
Journal of Mathematical Sciences, Vol. 130, No. 4, 2005

NONUNIQUENESS OF A SOLUTION TO THE PROBLEM ON MOTION OF A RIGID
BODY IN A VISCOUS INCOMPRESSIBLE FLUID

V. N. Starovoitov∗ UDC 517

This paper is devoted to the problem on motion of a rigid body in a viscous incompressible fluid. It is proved that
there exist at least two weak solutions of this problem if collisions of the body with the boundary of the flow domain
are allowed. These solutions have different behavior of the body after the collision. Namely, for the first solution,
the body goes away from the boundary after the collision. In the second solution, the body and the boundary remain
in contact. Bibliography 15 titles.

To Vsevolod Alekseevich Solonnikov
on the occasion of his jubilee

1. Introduction

The problem of motion of an absolutely rigid body in a viscous incompressible fluid (problem A below) was
considered by many authors; this problem is studied relatively well (see [1–13]). At the same time, there exists
a lot of open problems. In particular, the uniqueness of a weak solution has not been proved. Since problem
A includes the Navier–Stokes equations, we cannot hope to get a fast answer to the latter problem in the case
of three space variables. It might seem that in the two-dimensional case, the problem should have a unique
solution. In this paper, we show that this is not always so.

We have to distinguish the following two cases. In the first case, we consider the problem without mutual
collisions of the bodies or collisions of the bodies with the boundary (i.e., we consider the period before the first
collision). In the second case, collisions are allowed. The first case is simpler; it was investigated in detail. In
particular, it was proved in [13] that problem A with two space variables has a unique strong solution on any
time interval in which there are no collisions of the body with the boundary. In this paper, we consider the
second, more general, case. Our result is more negative than positive. Namely, we show that in the existing
generalized setting of problem A, at least two weak solutions exist. At the same time, the problem does not have
strong solutions on a time interval including collision moments (see [7, 11]).

We restrict our considerations to the two-dimensional case. In addition, we assume that the volume contains
a single rigid body and the densities of the body and fluid coincide (and equal 1).

To define a generalized solution of problem A, we need some special function spaces. Let u be a vector field
in R

2. We denote by D(u) the tensor with components

Dij(u) =
1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
.

If u is a velocity, then D(u) is the tensor of deformation velocities. This tensor has the following important
property: if S is a connected domain, then D(u) = 0 in S if and only if there exists a vector a and a skew-
symmetric tensor Q such that

u(x) = a + Qx

for all x ∈ S. In this case, the velocity field u corresponds to a rigid body motion. One can find a proof of
this fact in [14]. Thus, we may consider a rigid body as a medium for which the field of deformation velocities
vanishes. Our setting of the problem is based on the mentioned property of the tensor D(u).

Consider domains S and Ω in R
2 such that S ⊂ Ω. We work with the following function spaces:

H(Ω) = {u ∈ L2(Ω) | div u = 0 in Ω},
V (Ω) = {u ∈ W 1

2 (Ω) | div u = 0 in Ω and u = 0 on ∂Ω},
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and
K(S, Ω) = {u ∈ V (Ω) | D(u) = 0 in S}.

We denote by V ′(Ω) the dual space of V (Ω). We identify the space H(Ω) with its dual space. The space
K(S, Ω) was introduced and studied in [2, 3, 6] (see also [7, 11]).

Let S(t) be the domain in Ω occupied by the body at the time moment t ∈ [0, T ], T < ∞. Since the body
is absolutely rigid and its form is not changed during motion, there exists a family of orientation preserving
isometries Ms,t : R

2 → R
2

(
s, t ∈ [0, T ]

)
such that S(t) = Ms,tS(s). We use the same notation for the sets S(t)

and for their indicators. Thus,

S(x, t) =
{

1, x ∈ S(t),
0, x ∈ Ω \ S(t).

Finally, we denote by Lq(0, T ; K(S, Ω)) the space of functions u ∈ Lq(0, T ; V (Ω)) such that u(·, t) ∈ K(S(t), Ω)
for almost all t ∈ [0, T ].

The following definition of a generalized solution to problem A was introduced in [2, 3].

Definition 1.1. We say that a pair of functions {u,S} such that

u ∈ L∞(0, T ; H(Ω))∩ L2(0, T ; K(S, Ω))

and

S ∈ C0,1/q(0, T ; Lq(Ω)), 1 ≤ q < ∞,

is a generalized solution to problem A if

(1) S(·, t) is the indicator of a domain S(t) ⊂ Ω;
(2) there exists a family of orientation preserving isometries Ms,t : R

2 → R
2
(
s, t ∈ [0, T ]

)
such that

S(t) = Ms,tS(s) for all s, t ∈ [0, T ]; (1.1)

(3) the integral identities

∫

ΩT

(
u · wt +

(
u⊗ u −D(u)

)
: D(w) + g ·w

)
dxdt = −

∫

Ω

u0 · w0 dx (1.2)

and ∫

ΩT

S
(
ηt + u · ∇η

)
dxdt = −

∫

Ω

S0η0 dx (1.3)

hold for any functions

w ∈ W 1
2 (ΩT ) ∩ L2(0, T ; K(S, Ω))

and η ∈ C1(ΩT ) such that w|t=T = 0 and η|t=T = 0.

