil=1
In the case of a Bayesian alternative, we obtain
€ 2E,[Y'AY] = A(1 + o(1 +ZI€ )iis

e Var, [Y'AY] = 24, + 4¢* ng(q2)jj = 2A(1+0(1)).
j=1
Note that -
e Var,[Jo] = 4e™* Z m? (4*);
j=1
Since

Varg[Jo] = o(J?), Var [J3] = 24.(1 + o(1)) = O(J1),

it follows from the Chebyshev inequality that S(K,, S.) — 0 as e — 0 provided that J;(S.) — oo as € — 0.
Thus, to prove Theorem 1, it suffices to show that the distribution of the statistics J3 is asymptotically normal.
This proof is similar to that of Lemma 3.7 in [4] and is omitted. O

Proof of Theorem 3. We begin with the proof of the lower bound. We have
T(Ye = S(0)) < TH2(Ye = 8) + TH2(S = S(0(5))) + TH?(S(0(5)) — S(0)). (32)
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The distribution of the statistics T, (Y, — .S) coincides with the distribution of the statistics T, (Y;) in the case of
the zero hypothesis in the setting of Theorem 1.
We have

T.(S — S(6( _22“ i — 55(0(5)))?

%Z - —s(0(S 2)\22% S)))? =T, —Ty =T, (33)
where s;(6) = (5(0));. Now let us obtain an upper estimate for I';. Assume that
1S = S@S)I = o(1). (34)

Otherwise A, = o(e72T.(S — S(6(S)))) and B.(K,S) — 0 as € — 0.
Let 6 be such that

iaj(sj —5;(5(0)))% < P. (35)
Then "
i( sj<@<s>>>2—f;aj<s s F(S)?
< (iaj(sj 5;(0(8))+5; —s; )2>1/2<§:aj s; (5(5)))2>1/2
00 1/2
<2p,/” (Z a;(s;(0(S)) ~ sj<5<s>>>2> < 2P *y (10— 8(S)]) = o(1), (36)

where the latter equality follows from (34) and (D4), (D6).
It follows from (33), (35), and (36) that

I'> e 2Ape — € 2XaPo(1+0(1)) > 2 A,. (37)

We have

Te(S(0) — S@(s 22% 5;(0) = 55(8(5)))* < e ?%|5(6) — S@S)II?

< ¢ (wl1S(0)~5(0(9))— (0 — 0(5)) Sy @) +410-D(S) 15 BS))) < Ce 210~ DS = 0p(e?), (39)

where the latter equality follows from (D5).

It follows from (32), (33), (37), and (38) that 3(K.S) < Bc(K.)(1 + o(1)) for every S € V..

The proof of the lower bound uses the same arguments as in [5]. Denote by p.s the probability measure of
the random process S(6y) + 1. Set

pu. = inf[1(60) + 1 — SO
Then the lower bound follows from the lemma given below.

Lemma 2.
Pne

— 1406 39
Pe (39)

in probability as e — 0.

The proof of Lemma 2 is similar to the proof of (4.26) in [5]. The main difference is that the smoothing kernel
is replaced by the delta function.
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Denote 6. = arg ming ||S(60) + 1 — S(0)||. Since ||ne||> = pe(1 + op(1)) as € — 0, it follows by (D1)~(D3)
that 6. — 6y = op(1). Hence, arguing similarly to (4.50)—(4.59) in [5] and using (D1)—(D3), we obtain

1
o = 0+ 0(1)) +2 [ @ 60) St om0 + 11— 60) S 60) [*1 + o(1).
0

Hence we will prove (39) if we show that

/59, (t, 00)n- ()t = op(p/?) (40)
0

for 1 <4 <d.

By (16), we obtain
1 2

E /ngedt = ZK?(S&. q2)? = o(pe)-
j=1

0
This implies (39) and (40).
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