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EXACT SMALL BALL CONSTANTS FOR SOME GAUSSIAN PROCESSES UNDER
THE L2-NORM

L. Beghin, Ya. Nikitin, and E. Orsingher UDC 519.21

We find some logarithmic and exact small deviation asymptotics for the L2-norms of certain Gaussian processes
closely connected with a Wiener process. In particular, processes obtained by centering and integrating Brownian
motion and Brownian bridge are examined. Bibliography: 28 titles.

1.Introduction

The problem of small deviations for norms of Gaussian processes has obtained much attention in recent years
(see, e.g., the reviews [20] and [18]).

Let X(t), 0 ≤ t ≤ 1, be a Gaussian process with mean zero and covariance function σ(s, t) = EX(t)X(s) for
s, t ∈ [0, 1]. Let

||X||2 =
(∫ 1

0

X2(t)dt

)1/2

and
Q(X; ε) = P (||X||2 ≤ ε).

An interesting problem is to describe the behavior of Q(X; ε) as ε → 0. As an example, consider a Wiener
process W (t), 0 ≤ t ≤ 1, and a Brownian bridge B(t), 0 ≤ t ≤ 1. The following small deviation asymptotics as
ε → 0 have been obtained long ago:

P (||W ||2 ≤ ε) ∼ 4π−1/2ε exp(−(1/8)ε−2) (1)

and
P (||B||2 ≤ ε) ∼ 2

√
2π−1/2 exp(−(1/8)ε−2). (2)

These asymptotics follow from known exact distributions of the L2-norm for W and B. However, for other
Gaussian processes, such formulas are seldom available.

Theoretically, the problem of small deviation asymptotics was solved by Sytaya [24], but in an implicit way.
Therefore, the efforts of many scientists, beginning with the works [4], [12], and [27], were aimed at simplifications
of the expression for Q(X; ε) (see the references in [20] and [5]).

It readily follows from the Kac–Siegert formula that

∫ 1

0

X2(t)dt =
∞∑

n=1

λnξ2
n, (3)

where ξn, n ≥ 1, are independent standard normal r.v.’s and λn > 0, n ≥ 1, are the eigenvalues of the integral
equation

λf(t) =
∫ 1

0

σ(s, t)f(s)ds, 0 ≤ t ≤ 1. (4)

Thus, equivalently, we arrive at the problem on the asymptotic behavior of the value P (
∑∞

n=1 λnξ2
n ≤ ε2) as

ε → 0. We may say that the latter problem is solved if the eigenvalues λn are found explicitly. However, these
eigenvalues are known only for a limited number of examples (see [17], [5], and [20]).

The aim of the present work is to calculate the exact small deviation asymptotics for some Gaussian processes,
which are of interest in statistics but have not been considered in the previous papers. The results were obtained
in October of 2001 when the second author was visiting the Rome University “La Sapienza” and published in
the preprint [1]. They were also presented at the POMI seminar of Prof. I. A. Ibragimov in the spring of 2002.

Some general exact small deviation results have been obtained later (see [6–8] and [21, 22]).
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2. Gaussian processes under consideration

In some statistical problems, it is reasonable to consider centered empirical processes and the corresponding
limiting Gaussian processes. In particular, we are interested in the centered (by its mass) Wiener process

W c(t) = W (t) −
∫ 1

0

W (u)du

and the centered Brownian bridge

Bc(t) = B(t) −
∫ 1

0

B(u)du.

The idea of such type of centering is very old and dates back at least to Watson [25], who used it for testing
nonparametric hypotheses on the circle.

Another operation, which has received great attention in the recent years, is the integration of Gaussian
processes (see, e.g., [2], [15], and [16]). Let

W (t) =
∫ t

0

W (u)du and B(t) =
∫ t

0

B(u)du, 0 ≤ t ≤ 1,

be the integrated Wiener process and Brownian bridge, respectively. In addition to purely probabilistic studies
of these processes, we note that B(t) has appeared in [10] in the context of goodness-of-fit testing. Similarly,
W (t) may be used for samples of the Poisson size if the empirical process is replaced by the Kac process [13] and
W is the limiting process.

We can also combine the operations of centering and integration. In this context, Henze and Nikitin [11] (see
also [16]) considered two different processes: the centered integrated Brownian bridge

B0(t) = B(t) −
∫ 1

0

B(u)du

and the integrated centered Brownian bridge

B∗(t) =
∫ t

0

(B(s) −
∫ 1

0

B(u)du)ds = B(t) − tB(1).

