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A CHI-SQUARED TEST FOR THE GENERALIZED POWER WEIBULL FAMILY FOR THE
HEAD-AND-NECK CANCER CENSORED DATA

M. Nikulin∗ and F. Haghighi† UDC 519.2

We propose a chi-squared type statistic to test the validity of the generalized power Weibull family based on the
Head-and-Neck cancer censored data. Bibliography: 18 titles.

1. General information

1.1. Introduction
In survival analysis, the data are often not completely observed. For example, a single right censoring occurs

commonly in the reponse time data. In this case, each lifetime X may be observed exactly or, alternatively,
may be known only up to a certain accuracy. Thus, in the second case it is impossible to determine the exact
value of the number of observations falling into a cell (Pearson statistic). Goodness-of-fit analysis is substantially
complicated by the presence of censoring.

In the case of type II censoring (when censoring occurs at specified ordered failures), Mihalko and Moore used
sample percentiles as cell boundaries to obtain Pearson type tests of fit that have limiting chi-square distributions
for the composite null hypothesis. Habib and Thomas [8] showed that in the case of randomly censored values
Zn =

√
n[F̂n(t) − F (t, θ̂n)], there exists a limiting Gaussian process, where F̂n(t) is the product-limit estimator

for F (x, θ) and θ̂n is the maximum likelihood estimator. They applied a Chernoff–Lehmann result to modify
the Pearson statistic which was shown to have a limiting chi-square null distribution. Nikulin and Solev showed
in [14] (see also [7]) that, in the presence of doubly censored data, Un =

√
n[F n

x (t) − Fx(t, θ̂)] converge weakly
to a Gaussian process, where F n

x (t) is the Tsai and Growly estimator and the test estimator Y 2
n has a limiting

chi-square distribution with k − 1 degrees of freedom (k is the number of the cells), under the condition that
an adaptive procedure has been used for grouping data to control the probability of error type I. In [17], Zhang
used a chi-squared type statistic Y 2

n to test the validity of the logistic regression model based on case-control
data by adapting the goodness-of-fit test of Nikulin–Rao–Robson–Moore.

A general Pearson chi-squared goodness-of-fit test statistic for randomly censored data was considered by Kim
in [10], where nonnegative-definite quadratic forms of cell frequencies obtained from the product-limit estimator
allowed for random cells and general estimators of nuisance parameters. In [1], Akritas introduced chi-squared
statistics for randomly censored data based on the number of uncensored observations in each cell. Several tests
have been suggested for the case of a simple null hypothesis with randomly censored data. In this paper, we
apply a chi-squared type test based on the number of uncensored observations in each cell for the generalized
power Weibull family (see [2]). For the composite null hypothesis, the tests development is based on the weak
convergence of the modified empirical process for which parameters are estimated. We note that the goodness-of-
fit problem has also been studied by Voinov and Nikulin for the case of discrete data where the data is complete
and/or right-censored. Unfortunately, the goodness-of-fit problem with right-censored discrete data has not been
investigated extensively.

1.2. Maximum likelihood estimator and right-censored data
We are interested in testing the null hypothesis that F belongs to a given parametric family of distributions

(composite null hypothesis). We consider a random censoring model which occurs frequently in industrial life-
testing and medical follow-up studies.

In the random censorship model, we assume that responses X1, . . . , Xn are independent, nonnegative, random
variables with a continuous distribution function F . Censoring variables Y1, . . . , Yn are also nonnegative and are
assumed to be a random sample drawn independently of the variables Xj from a population with a continuous
distribution function G ∈ G. We say that the variables Xj are censored on the right by the variables Yj since
we only may observe the values Zj = min(Xj , Yj) and δj = I[Zj = Xj ]; the latter value indicates whether Zj is
an uncensored observation or not.
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We are interested in testing the null hypothesis that F belongs to a given parametric family of distributions

F ∈ {Fθ, θ = (θ1, . . . , θr)′ ∈ Θ}.

We set Wj = (Zj , δj). Thus, we consider a model in which our observations (W1, . . . , Wn) have distribution
P n

θ, G depending on the parameter of interest θ ∈ Θ and the nuisance parameter G ∈ G. Assume that for a test
statistic Tn = Tn(W1, . . . , Wn) we reject the null hypothesis H0 if Tn > t. In this case, the significant level qn(t)
is

qn(t) = sup
(θ, G)∈Θ×G

P n
θ, G {Tn > t} .

