
Journal of Mathematical Sciences, Vol. 132, No. 4, 2006

PARTIAL GEOMETRIC REGULARITY
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We consider a continuous optimization model of a one-dimensional connected trans-
portation network under the assumption that the cost of transportation with the use of
network is negligible in comparison with the cost of transportation without it. We investi-
gate the connections between this problem and its important special case, the minimiza-
tion of the average distance functional. For the average distance minimization problem
we formulate a number of conditions for the partial geometric regularity of a solution in
R

n with an arbitrary dimension n � 2. The corresponding results are applied to solutions
to the general optimization problem. Bibliography: 26 titles. Illustrations: 1 Figure.

§ 1. Introduction

We assume that the distribution of the population in some region (city) is determined by a nonnegative
finite Borel measure ϕ+ with compact support in R

n. It is required to find an optimal transportation net-
work (schemes of urban public transport and/or underground) which could be the most convenient for the
population to reach service centers and working places provided that the distribution of working places and
service centers is determined by a nonnegative finite Borel measure ϕ− with compact support in R

n. A
given function A: R

+ → R
+

is interpreted as the effective cost of the movement of every citizen without
using the transportation network (i.e., “on foot” or by their own transport”), so that the cost for covering
the distance t is A(t). In this paper, we consider a simplified model. The network is simulated by a closed
connected set Σ ⊂ R

n and the cost for movement with the use of the transportation network is assumed to
be zero. The corresponding optimization problem is formulated as follows.

Problem 1.1. Find a set (an optimal transportation network) Σ = Σopt ⊂ R
n minimizing the cost for

movement of the population, provided that free travel over the network Σ �→ MK(ϕ+,ϕ−,Σ) is allowed,
among all closed connected sets Σ ⊂ R

n satisfying the length constraint H 1(Σ) � l (l > 0 is given).

The cost for movement MK(ϕ+,ϕ−, ·) is strictly defined with the use of the Monge–Kantorovich opti-
mal mass transport problem (cf. details in [1–4]). We suggest two equivalent formulas for computing the
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cost functional. The assumption of the zero cost for movement with the use of the transportation network
has meaning if this cost is determined by the ticket price which is independent of the covering distance
and/or tariff zone; moreover, this cost for every citizen is negligible comparing with the cost for movement
without the use of the transportation network. This model is also applicable to the optimization of computer
net (with the corresponding interpretation of the initial data).

In this paper, we show that the general model of the choice of an optimal transportation network is
reduced to the minimization of the average distance functional. This problem was studied, in particular, in
[5–8].

Problem 1.2. Let ϕ be a finite nonnegative Borel measure with compact support in R
n. It is required

to find a set Σ = Σopt ⊂ R
n minimizing the average distance functional Fϕ defined by the formula

Fϕ(Σ) :=
∫

Rn

A(dist (x,Σ))dϕ(x),

over all closed connected sets Σ ⊂ R
n satisfying the length constraint H 1(Σ) � l (l > 0 is given). Here,

A : R
+ → R

+ is a given nondecreasing function.

It is easy to see from the definition of MK(ϕ+,ϕ−, ·) that this problem is a special case of Problem 1.1
with ϕ− := 0 (i.e., if the single goal of the population is to reach the transportation network with the minimal
cost). If we replace the connectedness and the length constraint on Σ by the condition on the maximal
number of points of Σ (i.e., we minimize the functional Fϕ over discrete sets Σ such that #Σ � k, where k
is a given natural number), then this problem becomes the well-known optimal location problem (k-median
problem). This problem can be interpreted as a problem of determining the optimal location of k service
centers provided that the density of population ϕ is known (see more about such problems, for example, in
[9–11]).

Optimization models like Problem 1.2 stem from various problems, not only in urban planning and
economics, but also in image processing [12], mathematical statistics [13, 14], the optimal irrigation problem
[5, 15], and in approximation of a solution to the classical travelling salesman problem (the so-called the
“lazy travelling salesman problem”) [16]). Solutions to Problem 1.2 will be referred to as average distance
minimizers.

In this paper, we prove some results about the topological structure of the sets minimizing the average
distance and establish a partial regularity of the minimizing sets in the case of an arbitrary dimension n � 2.
For this purpose, we develop the technique from [87] to the case of two-dimensional spaces (n = 2) and
A(t) = t and also the technique from [7]. However, unlike [8, 7], we will use it for obtaining estimates for
the generalized mean curvature of the sets under consideration. Based on the obtained results, we prove
some assertions concerning the geometric regularity of optimal transportation networks that form a solution
to the general optimization problem. We emphasize that we mean the geometric regularity, i.e., solutions to
the corresponding optimization problems are “good” from the geometric point of view (for example, they
have finitely many endpoints and branching points, every branching point is, a “regular tripod”, etc.), but
this does not mean that these solutions are smooth curves.

§ 2. Monge–Kantorovich Problem with the Dirichlet Condition

Assume that the choice by the population of directions of daily transport movements is described by
the Monge–Kantorovich optimal mass transport model. Since the cost for movement with the use of Σ is
assumed to be zero, the total cost for daily transport movement to the service centers and/or working places
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is determined by a functional IΣ on Borel measures in R
n ×R

n of the form

IΣ(Γ) :=
∫

Rn×Rn

A(dΣ(x,y))dΓ(x,y),

where

dΣ(x,y) := d(x,y)∧ (dist (x,Σ)+ dist (y,Σ)).

In other words, to move from a point x to the point y, each citizen chooses the most convenient route
among the following two variants: 1) a route without the use of the transportation network, i.e., only by
the own transport or “on foot” (in this case, it is necessary to cover the distance d(x,y)), 2) a route with
maximal use of the transportation network (in this case, it is required only to pay for the covered distance
dist (x,Σ)+ dist (y,Σ) without the use of the transportation network). For the sake of simplicity, we assume
that the distance d is metrically equivalent to the Euclidean distance.

It is reasonable to regard the measure Γ as a “transportation plan” (i.e., intuitively, we can assume that
Γ(x,y) is the number of citizens moving from the point x to the point y). Then it must satisfy the condition

(π±
# Γ)�R

n \Σ = ϕ±�R
n \Σ, (2.1)

where π±: R
n ×R

n → R
n are projections on the first and second copies of R

n respectively; namely,
π±(x+,x−) := x±. If ϕ± are concentrated outside Σ and ϕ+(Rn) = ϕ−(Rn), then the condition (2.1) sim-
ply means that all the citizens reach their goals (i.e., service centers and/or working places). If ϕ+(Rn) �=
ϕ−(Rn), then the goal of some citizens is only to reach Σ (or to reach the service centers and/or working
places only from Σ): for example, in the limiting case ϕ− = 0, in the model there are no service centers and
working places, and a single goal of citizens is to reach Σ.

The generalized Monge–Kantorovich transport problem with the Dirichlet condition on Σ is to find a
Borel measure Γopt on R

n ×R
n, called an optimal transport plan, minimizing the functional IΣ over all

Borel measures Γ, called admissible transport plans, on R
n ×R

n satisfying the condition (2.1) (cf. [17]).
We keep the notation MK(ϕ+,ϕ−,Σ) for the Monge–Kantorovich problem with the Dirichlet condition on
Σ , as well as for the corresponding minimal value of the functional IΣ. We write MK(ϕ+,ϕ−) if Σ = ∅.
Finally, as a rule, we will not indicate the measure ϕ± in the notation and write simply MK(Σ) instead of
MK(ϕ+,ϕ−,Σ).

It is easy to show that the Monge–Kantorovich problem has a solution under rather natural assumptions
on the data. Namely, the following assertion holds.

Theorem 2.1. Suppose that a function A is lower semicontinuous and a set Σ ⊂ R
n is compact. Then

the functional IΣ attains the minimum over the set of all admissible transport plans.

Proof. Let {Γν} be a minimizing sequence of admissible transport plans for IΣ. By Lemma 2.2, for
every ν ∈N there is a new admissible transport plan Γ′ν such that IΣ(Γν) = IΣ(Γ′

ν) and all Γ ′
ν have uniformly

bounded complete mass. Since all admissible transport plans are supported in the compact set (supp ϕ+ ∪
Σ)× (supp ϕ− ∪Σ), we can choose a subsequence of Γ′ν (not relabeled) that ∗-weakly converges to some
Borel measure Γ on R

n ×R
n. By Lemma 2.3 with Σν := Σ , we find that Γ satisfies the condition (2.1), i.e.,

it is an admissible transport plan However, the function dΣ: R
n ×R

n → R is continuous. Since A is lower
semi-continuous, the integrand of IΣ is also lower semicontinous. Consequently, the functional IΣ is lower
semicontinous in the sense of the ∗-weak convergence of measures. Hence

IΣ(Γ) � liminf
ν

IΣ(Γ′
ν) = liminf

ν
IΣ(Γν) = inf IΣ

(since {Γν} minimizes IΣ). Thus, the functional IΣ attains the minimum at Γ. �

The following simple lemmas were used in the previous proof.
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Lemma 2.2. For any admissible transport plan Γ there is another admissible transport plan Γ′ such
that

Γ ′(Rn ×R
n) � ϕ+(Rn)+ ϕ−(Rn), IΣ(Γ ′) = IΣ(Γ).

Proof. Setting Γ ′ := Γ−Γ�Σ×Σ, we find that Γ ′ is an admissible transport plan. Furthermore, IΣ(Γ) =
I Σ(Γ′) and Γ′(Σ×Σ) = 0. Consequently,

Γ′(Rn ×R
n) = Γ′((Rn \Σ)×R

n)+ Γ′(Σ× (Rn \Σ)) � Γ′((Rn \Σ)×R
n)+ Γ′(Rn × (Rn \Σ))

= Γ((Rn \Σ)×R
n)+ Γ(Rn × (Rn \Σ)) = ϕ+(Rn \Σ)+ ϕ−(Rn \Σ)

� ϕ+(Rn)+ ϕ−(Rn).

The proof is complete. �

Lemma 2.3. Let {Γν} be a sequence of admissible transport plans for MK(ϕ+,ϕ−,Σν), and let the
sets Σν be compact; moreover, Σν → Σ in the sense of Hausdorff and Γν ⇀ Γ in the sense of the ∗-weak
convergence of measures. Then Γ is an admissible transport plan for MK(ϕ+,ϕ−,Σν).

Proof. We have π±
# Γν = ϕ± over R

n \Σν . Since Σν → Σ in the sense of Hausdorff, any function with
compact support in R

n \Σ is also compactly supported in R
n \Σν for sufficiently large ν ∈N. Consequently,

for any ψ ∈C0(Rn \Σ) we have∫

Rn

ψ dπ±
# Γ = lim

ν

∫

Rn

ψ dπ±
# Γν =

∫

Rn

ψ dϕ±.

In particular, π±
# Γ(e0) = ϕ±(e0) for any open set e0 ⊂⊂ R

n \Σ. Thus, π±
# Γ(Rn \Σ) = ϕ±(Rn \Σ), and,

consequently, π±
# Γ = ϕ± on R

n \Σ. �

We denote by Γopt(Σ) the set of all optimal transport plans Γopt with a given Σ:

Γopt(Σ) := Argmin{IB,Σ(Γ) : Γ is an admissible transport plan}.

§ 3. Equivalent Formulation of the Transportation Problem

We consider the transportation problem from other point of view. Now we are interested in the question
what transport routes are chosen by citizens for their daily transport movements. These routes will be
described by Lipschitz paths in R

n.
Two Lipschitz paths θ̂1, θ̂2: [0,1] → R

n are said to be equivalent if there exists a continuous surjective
strictly increasing function ϕ : [0,1] → [0,1], called “re-paremetrization” such that

θ̂1(t) = θ̂2(ϕ(t)) for all t ∈ [0,1].

Denote by Θ the set of equivalence classes of Lipschitz paths. It is obvious that elements of Θ present
directed rectifiable curves. We often identify elements of Θ (i.e., directed rectifiable curves) with their
parametrizations (i.e., with the Lipschitz functions that parametrize the curves). We equip the set Θ with the
metric

dΘ(θ1,θ2) := inf

{
max

t∈[0,1]
|θ̂1(t)− θ̂2(t)| : θ̂i is the parametrization of θi, i = 1,2,

}
, (3.1)

where | · | is the Euclidean norm in R
n. It is easy to see that the convergence θν → θ in the metric of Θ

implies the Hausdorff convergence of the corresponding traces, but the converse assertion is false.
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If {θ1,θ2} ⊂ Θ and θ 1(1) = θ 2(0), then we define θ1 ◦θ2 ∈ Θ as a directed rectifiable curve admitting
the parametrization

θ1 ◦θ2(t) :=

{
θ1(2t), t ∈ [0,1/2],
θ2(2t −1), t ∈ (1/2,1].