The latter process may be regarded as the bridge of the integrated Brownian bridge B(t). These studies were
also motivated by the construction of new Watson type goodness-of-fit tests (see [11]).

Quite smilarly, we can consider the centered integrated Wiener process

W 0(t) = W (t) −
∫ 1

0

W (u)du

and the integrated centered Wiener process

W ∗(t) =
∫ t

0

(W (s) −
∫ 1

0

W (u)du)ds = W (t) − tW (1),

which, apparently, have not been considered previously. Note that the operations of centering and integrating
do not commute, so that B0 differs from B∗, as well as W 0 differs from W ∗.

Chen and Li [2] considered the m-fold integrated Wiener process

Wm(t) =
1

m!

∫ t

0

(t − s)mdW (s), m ≥ 0.

They showed that
lim
ε→0

ε2/2m+1 log P (||Wm||2 ≤ ε) = −Dm

as ε → 0, where

Dm =
1
2
(2m + 1)

(
(2m + 2) sin

π

2m + 2

)− 2m+2
2m+1

.

For m = 0 (the Wiener process), the right-hand side is equal to −(1/8) according to (1); for m = 1 (the
process W (t)), the right-hand side is equal to −(3/8). The latter result was obtained for the first time in [15].
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3. Centered Wiener process and centered Brownian bridge

The process Bc(t) = B(t)−
∫ 1

0
B(u)du was introduced by Watson [25]. He showed that the covariance function

of this process is

σBc(s, t) = s ∧ t − st +
1
2
(s2 + t2 − s − t) +

1
12

, 0 ≤ s, t ≤ 1,

and that the spectrum of the corresponding integral operator consists of the eigenvalues λn = (2nπ)−2, n ≥ 1, of
multiplicity 2. This makes the computation of small deviations more difficult since the r.v.’s ξ2

n in (3) are to be
replaced by the r.v.’s χ2

2 . Fortunately, it was proved long ago (see, e.g., [23, p. 148]) that the following equality
in distribution holds:

||Bc||2 = π−1 sup
0≤t≤1

|B(t)|.

The random variable sup0≤t≤1 |B(t)| has the well-known Kolmogorov distribution function, for which there exist
closed-form expressions applicable both for small and large values of the argument (see, e.g., [19, §18]). Hence,

P (||Bc||2 ≤ ε) = P ( sup
0≤t≤1

|B(t)| ≤ επ) ∼
√

2
π

ε−1 exp
(
− 1

8
ε−2

)

as ε → 0. To study the small deviations of the process W c, we note that

σWc(s, t) = s ∧ t +
1
2
(s2 + t2) − s − t +

1
3
.

Solving the integral equation (4) with this kernel by differentiation, we readily get the following boundary-value
problem:

λf ′′(t) = −(f(t) −
∫ 1

0

f(u)du),

f ′(0) = f ′(1) = 0.

The set of solutions of the latter problem consists of the eigenvalues λn = (n2π2)−1, n ≥ 1, with the eigen-
functions fn(t) = C cosnπt, n ≥ 1. Thus, the spectrum coincides with that of the Brownian bridge B. Hence,
we get a different proof of the well-known equality in distribution (see [3]):

||B||2 = ||W c||2.

It follows from (2) that
P (||W c||2 ≤ ε) ∼ 2

√
2π−1/2 exp(−(1/8)ε−2)

as ε → 0. We see that the centering by integral does not change the exponential term for small deviation
probabilities of the Wiener process and Brownian bridge but it changes the factor at the exponential term.

4. Integrated Brownian bridge: exact small deviations

The covariance function of the integrated Brownian bridge B is

σB(s, t) =
1
2
st(s ∧ t) − 1

6
(s ∧ t)3 − 1

4
s2t2, 0 ≤ s, t ≤ 1.

