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Abstract
In this paperwe investigate a class of stochastic absolute value equations (SAVE).After
establishing the relationship between the stochastic linear complementarity problem
and SAVE,we study the expected residual minimization (ERM) formulation for SAVE
and its Monte Carlo sample average approximation. In particular, we show that the
ERM problem and its sample average approximation have optimal solutions under
the condition of R0 pair, and the optimal value of the sample average approximation
has uniform exponential convergence. Furthermore, we prove that the solutions to the
ERM problem are robust for SAVE. For a class of SAVE problems, we use its special
structure to construct a smooth residual and further study the convergence of the
stationary points. Finally, a smoothing gradient method is proposed by simultaneously
considering sample sampling and smooth techniques for solving SAVE. Numerical
experiments exhibit the effectiveness of the method.
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1 Introduction

The absolute value equation (AVE) is to find a vector x ∈ �n such that

Ax + B|x | = b, (1)

where A ∈ �n×n, B ∈ �n×n, b ∈ �n and |x | denotes the component-wise absolute
value of x . If B = −I , where I denotes an identity matrix, then AVE (1) reduces to
the special form:

Ax − |x | = b. (2)

The main significance of AVE arises from its wide applications in the different fields
of mathematics and engineering applications. For example, the general linear com-
plementarity problem [3] (including linear programs), quadratic programs, bimatrix
games and some other mathematical programming problems can be formulated as
AVE; see [13] for more information. Particularly, if B = 0, then AVE (1) reduces to
the system of linear equations Ax = b, the most foundamental problem in scientific
computing. Over the last ten years, AVE (1) and its special form (2) have been exten-
sively studied from both theoretical analysis and numerical algorithms, see [2, 9–12,
20, 26, 29, 30, 32].

In this paper, wemainly study a class of stochastic absolute value equation (SAVE),
which is to find a vector x ∈ �n such that

A(ω)x + B(ω)|x | = b(ω), (3)

where ω ∈ � and (�,F , P) is a probability space, A(ω) ∈ �n×n , B(ω) ∈ �n×n and
b(ω) ∈ �n for each ω ∈ �. If � only contains one realization, then SAVE (3) would
reduce to AVE (1). One of our motivations for studying SAVE comes from the fact
that the well-known stochastic linear complementarity problem (SLCP)

u ≥ 0, v ≥ 0, v = M(ω)u + q(ω), uT v = 0 (4)

with M(ω) ∈ �n×n and q(ω) ∈ �n can be formulated as a SAVE (see Sect. 2 below).
In the past few decades, due to its widespread application, SLCP has been extensively
studied. Here we only list a few literatures that are closely related to this paper. For
example, Chen and Fukushima [4] introduced the Expected Residual Minimization
(ERM) formula for SLCP and studied some properties of this new reformulation.
Chen et al. [6] further proved that the solutions of the ERM formulation are robust for
the monotone SLCP. Zhang and Chen [33] investigated a smooth projected gradient
method and applied this algorithm to solve SLCP. Zhou and Caccetta [34] proposed
a feasible semismooth Newton method for solving a class of SLCPs with finite many
realizations. More research and discussions on SLCP can be found in [7, 16, 17]
and references therein. For stochastic absolute value equation, Du [8] proved that the
SAVE A(ω)x −|x | = b(ω), a special case of SAVE (3), is equivalent to the stochastic
bilinear programming and the stochastic generalized linear complementarity problem.
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Due to the existence of the randomness of ω, we do not expect the existence of
a vector x satisfying SAVE (3) for all ω ∈ �. Therefore, in order to obtain a rea-
sonable solution of (3), we need to search for suitable reformulations for SAVE. It
is well-known that the deterministic Expected Residual Minimization (ERM) formu-
lation is one of the most effective techniques to deal with stochastic optimization
problems. The ERM formulation was firstly proposed by Chen and Fukushima [4]
for solving SLCP, where the objective is to minimize an expected residual defined by
NCP functions. Subsequently, the ERM formulation has been further studied to deal
with stochastic variational inequalities [5], stochastic complementarity problems [14],
stochastic generalized complementarity problems [18] and stochastic second-order
cone complementarity problems [15, 19, 31].

Our goal is to study the ERM deterministic formulation for SAVE (3) and then
propose a smoothing gradient method to find its approximate solution. Our main
contributions of the paper can be summarized as follows.

(i) We first show that the SLCP can be reformulated as a SAVE, while the converse
direction holds as well provided that A(ω) + B(ω) is nonsingular for each ω ∈ �.