The choice by the population of routes is described by the measure η ∈ M+(Θ) which, roughly speak-
ing, indicates how many citizens choose each special route. A measure η ∈ M+(Θ) is called an admissible
transport measure if

(p0#η)�(Rn \Σ) = ϕ+�(Rn \Σ), (p1#η)�(Rn \Σ) = ϕ−�(Rn \Σ), (3.2)

where pi: Θ → R
n is defined by the formula pi(θ) := θ(i), i = 0,1. We introdcued the functional CΣ in

M +(Θ) as follows:

CΣ(η) :=
∫

Θ

A(H 1(θ \Σ))dη(θ).

As is proved in Proposition 3.1, the functional CΣ attains the minimum over the set of all admissible transport
measures with respect to some measure ηopt. Denote by Eopt(Σ) the set of all optimal transport measures
ηopt for a given Σ:

Eopt(Σ) := Argmin{CΣ(η) : η is an admissible transport measure}.
We can see that the minimization of the functional CΣ over the set of all admissible transport measures

is nothing else as an equivalent formulation of the classical Monge–Kantorovich transport problem.

Proposition 3.1. If A is a nondecreasing lower semicontinuous function and Σ ⊂ R
n is a closed con-

nected set of finite length, then

MK(Σ) = min
{

CΣ(η) : η is an admissible transport measure
}

. (3.3)

Moreover, if ηopt ∈Eopt(Σ), then Γ := (p0× p1)#ηopt ∈Γopt(Σ). Conversely, there exists a Borel mapping
qΣ: Ω×Ω → Θ, where

Ω := co
(
supp ϕ+∪ supp ϕ−∪Σ

)
,

such that Γopt ∈ Γopt(Σ) implies η := qΣ#Γopt ∈ Eopt(Σ). Finally,

supp ηopt ⊂ Θ̃(Σ) := {θ ∈ Θ : dΣ(θ(0),θ(1)) = H 1(θ \Σ)}
for all ηopt ∈ Eopt(Σ).

Proof. If η is an admissible transport measure, then Γ := (p0 × p1)#η is an admissible transport plan.
Recalling the definition of the distance dΣ , we write

CΣ(η) =
∫

Θ

A(H 1(θ \Σ))dη �
∫

Θ

A(dΣ((p0 × p1)(θ)))dη

=
∫

Rn×Rn

A(dΣ(x,y))dΓ = IΣ(Γ) � MK(Σ).
(3.4)

We consider a multivalued mapping QΣ: Ω×Ω−◦Θ̃(Σ) such that

QΣ(x,y) := {θ ∈ Θ : θ(0) = x,θ(1) = y,dΣ(x,y) = H 1(θ \Σ)}.
We note that the graph of QΣ defined by the formula

Graph QΣ := {(x,y,θ) : (x,y) ∈ Ω×Ω,θ ∈ QΣ(x,y)}
= {(x,y,θ) ∈ Ω×Ω×Θ : x = θ(0),y = θ(1)}∩ (Ω×Ω× Θ̃(Σ))
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is a closed set because Θ̃(Σ) is closed (by Lemma 3.2); moreover, it is obvious that the set QΣ(x,y) is not
empty for any pair of points (x,y) ∈ Ω×Ω (since Σ is connected). Then by the measurable choice theorem
(cf. [18, Theorem III.6] or [19, Theorem 5.2.1]) this mapping admits a Borel selector qΣ: Ω×Ω→ Θ̃(Σ). If
Γopt ∈Γopt(Σ) is an arbitrary optimal transport plan, then ηopt := qΣ#Γopt is an admissible transport measure;
moreover,

MK(Σ) =
∫

Ω×Ω

A(dΣ(x,y))dΓopt =
∫

Ω×Ω

A(H 1(qΣ(x,y)\Σ)))dΓopt

=
∫

Θ

A(H 1(θ \Σ))dηopt = CΣ(ηopt) � infCΣ,
(3.5)

where the infimum of CΣ is taken over the set of all admissible transport measures. Together with (3.4),
this proves that ηopt is the optimal transport measure Taking for η the optimal transport measure, from (3.4)
we find that (p0 × p1)#η is the optimal transport plan. Finally, since all the inequalities in (3.4) become
equalities if η is an optimal transport measure, we conclude that η is concentrated onΘ̃(Σ) in the sense that
η(Θ\ Θ̃(Σ)) = 0. Since Θ̃(Σ) is closed, we obtain the last assertion of the proposition. �

The following simple lemma was used in the proof.

Lemma 3.2. If Σ ⊂ X is a Borel set of finite length H 1(Σ) < ∞, then the mapping θ ∈ Θ �→H 1(θ \Σ)
is lower semicontinuous. Moreover, the set Θ̃(Σ) defined in Proposition 3.1 is closed.

Proof. Let θν → θ in Θ as ν → ∞. For ε > 0 we denote by Uε a closed ε-neighborhood of set θ . Let
µ := H 1�Σ. Since θν ⊂Uε for all sufficiently large ν , we have µ(θν) � µν(U ε). Thus,

limsup
ν

µ(θν) � limsup
ν

µ(U ε) = µ(U ε).

Passing to the limit as ε → 0+ in the last inequality and taking into account the convergence µ(Uε)→ µ(θ),
we find

limsup
ν

H 1(θν ∩Σ) � H 1(θ ∩Σ).

By [20, Theorem 4.4.7],

liminf
ν

H 1(θν) � H 1(θ).

Hence

liminf
ν

H 1(θν \Σ) = liminf
ν

(H 1(θν)−H 1(θν ∩Σ))

� liminf
ν

(H 1(θν)− limsup
ν

H 1(θν ∩Σ) = H 1(θ)−H 1(θ ∩Σ) = H 1(θ \Σ).

Finally, to prove the closedness of Θ̃(Σ), we note that if {θν} ⊂ Θ̃(Σ), θν → θ in Θ as ν → ∞, then
θν(0) → θ(0) and θν(1) → θ(1) in R

n as ν → ∞. Consequently,

dΣ(θν(0),θν (1)) → dΣ(θ(0),θ(1)).

On the other hand,

H 1(θ \Σ) � liminf
ν

H 1(θν \Σ) = liminf
ν

dΣ(θν(0),θν (1)) = dΣ(θ(0),θ(1)). (3.6)

Since H 1(θ \Σ) � dΣ(θ(0),θ(1)), the inequality (3.6) becomes equality. Consequently, θ ∈Θ̃(Σ). �
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§ 4. Choice of Optimal Transportation Network

If Σ is given, MK(ϕ+,ϕ−,Σ) indicates the minimal cost of movement from ϕ+ to ϕ− with the possibility
of “free” use of Σ. In this case, Problem 1.1 has meaning. The following existence theorem hodls.

Theorem 4.1. Let a function A be lower semicontinuous. Then Problem 1.1 has a solution.

Proof. Let

m := inf
{

MK(ϕ+,ϕ−,Σ) : Σ ⊂ R
n is closed and connected, H 1(Σ) � l

}
.

Consider a sequence {Σν}∞
ν=1 of closed connected subsets of R

n such that H 1(Σν) � l for all ν ∈ N and

MK(ϕ+,ϕ−,Σν) ↘ m,

i.e., a minimizing sequence of the functional MK(ϕ+,ϕ−, ·).
Lemma 2.2 asserts that for every ν ∈ N there exists an optimal transport plan Γν for the problem

MK(ϕ+,ϕ−,Σν) such that
Γν(Rn ×R

n) � ϕ+(Rn)+ ϕ−(Rn).
Without loss of generality, we can assume that Σν ⊂Ω for some compact set Ω⊂R

n. Otherwise, there is
a sequence {xν}, xν ∈ Σν such that |xν |→ ∞ as ν →∞. However, by the inequalities diam Σν � H 1(Σν) � l
for all yν ∈ Σν , we have |yν | → ∞ as ν → ∞. Because of the compactness of supp ϕ±, for any x ∈ supp ϕ±

we have dist (x,Σν ) → ∞ as ν → ∞. If

Γν({(x,y) : dist (x,Σν )+ dist(y,Σν) < d(x,y)}) > 0

for some subsequence ν → ∞, then for this subsequence we have

MK(ϕ+,ϕ−,Σν) = IΣν (Γν) → +∞,

which is impossible. Thus, for all sufficiently large ν ∈ N

Γν(Rn ×R
n) = Γν({(x,y) : dΣν (x,y) = d(x,y)}). (4.1)

Since Γν are concentrated on (supp ϕ+∪Σν)× (supp ϕ−∪Σν) and supp ϕ± are compact sets, (4.1) means
that Γν are concdentrated on supp ϕ+ × supp ϕ− for sufficiently large ν . But such a situation is possible
only if ϕ+(Rn) = ϕ−(Rn). Furthermore, (4.1) implies the equalities MK(ϕ+,ϕ−,Σν) = MK(ϕ+,ϕ−) = m,
which means that any admissible set Σ (even Σ = ∅) is a minimum point of the functional under considera-
tion.

Thus, either Σν ⊂ Ω for some compact set Ω ⊂ R
n or the existence of a solution is automatically

guaranteed. Without loss of generality, we will assume that Ω is so large that it contains supp ϕ+ and
supp ϕ− (recall that both sets are compact by assumption).

The space of closed subsets Ω equipped with the Hausdorff metric is a compact metric space in view of
the Blashke theorem [20, Theorem 4.4.6]. Therefore, up to a subsequence (we preserve the same notation)
we can assert that Σν → Σ in the sense of Hausdorff; moreover, the set Σ ⊂ R

n is closed and connected. By
the Golab theorem [20, Theorem 4.4.7], we have H 1(Σ) � l. We note that the convergence of sets in the
sense of Hausdorff implies that d(x,Σν) → d(x,Σ) for all x ∈ R

n. Consequently,

dΣν (x,y) → dΣ(x,y)

for all (x,y) ∈ R
n ×R

n as ν → ∞. Furthermore, since all the functions dΣν are Lipschitz continuous with
the same Lipschitz constant, we conclude that dΣν → dΣ uniformly on Ω×Ω as ν → ∞. Since A is lower
semicontinuous, we find

A(dΣ(x,y)) � liminf
ν

A(dΣν (xν ,yν))
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as xν → x and yν → y in Ω as ν → ∞. Consequently, introducing uν : R
n ×R

n → R and u: R
n ×R

n → R

by the formula
uν(x,y) := A(dΣν (x,y)), u−(x,y) := A(dΣ(x,y)),

we can formulate the previous assertion as follows:

Γ− lim
ν

uν � u−. (4.2)

By the choice of Γν , the sequence {Γν(Rn×R
n)}∞

ν=1 is bounded and Γν are concentrated in the compact
set

(supp ϕ+∪Σν)× (supp ϕ−∪Σν) ⊂ Ω×Ω.

Hence we can conclude that up to a subsequence (again, not relabeled) Γν ⇀ Γ ∗-weakly in the sense of
measures, where Γ is a Borel measure on R

n ×R
n. By Lemma 2.3, Γ is an admissible transport plan for

the problem MK(ϕ+,ϕ−,Σ). Taking into account (4.2) and applying Lemma 4.2 with X := R
n ×R

n and
ην := Γν , η := Γ, we find

IΣ(Γ) :=
∫

Rn×Rn

u−(x,y)dΓ(x,y) � liminf
ν

∫

Rn×Rn

uν(x,y)dΓν (x,y)

= liminf
ν

IΣν (Γν) = liminf
ν

MK(ϕ+,ϕ−,Σν) = m.

It remains to note that
MK(ϕ+,ϕ−,Σ) � IΣ(Γ).

