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SOME APPLICATIONS OF THE DUHAMEL PRODUCT

M. T. Karaev UDC 517.5, 517.98

The Duhamel product of functions f and g is defined by the formula

(f � g)(x) =
d

dx

x∫

0

f(x − t)g(t)dt.

In the present paper, the Duhamel product is used in the study of spectral multiplicity for direct sums of operators

and in the description of cyclic vectors of the restriction of the integration operator f(x, y) �→
x∫
0

y∫
0

f(t, τ)dτ dt in

two variables to its invariant subspace consisting of functions that depend only on the product xy. Bibliography: 13
titles.

Introduction

1. Let Hol (D) be the space of functions that are holomorphic in the unit disk D = {z ∈ C : |z| < 1}; we consider
this space with the topology of compact convergence. In the space Hol (D), the Duhamel product is defined as
the derivative of the Mikusinski convolution:

(f � g)(z) def=
d

dz

z∫

0

f(z − t)g(t)dt =

z∫

0

f ′(z − t)g(t)dt + f(0)g(z),

where the integrals are taken over the segment joining the points 0 and z (see [1]).
The Duhamel product is widely applied in various domains of calculus, for example, in the theory of differential

equations with constant coefficients and in solution of some boundary-value problems of mathematical physics;
the real-valued analog of this product plays an important role in the Mikusinski operator calculus (see [1–3]).
In the work [1], Wigley applied the Duhamel product for the first time to describe closed ideals of the algebra
Hol (D). In the author’s works [4, 5], the product was applied in the description of cyclic vectors of the integration

operator J , (Jf)(x) =
x∫
0

f(t)dt, for some function spaces and in the proof of the unicellularity of the integration

operator in the Banach space of functions holomorphic in D. See [6–8] for other applications of the Duhamel
product.

2. In Sec. 2 of this work, we apply the Duhamel product in the study of multiplicity of spectra for direct sums
of operators. In Sec. 3, we apply an analog of the Duhamel product for functions of two variables to describe
cyclic vectors of the restriction of the double integration operator,

f(x, y) �→
x∫

0

y∫

0

f(t, τ)dτ dt,

to an invariant subsapce of a special form.
Some of the results of this work have been obtained long ago; they are contained in the autor’s thesis [9]. The

author decided to publish these results in a journal paper, in particular, since new applications were found.

3. We use more or less standard notation. We denote by L(X) the algebra of bounded linear operators in a
Banach space X, LatA denotes the lattice of invariant subspaces of an operator A, and span {xi} is the closed
linear hull of vectors xi.

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 303, 2003, pp. 145–160. Original article submitted June 25,
2003.

1072-3374/05/1294-4009 c©2005 Springer Science+Business Media, Inc. 4009



Recall that a subspace E ⊂ X is called a cyclic (generating) subspace for an operstor A ∈ L(X) if span {AnE :
n ≥ 0} = X. A vector x ∈ X is called cyclic if

span {Anx : n ≥ 0} = X.

We denote by Cyc (A) the set of cyclic vectors of an operator A. The multiplicity of the spectrum of an operator
A is

µ(A) def= inf
{
dimE : span {AnE : n ≥ 0} = X

}
(or the symbol ∞). An operator A ∈ L(X) is called cyclic if µ(A) = 1; an operator A is called unicellular if the
lattice LatA is linearly ordered with respect to inclusions.

§1. Duhamel product and some of its properties

Let Hol (D) be the space of functions that are holomorphic in the unit disk D; we consider this space with
the topology of uniform convergence on compact subsets of D. For two functions f(z) =

∑
n≥0

f̂(n)zn and

g(z) =
∑

n≥0

ĝ(n)zn ∈ Hol (D) (where f̂(n) = f(n)(0)
n! is the nth Taylor coefficient of a function f), the Duhamel

product is defined as follows (see [1]):

(f � g)(z) def=
d

dz

z∫

0

f(z − t)g(t)dt, (1)

where the integral is taken over the segment joining the points 0 and z. It is easy to see that the Duhamel product
satisfies all the axioms of multiplication, Hol (D) is an algebra with respect to � as well, and the function f(z) ≡ 1I
is the unit element of the algebra (Hol (D), �).