We have to investigate the limit behavior of qn(t) as n → ∞ under some conditions on the parametric set,

F ∈ {Fθ, θ = (θ1, . . . , θr)′ ∈ Θ} and G ∈ G.

The main conditions are as follows:
inf

G∈G
G(x) > 0 for any x > 0

and for any δ > 0 there exist x > 0 such that

sup
θ∈Θ

(1 − Fθ(x)) ≤ δ.

We set
Lθ(Zi, δi) = [fθ(Zi)(1 −G)]δi [g(Zi)(1 − Fθ(Zi)](1−δi),

where G is the censoring distribution, g is its density, and fθ is the density function of Fθ. The information
matrix Iθ is

Iθ = −E

[
∂2 log Lθ(Zi, δi)

∂θl∂θm

]

.

1.3. Goodness-of-fit statistics for random censored data
Consider testing the hypothesis

H0 : F ∈ {Fθ, θ = (θ1, . . . , θr)′ ∈ Θ}.

In Sec. 2.2 below, we assume that we work with the generalized power Weibull family of distribution functions.
Similarly to the usual chi-squared tests, we consider a partition of the sample space into k cells.

Taking into account the nature of randomly censored data, a test statistic for this hypothesis is constructed
by partitioning two half-lines corresponding to δ = 0 (censored) and δ = 1 (uncensored), respectively. Let
Aj = [aj−1, aj), j = 1, . . . , k, where 0 = a0 < a1 < . . . < ak−1 < ak = ∞, be a partition of [0,∞) chosen to have
enough observations in each interval. Set

Ĥ1(z) =
1
n

Σn
i=1I(Zi < z, δi = 1),

N1j = Σn
i=1I(Zi ∈ Aj , δi = 1) = n

∫

Aj

dĤ1(z), j = 1, . . . , k,

p̂1j =
∫

Aj

(1 − Ĝ)dFθ̂n
, and p̂0j =

∫

Aj

(1 − Fθ̂n
)dĜ,

where θ̂n is the maximum likelihood estimator, Ĝ = 1 − (1 − Ĥ)/(1 − Fθ̂n
), and Ĥ(z) = n−1Σn

i=1I(Zi < z) is
the emprical distribution function.

The equalities N1j − np̂1j = −(N0j − np̂0j) hold, where N0j = Σn
i=1I(Zi ∈ Aj , δi = 0). Thus, to construct a

goodness-of-fit statistic, it is enough to consider the vector

V̂n = n−1/2((N11 − np̂11), . . . , (N1k − np̂1k))′. (1)
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Under some assumptions (see [1]), the vector V̂n defined in (1) has asymptotically a k-variate normal distribution,

V̂n(θ0) is AN(0k, W (θ0)),

where
W (θ0, G) = Σ −BI−1

θ0
B′, Σ = Σ(θ0) = diag(p11, . . . , p1k), p1j =

∫

Aj

(1 − G)dFθ,

B = B(θ) = (bji)k×r, bji =
∫

Aj

Gϕ
(i)
θ dFθ, G = 1 − G, ϕ

(i)
θ =

∂[log(fθ/(1 − Fθ))]
∂θi

,

Iθ0 is the Fisher information matrix corresponding to the random censoring model, and θ0 denotes the true
underlying value of θ.

In the standard situation, the rank of W is equal to k − 1. If A = W− is a generalized inverse of W , then
under H0, the statistic

Y 2
n = V̂ ′

n(θ̂n)A(θ̂n, Ĝn)V̂n(θ̂n)

has asymptotically a chi-squared distribution with k − 1 degrees of freedom.

2. Weibull families

2.1. Introduction
The Weibull distribution, named after W. Weibull (1939), is commonly used for analyzing life time data. The

Weibull family accommodates both increasing and decreasing failure rates. It general, this family is adequate for
modeling monotone hazard rates, and large data are needed to discriminate it from different monotone hazard
rate models such as the gamma and log-normal models. But the Weibull family does not allow for nonmonotone
failure rates, which are common in survival analysis and reliability.

A possible approach to construction of flexible parametric models is to embed appropriate competing models
into a larger model by adding a shape parameter. This embedding approach not only provides a broader range
of hazard shapes, but also allows the methods of ordinary parametric inference to be used for discrimination and
leads to an assessment of each competing model to a more comprehensive one.