Consequently, MK(ϕ+,ϕ−,Σ) = m, i.e., Σ is a minimum point of the functional under consideration. �

Lemma 4.2. We assume that a sequence of nonnegative Borel functions {uν}: X → R defined on a
local-compact or Σ-compactly metric space X, satisfies the inequality

Γ− liminf
ν

uν � u−. (4.3)

Then for any sequence of Borel measures ην ⇀ η converging in the ∗-weak topology of measures we have∫

X

u− dη � liminf
ν

∫

X

uν dην .

Proof. It is easy to check that

Γ− liminf uν = sup
ν∈N

τν ,whereτν :=
(

inf
m�ν

um
)−

. (4.4)

We fix j ∈ N and estimate

liminf
ν→∞

∫

X

uν dην � liminf
ν→∞

∫

X

(
inf
m� j

um
)

dην

� liminf
ν→∞

∫

X

(
inf
m� j

um
)−

dην = liminf
ν→∞

∫

X

τ j dην �
∫

X

τ j dη .

Since the last assertion is valid for any j ∈ N, taking into account the Beppo Levi theorem and (4.4), we
arrive at the required assertion. �

We consider an important case of Problem 1.1 with ϕ− = 0. It is obvious that MK(ϕ+,ϕ−, ·) = Fϕ+(·),
where the functional Fϕ(·) (ϕ is a finite nonnegative Borel measure), called the average distance functional,
is defined by the formula

Fϕ(Σ) :=
∫

Rn

A(dist (x,Σ))dϕ(x).
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Thus, Problem 1.1 is reduced to Problem 1.2 of minimizing the average distance functional with ϕ := ϕ+.
In the further study of solutions to Problems 1.1 and 1.2, we assume the following conditions on A:

(α1) A is Lipschitz continuous on [0,L], i.e., there exists a constant Λ > 0 such that

|A(x)−A(y)| � Λ|x− y|
if {x,y} ⊂ [0,L], where L := diam supp ϕ for Problem 1.2 and L := diam (supp ϕ+∪ supp ϕ−) for
Problem 1.1;

(α2) for any c > 0 there is a number λ = λ (c) > 0 such that

|A(x)−A(y)| � λ |x− y|
for {x,y} ⊂ [c,diam supp ϕ ]. This means that the function A is injective (i.e., strictly increasing
since A is nondecreasing) on [0,diam supp ϕ ].

These conditions are satisfied, for example, by the function A(t) := t p, p � 1. Hence the results concern-
ing Problem 1.2 under these conditions will be applicable, in particular, to the average distance functionals

Fϕ(Σ) :=
∫

dist p(x,Σ)dϕ(x), p � 1.

§ 5. Topological Properties of the Average Distance Minimizers

In this section, we consider the main topological properties of average distance minimizers. For this
purpose, we recall some notions.

Definition 5.1. Let Σ be a connected topological space. A point x ∈ Σ is called a noncut point of Σ if
Σ\{x} is connected. Otherwise, x is called a cut point of Σ.

We will use the notion of the order of space at a point and also the notions of branching points and
endpoints.

Definition 5.2. Let Σ be a topological space. We say that the order of Σ at a point x ∈ Σ does not exceed
n and write

ordx Σ � n,

where n is a cardinal, if for any ε > 0 there is an subset U ⊂ Σ such that x ∈U , diam (U) < ε , and #∂U � n,
where # denotes the cardinality.

We say that the order of Σ at a point x ∈ Σ is equal to n and write

ordx Σ = n

if n is the least cardinal such that ord xΣ � n.
A point x is called a branching point of Σ if ordxΣ = n, n � 3. A point x is called an endpoint of Σ if

ord xΣ = 1.

By [21, Theorem V.1], for ord xΣ � 1 the point x is a noncut point of Σ. In particular, each endpoint of
Σ is a noncut point.

At a point x ∈ Σ :=
k⋃

i=1
[x,ai] in the union of k arcs [x,a1], . . . , [x,ak] in Σ intersecting only at the point x,

i.e., [x,ai]∩ [x,aj] = {x} for all i, j = 1, . . . ,k, the space Σ has order k. The converse assertion is also true
(cf. [21, Sec. 51.II, Assertion 8]).
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Proposition 5.3 (Menger n-Beinsatz). Let x ∈ Σ , where Σ is a locally connected continuum. Then

ord xΣ � k, k ∈ N,

implies the existence of at least k arcs {Σi}k
i=1, Σi ⊂ Σ , i = 1, . . . ,k, starting at the point x and satisfying the

condition Σi ∩Σ j = {x} for all i, j = 1, . . . ,k.

We recall the following well-known notion.

Definition 5.4. By the Hausdorff dimension dimϕ of a Borel measure ϕ on R
n we mean

dim ϕ := sup{k : ϕ � H k},
where H k is the k-dimensional Hausdorff measure.

For example, ϕ � L n implies dim ϕ = n.
Let Σopt be a solution to Problem 1.2. We will denote by k: R

n → Σopt a Borel projections on Σopt (i.e.,
a Borel mapping such that d(x,k(x)) = dist (x,Σopt) for all x ∈ R

n) and ψ := k#ϕ .
The following assertion about topological properties of the average distance minimizers valid for n � 2,

generalizes the result of [6] to the case ϕ � L n and, in addition, some results of [7].

Theorem 5.5. Let Σopt be a solution to Problem 1.2, where A satisfies conditions (α1) and (α2) and
ϕ(Σopt) = 0 (the last conditions is satisfied, for example, if dimϕ > 1 and, in particular, if ϕ � Ln). Then

(i) Σopt does not contain simple closed curves (homeomorphic images of S1) and, in particular, every
noncut point of Σopt is an endpoint.

In addition, we assume that there exists a point y ∈ Σopt such that ψ({y}) > 0. Then there exists a
constant C > 0 such that for any noncut point x ∈ Σopt we have ψ({x}) � C. In this case,

(ii) the number of noncut points (consequently, endpoints) of Σopt is finite,
(iii) there are finitely many branching points of Σopt,
(iv) every branching point of Σopt is a triple point, i.e., ord xΣopt = 3.

Remark 5.6. As was shown in [7], for n = 2 assertion (i) is equivalent to the assertion that the set
R

2 \Σopt is connected.

In the proof of this and following assertions, we will use the following notion. By a centered Steiner net
of a finite set of points N ⊂ ∂Br(x) we mean any set St(N,x,r) minimizing the length functional

Σ �→ H 1(Σ)

over all closed connected sets Σ⊂Br(x) such that N∪{x}⊂ Σ (the existence of such a set is known). We note
that such a set is not necessarily unique (for example we can take the set N of vertices of a square). It is easy
to estimate the length of the centered Steiner net consisting of two points. Namely, if N = {a,b} ⊂ ∂B1(0)
and the minimal arc in ∂B1(0) joining a with b has angle δ < 2π/3, then

H 1(St(N,0,1)) � 2sin(δ/2+ π/6). (5.1)

Indeed, by definition,

H 1(St(N,0,1)) � H 1(Σ),

where Σ denotes the union of three segments joining a, b, and x at 2π/3 angles, so that (5.1) is obtained by
a direct calculation of H 1(Σ).

Now we are ready to prove Theorem 5.5.
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Proof. The fact that there are no simple closed curves in Σopt was proved in [7]. By Proposition 5.3,
if Σ is a locally connected continuum containing no simple closed curves (homeomorphic images of S1),
then every noncut point of Σ is an endpoint. Indeed, if x ∈ Σ is a noncut point and ordxΣ � 2, then there
exist at least two arcs [x,a1]⊂ Σ and [x,a2]⊂ Σ such that [x,a1]∩ [x,a2] = {x}. However, Σ\{x} is arcwise
connected and, consequently, there is an arc Σ ⊂ Σ\{x} connecting a1 and a2. Then [x,a1]◦Σ◦ [a2,x]⊂ Σ is
a simple closed curve (hereinafter, the symbol ◦ denotes the composition of curves). Assertion (i) is proved.

Suppose that ψ({y}) > 0 and x ∈ Σopt is an arbitrary noncut point of Σopt, x �= y. Such a point exists
because, by [21, Sec. 47, Theorem IV.5], any continuum (a compact connected space) contains at least two
noncut points. We begin by proving the inequality

ψ({x}) � Cψ({y}) (5.2)

with some C > 0 independent of x. For this purpose, we consider the decreasing sequence {Dν}ν∈N of
subsets of Σopt defined in Lemma 5.10 with x ∈ Dν . Assume that the diameters of Dν are so small that
y �∈ Dν for all ν ∈ N. Introduce the notation εν := diam Dν and note that H 1(Dν) � ε ν . For the sake of
brevity, we often omit the subscript ν and write simply, for example, ε instead of εν .

Let Σ1
ε := Σopt \Dν . Then

Fϕ(Σ1
ε ) =

∫

Rn

A(dist (x,Σ1
ε ))dϕ(x) �

∫

Rn

A(dist (x,Σopt))dϕ(x)+ Λεψ(Dν) = Fϕ(Σopt)+ Λεψ(Dν).

Taking into account that y �∈ Dν for all ν ∈ N and setting T ′
y := k−1(y) \ k−1(D1) = k−1(y), we find

ϕ(T ′
y) = ψ({y}). Using Lemma 5.7, we find a compact connected set Σ 2

ε ⊃ Σ 1
ε such that

H 1(Σ 2
ε) � H 1(Σ 1

ε )+ ε � H 1(Σ opt)

and for all sufficiently small ε > 0 we have the inequality

Fϕ(Σ 2
ε) =

∫

Rn

A(dist (x,Σ2
ε ))dϕ(x)

�
∫

Rn

A(dist (x,Σ 1
ε ))dϕ(x)−Cψ({y})ε = Fϕ(Σ 1

ε )−Cψ({y})ε ,

where C > 0 is independent of ε , y, and x. Thus,

Fϕ(Σ 2
ε) � Fϕ(Σ opt)+ εψ(Dν)−Cεψ({y}).

Since ε → 0 and ψ(Dν) → ψ({x}) as ν → ∞, we see that the last inequality contradicts the optimality of
Σ opt for sufficiently large ν only if the inequality (5.2) fails.

Since x is chosen arbitrarily, for any noncut point x ∈ Σopt we have ψ({x}) > C, where C > 0 is some
constant independent of x. The fact that the set of noncut points of Σopt (assertion (ii)) is finite follows from
the relation ψ(Rn) = ϕ(Rn) < +∞, whereas the set of branching points of Σopt (assertion (iii)) is finite
because of Lemma 5.11.

It remains to prove assertion (iv). Assume the contrary. Suppose that ordxΣ opt > 3 for some x ∈ Σ opt.
By Proposition 5.3, there is at least four closed arcs Σi ⊂ Σ opt, i = 1, . . . ,4, that start at the point x and do
not meet at other points (i.e., Σi∩Σ j = {x} for i �= j). We choose a sufficiently small number ε = εν := 1/ν
(where ν ∈ N) such that the closed ball Bε(x) does not contain any other branching points and noncut points
(this is possible because the number of such points is finite by assertions (ii) and (iii)) and

Σ i ∩∂Bε(x) �= ∅, i = 1, . . . ,4.

Let ai
ε ∈ Σ i ∩ ∂Bε(x) denote the first point at which Σi tangents ∂Bε(x), i.e., for all y ∈ (x,ai

ε ) we have
y ∈ Bε(x), i = 1, . . . ,4. By Lemma 5.9(ii), among these four points there are at least two points (without
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loss of generality we denote them by a1
ε and a2

ε ) such that the minimal arc joining them in ∂Bε(x) has angle
δ < 2π/3.

Introduce the notation

Σ 1
ε :=

(
Σ opt \ ((x,a1

ε )∪ (x,a2
ε))
)∪St({a1

ε ,a2
ε},x,ε).

The set Σ 1
ε is connected since the removed arcs did not contain any branching point of the set Σopt by

construction. It is obvious that this set is compact. We have

H 1(Σ 1
ε ) � H 1(Σ opt)−H 1((x,a1

ε ))−H 1((x,a2
ε ))+H 1(St({a1

ε ,a2
ε},x,ε)).

Note that H 1((x,ai
ε )) � ε , i = 1,2, and

H 1(St({a1
ε ,a2

ε},x,ε)) = εH 1(St({(a1
ε − x)/ε ,(a2

ε − x)/ε},0,1)).

By (5.1), we have
H 1(St({(a1

ε − x)/ε ,(a2
ε − x)/ε},0,1) � 2−β ,

where β > 0 depends only on δ . Combining the above estimates, we find

H 1(Σ 1
ε ) � H 1(Σ opt)−βε .