The spectrum of the corresponding integral equation has been found in [10]. The derivation of this spectrum is
based on the transcendental equation

tanx + tanhx = 0. (5)

Denoting the solutions of Eq. (5) by k1 < k2 < ... , the eigenvalues are λn = (kn)−4, n ≥ 1.
It was noticed in [10] that, since tanhx ∼ 1 for large x , the solutions kj of Eq. (5), arranged in the ascending

order of magnitude, satisfy the approximate relation kj ∼ (j − 1
4
)π for large j. Therefore,

λj ∼ σj :=
(

j − 1
4

)−4

π−4 (6)
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for large values of j. It follows from Theorem 2 of [17] or from Theorem 6.2 of [20] that

P (||B||2 ≤ ε) = P (
∞∑

j=1

λnξ2
n ≤ ε2) ∼ Π∞

n=1(σn/λn)1/2P (
∞∑

j=1

σnξ2
n ≤ ε2) (7)

as ε → 0 provided that the condition
∑∞

n=1 |1 − λn/σn| < +∞ is fulfilled. Hence, we only have to verify that

∞∑
j=1

|1− (j − 1
4
)4π4k−4

j | < +∞. (8)

Clearly, kj → ∞ as j → ∞ and kj = (j − 1/4)π + δj for large j, where δj → 0 as j → ∞. Substituting these
relations into (5), we get the equality

tan δj − 1
tan δj + 1

+
1 − exp(π2 − 2jπ − 2δj)
1 + exp(π/2 − 2jπ − 2δj)

= 0,

which is equivalent to the following equation:

tan δj = exp(π/2 − 2jπ − 2δj).

Obviously, δj = O(exp(−2jπ)) as j → ∞. It follows that

kj = −π/4 + jπ + O(exp(−2jπ)), j → ∞; (9)

therefore, series (8) is convergent. Hence, (7) is proved.
Now we use the technique developed in [5] for asymptotic evaluation of the probability on the right-hand side

of (7). We adopt the same notation as in [5]. Let Φ be the distribution function of the standard normal law.
Denote, for t, u ≥ 0,

φ(t) = (t − 1/4)−4, f(t) = (1 + 2t)−1/2, F (t) = 2Φ(
√

t) − 1,

I0(u) =
∫ ∞

1

log f(uφ(t))dt, I1(u) =
∫ ∞

1

uφ(t)(log f)
′
(uφ(t))dt,

I2(u) =
∫ ∞

1

(uφ(t))2(log f)
′′
(uφ(t))dt,

and

Cφ =
1
2

∞∑
j=1

∫ 1

0

log
φ(j)φ(j + 1)

φ2(t + j)
dt.

The following Theorem 1 is a concretization of Corollary 3.2 of [5]. Note that, under our choice of φ, f , and
F , all the regularity conditions of [5] are satisfied.

Theorem 1.

P

( ∞∑
j=1

φ(j)ξ2
j ≤ r

)
∼

√
Γ(3/2)F ((uφ(1))−1)

2πI2(u)
exp(I0(u) −Cφ/2 + ur), (10)

where u = u(r) is any function such that

lim
r→0

I1(u) + ur√
I2(u)

= 0. (11)

We begin with the asymptotic analysis of Is(u), s = 0, 1, 2, as u → ∞. Changing variables and integrating by
parts in the definition of I0(u), we see that

I0(u) = −1
2

∫ ∞

3/4

log(1 +
2u

t4
)dt =

3
8

log(1 +
512u

81
) − 4u

∫ ∞

3/4

dt

2u + t4

=
3
8

log(1 +
512u

81
) − 4u

∫ ∞

0

dt

2u + t4
+ 4u

∫ 3/4

0

dt

2u + t4
=

3
8

log(1 +
512u

81
) − J1(u) + J2(u).
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From [9, formula 3.241] we deduce that
J1(u) = (u/2)1/4π.

By the Lebesgue Dominated Convergence Theorem,

J2(u) = 2
∫ 3/4

0

dt

1 + t4

2u

→ 3/2

as u → ∞. Our considerations imply that

I0(u) ∼ 3
8

log
(

512u

81

)
− (u/2)1/4π + 3/2 (12)

as u → ∞. Note that
(log f(t))

′
= − 1

1 + 2t
and (log f(t))

′′
=

2
(1 + 2t)2

. (13)

Taking into account formula (13) and repeating the reasoning applied in the analysis of I0(u), we see that

I1(u) = −u

∫ ∞

3/4

dt

2u + t4
= −u

∫ ∞

0

dt

2u + t4
+ u

∫ 3/4

0

dt

2u + t4
∼ −2−9/4πu1/4

and

I2(u) = 2u2

∫ ∞

3/4

dt

(2u + t4)2
= 2u2

∫ ∞

0

dt

(2u + t4)2
− 2u2

∫ 3/4

0

dt

(2u + t4)2
∼ 3π2−17/4u1/4.