Let B be the Borel transformation acting from Hol (D) into the space C[[Z]] of formal power series over the
field C of complex numbers; this transformation is defined by the following formula:

B

( ∑
n≥0

f̂(n)zn

)
def=

∑
n≥0

n!f̂(n)Zn.

The inverse Borel transformation B−1 acts by the following formula:

B−1

( ∑
n≥0

anZ
n

)
def=

∑
n≥0

an

n!
zn.

The following simple but useful statement holds.

Lemma 1. Let f , g ∈ Hol (D). The following equalities are valid for the product � in Hol (D):

(a) f � g =
∑
n≥0

n∑
k=0

f̂(k)ĝ(n − k)k! (n − k)!
1
n!

zn;

(b) f � g = (Bf)(J)g = (Bg)(J)f , where J is the integration operator in Hol (D) and

(Bf)(J)g def=
∑
n≥0

n!f̂(n)(Jng)(z);

(c) f � g = B−1(Bf ·Bg).

Proof. Proofs of statements (a) and (c) can be found in [1]; let us prove item (b). First we show that the series∑
n≥0

n! f̂(n)(Jng)(z) defines a function in Hol (D). For this purpose, we show that the series above converges

uniformly on any compact subset of the disk D.
Fix a number r, 0 < r < 1. It is enough to show that the series converges absolutely and uniformly on the

disk |z| < r < 1.
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The formulas
(Jng)(rz) = rnJn(g(rz)) (n = 0, 1, 2, . . .)

and estimates

|(Jng)(z)| =
∣∣∣∣

z∫

0

(z − t)n−1

(n − 1)!
g(t)dt

∣∣∣∣ ≤ 1
(n − 1)!

sup
|t|≤|z|

|g(t)|

imply that

∑
n≥0

n! |f̂(n)| |(Jng)(rz)| =
∑
n≥0

n! |f̂(n)|rn|Jn(gr(z))|

≤
∑
n≥0

n! |f̂(n)| 1
(n − 1)!

rn sup
|z|<r

|gr(z)| = sup
|z|<r

|gr(z)|
∑
n≥0

n|f̂(n)|rn < +∞

(since it follows from the inclusion f ∈ Hol (D) that
∑

n≥0

n|f̂(n)|rn < +∞). The desired convergence is established.

Now we see that

(Bf)(J)g =
∑
n≥0

n! f̂(n)(Jng) =
∑
n≥0

n! f̂(n)
(

Jn
∑
m≥0

ĝ(m)zm

)
=

∑
n≥0

∑
m≥0

f̂(n) ĝ(m)n! (Jnzm)

=
∑
n≥0

∑
m≥0

f̂(n) ĝ(m)
n!

(m + 1) · · · (m + n)
zn+m =

∑
n≥0

∑
m≥0

f̂(n) ĝ(m)
n! m!

(n + m)!
zn+m = f � g.

By symmetry, the second equality in (b) is checked in a similar way. �
Finally, let as mention the following basic property of the Duhamel product; this property was established by

Wigley in [1].

Lemma 2. A function f ∈ Hol (D) is �-invertible in Hol (D) if and only if f(0) 
= 0.

One can find in [1] more information concerning the Duhamel product.

§2. Special criteria of adding for multiplicities of spectra

In this section, we apply the Duhamel product to calculate multiplicities of spectra for direct sums of the
form J ⊕ A, where J is the integration operator in the Wiener algebra of functions f(z) =

∑
n≥0

f̂(n)zn that are

holomorphic in D and satisfy the condition
∑

n≥0

|f̂(n)| < +∞ and A is an operator in a proper Banach space

(Theorem 3). This result seems to be new even for the operator J ⊕ J in W (D) ⊕ W (D), though a similar
statemenr for Lp[0, 1]⊕ Lp[0, 1] (1 ≤ p < +∞) was established in the Malamud work [10].

Note that (W (D), �) is a Banach algebra. The unique maximal ideal of this algebra consists of functions
f from W (D) such that f(0) = 0. Hence, the space of maximal ideals M(W (D), �) of this algebra consists
of a single homomorphism, namely, the evolution functional at the point 0 (i.e., M(W (D), �) = {0}). Hence,
the Gelfand transformation is trivial. (More information concerning the algebra (W (D), �) can be found, for
example, in the author’s work [7].)