Furthermore, we have

Fϕ(Σ 1
ε ) =

∫

Rn

A(dist (x,Σ 1
ε ))dϕ(x)

�
∫

Rn

A(dist (x,Σ opt))dϕ(x)+ Λεψ(Bε(x)\{x}) = Fϕ(Σ opt)+ Λεψ(Bε(x)\{x}).
(5.3)

Let z be a noncut point of Σ opt. Then, as was just proved, ψ({z}) > 0. We choose ν ′ ∈ N such
that z �∈ Bε ′(x), where ε ′ := ε ν ′ . Setting T ′

y := k−1(z) \ k−1(Bε ′(x)), we find T ′
z = k−1(z). Consequently,

ϕ(T ′
z ) = ψ({z}). Using Lemma 5.7, we obtain a compact connected set Σ2

ε ⊃ Σ 1
ε such that

H 1(Σ 2
ε) � H 1(Σ 1

ε )+ ε � H 1(Σ opt)

and

Fϕ(Σ 2
ε) =

∫

Rn

A(dist (ξ ,Σ2
ε))dϕ(ξ )

�
∫

Rn

A(dist (ξ ,Σ 1
ε ))dϕ(ξ )−Cψ({z})ε = Fϕ(Σ 1

ε )−Cψ({z})ε , (5.4)

where C > 0 is independent of ε . Since ψ(Bε(x)\{x}) = o(1) as ε → 0, from (5.3) and (5.4) it follows that
for sufficiently small ε > 0

Fϕ(Σ 2
ε) < Fϕ(Σ opt).

This estimate, together with the inequality H 1(Σ 2
ε) � H 1(Σ opt), contradicts the optimality of Σopt. �

The following lemmas were used in the above proof.

Lemma 5.7. Let Σν ⊂ R
n be a sequence of compact connected sets such that Σ := ∩νΣ ν �= ∅, and let

ϕ be a positive Borel measure on R
n such that ϕ(Σ) = 0. Assume that for some x ∈ Σ there exists a Borel

set T ′
x ⊂ R

n such that ϕ(T ′
x) > 0 and there is a number ν0 ∈ N such that for any point y ∈ T′

x

0 < dist (y,Σ) = d(y,x) < dist (y,Σν \Σ),

provided that ν � ν0. Then, if condition (α2) is satisfied, for any ν ∈ N and a sufficiently small ε > 0 there
is a compact connected set Σν ,ε ⊃ Σ ν such that H 1(Σ ν ,ε) � H 1(Σ ν)+ ε and

Fϕ(Σ ν ,ε) � Fϕ(Σ ν)−Cϕ(T ′
x)ε ,
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where the constant C > 0 is independent of ν and ε .

Proof. Using Lemma 5.8, for every δ > 0 we can construct a compact connected set Γ′
δ on the surface

∂ I n
δ (x) of the n-dimensional cube In

δ (x) with side of length 4δ and center x such that

H 1(Γ′
δ ) � Cδ , dist (y,Γ ′

δ ) � δ

for all y ∈ ∂ In
δ (x), where C > 0 depends only on n. Denote by Γδ the union of sets Γ′

δ with the shortest line
segment joining the latter with the point x. It is obvious that the set Γδ is compact and connected; moreover,
H 1(Γδ ) � C′δ , where C′ > 0 depends only on n.

We set ε := C′δ and

Σ ν ,ε := Σ ν ∪Γδ .

The set Σν ,ε is compact and connected; moreover, H 1(Σ ν ,ε) � H 1(Σ ν)+ ε . We set

Σc := {x ∈ R
n : dist (x,Σ) � c}

and note that there is c > 0 such that ϕ(T′
x \Σc) � ϕ(T ′

x)/2 (since ϕ(T ′
x ∩Σc) → ϕ(T ′

x ∩Σ) = 0 as c ↓ 0 by
the assumption ϕ(Σ) = 0). We fix this number c > 0 and set ϕc := ϕ�R

n \Σc and ϕ ′
c := ϕ�Σc.

If 2
√

nδ < c (i.e., Γδ ⊂ ∂ I n
δ (x) ⊂ Σc), then for any y ∈ T ′

x \Σc and ν � ν0 we have dist (y,Σν) = d(y,x);
moreover,

dist (y,Σν ,ε) � dist (y,Γδ ) � d(y,x)−2δ + δ .

Consequently,

dist (y,Σν ,ε) � dist (y,Σν)−Cε

for some constant C > 0 independent of ε and ν . Using (α2), we find
∫

Rn

A(dist (z,Σν ,ε))dϕ c(z)−
∫

Rn

A(dist (z,Σν))dϕ c(z) � −λCεϕ c (T ′
x )

� −Cϕ
(
T ′

x

)
ε

(where λ = λ (c/2) and C > 0 can be different from line to line, but always independent of ν and ε). On the
other hand, we have ∫

Rn

A(dist (z,Σν ,ε))dϕ ′
c(z) �

∫

Rn

A(dist (z,Σν))dϕ ′
c(z).

Adding the above inequalities and taking into account that ϕ = ϕc +ϕ ′
c, we obtain at the required assertion.

�

Lemma 5.8. For any j ∈ N there exists a compact connected set Γ j ⊂ I n := [0,1]n satisfying the con-
ditions H 1(Γ j) � n( j + 1)n−1 and dist (y,Γ j) � √

n/2 j for all y ∈ In.

Proof. Let Γ j be the set of all (x1, . . . ,xn)∈ I n such that jxi ∈N for all i = 1, . . . ,n except, perhaps, one,
i.e., Γ j is a uniform one-dimensional grid with step 1/ j in In. The required properties of Γj can be verified
directly. �

Lemma 5.9. The following assertions hold.

(i) Among three vectors in R
n that do not belong to the same two-dimensional plane, there are two

vectors such that the angle between them is strictly less than 2π/3.
(ii) Among four vectors in R

n there are two vectors such that the angle between them is strictly less
than 2π/3.
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Proof. To prove (i), we note that we can assume n = 3 without loss of generality (since any three vectors
belong to a three-dimensional subspace of R

n). Let a, b, and c be arbitrary unit vectors in R
3. We choose

the coordinate axes in such a way that a = (0,0,1) and b = (b1,0,b3). Assume that the angle between a
and b, as well as between a and c, is not less than 2π/3 (otherwise, there is nothing to prove). If c2 = 0,
then all three vectors belong to the same two-dimensional plane {x2 = 0}. Otherwise (i.e., c2 �= 0), we set
c′ := (c1,0,c3). Since the angle between a and c is at least 2π/3, we have c3 � −1/2. We can assume that
c2

1 + c2
3 �= 0; otherwise, c is perpendicular to a, which contradicts the assumption. Thus, for the angle α′

between a and c′ we find

cos α ′ =
c3√

c2
1 + c2

3

< c3 � −1
2

since
√

c2
1 + c2

3 < 1. Hence α ′ > 2π/3. Thus, the angle δ ′ between b and c′ is strictly less than 2π/3 (since

a, b, and c′ belong to the same two-dimensional plane {x2 = 0}), which implies cosδ ′ > −1/2. On the
other hand,

cosδ ′ =
b1c1 + b3c3√

c2
1 + c2

3

=
cos δ√
c2

1 + c2
3

.

We assume that cosδ < 0 (otherwise, δ � π/2 and there is nothing to prove). Then cosδ > cos δ ′. Conse-
quently, cos δ > −1/2. Hence δ < 2π/3, which completes the proof of assertion (i).

To prove (ii), we can assume without loss of generality that n = 4 (since any four vectors in R
n belong to

a four-dimensional subspace). We consider an arbitrary triple of vectors among the given four vectors in R
4.

By assertion (i), this triple either contains two vectors such that the angle between them is strictly less than
2π/3 (and then there is nothing to prove) or lies inside a two-dimensional plane . Using assertion (i) again,
in the last case, we find that either the angle between the fourth vector and some of the vectors of the triple
is strictly less than 2π/3 or all the four vectors belong to the same two-dimensional plane. Consequently,
among them there is a pair of vectors forming an angle strictly less than 2π/3. �

The following two topological lemmas are taken from [22] and [6] respectively.

Lemma 5.10. Let Σ be a locally connected metric continuum containing more than one point, and let
x ∈ Σ be a noncut point of Σ. Then there exists a sequence of open sets Dν ⊂ Σ satisfying the following
conditions:

(i) x ∈ Dν for all sufficiently large ν ,
(ii) Σ\Dν is connected for every ν ,

(iii) diam Dν ↘ 0 as ν → ∞,
(iv) Dν is connected for every ν .

Lemma 5.11. Let Σ be a local connected continuum containing no simple closed curves (homeomorphic
images of S1). If the set of endpoints of Σ is finite, then the set of branching points of Σ is also finite.
Furthermore, in this case, for every branching point x ∈ Σ the order ordxΣ is finite.

§ 6. Characterization of Branching Points via the Mean Curvature

Now, we can more exactly characterize branching points of the average distance minimizer Σopt (i.e.,
solutions to Problem 1.2). According to the results of numerical simulation in [5], we expect the following
result: for at least a sufficiently good measure ϕ (i.e., if its density is summable with a suitable exponent
relative to the Lebesgue measure) all the branching points of Σopt are regular tripods, i.e., points where
exactly three smooth branches meet at 120◦ angles. However, even if we do not possess results concerning
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the strong regularity of Σ opt up to branching points, we can prove a weaker result. For this purpose, we
recall the notion of the generalized average curvature in [23]. By the generalized mean curvature HΣ of
a countably (H k,k)-rectifiable set Σ ⊂ R

n (or measure H k�Σ in the terminology of [23]) we mean the
vector-valued distribution

〈X ,HΣ〉 :=
∫

Σ

divΣ X dH k

for all X ∈C∞
0 (Rn,Rn). The mean curvature HΣ is a Radon charge (a signed measure) if

|HΣ|(D) := sup

⎧⎨
⎩
∫

Σ∩D

divΣ X dH k : X ∈C∞
0 (D;Rn), ||X ||∞ = 1

⎫⎬
⎭

is finite for any open set D ⊂ R
n. Denote by H the generalized mean curvature of the average distance

minimizer Σ opt. The following assertion holds.

Proposition 6.1. Under the assumptions of Theorem 5.5, the generalized mean curvature H is a Radon
charge; moreover, H � ψ .

Proof. By Theorem 5.5, the set of noncut points of Σopt is finite. Therefore, it suffices to prove the
existence of a constant C > 0 such that

|H|(D) � Cψ(D) (6.1)

for any open set D ⊂ R
n such that its closure D does not contain any noncut point of Σopt. To prove this

assertion, we assume that |H|(D) �= 0 (otherwise, there is nothing to prove). For m ∈ N we consider a vector
field Xm ∈C∞

0 (D;R2) such that ||Xm||∞ = 1 and∣∣∣∣
∫

Σ opt∩D

divΣ opt Xν dH 1 −|H|(D)
∣∣∣∣� 1/m.

For every ε ∈ R and m ∈ N we introduce a diffeomorphism Φm
ε by the formula

Φm
ε (x) := x− εXm(x).

Let Σ m
ε := Φε

m(Σ opt). By [24, Theorem 7.31],

d
dε

H 1(Σ m
ε ) =

∫

Σ opt∩D

divΣ opt Xm dH 1.

Consequently,

δ := H 1(Σ opt)−H 1(Σ m
ε ) = ε

∫

Σ opt∩D

divΣ opt Xm dH 1 + o(ε).

We assume that m is sufficiently large and set ε = εν := 1/ν (we will omit the subscript ν for brevity) for
ν ∈ N, so that the set {Σm

ε } is countable. In this case,

δ � ε(|H|(D)−1/m)+ o(ε) > 0 (6.2)

for small ε > 0. Then

Fϕ(Σ m
ε ) =

∫

Rn

A(dist (x,Σm
ε ))dϕ(x)

�
∫

Rn

A(dist (x,Σ opt))dϕ(x)+ Λεψ(D) = Fϕ(Σ opt)+ Λεψ(D). (6.3)
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Let y ∈ Σ opt be an arbitrary endpoint. If ε > 0 is sufficiently small, then, by the condition on D, we have
y �∈ Dε , where

Dε := {x ∈ R
n : dist (x,D) � ε}.