If we take u so that u = π4/32−3r−4/3, then u1/4 = π1/32−3/4r−1/3, and ur = −I1(u) + O(1); hence, u satisfies
condition (11).

To apply formula (10), it is necessary to compute the constant C
φ
; in our case,

Cφ =
1
2

∞∑
j=1

∫ 1

0

log
(t + j − 1/4)8

(j − 1/4)4(j + 3/4)4
dt

= 4
∞∑

j=1

[
∫ 1

0

log(t + j − 1/4)dt− 1
2

log((j − 1/4)(j + 3/4))]

= 2
∞∑

j=1

[(2j + 1/2) log
j + 3/4
j − 1/4

− 2].

To simplify the last sum, we need some formulas from the theory of the gamma-function (see, e.g., [26, Ch. 12]).
Consider the integral

I(z) =
∫ ∞

0

e−tz

{
1
2
− 1

t
+

1
et − 1

}
t−1dt (14)

which is defined for any complex z with positive real part. We recall the Binet’s integral representation for the
logarithm of the gamma-function which is valid for any complex z with positive real part (see [26, §12.31]):

log Γ(z + 1) = (z + 1/2) log z − z + 1 + I(z) − I(1). (15)

Setting z = j + 3
4 and z = j − 1

4 in (14) and taking the difference of the obtained identities, we see that

I(j − 1/4) − I(j + 3/4) = (j + 1/4) log
j + 3/4
j − 1/4

− 1.

Hence,

Cφ = 2
∞∑

j=1

[(2j + 1/2) log
j + 3/4
j − 1/4

− 2] = 4
∞∑

j=1

[I(j − 1/4)− I(j + 3/4)] = 4I(3/4).
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Applying Binet’s formula once more, we see that

log Γ(3/4) =
1
4

log(3/4) + 3/4 + I(3/4) − I(1). (16)

It is well known that I(1) = 1 − 1
2 log(2π) (see [26, Section 12.31]). We deduce from (16) that

I(3/4) = log Γ(3/4) − 1
4

log(3/4) + 3/4− 1
2

log(2π).

Finally, we conclude that

Cφ = 4I(3/4) = 4 log Γ(3/4)− log(3/4) + 3 − 2 log(2π)

and
exp(−Cφ/2) = 31/2πΓ−2(3/4) exp(−3/2).

Combining these partial results, we see that

F (1/uφ(1)) = 2Φ((
3
4
)2u−1/2) − 1 ∼

√
2
π

(
3
4
)2u−1/2,

√
2πI2(u) ∼ 31/22−13/8πu1/8

and
exp(I0(u) + ur) ∼ (512u/81)3/8 exp(3/2 − 3π2−9/4u1/4)

as u → ∞. Formula (14) and the relation u = 1
8
(π/r)4/3 imply that

P

( ∞∑
j=1

σjξ
2
j ≤ r

)
∼ 211/4

(
√

3)Γ2(3/4)
exp(−(3/8)r−1/3)

as r → 0. To get the final result, we must take into account the constant

Cσλ = Π∞
n=1(σn/λn)1/2,

which we have to calculate numerically. It was shown above that the numbers λj and σj are very close; hence,
the infinite product converges very fast. Using the ten largest eigenvalues λj found in [10], we get the value
Cσλ ≈ 1.0075... by simple calculations. Hence, formula (7) implies the following exact asymptotic:

P (||B||2 ≤ ε) ∼ 1.0075...
211/4

(
√

3)Γ2(3/4)
exp(−(3/8)ε−2/3).

Note that the factor at the exponent does not depend on ε. More refined arguments of [22] and [6] prove that
the constant on the right-hand side is, in fact, equal to 8/

√
3π.

5. Exact small deviation asymptotics for the integrated Wiener process

The same technique as in the previous section enables us to get the exact small deviation asymptotics of
Q(W ; ε) as ε → 0. The calculations are similar to those for the integrated Brownian bridge, and we omit some
details. The covariance of the integrated Wiener process is

σW (s, t) =
1
2
st(s ∧ t) − 1

6
(s ∧ t)3, 0 ≤ s, t ≤ 1.