Theorem 3. Let X be a separable Banach space and let J , (Jf)(z) =
z∫
0

f(t)dt, be the integration operator in

the Wiener algebra W (D). If an operator K ∈ L(X) satisfies the condition ‖Kn‖ ≤ c
1
n!

, n ≥ 0, for some c > 0,

then
µ(J ⊕K) = µ(J) + µ(K) = 1 + µ(K).

Proof. For any operators A1 ∈ L(X1) and A2 ∈ L(X2), the estimates

max
{
µ(A1), µ(A2)

}
≤ µ(A1 ⊕ A2) ≤ µ(A1) + µ(A2)
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hold. Hence, if µ(K) = +∞, then the proof is trivial. Assume that µ(K) = n < +∞. Assume, in addition,
that µ(J ⊕ K) = µ(K) = n. Let

{
fi ⊕ xi

}n

i=1
be a cyclic set of vectors for the operator J ⊕ K. In this

case,
{
fi(z)

}n

i=1
∈ Cyc (J). Hence, there exists an index i0, 1 ≤ i0 ≤ n, such that fi0(0) 
= 0. Without loss of

generality, we assume that i0 = 1, i.e., f1(0) 
= 0. Under this condition, the element f1 is invertible in (W (D), �).
Hence, there exists a function F1 ∈ W (D) such that (F1 � f1)(z) ≡ 1I. In this case, F1(0) 
= 0. Consider the
matrix

F(z) =




F1 O O · · · O

−f2 � F1 1I O O

−f3 � F1 O 1I · · · O

...
...

−fn � F1 O O · · · 1I


 .

It follows from statement (b) of Lemma 1 that

(BF)(J)f def=




(BF1)(J) O · · · O

(B(−f2 � F1))(J) I · · · O

(B(−f3 � F1))(J) O I · · · O

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(B(−fn � F1))(J) O · · · I







f1

f2

f3
...

fn




=




(BF1)(J)f1

(B(−f2 � F1))(J)f1 + f2

(B(−f3 � F1))(J)f1 + f3

...
(B(−fn � F1))(J)f1 + fn


 =




F1 � f1

(−f2 � F1) � f1 + f2

(−f3 � F1) � f1 + f3

...
(−fn � F1) � f1 + fn


 =




1I
O

O

...
O


 .

Since �-det(BF)(0) = (BF1)(0) 
= 0, the operators (BF)(J) and (BF)(K) are invertible in the spaces
Wn(D) def= W (D) × · · · × W (D) and Xn def= X × · · · × X. The reasoning in the proof of Lemma 1.2.3 of the
author’s work [9] shows that the family

{
((BF)(J)f

)
i
⊕

(
(BF)(K)x

)
i
: i = 1, 2, . . . , n

}

is cyclic for the operator J ⊕K. Thus, we obtain a new cyclic family of the form {1I⊕ x1, O⊕ x2, . . . , O⊕ xn}.
Hence, there exists a family of polynomials {Pm,i}n

i=1 such that

lim
m→∞

Pm,1(J)1I = O in W (D)

and

lim
m→∞

n∑
i=1

Pm,i(K)xi = x in X,

where x ∈ X is an arbitrary element. Applying formula (b) of Lemma 1, we deduce that

lim
m→∞

qm,1(z) = 0 in W (D),

where
qm,1(z) def= (B−1Pm,1)(z) =

∑
k≥0

1
k!

P̂m,1(k)zk

and B−1 is the inverse Borel transformation. Now the conditions of Theorem 3 imply that

‖Pm,1(K)‖ =
∥∥∥∥

∑
k≥0

P̂m,1(k)Kk

∥∥∥∥ ≤
∑
k≥0

|P̂m,1(k)| ‖Kk‖

=
∑
k≥0

1
k!
|P̂m,1(k)|k! ‖Kk‖ ≤ c

∑
k≥0

|q̂m,1(k)| = c
∥∥qm,1

∥∥
W(D)

→ 0, m → ∞.
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In particular, it follows that lim
m→∞