Consequently, denoting T′
y := k−1(y)\ k−1(Dε) = k−1(y), we get ϕ(T ′

y) = ψ({y}). Using Lemma 5.7, we

obtain a compact connected set Σ̃ m
ε ⊃ Σ m

ε satisfying the condition

H 1(Σ̃ m
ε ) � H 1(Σ m

ε )+ δ = H 1(Σ opt);

moreover, for a sufficiently small ε > 0 the following estimate holds:

Fϕ(Σ̃ m
ε ) =

∫

Rn

A(dist (x, Σ̃ m
ε ))dϕ(x)

�
∫

Rn

A(dist (x,Σm
ε ))dϕ(x)−Cψ({y})δ = Fϕ(Σ m

ε )−Cψ({y})δ (6.4)

with some constant C > 0 independent of ε and m.
The inequalities (6.3) and (6.4) yield

Fϕ(Σ̃ m
ε ) � Fϕ(Σ opt)+ Λεψ(D)−Cψ({y})δ .

To avoid a contradiction with the optimality of Σopt, we must show that the condition Cψ({y})δ � εψ(D)
is satisfied. By (6.2), this condition implies the inequality

C(ε(|H|(D)−1/m)+ o(ε))ψ({y}) � εψ(D).

Dividing both sides of the last inequality by ε and passing to the limit as ν → ∞ (in other words, as ε → 0+)
and, after that, as m → +∞, we arrive at (6.1) (perhaps, with some other value of C). �

Using the above assertion, we can characterize branching points of the average distance minimizer Σopt

as follows.

Theorem 6.2. Under the assumptions of Theorem 5.5, every branching point x ∈ Σopt is a triple point
(i.e., Σ opt has order three); moreover, the Euclidean dimension of the set k−1(x) is at most n − 2, i.e.,
k−1(x) is contained in some (n−2)-dimensional hyperplane. In particular, if dimϕ > n−2 (for example, if
ϕ � L n), then H({x}) = 0.

Proof. Let x ∈ Σ opt be a branching point. By Theorem 5.5(iv), it is a triple point. We assume that the
Euclidean dimension of the set k−1(x) is equal to m � n, i.e., k−1(x) is contained in some m-dimensional
hyperplane Πm ⊂ R

n and is not contained in any (m−1)-dimensional hyperplane. We prove that m � n−2.
By Lemma 6.3,

C∩Br0(x) ⊂ k−1(x)
for some convex m-dimensional cone (i.e., it cannot be reduced to a set of dimension less than m) C ⊂ Πm

with vertex x and sufficiently small r0 > 0. We prove that for all y ∈C

limsup
r→0

sup
z∈Σ opt∩∂Br(x)

〈y− x,z− x〉
|y− x| · |z− x| � 0. (6.5)

Indeed, in the opposite case, for some c > 0 there is an infinitesimal sequence {rν}, rν → 0 as ν → ∞ (the
subscript ν will be omitted) such that for some yr ∈C and zr ∈ Σ opt ∩∂Br(x) we have

〈y− x,z− x〉
|y− x| · |z− x| � c,

i.e., the angle between the vectors yr −x and zr −x does not exceed arccos c < π/2. In the two-dimensional
plane formed by the vectors yr − x and zr − x, we consider the line lr passing through zr perpendicularly
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to zr − x and set xr := lr ∩ l′r, where l′r is the line passing through x and yr. If r/c < r0, then xr ∈ Br0(x).
Consequently, xr ∈ k−1(x), which implies dist (xr,Σ opt) = d(xr,x). On the other hand,

dist (xr,Σ opt) � d(xr,zr) < d(xr,x).

We arrive at a contradiction. Thus, (6.5) is proved (cf. Fig. 1).

C

x

zr

ry

r

r

r

x

l’

l

FIGURE 1. Proof of the inequality (6.5)

We argue in the same way as in the proof of Theorem 5.5(iv). Since x is a triple point, from Propo-
sition 5.3 it follows that there are three closed arcs Σi ⊂ Σ opt, i = 1, . . . ,3, that start at the point x and are
pairwise disjoint outside x, i.e., Σi∩Σ j = {x} for i �= j. We assume that ε > 0 is so small that the closed ball
Bε(x) does not contain any other branching point of Σopt (it is possible because the set of branching points
is finite in view of Theorem 5.5(iii)) and

Σ i ∩∂Bε(x) �= ∅, i = 1, . . . ,3.

Let ai
ε ∈ Σ i ∩ ∂Bε(x) denote the first point at which the arc Σi tangents ∂Bε(x), i.e., a point such that

y ∈ Bε(x), i = 1, . . . ,3, for all y ∈ (x,ai
ε ).

We chose a sequence ε ν → 0 as ν → ∞ such that

ai
ε ν − x

ε ν
→ ai ∈ ∂B1(0), i = 1, . . . ,3,

as ν → ∞. We will omit the subscript ν and write ε instead of εν . Let us prove that the angle between
any two vectors among ai, i = 1, . . . ,3, is equal to 2π/3. Indeed, in the opposite case, there exists a number
δ < 2π/3 such that for all sufficiently small ε there is a couple of points ai

ε , i = 1, . . . ,3 (say, a 1
ε and a2

ε ),
such that the minimal joining them arc in ∂Bε(x) has angle at most δ . We set

Σ 1
ε := (Σ opt \ ((x,a1

ε )∪ (x,a2
ε)))∪St({a1

ε ,a2
ε},x,ε).
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We note that the set Σ 1
ε is connected since the “removed” arcs did not contain any branching point of Σopt

by assumption. We also note that this set is closed. The estimate

H 1(Σ 1
ε ) � H 1(Σ opt)−H 1((x,a1

ε ))−H 1((x,a2
ε ))+H 1(St({a1

ε ,a2
ε},x,ε))

together with the inequalities H 1((x,ai
ε )) � ε , i = 1,2, and the relation

H 1(St({a1
ε ,a2

ε},x,ε)) = εH 1(St({(a1
ε − x)/ε ,(a2

ε − x)/ε},0,1)) � ε(2−β )

where β > 0 depends only on δ (the last estimate holds by (5.1)), implies

H 1(Σ 1
ε ) � H 1(Σ opt)−βε .

Assume that a point y ∈ Σ opt satisfies the condition ψ({y}) > 0. Taking into account that y �∈ Bε(x) for
sufficiently small ε > 0 and setting T′

y := k−1(y) \ k−1(Bε(y)) = k−1(y), we find ϕ(T ′
y) = ψ({y}). Using

Lemma 5.7, we find a closed connected set Σ2
ε ⊃ Σ 1

ε , such that

H 1(Σ 2
ε) � H 1(Σ 1

ε )+ βε = H 1(Σ opt);

moreover, for any sufficiently small ε > 0 the following estimate holds:

Fϕ(Σ 2
ε) =

∫

Rn

A(dist (z,Σ2
ε ))dϕ(z)

�
∫

Rn

A(dist (z,Σ 1
ε ))dϕ(z)−Cψ({x})βε = Fϕ(Σ 1

ε )−Cε (6.6)

with some constant C > 0 independent of ε . However,

Fϕ(Σ 1
ε ) =

∫

Rn

A(dist (z,Σ 1
ε ))dϕ(z)

�
∫

Rn

A(dist (z,Σ opt))dϕ(z)+ εψ(Bε(x)\{x}) = Fϕ(Σ opt)+ εψ(Bε(x)\{x}),

which, together with (6.6), yields

Fϕ(Σ 2
ε) � Fϕ(Σ opt)+ εψ(Bε(x)\{x})−Cε .

Since ψ(Bε(x)\{x}) = o(1) as ε → 0+, the last estimate implies

Fϕ(Σ 2
ε) < Fϕ(Σ opt)

for all sufficiently small ε , which contradicts the optimality of Σopt. Thereby we complete the proof of the
assertion that the angles between each pair of vectors ai, i = 1, . . . ,3, are equal to 2π/3.

By Lemma 5.9(i), the vectors ai, i = 1, . . . ,3, belong to the same two-dimensional hyperplane. We
choose the Cartesian coordinate system with the origin at x in such a way that the vectors ai, i = 1, . . . ,3,
belong to the hyperplane {x3 = x4 = . . . = xn = 0}; moreover,

a1 = (1,0,0, . . . ,0) ,a2 =

(
−1

2
,−

√
3

2
,0, . . . ,0

)
,a3 =

(
−1

2
,

√
3

2
,0, . . . ,0

)
.
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For any y ∈C, y �= x, from (6.5) we find

y1 = 〈y,a1〉 = lim
ε→0+

〈y,a1
ε 〉

ε
� 0,

− y1

2
− y2

√
3

2
= 〈y,a2〉 = lim

ε→0+

〈y,a2
ε 〉

ε
� 0,

− y1

2
+

y2
√

3
2

= 〈y,a3〉 = lim
ε→0+

〈y,a3
ε 〉

ε
� 0,

which implies y1 = y2 = 0. Hence the Euclidean dimension of C does not exceed n−2.
The assertion about the generalized curvature follows from Proposition 6.1 since ψ({x}) = 0 by condi-

tion. �

The following lemma was used in the proof of Theorem 6.2.

Lemma 6.3. Suppose that Σ ⊂ R
n is a closed set and K: R

n −◦Σ is a multivalued projection on Σ. If
x ∈ K({y,z}), where x ∈ Σ , and d(y,x) = d(z,x), then x ∈ K(co{x,y,z}).

Proof. Since x ∈ K(x′) implies x ∈ K(tx′ + (1 − t)) for any t ∈ [0,1], it suffices to prove that x ∈
K(co{y,z}) or, in other words, x ∈ K(ty + (1 − t)z) for any t ∈ [0,1]. We assume that x �= y (other-
wise, the assertion is trivial). Suppose that the origin is at the point x and the coordinate axes are lo-
cated in such a way that y = (a,b,0, . . . ,0), z = (−a,b,0, . . . ,0), a > 0, b � 0. By the assumptions of the
lemma, Σ∩Br(y) = Σ∩Br(z) = ∅, where r :=

√
a2 + b2 = d(y,x) = d(z,x). In other words, for any point

x′ = (x′1, . . . ,x
′
n) ∈ Σ

(x′1 −a)2 +(x′2 −b)2 +
n

∑
i=3

x
′2
i � a2 + b2,

(x′1 + a)2 +(x′2 −b)2 +
n

∑
i=3

x
′2
i � a2 + b2.

Then for any x′ ∈ Σ and t ∈ [0,1]

d2(ty+(1− t)z,x′) = (x′1 − (2t −1)a)2 +(x′2 −b)2 +
n

∑
i=3

x
′2
i

= (x′1 + a)2 +(x′2 −b)2 +
n

∑
i=3

x
′2
i +(2ta)2 −4ta(x′1 + a)

� a2 + b2 +(2ta)2 −4ta(x′1 + a) = (2ta−a)2 + b2 −4tax′1
= ((2t −1)a)2 + b2 −4tax′1 = d2(ty+(1− t)z,x)−4tax′1
� d2(ty+(1− t)z,x),

if x′1 � 0. Similarly,

d2(ty+(1− t)z,x′) = (x′1 − (2t −1)a)2 +(x′2 −b)2 +
n

∑
i=3

x
′2
i

= (x′1 −a)2 +(x′2 −b)2 +
n

∑
i=3

x
′2
i +((2t −2)a)2 − (4t −4)a(x′1 −a)

� a2 + b2 +((2t −2)a)2 − (4t −4)a(x′1 −a)

= ((2t −1)a)2 + b2 − (4t −4)ax′1
= d2(ty+(1− t)z,x)− (4t −4)ax′1 � d2(ty+(1− t)z,x),
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if x′1 > 0 (since t � 1), which completes the proof. �

We note that Theorem 6.2 implies that any branching point of the average distance minimizer Σopt is
a regular tripod (i.e., a point where exactly three smooth branches meet at 2π/3 angles) only if Σopt is
sufficiently regular (i.e., sufficiently smooth up to branching points).