(ii) We introduce the ERM formulation for SAVE and its Monte Carlo sample
average approximation. The existence of optimal solutions to ERM problem and its
discrete approximation is established when {A(ω̄), B(ω̄)} is an R0 pair for an observa-
tion ω̄. Our results show that the solution of the approximate ERM problem converges
to that of ERM problem with probability one, and the optimal value of the sample
average approximation achieves a uniform exponential convergence.

(iii) Under some regularity conditions, we prove that the solutions of ERM problem
are robust in the sense that theymay have aminimumsensitivitywith respect to random
parameter variations in SAVE. This also indicates from a new perspective that ERM
is an effective reformulation of SAVE.

(iv) In general, SAVE is nonsmooth due to the existence of absolute values. How-
ever, for a special class of SAVE problems, by exploiting its structure we provide
a smooth (even twice continuously differentiable) residual and further study the
convergence of the stationary points.

(v) For a general SAVE, we propose a new smooth approximation formulation by
simultaneously considering sampling and smoothing techniques (in which the number
of samples can also be treated as a smoothing factor). This new smooth approximation
allows us to use a smooth gradient method to solve SAVE. Our numerical experiments
indicate the algorithm is very effective.

The rest of our paper is organized as follows. In the next section, we discuss the
relationship between SAVE and SLCP. In Sect. 3, we study the ERM formulation for
SAVE and investigate the boundedness of its level sets, the existence of optimal solu-
tions as well as the exponential convergence rate. The robustness of the solutions to
the ERM problem is given in Sect. sec4. Section 5 is devoted to a smoothing reforma-
tion for a class of special SAVE. Section 6 proposes a smoothing gradient method for
solving general SAVE. Conclusions are drawn in Sect. 7.
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2 Relations of SAVE and SLCP

Theorem 1 The SLCP (4) can be formulated as a SAVE (3) with A(ω) = I + M(ω),
B(ω) = I − M(ω) and b(ω) = 2q(ω).

Proof Note that SLCP (4) can be written as

u ≥ 0, v ≥ 0, (I + M(ω))(v − u) + (I − M(ω))(v + u) = 2q(ω), uT v = 0.

Let x := v−u. Then, for any i = 1, ..., n, since ui ≥ 0, vi ≥ 0 and uivi = 0, we have
x2i = (vi − ui )2 = (vi + ui )2 and so |xi | = vi + ui . This implies that |x | = v + u.
So, SLCP (4) reduces to SAVE (3) with A(ω) = I + M(ω), B(ω) = I − M(ω) and
b(ω) = 2q(ω). ��
Theorem 2 If the matrix A(ω)+ B(ω) is nonsingular for each ω ∈ �, then SAVE (3)
is equivalent to SLCP (4).

Proof According to Theorem 1, it only needs to show that SAVE (3) can be formulated
as a SLCP (4). Note that SAVE (3) can be written as

(A(ω) + B(ω))
x + |x |

2
+ (A(ω) − B(ω))

x − |x |
2

= b(ω).

Since A(ω) + B(ω) is nonsingular for each ω ∈ �, the above equation is equivalent
to

|x | + x

2
= (A(ω) + B(ω))−1(A(ω) − B(ω))

|x | − x

2
+ (A(ω) + B(ω))−1b(ω).

(5)

By setting v := |x |+x
2 , u := |x |−x

2 , M(ω) := (A(ω) + B(ω))−1(A(ω) − B(ω)) and
q(ω) := (A(ω) + B(ω))−1b(ω), SAVE (5) is reformulated as SLCP (4). ��
Remark 1 Theorem 1 provides an equivalent way to solve SLCP (4). Specifically, we
may first find a solution x by solving the following SAVE

(I + M(ω))x + (I − M(ω))|x | = 2q(ω).

Then setting v := |x |+x
2 and u := |x |−x

2 yields a solution (u, v) for SLCP (4).

3 ERM Formulation for SAVE

Let

F(x, ω) := A(ω)x + B(ω)|x | − b(ω). (6)
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We introduce the following ERM model for the SAVE (3):

min
x∈�n

�(x) := E[‖F(x, ω)‖2], (7)

where E denotes the expectation with respect to the random variable ω. To proceed,
we first give the assumption required in this section.

Assumption A Let ω be a continuous random variable. Let A(ω), B(ω) and b(ω) be
continuous functions of ω satisfying

E[(‖A(ω)‖ + ‖B(ω)‖ + ‖b(ω)‖)2]
=
∫

�

(‖A(ω)‖ + ‖B(ω)‖ + ‖b(ω)‖)2ρ(ω)dω < +∞,

where ρ : � → �+ denotes the continuous probability density function of ω.
To analyze the existence of optimal solutions to the ERMproblem (7), we introduce

the following definition of R0 pair.