Several models, such as Stacy’s (1962) generalized gamma, Prentice’s (1975) generalized F distribution, the
two families introduced by Slymen and Lachenbruch (1984), have been introduced for modeling nonmonotone
failure-rate data (see also Bagdonavicius and Nikulin [4]). A variety of methods for estimation and testing
based on general principals such as methods of moments, least squares, and maximum likelihood, have been
examined and discussed for these models. Often, such methods present difficulties, especially in the presence of
censoring. To avoid the problem of model validity, the nonparametric approach, supported by the well-developed
Kaplan–Meier product-limit estimator and related techniques, is often regarded as a preferable one. However,
this alternative is often inefficient.

In this paper, we review two Weibull extensions, the generalized Weibull and exponentiated Weibull families,
and present a new one: the power generalized Weibull family. These extensions of the Weibull family not only
allow for a broader class of monotone hazard rates but also contain distributions with unimodal and bathtub
hazard shapes. The generalized Weibull family, first suggested by Mudholkar et al. in [13] for constructing
isotones, has the following distribution function F (t) and quantil function tp:

F (t) = 1 − (1 − γ(t/σ)ν )
1
γ

and

tp =

{

σ[1− (1 − p)γ/γ]
1
ν if γ �= 0,

σ[− log(1 − p)]
1
ν if γ = 0,

where ν, σ > 0 and −∞ < γ < ∞. The generalized Weibull family turns into the Weibull distribution if γ = 0,
exponential distribution if ν = 1 and γ = 0, and the log-logistic distribution if γ = −1, which is often used
as a model in survival studies. Moreover, common parametric distributions such as the lognormal and gamma
distributions, are very well approximated by members of the family. What is more important, if λ ≤ 0 and
α ≥ 0, then the family coincides with Burr type XII distributions (see, for example, [15]). It is easy to verify
that this family is closed under the proportional hazard relationship (see [13]).
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The exponentiated Weibull family was originally proposed by Mudholdkar and Srivastava (1993) in the context
of the bathtub shaped failure rate data for the reanalysis of the Bus-Motor-Failure Data. The exponentiated
Weibull family has the distribution function

F (t) = [1− exp(−(t/σ)α)]
1
γ , where ν, γ, σ > 0,

and quantil function

tp = σ
[

− log(1 − pγ)
] 1

ν

.

It is obvious that if γ = 1, then we get the Weibull family, and if α = 2, then the family coincides with the
Burr type X family of distributions. Distribution properties, extreme value, and extreme spacing distributions
for members of the exponentiated Weibull family can be found in [13].

These families are suitable for modeling data that indicate nonmonotone hazard rates and can be also adopted
for testing goodness-of-fit of the Weibull family as a submodel. An estimation procedure and chi-square goodness-
of-test have been developed for them.

The generalized power Weibull family is another extension of the Weibull family. This family, which was
presented at first by Bagdonavicius and Nikulin in [2], contains four shapes of the hazard function and is mostly
used in the reliability and survival analysis domains. This family is often used for constructing accelerated
failures times (AFT) models which describe dependence of the lifetime distribution on explanatory variables.
Now we describe this family.

2.2. The generalized power Weibull family
The generalized power Weibull family is mostly conveniently specified in terms of its survival function,

S(t; σ, ν, γ) = exp
{

1 −
(

1 +
( t

σ

)ν) 1
γ

}

, (σ, ν, γ > 0), t > 0,

and its cumulative distribution function,

F (t; σ, ν, γ) = 1 − S(t; σ, ν, γ) = 1 − exp
{

1 −
(

1 +
( t

σ

)ν) 1
γ

}

, (σ, ν, γ > 0), t > 0.

The corresponding probability density function is

f(t) =
ν

γσν
tν−1

{

1 +
( t

σ

)ν
}( 1

γ −1)

exp
{

1 −
(

1 +
( t

σ

)ν) 1
γ

}

.

The quantile function of the generalized power Weibull family is

tp = σ{(1 − log(1 − p))γ − 1} 1
ν , 0 < p < 1,

and its hazard function is

α(t, ν, σ, γ) =
ν

γσν
tν−1

{

1 +
( t

σ

)ν
} 1

γ −1

.

Particular cases of the generalized power Weibull distribution are:
γ = 1: the family of Weibull distributions;
γ = 1 and ν = 1: the family of exponential distributions.