Pm,1(K)x1 = 0, and, consequemtly, lim
m→∞

n∑
i=2

Pm,i(K)xi = x. Since x is an

arbitrary vector, we see that
{
xi

}n

i=2
is a cyclic family for the operator K, and µ(K) ≤ n − 1. We get a

contradiction since µ(K) = n by our assumption. �

Remark 1. There exists a more direct construction of a cyclic family of the form {1I⊕x1, O⊕x2, . . . , O⊕ xn}.
Indeed, assume that fk(0) 
= 0 for k = 1, 2, . . . , l and fk(0) = 0 for k = l +1, . . . , n. Set gk = fk and yk = xk for
k = 1, . . . , l and gk = fk −f1 and yk = xk−x1 for k = l+1, . . . , n. In this case, the family

{
gi⊕yi

}n

i=1
is cyclic.

Since gk(0) 
= 0 for k = 1, 2, . . . , n, there exist functions Fk ∈ W (D) such that Fk � gk = 1I, k = 1, 2, . . . , n. Set
x̃k =

∑
m≥0

m! F̂k(m)Kmyk. In this case,

gk ⊕ yk =
∑
m≥0

m! ĝk(m)(J ⊕K)m(1I ⊕ x̃k).

Hence,
gk ⊕ yk ∈ span

{
(J ⊕K)m(1I ⊕ x̃i) : m ≥ 0, i = 1, . . . , n

}

for k = 1, . . . , n, and the family
{
1I ⊕ x̃i

}n

i=1
is cyclic.

Finally, we set x1 = x̃1 and xk = x̃1 − x̃k, k = 2, . . . , n, to get a cyclic family of the form {1I ⊕ x1, O ⊕
x2, . . . , O ⊕ xn}.

Remark 2. The proof of Theorem 3 shows that the assumptions can be weakened as follows: it is enough to
assume that for any x ∈ X there exists a constant Cx > 0 such that ‖Knx‖ ≤ Cx

1
n! for n ≥ 0.

In the next theorem, we give a criterion of additivity of multiplicities of spectra. Let us make the following
remark. Let A be a Banach algebra with unit e. To unify the terminology, we say that an element x ∈ A is
cyclic in A if clos {Ax} = A, where Ax

def= {ax : a ∈ A}. In this case, we write x ∈ Cyc A. Obviously, an element
x is cyclic in A if only if this element is invertible. In particular, e ∈ CycA. Thus, it is natural to assume
that µ(A) = 1.

Theorem 4. Let X be a separable Banach space. Let A be a Banach algebra with respect to two multiplications
denoted by · and ∗ and let (A, ∗) be a commutative algebra. Let τ be a generator of the algebra (A, ∗) with
unit e. Finally, let A ∈ L(X) be an operator with simple spectrum (i.e., µ(A) = 1) and such that

(1) A admits a (A, · )-calculus;

(2) there exists a constant c > 0 such that ‖P (τ)(A)x‖ ≤ c‖P (A)x‖ for any polynomial P with respect to the
multiplication ∗ and for any x ∈ X;

(3) if ϕ is an invertible element of the algebra (A, ∗), then ϕ(A) 
= O.

Then µ(Mτ ⊕A) = 2, where Mτ is the operator of multiplication by τ .

Proof. Assume that µ(Mτ ⊕A) = 1. Let f⊕x be a cyclic vector for Mτ ⊕A. In this case, there exist polynomials
Pn such that

lim
n

Pn(Mτ ⊕ A)(f ⊕ x) = e⊕ O.

It follows that
lim
n

Pn(τ)f = e and lim
n

Pn(A)x = O. (2)

Since f ∈ Cyc (A, ∗) and Pn(τ)f = Pn(τ) ∗ f , the element f is invertible in (A, ∗). Hence, lim
n

Pn(τ) = f−1∗.

By condition (1), the operator A admits a calsulus with respect to the multiplication; hence, lim
n

Pn(τ)(A) =

f−1∗(A), and lim
n

Pn(τ)(A)x = f−1∗(A)x. By condition (2), relations (2) imply that lim
n

Pn(τ)(A)x = O. Hence,

f−1∗(A)x = O. Finally, it follows from condition (3) that f−1∗(A) 
= O. Since the operators f−1∗(A) and A
commute, we deduce that x /∈ Cyc (A). This contradiction completes the proof. �
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Corollary 5. Let A ∈ L(X) be a cyclic noninvertible contraction and let J be the integration operator in the
space W (D). If

‖q(A)x‖ ≤ c‖P (A)x‖ (3)

for any x ∈ Cyc (A) and any polynomial P , where q = B−1P , then µ(J ⊕A) = 2.