Now we study the regularity of branching points of the average distance minimizer Σopt. For this
purpose, for an m-dimensional subspace Πm ⊂ R

n and a compact set Ω ⊂ R
n we introduce the notation

ρ(Πm,x) := inf{r : k−1(x)∩Ω ⊂ B
m
r (x)×Π⊥

m},
ρ(Πm,Br(x)) := sup{ρ(Πm,y) : y ∈ Br(x)},

where Π⊥
m is the orthogonal complement in R

n of the subspace Πm and B
m
r (x) ⊂ Πm is the m-dimensional

closed ball of radius r and center x.

Lemma 6.4. Let a point x ∈ Σ opt, where Σ opt is the average distance minimizer, be such that the
Euclidean dimension of the set k−1(x) does not exceed n−2 (in particular, this condition is satisfied if x is a
branching point of Σ opt). Under the assumptions of Theorem 5.5, there exists a two-dimensional subspace
Π2 ⊂ R

n, x ∈ Π2 such that for any ε > 0 there is δ > 0 such that ρ(Π2,Br(z)) < ε if Br(z) ⊂ Bδ (x).

Proof. Let S be an arbitrary (m−2)-dimensional hyperplane containing k−1(x) (if x is a branching point
of Σ opt, then such a hyperplane exists in view of Theorem 6.2). We set Π2 := S⊥ (for n = 2 we set Π2 := R

2).
It suffices to prove that the convergence xν → x as ν → ∞ implies ρ(Π2,xν) → 0, but, in the opposite case,
ρ(Π2,xν) � r0 for some number r0 > 0 and subsequence xν (we preserve the same notation). Consequently,
there is a sequence of points zν �∈ Bm

r0/2(xν)×Π⊥
2 , zν ∈ Ω such that the projection of each point zν to Σ opt

contains xν . Passing to a converging subsequence (in the same notation) zν → z ∈ Ω as ν → ∞, we find that
the projection of z to Σ opt contains x. However, z �∈ Bm

r0/2(x)×Π⊥
2 , i.e., ρ(Π2,x) � r0/2, while ρ(Π2,x) = 0

by construction. We obtain a contradiction. The proof is complete. �

We need the following assertion about the Ahlfors regularity of the average distance minimizers. It was
proved in [6] in the two-dimensional case n = 2 and in [7] for an arbitrary dimension n � 2. This regularity
condition is rather weak. However, as was shown in [25], for one-dimensional closed connected sets (it is
the class in which we look for average distance minimizers) it provides some nice analytic properties. In
particular, this condition guarantees a kind of “quantitative rectifiability” which is somewhat stronger than
the classical rectifiability used in geometric measure theory.

Theorem 6.5. Suppose that Σ opt is a solution to Problem 1.2, a function A satisfies condition (α1),
(α2), and ϕ ∈ Lp(Rn), where p = n/(n−1) for n � 3 and p = 4/3 for n = 2. Then Σopt is Ahlfors regular,
i.e., there are two constants c > 0 and C > 0 such that for any positive number ρ < diam Σopt and point
x ∈ Σ opt

cρ � H 1(Σ opt ∩Bρ(x)) � Cρ (6.7)

We also need the following estimates generalizing analogous estimates from [8] in the two-dimensional
case n = 2 and A(t) = t.

Lemma 6.6. Suppose that Σ opt is an average distance minimizer and x ∈ Σopt, y ∈ Σ opt are such that
there is an arc Σ ⊂ Σ opt with the starting point x and endpoint y that contains no branching points of Σopt,
perhaps, except for the points x and y themselves. Then, under the assumptions of Theorem 5.5, for any arc
Σ 0 with the starting point x and endpoint y we have

H 1(Σ)−H 1(Σ 0) � Cψ(Σ\{x,y})max
x∈Σ

dist (x,Σ 0) � Cψ(Σ\{x,y})dH (Σ,Σ 0), (6.8)
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where dH(Σ,Σ 0) is the Hausdorff distance between the arcs Σ and Σ0 and the constant C > 0 depends only
on the data of the problem. Furthermore, if Σ ⊂ Σopt ∩Br(x), where r := |x− y|, then

dH(Σ, [x,y]) � Crψ(Σ\{x,y}), (6.9)

where [x,y] is a line segment.

Proof. Let H 1(Σ) > H 1(Σ 0) (otherwise, the inequality (6.8) is trivial). We set Σ1 := (Σ opt \Σ)∪Σ 0.
Then

Fϕ(Σ 1) =
∫

Rn

A(dist (z,Σ 1))dϕ(z)

�
∫

Rn

A(dist (z,Σ opt))dϕ(z)+
∫

k−1(Σ\{x,y})
(A(dist (z,Σ 0))−A(dist (z,Σ)))dϕ(z)

�
∫

Rn

A(dist (z,Σ opt))dϕ(z)+ Λψ(Σ\{x,y})max
x∈Σ

dist (x,Σ 0)

= Fϕ(Σ opt)+ Λψ(Σ\{x,y})max
x∈Σ

dist (x,Σ 0).

Using Lemma 5.7, we find a compact connected set Σ2 ⊃ Σ 1 such that

H 1(Σ 2) � H 1(Σ 1)+H 1(Σ)−H 1(Σ 0) � H 1(Σ opt)

and

Fϕ(Σ 2) � Fϕ(Σ 1)−C(H 1(Σ)−H 1(Σ 0))

with some C > 0 independent of Σ , y, and x. Thus,

Fϕ(Σ 2) � Fϕ(Σ opt)+ Λψ(Σ\{x,y})max
x∈Σ

dist (x,Σ 0)−C(H 1(Σ)−H 1(Σ 0)).

Hence the last inequality contradicts the optimality of Σopt only if the first inequality in (6.8) fails. The
second inequality in (6.8) obviously follows from the first one since maxx∈Σ dist (x,Σ 0) � dH(Σ,Σ 0).

To prove (6.9), we apply (6.8) to Σ 0 := [x,y]. We have

H 1(Σ)−|x− y|� CdH(Σ, [x,y])ψ(Σ\{x,y}). (6.10)

Note that

H 1(Σ)2 � 4d2
H(Σ, [x,y])+ |x− y|2. (6.11)

Indeed, let z ∈ Σ satisfy the condition dist (z, [x,y]) = dH(Σ, [x,y]). Then

H 1(Σ) � |x− z|+ |z− y|,
but

|x− z|+ |z− y|� min{|x− p|+ |p− y| : p ∈ R
n, dist (p, [x,y]) = dH(Σ, [x,y])}

=
(
4d2

H(Σ, [x,y])+ |x− y|2)1/2
.

The inequalities (6.11), (6.10) and the estimate |x− y| � H 1(Σ) yield

4d2
H(Σ, [x,y]) � (H 1(Σ)+ |x− y|)(H 1(Σ)−|x− y|) � 2H 1(Σ)CdH(Σ, [x,y])ψ(Σ\{x,y}).

Consequently,

dH(Σ, [x,y]) � CH 1(Σ)ψ(Σ\{x,y}).
Taking into account that H 1(Σ) � H 1(Σ opt ∩Br(x)) � Cr in view of Theorem 6.5, we arrive at (6.9). �
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The following auxiliary assertion establishes conditions of a certain geometric regularity of the average
distance minimizer in a neighborhood of each point (namely, it asserts that in a sufficiently small neighbor-
hood of each point this set is a collection of “not too oscillating” curves).

Proposition 6.7. Under the assumptions of Theorem 5.5, for any point x ∈ Σopt there is a number r0 > 0
such that for any arc θ ⊂ Σ opt with the starting point x

#θ ∩∂Br(x) = 1

for any r ∈ (0,r0].

Proof. Denote by x1
r and x2

r the first and last tangent points of the sphere ∂Br(x) by the arc θ . Then for
curvalinear segments of the arc [x,x2

r]⊂ θ we have diam [x,x2
r]→ 0 as r → 0+. Indeed, in the opposite case,

diam [x,x2
rν

] � c for some c > 0 and rν → 0+. Consequently, Σ opt must contain a simple closed curve, which
contradicts Theorem 5.5(i). As a consequence, we find that ψ([x,x2

r ]) → ψ(x) as r → 0+. Consequently,
ψ([x,x2

r ]\{x,x2
r}) → 0 as r → 0+.

If r > 0 is sufficiently small, then [0,x2
r] contains no branching points and endpoints of Σopt, perhaps,

except for the point x itself. Using the estimate (6.8) in Lemma 6.6 with Σ := [x,x2r ] and Σ 0, the result of a
rotation of [x,x1

r ] after whcih the points x1
r and x2

r coincide, we find

H 1([x1
r ,x

2
r]) � Cψ([x,x2

r]\{x,x2
r}) max

z∈[x,x2
r ]

dist (z,Σ 0). (6.12)

Since
max

z∈[x,x1
r ]

dist (z,Σ 0) � |x2
r − x1

r | � H 1([x1
r ,x

2
r]),

and
max

z∈[x1
r ,x2

r ]
dist (z,Σ 0) � max

z∈[x1
r ,x2

r ]
|z− x2

r| � diam [x1
r ,x

2
r] � H 1([x1

r ,x
2
r]),

from (6.12) it follows that

H 1([x1
r ,x

2
r]) � CH 1([x1

r ,x
2
r])ψ([x,x2

r ]\{x,x2
r}).

The last inequality is valid for sufficiently small r > 0 (such that Cψ([x,x2r ]\{x,x2
r}) < 1) only if

H 1([x1
r ,x

2
r]) = 0,

i.e., x1
r = x2

r or, in other words, #θ ∩∂Br(x) = 1. �

Lemma 6.8. Suppose that Σ opt is an average distance minimizer and x ∈ Σopt is neither a branching
point nor an endpoint. Let Ω ⊂ R

n be an arbitrary closed convex set containing supp ϕ and Σopt, and let
Π2 ⊂ R

n be an arbitrary two-dimensional plane. Assume that ϕ ∈ L∞(Rn). Then, under the assumptions of
Theorem 5.5, there is a number r′ > 0 such that for any r ∈ (0,r′)

ψ(Br(x)) � C(r + ψ(B2r(x)), (6.13)

where the constant C > 0 depends on the data of the problem and, in addition, on R := diam Ω and ρ :=
ρ(Π2,Br0(x)); moreover, C → 0 as ρ → 0+. In particular, there is a constant ρ′ > 0 depending only on the
data of the problem and R such that ρ < ρ′ and r < r′ imply C < 1/2 and

ψ(Br(x)) � Cr
1−2C

+ ψ(Br′(x))
(

2r
r′

)log2
1
C

. (6.14)

Proof. The relation (6.13) is obtained by a direct generalization of Lemma 2.10 in [8] to the case of
an arbitrary dimension n � 2 with the help of (6.9). Namely, let r0 > 0 be such that Σ opt ∩Br0(x) contains
neither branching points nor endpoints of Σopt; moreover, #Σ opt ∩Br(x) = 2 for any r � r0 (such a number
r0 exists because the set of branching points and endpoints of Σopt is finite and by Proposition 6.7). Let
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r � r0/2. Since ord xΣ opt = 2, there are arcs Σ i ⊂ Σ opt, i = 1,2, starting at x. Denote by x1 and x2 the point
where these arcs intersect ∂B2r(x). Since

dH(Σ opt ∩B2r(x), [x,x1]∩ [x,x2]) � max
i=1,2

dH(Σ i ∩B2r(x), [x,xi]),

where [x,xi], i = 1,2, is the line segment with the starting point x and endpoint xi, from (6.9) we find

d := dH(Σ opt ∩B2r(x), [x,x1]∩ [x,x2]) � Crψ(B2r(x)) (6.15)

with some positive constant C. We denote by K the union of two cylinders with the axes of symmetry [x,xi],
i = 1,2, and the radius of base d. Then

Σ opt ∩B2r(x) ⊂ K.