Definition 1 For the given matrices A, B ∈ �n×n , we define {A, B} to be an R0 pair
if

Ax + B|x | = 0 
⇒ x = 0.

The definition of R0 pair is motivated by the original definition of R0 matrix for the
LCP [4]. Obviously, if AVE (1) is uniquely solvable for any b ∈ �n , then {A, B} is an
R0 pair. According to existing results on the unique solvability of AVE (1), {A, B} is
an R0 pair if one of the following conditions holds:

(a) σmax(|B|) < σmin(A), where σmax and σmin denote the maximal and minimal
singular value respectively [25];

(b) The inequality |Ax | ≤ |B||x | only has trivial solutions [24];
(c) The interval matrix [A − |B|, A + |B|] is regular [30];
(d) {A + B, A − B} has the column W-property [20].

More sufficient conditions for the unique solvability of AVE (1) can be found in [26].

Lemma 1 If {A(ω̄), B(ω̄)} is an R0 pair for some ω̄ ∈ �, then there exists a closed
sphere B(ω̄, δ) := {ω| ‖ω − ω̄‖ ≤ δ} with δ > 0 such that {A(ω), B(ω)} is an R0
pair for every ω ∈ B(ω̄, δ) ∩ �.

Proof Assume that the lemma is not true. Then there is a sequence {ωk} ⊂ � satisfying
lim
k→∞ ωk = ω̄ and, for each k, there exists xk ∈ �n such that

A(ωk)xk + B(ωk)|xk | = 0, xk �= 0.

Let tk := xk

‖xk‖ . Then ‖tk‖ = 1 and

A(ωk)tk + B(ωk)|tk | = 0.
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This implies the existence of t̄ ∈ �n such that

‖t̄‖ = 1, A(ω̄)t̄ + B(ω̄)|t̄ | = 0.

This leads to a contradiction with the assumption that {A(ω̄), B(ω̄)} is an R0 pair. ��
Theorem 3 Suppose that there exists some ω̄ ∈ � such that ρ(ω̄) > 0 and
{A(ω̄), B(ω̄)} is an R0 pair. Then for any γ > 0, the level set defined by

L(γ ) := {x ∈ �n|�(x) ≤ γ }

is bounded.

ProofAccording to the continuity of ρ and Lemma 1, there exist a constant ρ̄ > 0 and
a closed sphere B(ω̄, δ) such that ρ(ω) ≥ ρ̄ and {A(ω), B(ω)} is an R0 pair for any
ω ∈ B̄ := B(ω̄, δ)∩�. Suppose on the contrary that there exists a constant γ > 0 and
a sequence {xk} ⊂ L(γ ) such that lim

k→∞ ‖xk‖ = +∞. The continuity of A(ω), B(ω)

and b(ω) ensures that for every k there exists an ωk ∈ B̄ such that

‖F(xk, ωk)‖ = min
ω∈B̄

‖F(xk, ω)‖.

Hence

γ ≥ �(xk) ≥
∫
B̄

‖F(xk, ω)‖2ρ(ω)dω ≥ ‖F(xk, ωk)‖2ρ̄
∫
B̄
dω,

which together with
∫
B̄ dω > 0 implies that {‖F(xk, ωk)‖} is bounded. So, there exists

a constant C > 0 such that

‖F(xk, ωk)‖ = ‖A(ωk)xk + B(ωk)|xk | − b(ωk)‖ ≤ C . (8)

Since the sequences
{ xk

‖xk‖
}
and {ωk} are bounded, we can assume by taking a subse-

quence if necessary that they are convergent and denote the limits as x∗ := lim
k→∞

xk

‖xk‖
and ω∗ := lim

k→∞ ωk . Clearly, ‖x∗‖ = 1 and ω∗ ∈ B̄. By (8), we have

∥∥∥∥A(ωk)
xk

‖xk‖ + B(ωk)

∣∣∣∣ xk

‖xk‖
∣∣∣∣− b(ωk)

‖xk‖
∥∥∥∥ ≤ C

‖xk‖ . (9)

Since {b(ωk)} is bounded due to the continuity of b(ω), by letting k tend towards
infinity in (9), it holds that

A(ω∗)x∗ + B(ω∗)|x∗| = 0.

Hence x∗ = 0 because {A(ω∗), B(ω∗)} is an R0 pair. This yields a contradiction with
‖x∗‖ = 1. The proof is complete. ��
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As is well known, for an integrable function ϕ : � → �, theMonte Carlo sampling
estimate for E[ϕ(ω)] is obtained by taking independently and identically distributed
random samples �k := {ω1, ..., ωNk } from � and letting

E[ϕ(ω)] ≈ 1

Nk

∑
ωi∈�k

ϕ(ωi ).