The spectrum of the corresponding integral operator can be found from the following boundary-value problem:

λf(IV )(t) = f(t),

f(0) = f
′
(0) = f

′′
(1) = f

′′′
(1) = 0.
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The solution of this problem can be found in [14]. The spectrum consists of the eigenvalues λn = m−4
n , n ≥ 1,

where m1 < m2 < ... are the solutions of the auxiliary transcendental equation

cos m cosh m + 1 = 0, (17)

while the eigenfunctions are fn(t) = (coshmn + cos mn)(sinhmnt − sinmnt) − (sinhmn + sinmn)(cosh mnt −
cos mnt), n ≥ 1.

As in the previous section, it can be proved that

λj ∼ τj := (π(j − 1/2))−4

with an exponential error for large j. Thus, we can find the asymptotics of P (
∑∞

j=1 ξ2
j (j − 1/2)−4 ≤ r) taking

into account the constant Cτλ =
∏∞

n=1(τn/λn)1/2.
Asymptotic computations of the functions Is(u), s = 0, 1, 2, are very similar to those of the previous section.

While the asymptotics of I1(u) and I2(u) (therefore, the choice of u = u(r)) coincide with those of the integrated
Brownian bridge, the limit expression for I0(u) in this case is

I0(u) ∼ 1
4

log(32u) − (u/2)1/4π + 1.

Some differences also appear when we compute the constant Cφ. Repeating the reasoning of the previous section,
we see that

C
φ

=
1
2

∞∑
j=1

∫ 1

0

log
(t + j − 1/2)8

(j − 1/2)4(j + 1/2)4
dt = 4

∞∑
j=1

(j log
j + 1/2
j − 1/2

− 1)

= 4
∞∑

j=1

[I(j − 1/2) − I(j + 1/2)] = 4I(1/2).

The integral I(1/2) = (1 + log1/2)/2 was calculated in [26, Section 12.31]. Thus, Cφ = 2 − 2 log 2 and
exp(−Cφ/2) = 2 exp(−1).

To evaluate the constant Cτλ =
∏∞

n=1(τn/λn)1/2, we have to find numerically the first few roots m1, m2, ... of
Eq. (17) and to calculate the values λj = (mj)−4, j ≥ 1. After easy calculations, we get the approximate value
Cτλ = 1.4142... . Collecting the results above, we obtain the exact asymptotics

P (||W ||2 ≤ ε) ∼ 1.4142... · (8/
√

3π)ε1/3 exp(−(3/8)ε−2/3).

Note that the methods of [22], [6], and [7] show that, in fact, Cτλ =
√

2.

6. Centered integrated Brownian bridge and integrated centered Brownian bridge

Now we consider the processes

B0(t) = B(t) −
∫ 1

0

B(u)du

and

B∗(t) =
∫ t

0

(B(s) −
∫ 1

0

B(u)du)ds = B(t) − tB(1)

introduced above. It follows from the results of [10] that for the first process with mean zero and covariance
function

σB0(s, t) =
st · s ∧ t

2
− (s ∧ t)3

6
− s2t2

4
− s2 + t2

6
− s4 + t4

24
+

s3 + t3

6
+

1
45

,

0 ≤ s, t ≤ 1, the spectrum has the form λn = (πn)−4, n ≥ 1.
We can apply the result of [19, §18, Example 2] (see also [17, Example 1]) to obtain the exact small deviation

asymptotics

P (||B0||2 ≤ ε) ∼ 25/23−1/2π−1/2ε−1/3 exp(−3
8
ε−2/3), ε → 0.
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In the case of the process B∗ whose covariance function is

σB∗(s, t) =
st · s ∧ t

2
− (s ∧ t)3

6
− s2t2

4
− st2

4
+

st3

6
− ts2

4
+

ts3

6
+

st

12
, 0 ≤ s, t ≤ 1,

the spectrum has a more complicated structure. In [10], it is shown that the spectrum contains the following
two series of eigenvalues: λn = (2πn)−4 and µn = (2kn)−4, n ≥ 1, where the kn are solutions of Eq. (5).

By the Kac–Siegert formula,

||B∗||22 =
∞∑

n=1

ξ2
n/16π4n4 +

∞∑
m=1

η2
m/16k4

m := V1 + V2, (18)

where {ηm} is a sequence of independent standard normal variables that is independent of {ξn}. Applying again
the result of Li [17] and formula (6), we can replace km by π(m − 1/4) in (18).