Proof. First we note that the condition 0 ∈ σ(A) is necessary for the additivity of multiplicities of spectra. To
prove the corollary, let us check the conditions of Theorem 4. Set A = W (D). We take the Duhamel product �
as ∗:

(f � g)(z) =
d

dt

z∫

0

f(z − t)g(t)dt.

It was noted above that W (D) is a Banach algebra with respect to �. In fact, this statement is a corillary of the

following reasoning: if f , g ∈ W (D), then ‖Jng‖ =
∥∥∥zn

n!
� g

∥∥∥ ≤ 1
n!

‖g‖, and it follows from item (b) of Lemma 1
that

‖f � g‖ = ‖(Bf)(J)g‖ =
∥∥∥∥

∑
n≥0

n! f̂(n)(Jng)
∥∥∥∥ ≤ ‖g‖

∑
n≥0

|f̂(n)| = ‖f‖ ‖g‖.

Obviously, condition (1) of Theorem 4 is fulfilled. Inequality (3) implies condition (2) of Theorem 4. Condition
(3) follows from the theorem on mappings of a spectrum: ϕ(0) ∈ σ(ϕ(A)), and if a function ϕ is invertible in
(W (D), �), then ϕ(0) 
= 0; thus, ϕ(A) 
= O. Since the integration operator J is the operator of multiplication
by z in the sense of �, it remains to apply Theorem 4. �
Corollary 6. Let X be a Banach space of functions that are analytic in D and satisfy the following conditions:

(1)
{
zn

}
n≥0

is a complete system in X;

(2) the operator S of shift, Sf = zf , acts continuously in X;

(3) for any z ∈ D, the functional f → f(z) from X into C is continuous;

(4) for any ε > 0 and any x ∈ X, ∑
n≥0

1
n!

1
εn

∥∥znx
∥∥

X
< +∞.

Let J be the integration operator in the space l1A(‖Sn‖). Then µ(J ⊕ S) = 2.

Proof. It is enough to check that
‖q(S)x‖ ≤ c‖p(S)x‖

for any polynomial p and any x ∈ X such that x(0) 
= 0, where q(z) def=
∑
n≥0

p̂(n)
n!

zn. Take x ∈ X such that

x(0) 
= 0. Fix an arbitrary ε, 0 < ε < 1. Fix a number 0 < δ < ε such that inf
|z|≤δ

|x(z)| def= α > 0. By the closed

graph theorem, the embedding of the space X into C(|z| ≤ δ) is continuous. Hence,∥∥p(z)x(z)
∥∥

X
≥ c max

|z|≤δ
|p(z)x(z)| ≥ cα max

|z|≤δ
|p(z)| ≥ δncα|p̂(n)|.

Now we deduce the desired estimate as follows:
∥∥q(S)x

∥∥
X

=
∥∥∥∥

∑
n≥0

p̂(n)
n!

znx

∥∥∥∥
X

≤
∑
n≥0

p̂(n)
n!

∥∥znx
∥∥

X
≤ 1

cα

∥∥p(z)x
∥∥

X

∑
n≥0

1
n!δn

∥∥znx
∥∥

X
= c1

∥∥p(S)x
∥∥

X
.

It remains to note that l1A(‖Sn‖) is a Banach algebra with respect to the Duhamel product � as well. Indeed,

∥∥f � g
∥∥

l1A(‖Sn‖) =
∥∥∥∥

∑
n≥0

n∑
k=0

f̂(k)ĝ(n − k)
k!(n− k)!

n!
zn

∥∥∥∥
l1A(‖Sn‖)

=
∑
n≥0

∣∣∣∣
n∑

k=0

f̂(k)ĝ(n − k)
k!(n − k)!

n!