We set K′ := co (K∩Br(x)) and note that

k−1(Br(x))∩Ω ⊂ K̃ :=
{

z ∈ Ω∩ (B2
ρ(x)×R

n−2) : dist (x,K′) � min
i=1,2

|z− xi|
}

,

which implies
ψ(Br(x)) � ϕ(K̃). (6.16)

However,
K̃ � T1 ∪T2 ∪E ∪C1 ∪C2,

where Ti, i = 1,2, are the intersections of the set Ω ′ := Ω∩ (B2
ρ(x)×R

n−2) and the cylinders with axes
[x,xi], E is the intersection of the set Ω′ and the sector that is formed by the planes passing through x
perpendicularly to [x,xi] and is bounded by the boundaries of cylinders forming Ti, i = 1,2. Finally Ci,
i = 1,2, are the intersection of Ω ′ with the sets bounded by the external (relative to x) boundaries of the
cylinders forming Ti, and surfaces of revolution about [x,xi], such that the distance to any point xi is equal
to the distance to the (n−1)-dimensional circles Si formed by the intersection of ∂Br(x) and the cylinders
with radius d and axes [x,xi] (it is easy to see that these surfaces are the surface of corresponding cone of
rotation with the axes [x,xi]). A direct computation shows that L n(Ti) � Cr and since the “aperture” of the
sets C1, C2, and E is estimated by d/r, we have

L n(Ci) � Cd/r, L n(E) � Cd/r

for sufficiently small r, where the constant C > 0 satisfies the assumptions of the lemma. Thus,

L n(K̃) � C(r + 2d/r).

Taking into account (6.15), we find

L n(K̃) � C(r + ψ(B2r(x)).

Since ϕ ∈ L∞(Ω), we have
ϕ(K̃) � C(r + ψ(B2r(x)),

which implies (6.13) in view of (6.16).
Let us prove (6.14). If 0 < r < r′, then there is a natural number j ∈ N such that r′/2 � 2 jr < r.

Successively applying (6.13) j times, we find

ψ(Br(x)) � Cr
j−1

∑
i=0

(2C)i +C jψ(Br′(x)) � Cr
1−2C

+C jψ(Br′(x)). (6.17)

Taking into account that h > log2 r′/2r, C < 1/2, we obtain the inequality

C j �
(

2r
r′

)log2
1
C
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which, together with (6.17), leads to (6.14). �

Now we can establish the regularity of branching points of the average distance minimizer Σopt.

Theorem 6.9. We assume that ϕ ∈ L∞(Rn). Under the assumption of Theorem 5.5, the following
assertions hold:

(i) if x ∈ Σ opt is not a branching point, then the Euclidean dimension of the set k−1(x) is at least n−1,
(ii) for every branching point x ∈ Σopt there is a number δ > 0 such that the set Σopt ∩Bδ (x) consists

of exactly three C1,1 arcs starting at x.

Proof. Since the set of branching points is finite (cf. Theorem 5.5(iii)), there is r0 > 0 such that Σ opt ∩
Br0(x) does not contain branching points of the set Σopt, perhaps, except for the point x itself. Moreover,
by Proposition 6.7, one can choose r0 so small that #Σ opt ∩Br(x) = k := ord xΣ opt for all r ∈ (0,r0]. Then
if r > 0 is sufficiently small, then Σ opt ∩Br(x) is an arc provided that x ∈ Σ opt is not a branching point and
is the union of three C1,1 arcs provided that x ∈ Σ opt We assume that the Euclidean dimension of the set
k−1(x) does not exceed n− 2. We show that the corresponding arcs forming Σopt ∩Br(x) are of class C1,1

(one if k � 2 or three if k = 3) for sufficiently small r > 0 i (thereby we prove assertion (ii)). Let Ω ⊂ R
n be

an arbitrary closed convex set containing supp ϕ and Σopt. By Lemma 6.4, there exists a two-dimensional
subspace Π2 ⊂ R

n, x ∈ Π2, and δ ∈ (0,r0] such that ρ(Π2,Br(z)) < ρ ′ (the constant ρ′ is defined in
Lemma 6.8) if Br(z) ⊂ Bδ (x). Thus if r < r′ (the constant r ′ is defined in Lemma 6.8) and Br(z) ⊂ Bδ (x),
then (6.14) holds. Consequently, H 1-a.a in Σ opt ∩Bδ (x) there exists the limit

lim
r→0+

ψ(Br(z))
2r

� C
1−2C

< +∞.

In other words, ψ ∈ L∞(Bδ (x)). Therefore, by Proposition 6.1, we have |H| ∈ L∞(Bδ (x)). Consequently,
each of the arcs forming Σ opt ∩Br(x) (one if k � 2 or three if k = 3) is a C1,1 curve by Lemma 6.10.

It remains to prove (i). This assertion is wrong only if k = 2 since for k = 1 (x is an endpoint) ψ({x}) > 0
in view of Theorem 5.5. Hence the Euclidean dimension of the set k−1(x) is equal to n. As we just proved,
Σ := Σ opt ∩Br(x) for a sufficiently small r > 0 is and of class C1,1. Consequently, by Lemma 6.11, there
exists an (n−1)-dimensional hyperplane Πn−1 ⊂ R

n, x ∈ Πn−1 and a number ρ > 0 such that all the point
of the relatively open (n− 1)-dimensional ball Bn−1

ρ ⊂ Πn−1(x) with center x and radius ρ have a single
projection on Σ at the point x. If (i) fails, there is a sequence of points {zν} ∈ Πn−1 such that zν → x as
ν → ∞ and each point zν has a projection on Σ opt at the point yν �∈ Σ; moreover, it has a projection at the
point x. Then yν → x as ν →∞. Consequently, yν ∈ Σ for sufficiently large ν ∈N. We obtain a contradiction.
The proof is complete. �

The following lemmas were used in the proof of Theorem 6.9.

Lemma 6.10. Let Σ ⊂ R
n be a Lipschitz arc with the starting point a and endpoint b. Assume that its

generalized curvature satisfies the condition H ∈ L∞(Σ\{a,b}). Then Σ belongs to the class C1,1.

Proof. We assume that Σ is an arc parametrized by length, i.e., Σ: I := [0,H 1(Σ)] → R
n, |Σ′(t)| = 1

for a.a. t ∈ I. Then

d
dε

∫

I

|Σ′(t)+ ε(ϕ ◦Σ)′(t)|dt

∣∣∣∣
ε=0

=
∫

I

Σ′(t)
|Σ′(t)|∇ ·ϕ(Σ(t))Σ′(t)dt =

∫

I

H(Σ(t))ϕ(Σ(t))|Σ′(t)|dt

for any ϕ ∈C∞
0 (Rn;Rn). Taking into account that |Σ′(t)| = 1 for a.a. t ∈ I, we find

d
dt

Σ′ ∈ L∞(I),

where the derivative is understood in the weak sense. In other words, Σ ∈C1,1. �
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Lemma 6.11. Let Σ ⊂ R
n be an arc of class C1,1. Then for any point x ∈ Σ there is an (n − 1)-

dimensional hyperplane Πn−1(x) ⊂ R
n, x ∈ Πn−1(x), and ρ > 0 such that Bn−1

ρ ⊂ k−1(x), where Bn−1
ρ ⊂

Πn−1(x) is a relative open (n−1)-dimensional ball in Πn−1 with center x and radius ρ .

Proof. We assume that Σ is parametrized by length, i.e., Σ: I := [0,H 1(Σ)] → R
n, |Σ′(t)| = 1 for all

t ∈ I. The unit tangent vector τ(x) := Σ′(t) to Σ and the normal (n−1)-dimensional hyperplane Πn−1(x) ⊂
R

n are defined at any point x ∈ Σ , x = Σ(t).
We set

N(x)v := v− (v,τ(x))τ(x)
for any v ∈ R

n. Since Σ belongs to the class C1,1 and (τ(x),N(x) · v) = 0 for any v ∈ R
n−1, for any ε > 0

there is r > 0 such that
|(Σ′(t),N(Σ(s))v)| � ε |v|,
|Σ(t)−Σ(s)−Σ′(t)(t − s)| � ε |t − s| (6.18)

for any v ∈ R
n and for any s ∈ I, |s− t| � r.

We define f : I×R
n → R

n by the formula

f (t,v) := Σ(t)+ N(Σ(t))v.

It is obvious that f (t, ·) ∈ Πn−1(Σ(t)) for any t ∈ I. Let x := Σ(t), y := Σ(s). Since

| f (t,u)− f (s,v)| = |x− y+ N(x)(u− v)− (N(y)v−N(x)v)|
� |x− y+ N(x)(u− v)|− |(N(y)v−N(x)v)|

and |(N(y)v−N(x)v)| � L|y− x| · |v| for some the constants L > 0 by the regularity of Σ , we have

| f (t,u)− f (s,v)| � |x− y+ N(x)(u− v)|−L|y− x| · |v|. (6.19)

However, by (6.18), we have

|x− y+ N(x)(u− v)|= (|x− y|2 + |u− v|2 +(x− y,N(x)(u− v)))1/2

� (|x− y|2 + |u− v|2 −|(Σ′(t)(t − s),N(x)(u− v))|− ε |t − s| · |u− v|)1/2

= (|x− y|2 + |u− v|2 −2ε |t − s| · |u− v|)1/2. (6.20)

We take into account that

|t − s|− |Σ(t)−Σ(s)|= |Σ′(t)(t − s)|− |Σ(t)−Σ(s)|
� |Σ(t)−Σ(s)−Σ′(t)(t − s)| � ε |t − s|,

which means

|t − s| � |x− y|
1− ε

and, consequently,

2ε |t − s| · |u− v|� ε |t − s|2 + ε |u− v|2 � ε
(1− ε)2 · |x− y|2 + ε |u− v|2.

Substituting the last inequality in (6.20) and setting ε := 1/3, we find

|x− y+ N(x) · (u− v)| � |x− y|/4+ 2|u− v|/3 � |x− y|/4. (6.21)

Then (6.19) and (6.21) imply

| f (t,u)− f (s,v)| � |Σ(t)−Σ(s)|(1/4−L|v|) (6.22)

if |t − s| � r.
If the assertion is not true, then there is a sequence {zk} ∈ Πn−1 such that zk → x as k → ∞ and each

point zk has a projection on Σ at the point yk := Σ(tk) �= x; moreover, at the point x. Then Σ(tk) → x.
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Since Σ is assumed to be an arc, i.e., an injective curve, we have t k → t as k → ∞, where x = Σ(t). Since
zk = f (t k,zk − yk) = f (t,zk − x) and zk − yk → 0, zk − x → 0 as k → ∞, for sufficiently large k ∈ N from
(6.22) we find

0 = | f (t,zk − x)− f (t k,zk − yk)| � |Σ(t)−Σ(t k)|(1/4−L|zk − yk|).
Consequently, x = Σ(t) = Σ(t k), which contradicts the assumption. �

§ 7. Regularity of the Average Distance Minimizer in the Case n = 2

As was shown in [22], the assumptions of Theorem 5.5 are satisfied for n = 2, A(t) = t, and ϕ ∈ Lp(Rn)
if p > 4/3. Namely, the following assertion was proved in [22].

Lemma 7.1. Suppose that Σ opt ⊂ R
2 is a solution to Problem 1.2 with n = 2, A(t) = t, and ϕ ∈ Lp(R2),

where p > 4/3. Then there exists a point x ∈ Σopt such that ψ({x}) > 0.

From Lemma 7.1, Theorem 5.5, Proposition 6.7, and Theorem 6.9 we obtain the following assertion.

Corollary 7.2. Suppose that Σopt ⊂ R
2 is a solution to Problem 1.2 with n = 2, A(t) = t, and ϕ ∈

Lp(R2), where p > 4/3. Then the following assertions hold:

(i) the number of noncut points (consequently, endpoints) of Σopt is finite,

(ii) the number of branching points of Σopt is finite,

(iii) every branching point x ∈ Σopt is a triple point, i.e., at this point, Σopt has order three; moreover,
the generalized curvature of Σopt is a vector-valued Radon measure and H({x}) = 0,

(iv) for any point x ∈ Σ opt there is r0 > 0 such that for any arc θ ⊂ Σ opt starting ar x

#θ ∩∂Br(x) = 1 for any r ∈ (0,r0],

(v) if ϕ ∈ L∞(R2), then for every branching point x ∈ Σopt there is δ > 0 such that the set Σopt∩Bδ(x)
consists of exactly three C1,1-arcs starting at x,

(vi) if ϕ ∈ L∞(R2) and x ∈ Σ opt is not a branching point, then the Euclidean dimension of the set k−1(x)
is at least 1.

We note that assertion (v) of Corollary 7.2 is contained in [8], whereas assertion (iv) is also contained
in the same paper, but in a weaker form (only in the case ϕ ∈ L∞(R2)).

§ 8. Reduction of the General Problem
to the Minimization of the Average Distance Functional

In this section, using the technique developed in [26], we reduce the general problem 1.1 about the
optimization of the transportation network to Problem 1.2 of minimizing the average distance functional.