We can obtain the exact small deviation asymptotics of the sum (18) of two independent random variables of
the same nature using the following theorem which was kindly communicated to us by Prof. M. Lifshits.

Theorem 2. Let V1, V2 > 0 be two independent random variables with known behavior of small deviations.
Namely, assume that

P (V1 ≤ r) ∼ c1r
a1 exp(−b1r

−d)

and
P (V2 ≤ r) ∼ c2r

a2 exp(−b2r
−d)

as r → 0. Then the following small deviation asymptotic is valid for their sum:

P (V1 + V2 ≤ r) ∼ Kra1+a2−d/2 exp(−Sd+1r−d),

where

S = b
1/(d+1)
1 + b

1/(d+1)
2 and K = c1c2

√
2πd

d + 1
Sd/2−1/2−a1−a2b

(2a1+1)/2(d+1)
1 b

(2a2+1)/2(d+1)
2 .

The proof is elementary but rather laborious, and we omit it.
Let us apply Theorem 2 to sum (18). In our case,

c1 = 211/63−1/2π−1/2, a1 = −1/6, b1 = 3 · 2−13/3, d = 1/3;

c2 = 1.0075...211/43−1/2Γ−2(3/4), a2 = 0, b2 = 3 · 2−13/3 .

Hence, after some computations, we get the exact asymptotic

P (V1 + V2 ≤ r) ∼ 1.0075... · 3−1/227/4Γ−2(3/4)r−1/3 exp(−(3/8)r−1/3)

or, equivalently,
P (||B∗||2 ≤ ε) ∼ 1.0075... · 3−1/227/4Γ−2(3/4)ε−2/3 exp(−(3/8)ε−2/3).

Using the sharp value of the constant given in the end of Sec. 5, we see that the constant on the right-hand
side is, in fact, equal to 4/

√
3π.

7. Centered integrated Wiener process and integrated centered Wiener process

Now we consider the process

W 0(t) = W (t) −
∫ 1

0

W (u)du

introduced above. Its covariance function is

σW0(s, t) =
1
2
(s ∧ t) · st − 1

6
(s ∧ t)3 − s2 + t2

4
+

s3 + t3

6
− s4 + t4

24
+

1
20

, 0 ≤ s, t ≤ 1.
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Differentiating the integral equation (4), we get the boundary-value problem:

λf(IV )(t) = f(t) −
∫ 1

0

f(u)du,

f ′(0) = f ′′(1) = f ′′′(0) = f ′′′(1) = 0.

If p(t) = f(t) −
∫ 1

0 f(s)ds, then p satisfies a similar boundary-value problem:

λp(IV )(t) = p(t),

p′(0) = p′′(1) = p′′′(0) = p′′′(1) = 0.

This problem has the following solutions (see case (1,3,2,3) in Eq. (4.3) of [14]): pn(t) = C(cos kn coshnt +
cosh kn cosnt) and λn = k−4

n , n ≥ 1, where, as above, the kn are solutions of (5). It is easy to prove that
fn(t) = pn(t), n = 1, 2... (see [11]). Hence,

||W 0||2 = ||W ||2
in distribution, and the exact small deviation asymptotic of ||W 0||2 has the same form as in Sec. 6.

In the case of the integrated centered Wiener process

W ∗(t) =
∫ t

0

(W (s) −
∫ 1

0

W (u)du)ds = W (t) − tW (1),

the covariance function has the form

σW∗(s, t) =
1
2
(s ∧ t)st − 1

6
(s ∧ t)3 +

s3t + st3

6
− s2t + st2

2
+

st

3
, 0 ≤ s, t ≤ 1.

The integral equation can be reduced to the boundary-value problem:

λf(IV )(t) = f(t),

f(0) = f(1) = f ′′(0) = f ′′(1) = 0.

The solutions of this problem (according to [14]) are λn = (nπ)−4, n ≥ 1, and fn(t) = C sinnπt, n ≥ 0. We have
already met such a spectrum in our paper; thus,

||W ∗||2 = ||B0||2

in distribution, and we can apply the result obtained above. Hence,

P (||W ∗||2 ≤ ε) ∼ 25/23−1/2π−1/2ε−1/3 exp(−3
8
ε−2/3), ε → 0.
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