∣∣∣∣‖Sn‖

≤
∑
n≥0

( n∑
k=0

|f̂(k)| |ĝ(n− k)|
)
‖Sn‖ =

∥∥f+ · g+

∥∥
l1A(‖Sn‖) ≤ c

∥∥f+

∥∥
l1A(‖Sn‖)

∥∥g+

∥∥
l1A(‖Sn‖) = c

∥∥f
∥∥

l1A(‖Sn‖)
∥∥g

∥∥
l1A(‖Sn‖),

where f+(z) def=
∑

n≥0

|f̂(n)|zn and g+(z) def=
∑

n≥0

|ĝ(n)|zn. The proof is complete. �
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§3 Operator of double integration

In this section, we consider an analog of the Duhamel product for functions of two variables. We apply this
analog to describe cyclic vectors of the restriction of the operator of double integration to an invariant subspace
of a special form.

Denote by C(n)[0, 1]× [0, 1], where n ≥ 2, the Banach space of function having continuous partial derivatives
of order not exceeding n on [0, 1]× [0, 1]. We introduce a norm in C(n)[0, 1]× [0, 1] by the following formula:

∥∥u
∥∥

C(n)[0,1]×[0,1]
=

∑
|α|≤n

∥∥Dαu
∥∥

C[0,1]×[0,1]
,

or, in more detail, ∥∥u
∥∥

C(n)[0,1]×[0,1]
=

∑
0≤|α|≤n

max
x∈[0,1]×[0,1]

|Dαu(x)|.

In the space C(n)[0, 1]× [0, 1], we consider the Volterra integration operator in two variables,

(Wf)(x, y) def=

x∫

0

y∫

0

f(t, τ)dτ dt.

Denote by Exy the subspace of the space C(n)[0, 1] × [0, 1] consisting of functions that depend on the product

xy. It is easy to see that Exy = span {(xy)k : k ≥ 0} and Exy ∈ LatW . Set Wxy = W |Exy, i.e., (Wxyf)(xy) def=
x∫
0

y∫
0

f(tτ)dτ dt. In the space C(n)[0, 1] × [0, 1], we define a convolution (analog of the Duhamel product for

functions of two variables) as follows:

(f � g)(x, y) def=
∂2

∂x∂y

x∫

0

y∫

0

f(x − t, y − τ)g(t, τ)dτ dt. (4)

Differentiating the integral, we transform formula (4) to the following form:

(f � g)(x, y) =

x∫

0

y∫

0

∂2

∂x∂y
f(x − t, y − τ)g(t, τ)dτ dt +

x∫

0

∂

∂x
f(x − t, 0)g(t, y)dt

+

y∫

0

∂

∂y
f(0, y − τ)g(x, τ)dτ+f(0, 0)g(x, y).

The formula above implies that if f , g ∈ Exy, then

(f � g)(xy) =

x∫

0

y∫

0

∂2

∂x∂y
f((x − t)(y − τ))g(tτ)dτ dt + f(0)g(xy)

=

x∫

0

y∫

0

[
f ′((x−t)(y−τ))+(x−t)(y−τ )f ′ ′((x−t)(y−τ))

]
g(tτ)dτ dt+ f(0)g(xy). (5)

In particular, if f , g ∈ Exy, then, introducing the variables u = t
x and v = τ

y , we deduce from formula (5) that
the function f � g depends on the product xy only.

Set

X(s) def=
{

f ∈ Exy :
∂i+jf

∂xi∂yj

∣∣∣∣
xy=0

= 0, i+j =0, 1, . . . , s

}
(s=0, 1, . . . , n)

and
Xλ

def=
{
f ∈ Exy : f(xy) = 0, 0 ≤ xy < λ

}
(0 < λ < 1).
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Obviously, X(s) and Xλ are invariant subspaces of the operator Wxy, and

{0} ⊂ Xµ ⊂ Xλ ⊂ X(n) ⊂ X(n−1) ⊂ · · · ⊂ X(0) ⊂ C(n)[0, 1]× [0, 1] (µ > λ).

Calculating the derivatives ∂i+j

∂xi∂yj , we see that

∂i+jf(xy)
∂xi∂yj

∣∣∣∣
xy=0

= 0 ⇐⇒ f(max(i,j))(xy)
∣∣∣∣
xy=0

= 0.