2.3. Hazard function shapes
The generalized power Weibull family has very nice properties. Depending on the parameter values, the

hazard rate can be constant, monotone (increasing or decreasing), ∩-shaped, and ∪-shaped.
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Fig. 1. Generalized power Weibull pdf (left) and its typical hazard
shapes.

Table 1. Survival times (in days) for patients at
Arm A of the head-and-neck cancer trial.

Arm A : 7, 34, 42, 63, 64, 74∗, 83, 84, 91, 108, 112, 129, 133, 133, 139,
140, 140, 146, 149, 154, 157, 160, 160, 165, 173, 176, 185∗, 218, 225, 241,
248, 273, 277, 279∗, 297, 319∗, 405, 417, 420, 440, 523, 523∗, 583, 594,
1101, 1116∗, 1146, 1226∗, 1349∗, 1412∗, 1417

The sign ∗ indicates that the observations lost to follow up.

The parameter space can be divided into several regions, over which the hazard function becomes IFR, DFR,
bathtub failure rate, and unimodal failure rate, respectively.

For the generalized power Weibull family, the hazard function α(t, θ) is
(a) monotone increasing if either ν > 1 and ν > γ or ν = 1 and γ < 1;
(b) monotone decreasing if either 0 < ν < 1 and ν < γ or 0 < ν < 1 and ν = γ;
(c) ∩-shaped if γ > ν > 1;
(d) ∪-shaped if 0 < γ < ν < 1.

2.4. Reanalysis of the Arm A data for the Head-and-Neck cancer study
The survival times Z (in days) for patients of Arm A of the Head-and-Neck cancer trial were first considered

by Efron in [6] for 51 head-and-neck cancer patients.
Efron discretized the data into 47 intervals, each of one month length (1 month=30.438 days), and used the

standard logistic regression techniques to estimate the hazard rate. He showed that the estimated hazard rate
for the Head-and-Neck cancer study is unimodal.

It is noteworthy that the Weibull model, having only increasing and decreasing hazard shapes, is inadequate
for the Head-and-Neck cancer data. Therefore, we considered extensions of the Weibull family which contain
not only unimodal hazard rate, but are also computationally convenient for censored data.

Mudholkar and Srivastava analyzed in [13] these data by using the exponentiated Weibull family. They found
that in terms of the chi-squared goodness-of-fit, the exponentiated Weibull distribution provided an acceptable
fit to data. Here we propose the generalized power Weibull family (see [2]), which is mostly convenient specified
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in terms of its survival function,

S(t; σ, ν, γ) = exp
{

1 −
(

1 +
( t

σ

)ν) 1
γ

}

, (σ, ν, γ > 0), t > 0.

We fit this model to data and test the goodness-of-fit for this model under the assumption that

0 < a ≤ σ ≤ b < ∞, 0 < c ≤ γ ≤ d < ∞, and ν ≤ f < ∞

for some positive a, b, c, d, and f .
After transforming the data into month intervals, the maximum likelihood estimators of parameters of the

generalized power Weibull fit, obtained by using a computational program which was prepared for estimating
the maximum likelihood estimators of censored data for the Weibull famillies, are as follows:

ν̂ = 2.1887, σ̂ = 2.5458, and γ̂ = 4.9950. (2)

For the generalized power Weibull fit, γ̂ > ν̂ > 1. Therefore, in agreement with Efron’s analysis, the hazard
function is unimodal (see [2]). This result is confirmed by Fig. 2.

Fig. 2. The right-hand figure represents the fitted density function, and
the left-hand figure represents the hazard function of the Arm A data
for the Weibull (dotted line) and the generalized power Weibull (solid
line) families.

We consider the composite null hypothesis and employ the maximum likelihood based on ungrouped obser-
vations to estimate the unknown parameters. Consider testing the hypothesis that the underlying distribution
belongs to the generalized power Weibull family. Set