Here ΩT = Ω× [0, T ], g is a vector-function determining the exterior mass forces, and u0, w0, S0, and η0 denote
the values of the corresponding functions at t = 0.

The following existence result for problem A has been proved in [2, 3] (see also [7, 10]).

Theorem 1.2. Let Ω and S0 be bounded connected domains of class C1,1 in R
2 such that S0 ⊂ Ω. Assume

that u0 ∈ H(Ω). Then a generalized solution to problem A exists for any T ∈ (0,∞). In addition, the isometries
Ms,t are Lipschitz continuous in s and t.

The main result of this paper states that problem A is not uniquely solvable. In the following two sections,
we prove the following statement.
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Theorem 1.3. There exist S0 ⊂ Ω, u0 ∈ H(Ω), and g ∈ L2(0, T ; V ′(Ω)) such that problem A has at least two
different solutions.

The idea of the proof is as follows. The domains Ω and S are disks. In Sec. 2, we construct a velocity field
for which the body approaches the boundary ∂Ω of the domain Ω, touches this boundary at t∗ ∈ (0, T ), and
then moves away from the boundary. Proposition 2.4 states that there exists a field g of exterior mass forces for
which the constructed velocity field is a solution to problem A. Further, in Sec. 3 we construct a second solution
for the same function g. This solution coincides with the first one until the moment t∗ and is extended so that
the body does not move away from the boundary. The possibility of existence of solutions of the second kind
was mentioned in [12]. From the physical point of view, such solutions are not admissible since the adhesion of
the body to the boundary of the fluid domain presupposes the existence of forces which are not present in the
statement of the problem. The solution has to “decide” whether the body stays near the boundary or moves
away from it. Thus, Definition 1.1 must contain additional relations which would forbid “incorrect” solutions.

2. Construction of the first solution

Denote by Bρ(b) the open disk of radius ρ centered at a point b. Assume that Ω = BR(0) and S(t) = Br(a(t)),
where R > r > 0, 0 = (0, 0), and a(t) = (a(t), 0). Later we fix a function a ∈ W 1

∞(0, T ) such that S(t) ⊂ Ω
for all t, i.e., |a(t)| ≤ R − r. Often, it is convenient for us to use the function σ(t) = a(t)(R − r)−1 instead of
a(t). We also assume that there exists t∗ ∈ (0, T ) such that the body touches the boundary at time t∗, i.e.,
dist(S(t∗), ∂Ω) = 0. Note that σ(t) ∈ [0, 1) for t ∈ [0, t∗) and σ(t) → 1 as t → t∗. Let us define a mapping F(·, t)
taking a point ξ ∈ Ω to x ∈ Ω by the following rule:

x1 = F1(ξ1, ξ2, t) = ξ1 + σ(t)
(
R −

√
ξ2
1 + ξ2

2

)
,

x2 = F2(ξ1, ξ2, t) = ξ2.

It is easy to check that F(Ω, t) = Ω and
S(t) = F

(
Br(0), t

)
. (2.1)

In addition, if ξ ∈ ∂Ω, then F(ξ, t) = ξ. The inverse mapping G is as follows:

ξ1 = G1(x1, x2, t) =
1

1 − σ2

(
x1 − σR + σ

√
x2

2(1 − σ2) + (σR − x1)2
)
,

ξ2 = G2(x1, x2, t) = x2,

where σ is σ(t). Thus, G(Ω, t) = Ω and G
(
S(t), t

)
= Br(0). Since the mapping G is defined for σ ∈ (−1, 1)

only, we first assume that t ∈ [0, t∗).

Fig. 1. Mappings F and G.

Note that we do not treat (x1, x2, t) and (ξ1, ξ2, t) as the Euler or Lagrange coordinates. The advantage of
coordinates ξ is that the domain Ω \ S(t) is more symmetric; namely, Ω and S are concentric disks (see Fig. 1).

Relate polar coordinates (ρ, θ) to ξ = (ξ1, ξ2):

ξ1 = ρ cos θ and ξ2 = ρ sin θ.

In these coordinates, the Jacobians of the mappings F and G are given by the following simple expressions:

JF (ξ, t) = det
(∂F

∂ξ

)
= 1 − σ(t) cos θ

and
JG|x=F(ξ,t) = det

(∂G
∂x

)∣∣∣
x=F(ξ,t)

= J−1
F =

1
1 − σ(t) cos θ

.