Hence, the subspaces X(s) have the following form:

X(s) = {f ∈ Exy : f(0) = f ′(0) = · · · = f(s)(0) = 0} (s = 0, 1, . . . , n).

In the following statement, we apply the Duhamel product to describe cyclic vectors of the restricted opera-
tor Wxy.

Proposition 7. Let f ∈ Exy. The inclusion f ∈ Cyc (Wxy) holds if and only if f(0) 
= 0.

Proof. Let g be an arbitrary function from Exy. Equality (5) implies that 1I � g(xy) = g(xy),

W k
xyg(xy) =

(xy)k

(k!)2
� g(xy) (k ≥ 1),

and the operator Df defined by (Dfg)(xy) def= (f � g)(xy) is a bounded operator in Exy (in addition, Exy is a
Banach algebra with respect to �).

It follows from these statements that

Ef
def=span

{
W k

xyf(xy) : k ≥ 0
}

= span
{

(xy)k

(k!)2
� f(xy) : k ≥ 0

}

=span
{
Df

(
(xy)k

(k!)2

)
: k ≥ 0

}
= closDf span{(xy)k : k ≥ 0} = closDfExy.

Hence, f ∈ Cyc (Wxy) ⇔ closDfExy = Exy. To prove the proposition, we show that closDfExy = Exy ⇔
f(0) 
= 0. Indeed, if closDfExy = Exy, i.e., if Ef = Exy, then f(0) 
= 0. Conversely, assume that f(0) 
= 0. We
claim that in this case the operator Df is invertible in Exy. This claim implies the desired statement. Indeed,
it follows from formula (5) that Df = (K ∂2f

∂x∂y

+ f(0)I), where I is the identity operator in Exy and

K ∂2f
∂x∂y

g(xy) =

x∫

0

y∫

0

[
f ′((x − t)(y − τ)) + (x − t)(y − τ)f ′′((x − t)(y − τ))

]
g(tτ)dτ dt.

It is easy to show that K ∂2f
∂x∂y

is a compact operator in Exy. On the other hand, by the Titchmarsh theorem on

convolution for functions of several variables (see [11]), the condition f(0) 
= 0 implies the equality kerDf = {0}.
Hence, the operator Df is invertible in Exy by the Fredholm theorem. Thus, Ef = Exy, i.e., f ∈ Cyc (Wxy). �
Remark 3. Changing variables, it is posiible to show that

(Wxyf)(xy) =

x∫

0

y∫

0

f(tτ)dτ dt =

xy∫

0

log
xy

v
f(v)dv. (6)

Hence, Proposition 7 describes, in fact, cyclic vectors of the operator

(Klog xf)(x) def=

x∫

0

log
x

y
f(y)dy
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in the space C(n)[0, 1]. Indeed, set u = tτ . Since 0 ≤ τ ≤ y, 0 ≤ u ≤ ty
def= v and 0 ≤ v ≤ xy. Hence,

(Wxyf)(xy) =

x∫

0

y∫

0

f(tτ)dτ dt =

x∫

0

( ty∫

0

f(u)
du

t

)
dt =

x∫

0

( ty∫

0

f(u)du

)
d log t

=
(

log t

ty∫

0

f(u)du

)∣∣∣∣
x

0

−
x∫

0

(
log t d

ty∫

0

f(u)du

)
= log x

xy∫

0

f(u)du −
x∫

0

log tf(ty)y dt

= log x

xy∫

0

f(u)du −
xy∫

0

log
v

y
f(v)dv =

xy∫

0

log
xy

v
f(v)dv.

This proves formula (6).

In conclusion, let us mention that the study of invariant subspaces of the operator W of double integration
in the space L2[0, 1]× [0, 1] was originated by the known Donoghue’s work [12] and that the operator W is not
unicellular. We also mention the Atzmon amd Manos’ work [13], where the equality µ(W ) = +∞ was proved.
In the same work, a description of all reducing subspaces of the operator L2[0, 1]× [0, 1] was given. The problem
of complete description of LatW is still open.

The author is grateful to the reviewer who read the manuscript attentively and made a number of useful
comments.

Translated by S. Yu. Pilyugin.
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