H0 : F = 1 − exp{1 − (1 + λtν)α},

where
λ = 1/σν and α = 1/γ.
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We present the survival data Zi in Table 1. Entries of the matrix B are given by

b̂j1 =
∫

Aj

Ĝϕ
(1)
θ dFθ|θ̂ = (1 − Ĥ)α̂zν̂(1 + λ̂zν̂)α̂−1|aj

aj−1
+ n−1Σn

i=1α̂Z ν̂
i (1 + λ̂Z ν̂

i )α̂−1I[aj−1<Zi<aj], (3)

b̂j2 =
∫

Aj

Ĝϕ
(2)
θ dFθ|θ̂ = (1−Ĥ) log(1+ λ̂zν̂)(1+ λ̂zν̂)α̂|aj

aj−1
+n−1Σn

i=1(1+ λ̂Z ν̂
i )α̂ log(1+ λ̂Z ν̂

i )I[aj−1<Zi<aj ], (4)

and

b̂j3 =
∫

Aj

Ĝϕ
(3)
θ dFθ|θ̂ = (1−Ĥ) log(1+ λ̂zν̂)(1+ λ̂zν̂)α̂|aj

aj−1
+n−1Σn

i=1(1+ λ̂Z ν̂
i )α̂ log(1+ λ̂Z ν̂

i )I[aj−1<Zi<aj ], (5)

where Ĥ = n−1Σn
i=1I(Zi < z) is the empirical distribution function,

ϕ
(1)
θ =

∂(log(fθ/F θ))
∂λ

, ϕ
(2)
θ =

∂(log(fθ/F θ))
∂α

, and ϕ
(3)
θ =

∂(log(fθ/F θ))
∂ν

,

where F θ = 1−Fθ and G has to be replaced by Ĝ in (3)–(5). These quantities may be estimated by substituting
the maximum likelihood estimators. Note that

p̂1j(θ) = (1 − Ĥ)(1 + λ̂zν̂)α̂
∣
∣
∣

aj

aj−1

+ n−1Σn
i=1(1 + λ̂Z ν̂

i )α̂I(aj−1 < Zi < aj).

We considered three cells with a1 = 200 and a2 = 600 for the Head-and-Neck cancer data and applied the
programs DQDAG, DLINRG, DMRRR, and DBLINF of IMSL (1999). For the Head-and-Neck cancer data,
Y 2

n = V̂ ′
nAV̂n = 3.2401, which provides an acceptable fit to the data, where the statistic Y 2

n has (asymptotically)
a chi-squared distribution with k = 2 degrees of freedom.

Table 2. Reanalysis of Arm A of the
Head-and-Neck cancer trial using the Weibull
and the generalized power Weibull families.

power
class observed generalized

interval frequency (Sj) Nj Weibull (Ej) Weibull (Ej)
0 − 1 1 51 4.378366 1.48630
1 − 2 2 50 3.88426 3.59361
2 − 3 5 48 3.59399 4.29222
3 − 4 2 42 3.07046 3.87714
4 − 6 15 72 5.13863 6.29304
6 − 8 3 49 3.41218 3.81026
8 − 11 4 56 3.81915 3.80906
11 − 14 3 45 3.00793 2.64315
14 − 18 2 45 2.95668 2.31189
18 − 24 2 46 2.96665 2.03375
24 − 31 0 49 3.09877 1.84193
31 − 38 2 47 2.92581 1.54790
38 − 47 1 28 1.96539 0.9407
∑

R2
i 21.3318 12.6865

p-value .021 .175
χ2

2 3.2401
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Remark. The appropriateness of the model is also tested by using the signed deviance residuals. For this
purpose, the data are regrouped into 13 classes (j = 1, . . . , 13), see Table 2. The original data was discretized
into 47 intervals, each of one month length (i = 1, . . . , 47). We set

Rj =
√

(2) sign(Sj −Ej)
[

Sj log(Sj/Ej) + (Nj − Sj) log
(Nj − Sj)
(Nj − Ej)

]1/2

,

where
Nj =

∑

∗
ni, Sj =

∑

∗
Si, and Ej =

∑

∗
niĥi

for j = 1, . . . , 13.
∑

∗ denotes the sum over the jth time period,
ni is the number of patients at risk at the beginning of month i,
si is the number of patients dying,
hi is the discrete hazard rate for month i.
The estimate of the hazard function of ith interval is obtained by integrating the estimated hazard function

over the given interval.
If the model is correct (in the sense that it contains the true hazard function), then the values Rj should

be approximate standard normal deviates and the sum of squares
∑

R2
i should be an approximate chi-squared

distribution with 10 degrees of freedom.
The bottom of the table shows a significantly large value of

∑
R2

j for the Weibull model, but the generalized
power Weibull has an acceptable significance level of .175. The difference in

∑
R2

j = 21.3319− 12.6865 = 8.6453
is also significant compared with the distribution; this indicates a genuinely improved fit when we pass from the
Weibull to the generalized power Weibull family.
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