The mapping F determines the dynamics of the geometry of the fluid motion. We assume that the body
moves without rotation from the center of the domain Ω to its boundary. Thus, there exists a family Ms,t
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of isometries satisfying relations (1.1). These isometries are shifts of the domain S along the x1 axis. Let us
construct a velocity field u corresponding to the situation considered above. This field must satisfy the following
relations:

u = 0 on ∂Ω and D(u) = 0 in S.

Since in the two-dimensional case to a velocity field there corresponds a unique flow function, we first construct
a flow function ψ, and then find the velocity field u.

Consider a smooth function λ : [0,∞) → [0, 1] such that λ(ρ) = 1 for ρ < r and λ ′(r) = λ(R) = λ ′(R) = 0.
For example, one may take

λ(ρ) = (R − r)−3(ρ− R)2(2ρ− 3r + R).

In particular, if R = 3 and r = 1, then λ(ρ) = 1
4ρ(ρ − 3)2. Define the flow function as follows:

ψ(x, t) = ȧ(t)x2 ϕ(G(x, t)),

where ϕ(ξ) = λ
(√

ξ2
1 + ξ2

2

)
and ȧ = da/dt. Level lines of this function are shown schematically in Fig. 2.

Fig. 2. Level lines of the function ψ for various values of σ

The corresponding velocity field u(x, t) = ∇⊥
x ψ(x, t) has the following components:

u1(x, t) =
∂ψ

∂x2
= ȧ(t)ϕ

(
G(x, t)

)
+ ȧ(t)x2 Gx2 · ∇ξϕ(ξ)|ξ=G(x,t),

u2(x, t) = − ∂ψ

∂x1
= −ȧ(t)x2 Gx1 · ∇ξϕ(ξ)|ξ=G(x,t). (2.3)

Note that u satisfies conditions (2.2). Let us study some properties of the function u.

Lemma 2.1. The function u belongs to the space L∞(0, t∗; L2(Ω)) if and only if σ̇ ∈ L∞(0, t∗).

We can find a closed-form expression of the norm of the function u in the space L2(Ω):

‖u‖2
L2(Ω) = ‖u1‖2

L2(Ω) + ‖u2‖2
L2(Ω) = µ1(R, r) ν1(σ) |σ̇|2, (2.4)

where µ1(R, r) =
∫ R

r

(
λ′(ρ)

)2
ρ3 dρ < ∞ and

ν1(σ) =
∫ 2π

0

sin2 θ

1 − σ cos θ
dθ = 2π

1 −
√

1 − σ2

σ2
= 2π

1
1 +

√
1 − σ2

.

Since ν1(σ) ∈ [π, 2π] for any σ, Lemma 2.1 is proved.

Lemma 2.2. If (1 − σ)−3/2|σ̇|2 ∈ L1(0, t∗), then the function u belongs to the space L2(0, t∗; V (Ω)).

To prove this statement, it is enough to estimate ∆ψ in the space L2(0, t∗; L2(Ω)). After some simple but
bulky computations, we obtain the estimate

‖∆ψ‖2
L2(Ω) ≤ µ2(R, r)ν2(σ) |σ̇|2,

where ν2(σ) = (1− σ)−3/2 and µ2 is a positive constant depending on R and r only. The estimate above proves
Lemma 2.2.

Lemma 2.3. If σ̈ ∈ L2(0, t∗), then ut ∈ L2(0, t∗; V ′(Ω)).

There exists a constant µ3(R, r) depending on R and r only and such that

‖ψt‖L2(Ω) ≤ µ3(R, r)
(
|σ̈| + |σ̇|2

)
.
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This estimate proves Lemma 2.3 since if the function σ̈ belongs to the space L2(0, t∗), then the function σ̇ is
bounded.

Consider the following function σ :
σ(t) = 1 − (t − t∗)4 T−4. (2.5)

It is easy to see that |σ(t)| < 1 for t ∈ [0, t∗) ∪ (t∗, T ] and σ(t∗) = 1. In addition, the function σ satisfies
the conditions of Lemmas 2.1, 2.2, and 2.3. Hence, the function u defined by (2.3) belongs to the space
L∞(0, t∗; H(Ω)) ∩ L2(0, t∗; V (Ω)) and the time derivative of this function belongs to the space L2(0, t∗; V ′(Ω)).
Hence, the function u is weakly continuous in t in L2(Ω). What is more, u is strongly continuous in t in L2(Ω)
since equality (2.4) implies that ‖u(·, t)‖L2(Ω) is continuous in t.