Introduce the notation

R := {(x,y) ∈ R
n ×R

n : dist (x,Σ)+ dist (y,Σ) > d(x,y)}
and note that dΣ(x,y) = d(x,y) on R. We set

ϕ±
r := π±

# (Γ�R), ϕ±
s := π±

# (Γ�(Rn ×R
n)\R)�(Rn \Σ),

where Γ is the optimal transport plan for the problem MK(ϕ+,ϕ−,Σ). It is obvious that R ⊂ (Rn \Σ)×
(Rn \Σ), Consequently, ϕ±

r are concentrated outside Σ. Since the measures ϕ±
s are also concentrated outside
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Σ by construction, we have

ϕ±�(Rn \Σ) = ϕ±
r + ϕ±

s .

Let

ϕs := ϕ +
s + ϕ−

s .

We note that ϕ± and ϕs depend on Σ. If we need to indicate this dependence, we write ϕ±
Σ and ϕs,Σ

respectively.

Lemma 8.1. Suppose that there exist Borel measures ϕ̃±
r and ϕ̃±

s on R
n\Σ such that ϕ̃ +

r (Rn) = ϕ̃−
r (Rn)

and

ϕ±�(Rn \Σ) = ϕ̃±
r + ϕ̃±

s .

Then

MK(ϕ +,ϕ−,Σ) � MK(ϕ̃ +
r , ϕ̃−

r )+
∫

Rn

A(dist (z,Σ))dϕ̃ +
s (z)+

∫

Rn

A(dist (z,Σ))dϕ̃−
s (z).

If ϕ̃±
r = ϕ±

r , ϕ̃±
s = ϕ±

s , and the function A is superadditive (i.e., A(u)+A(v) � A(u+v) for all {u,v} ⊂R
+),

then the above inequality becomes equality.

Proof. Let Γ be some optimal transport plan for the problem MK(ϕ+,ϕ−,Σ). Denote by Γ̃r the optimal
transport plan for the problem MK(ϕ̃ +

r , ϕ̃−
r ). Let K: R

n−◦Σ denote the multivalued projection on Σ defined
by the formula

K(x) := {y ∈ Σ : d(x,y) = dist (x,Σ)},
and let k: R

n → Σ be an arbitrary Borel measurable selector of this multivalued mapping. Finally, we set

Γ̃+(e) := ϕ̃ +
s ({x : (x,k(x)) ∈ e}), Γ̃−(e) := ϕ̃−

s ({y : (k(y),y) ∈ e})
for all Borel sets e ⊂ R

n ×R
n. It is obvious that the measures Γ̃± are optimal transport plans for the

problem MK(ϕ̃±
s , ψ̃∓), where ψ̃∓ := π∓

# Γ̃±. Since Γ is optimal and the measure Γ̃r + Γ̃+ + Γ̃− satisfies the
condition (2.1), we have

MK(ϕ +,ϕ−,Σ) =
∫

Rn×Rn

A(dΣ(x,y))dΓ(x,y)
∫

Rn×Rn

A(dΣ(x,y))d(Γ̃r + Γ̃+ + Γ̃−)(x,y)

=
∫

Rn×Rn

A(dΣ(x,y))dΓ̃r(x,y)+
∫

Rn×Rn

A(dΣ(x,y))dΓ̃+(x,y)+
∫

Rn×Rn

A(dΣ(x,y))dΓ̃−(x,y).

However, ∫

Rn×Rn

A(dΣ(x,y))dΓ̃r(x,y) �
∫

Rn×Rn

A(d(x,y))dΓ̃r(x,y) = MK(ϕ̃ +
r , ϕ̃−

r )

and ∫

Rn×Rn

A(dΣ(x,y))dΓ̃±(x,y) =
∫

Rn

A(dist (z,Σ))dϕ̃±
s (z),

which completes the proof of the first assertion.
To prove the second assertion, we note that

MK(ϕ +,ϕ−,Σ) = I0
Σ(Γ)+ I′Σ(Γ),
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where

I 0
Σ(Γ) :=

∫

R

A(dΣ(x,y))dΓ(x,y),

I ′Σ(Γ) :=
∫

(Rn×Rn)\R
A(dΣ(x,y))dΓ(x,y).

Since dΣ = d on R, we have

I0
Σ(Γ) = MK(ϕ +

r ,ϕ−
r ).

Because of the superadditivity of A we have

I′Σ(Γ) �
∫

Rn×Rn

A(d(x,K(x)))dΓRc (x,y)+
∫

Rn×Rn

A(d(y,K(y)))dΓRc (x,y)

=
∫

Rn

A(d(x,K(x)))d(ϕ +
s + ψ̃ +)(x)+

∫

Rn

A(d(y,K(y)))d(ϕ−
s + ψ̃−)(y)

=
∫

Rn\Σ

A(dist (x,Σ))dϕ +
s (x)+

∫

Rn\Σ

A(dist (y,Σ))dϕ−
s (y),

where ΓRc := Γ�(Rn ×R
n \R) and ψ̃± are Borel measures concentrated in Σ. �

The following simple assertion connects the minimization problem MK(ϕ+,ϕ−, ·) with the correspond-
ing minimization problem for the average distance functional.

Proposition 8.2. Suppose that the set Σopt minimizes MK(ϕ +,ϕ−, ·) over all admissible sets. If A is
superadditive, then Σ opt is a minimizer of the average distance functional

Fϕ(Σ) :=
∫

Rn

A(dist (x,Σ))dϕ(x),

where ϕ := ϕs,Σ opt , over all admissible sets Σ. Moreover, if ϕ+ �= ϕ− and A is strictly increasing, then ϕ �= 0.

Remark 8.3. It is easy to see that a monotone nondecreasing superadditive function A: R
+ → R

+
is

strictly increasing if and only if it is not a constant (in other words, there is l > 0 such that A(l) �= A(0)).

Proof. If Σ opt is not a minimum point of Fϕ , i.e., there exists an admissible set Σ′ such that Fϕ(Σ′) <
Fϕ(Σ opt), then we obtain a contradiction with the optimality of Σopt for the functional MK(ϕ+,ϕ−, ·) by
the following chain of relations:

MK(ϕ +,ϕ−,Σ opt) = MK(ϕ +
r ,ϕ−

r )+ Fϕ(Σ opt) > MK(ϕ +
r ,ϕ−

r )+ Fϕ(Σ′) � MK(ϕ +,ϕ−,Σ′),

where the last inequality holds in view of Lemma 8.1.
We show that ϕ �= 0 if ϕ + �= ϕ−. For this purpose, we note that ϕ = 0 implies ϕ±

r = ϕ±, which means

MK(ϕ +,ϕ−,Σ opt) = MK(ϕ +,ϕ−)

by Lemma 8.1. Hence the empty set is optimal for Problem 1.1 (note that it is possible only if ϕ+(Rn) =
ϕ−(Rn)), which contradicts Lemma 8.4. �

Lemma 8.4. If ϕ + �= ϕ− and A is strictly increasing, then there is Σ ⊂ Ω such that H 1(Σ) � l and
MK(Σ) < MK(∅). In particular, if Σ opt is a solution to Problem 1.1, then it is nonempty and is different
from a point.
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Proof. Let ηopt be an optimal transport measure. To prove the required assertion, we assume the con-
trary. Suppose that the optimal set Σopt is nonempty. Since ϕ + �= ϕ−, we have ηopt �= 0. Consequently,
there exists a number L > 0 such that the set

Θ̂ := {θ ∈ supp ηopt : H 1(θ) > L}
satisfies the condition ηopt(Θ̂) > 0. However, Θ̃(∅) consists of segments and supp ηopt ⊂ Θ̃(∅) in view
of Proposition 3.1. Therefore, H 1(θ) � diam Ω for any θ ∈ supp ηopt. Hence supp ηopt is compact in Θ.
Thus, Θ̂ can be covered by finitely many balls of arbitrarily small radius and centers atΘ̂. In particular,
denoting

ε := min

{
l
8
,
L
8

}
,

we find that there exists a ball Bε([x0,y0])⊂ Θ, where [x0,y0]⊂ Ω is a segment of length L0 := |x0−y0|� L
such that ηopt(Bε([x0,y0])) > 0.

Let δ := min{l,L0}, so that δ −4ε > 0. Consider the segment Σ := [x,y] centered in [x0,y0] and having
length δ , i.e.,

x := x0 +
L0 −δ

2L0
(y0 − x0), y := y0 +

L0 −δ
2L0

(x0 − y0).

For every θ ∈ Bε([x0,y0])∩ Θ̂ (which is a segment) we introduce a new path f (θ) as the broken line
[θ(0),x] ◦ [x,y] ◦ [y,θ(1)]. For any θ ∈ Θ \ (Bε([x0,y0])∩ Θ̂) we set f (θ) := θ . It is obvious that the
mapping f : Θ → Θ is a Borel one. For θ ∈ Bε([x0,y0])∩ Θ̂, using the triangle inequality, we find

|θ(0)− x| � L0 −δ
2

+ ε , |y−θ(1)| � L0 −δ
2

+ ε , L0 � H 1(θ)+ 2ε .

Hence

A(H 1( f (θ)\Σ)) � A(|θ(0)− x|+ |y−θ(1)|) � A

(
2

(
L0 −δ

2
+ ε
))

= A(L0 + 2ε −δ ) � A(H 1(θ)+ 4ε −δ ) < A(H 1(θ)) = A(H 1(θ \∅))

for any θ ∈ Bε([x0,y0])∩ Θ̂.
Let η := f#ηopt. Then

MK(Σ) �
∫

Θ

A(H 1(θ \Σ))dη =
∫

Θ

A(H 1( f (θ)\Σ))dηopt

=
∫

Bε([x0,y0])∩Θ̂

A(H 1( f (θ)\Σ))dηopt +
∫

Θ\(Bε ([x0,y0])∩Θ̂)

A(H 1( f (θ)\Σ))dηopt

<

∫

Bε([x0,y0])∩Θ̂

(B,θ)A(H 1(θ \∅))dηopt +
∫

Θ\(Bε ([x0,y0])∩Θ̂)

A(H 1(θ \∅))dηopt

= MK(∅).

Taking into account that H 1(Σ) � l by construction, we conclude that MK(Σ) < MK(∅), which contradicts
the optimality of the empty set. �

We summarize the most interesting qualitative properties of solutions to Problem 1.1 in the follow-
ing theorem which immediately follows from Proposition 8.2 and some results on partial regularity of the
average distance minimizers.
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Theorem 8.5. Suppose that ϕ+ �= ϕ− and dimϕ± > 1 (for example, ϕ± � L n). Let Σ opt ⊂ R
n is

a solution to Problem 1.1, where A is superadditive and satisfies conditions (α1) and (α2). Then Σ opt

possesses the following properties.

(i) Σ opt does not contain simple closed curves (homeomorphic images of S1). In particular for n = 2
the set R

2 \Σ opt is connected.

If, in addition, ϕ± ∈ Lp(Rn), where p = 4/3 for n = 2 and p = n/(n−1) in the general case, then

(ii) Σ opt is Ahlfors regular.

If n = 2, A(t) = t, and ϕ± ∈ Lp(Rn), where p > 4/3, then the following additional properties hold:

(iii) ord xΣ opt � 3 for all x ∈ Σ opt; moreover, the set of endpoints and branching points (thus, the
branching points are triple points) is finite.

(iv) The generalized mean curvature H of Σopt is a Radon measure and satisfies the condition H({x}) =
0 for every branching point x ∈ Σopt. This property can be regarded as a “weak form” of the
assertion that every endpoint is a “regular tripod”, i.e., a triple point, where exactly three smooth
branches meet at 120◦ angles.

(v) For any point x ∈ Σ opt there is a number r0 > 0 such that for any arc θ ⊂ Σ opt starting at x we
have

#θ ∩∂Br(x) = 1

for any r ∈ (0,r0].
(vi) If ϕ± ∈ L∞(R2), then for every branching point x∈Σopt there is δ > 0 such that the set Σopt∩Bδ (x)

consists of exactly three C1,1-arcs starting at x.

(vii) If ϕ± ∈ L∞(R2) and x ∈ Σ opt is not a branching point, then the Euclidean dimension of the set
k−1(x) is at least 1.
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