Extend the function u to t = t∗ by continuity. For t ∈ (t∗, T ], we define this function by equality (2.3), where
the function σ is given by (2.5). The resulting function u has the following properties:

u ∈ L∞(0, T ; H(Ω))∩ L2(0, T ; V (Ω)) and ut ∈ L2(0, T ; V ′(Ω)). (2.6)

In addition,
u ∈ L2(0, T ; K(S, Ω)).

Mow we can prove the following statement.

Proposition 2.4. Let functions σ, u, and S be given by equalities (2.5), (2.3) and (2.1), respectively. Then
there exists a function g ∈ L2(0, T ; V ′(Ω)) such that the pair {u,S} is a generalized solution to problem A.

Proof. First we note that identity (1.3) holds by construction. It follows from inclusions (2.6) that we may write
identity (1.2) as follows:

∫

ΩT

(
ut · w −

(
u ⊗ u− D(u)

)
: D(w)

)
dxdt =

∫

ΩT

g · w dxdt. (2.7)

We have to find a function g such that equality (2.7) holds for any function w ∈ L2(0, T ; K(S, Ω)).
By (2.6), the left-hand side of (2.7) is a continuous linear functional in L2(0, T ; V (Ω)) applied to a function

w. Hence, there exists a function g ∈ L2(0, T ; V ′(Ω)) such that identity (2.7) holds for any function w ∈
L2(0, T ; V (Ω)); hence, if holds for any w ∈ L2(0, T ; K(S, Ω)). Proposition 2.4 is proved. �

3. Construction of the second solution

In the previous section, we have constructed a solution of problem A for which the vector g of mass forces is
given by Proposition 2.4. Now we prove the existence of a second solution with the same function g. Denote by
v the velocity field for the new solution and denote by R the domain occupied with the rigid body. Set

v(·, t) = u(·, t) and R(t) = S(t), t ∈ [0, t∗]. (3.1)

Recall that the body touches the boundary at t∗, i.e., dist(S(t∗), ∂Ω) = 0. Define the functions v and R for
t ∈ (t∗, T ] as follows:

R(t) = R∗ = S(t∗) for t ∈ (t∗, T ],

v(x, t) = 0 for x ∈ R(t), t ∈ (t∗, T ]. (3.2)

In the domain Ω \ R∗, the function v is a solution of the Navier–Stokes equations with the right-hand side g
and zero boundary values. Since u(x, t∗) = 0 for any x ∈ Ω, the integral identity

T∫

t∗

∫

Ω\R∗

(
vt · w −

(
v ⊗ v −D(v)

)
: D(w) − g · w

)
dxdt = 0 (3.3)

holds for any function w ∈ L2(t∗, T ; V (Ω \ R∗)). The general theory of the Navier–Stokes equations (see
[15]) implies the existence of a unique function v ∈ L∞(t∗, T ; H(Ω \ R∗)) ∩ L2(t∗, T ; V (Ω \ R∗)) such that
vt ∈ L2(t∗, T ; V ′(Ω \ R∗)) and identity (3.3) holds. The domain Ω \ R∗ is not smooth, but this fact creates no
complications since we consider the problem with zero boundary values.

Thus, the function v is defined everywhere in ΩT and the function R is defined for all t ∈ [0, T ].
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Proposition 3.1. The functions v and R give us a generalized solution of problem A.

Proof. Since v = 0 in R(t) for t ∈ [t∗, T ], the inclusion v ∈ L2(0, T ; K(R, Ω)) holds. Thus, we have to check
identities (1.2) and (1.3) with u and S replaced by v and R, respectively. By Proposition 2.4 and relations
(3.1), it is enough to integrate in these identities over the time interval from t∗ to T . Identity (1.3) follows from
relation (3.2). We write identity (1.2) as follows:

T∫

t∗

∫

Ω

(
vt · w −

(
v ⊗ v − D(v)

)
: D(w) − g ·w

)
dxdt = 0. (3.4)

Let us check that equality (3.4) holds for any w ∈ L2(t∗, T ; K(R, Ω)).
Note that equalities (3.4) and (3.3) differ by the integration domains and test functions only. We need the

following property of functions from the space K(R, Ω) (see [2, 3, 7, 11]).

Lemma 3.2. Let Ω,R ⊂ R
2 be connected domains of class C1,α, where α ∈ [ 23 , 1], such that R ⊂ Ω and

dist(R, ∂Ω) = 0. If w ∈ K(R, Ω), then w(x) = 0 for x ∈ R.

Identity (3.4) is an immediate corollary of Lemma 3.2 and identity (3.3).
Proposition 3.1 is proved. �
Obviously, the constructed solution {v,R} to problem A differs from the solution {u,S} described in Sec. 2.

Thus, Theorem 1.3 is proved.

Translated by S. Yu. Pilyugin.
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