The strong law of large numbers guarantees that this procedure converges with
probability one (abbreviated by “w.p.1" below), that is,

lim
k→∞

1

Nk

∑
ωi∈�k

ϕ(ωi ) = E[ϕ(ω)], w.p.1, (10)

where Nk → +∞ as k → ∞.
By generating independently and identically distributed random samples �k =

{ω1, ..., ωNk } from�, we can obtain the following approximation of the ERMproblem
(7):

min
x∈�n

�k(x) := 1

Nk

∑
ωi∈�k

‖F(x, ωi )‖2. (11)

According to (6), the function �k(x) can be further written as

�k(x) = 1

Nk

∑
ωi∈�k

‖A(ωi )x + B(ωi )|x | − b(ωi )‖2. (12)

We now give the existence of global optimal solutions to (7) and (11). To this end,
we denote the set of optimal solutions to the ERM problem (7) by S∗ and those of the
approximate ERM problem (11) by S∗

k respectively

Theorem 4 Let Assumption A hold. Suppose that there exists an ω̄ ∈ � such that
ρ(ω̄) > 0 and {A(ω̄), B(ω̄)} is an R0 pair. Then S∗

k is nonempty and bounded for all
large k. Let xk ∈ S∗

k for each k and x
∗ be an accumulation point of the sequence {xk}.

Then x∗ ∈ S∗ with probability one.

Proof By Lemma 1, there exist an index k̄ > 0 and a closed sphere B(ω̄, δ) such that
for all k ≥ k̄, �k ∩ B(ω̄, δ) are nonempty and {A(ω), B(ω)} is an R0 pair for each
ω ∈ �k ∩ B(ω̄, δ). Hence, by following a similar argument as in Theorem 3, we can
show that S∗

k is nonempty and bounded as k ≥ k̄.
Next, we prove x∗ ∈ S∗. In fact, for any fixed x ∈ �n ,

‖F(x, ω)‖ = ‖A(ω)x + B(ω)|x | − b(ω)‖
≤ (‖A(ω)‖ + ‖B(ω)‖)‖x‖ + ‖b(ω)‖
≤ (‖A(ω)‖ + ‖B(ω)‖ + ‖b(ω)‖)(‖x‖ + 1). (13)
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This together with Assumption A implies that the function ‖F(x, ω)‖2 is integrable
over �. Thus, according to (10), for any fixed x ∈ �n ,

lim
k→+∞ �k(x) = �(x), w.p.1. (14)

We now assume by taking a subsequence if necessary that lim
k→∞ xk = x∗. Pick up a

constant ζ > 0 satisfying �(x∗) < ζ . Since

‖F(x, ω)‖2 ≤ (‖A(ω)‖ + ‖B(ω)‖ + ‖b(ω)‖)2(‖x‖ + 1)2,

and E[(‖A(ω)‖ + ‖B(ω)‖ + ‖b(ω)‖)2] < +∞ by Assumption A, by [22, Theorem
16.8], we know that �(x) = E[‖F(x, ω)‖2] is continuous at any x ∈ R

n . Hence
�(xk) ≤ ζ for all sufficiently large k. Since the level set L(ζ ) = {x ∈ �n|�(x) ≤ ζ }
is closed and bounded by Theorem 3, the constant

C̃ := max{‖x‖ |x ∈ L(ζ )} (15)

is well-defined. For all sufficiently large k and any ω ∈ �, we have

|‖A(ω)xk + B(ω)|xk | − b(ω)‖ − ‖A(ω)x∗ + B(ω)|x∗| − b(ω)‖|
≤ ‖A(ω)‖‖xk − x∗‖ + ‖B(ω)‖‖|xk | − |x∗|‖
≤ (‖A(ω)‖ + ‖B(ω)‖)‖xk − x∗‖
≤ (‖A(ω)‖ + ‖B(ω)‖ + ‖b(ω)‖)‖xk − x∗‖. (16)

Thus, by (13), (15) and (16), it follows from (12) that

|�k(x
k) − �k(x

∗)|
≤ 1

Nk

∑
ωi∈�k

∣∣‖A(ωi )xk + B(ωi )|xk | − b(ωi )‖2

−‖A(ωi )x∗ + B(ωi )|x∗| − b(ωi )‖2∣∣
≤ 1

Nk

∑
ωi∈�k

2(C̃ + 1)(‖A(ωi )‖ + ‖B(ωi )‖ + ‖b(ωi )‖)2‖xk − x∗‖

→ 0, w.p.1, (17)

where the limit holds because {xk} converges to x∗ and

lim
k→∞

1

Nk

∑
ωi∈�k

(‖A(ωi )‖ + ‖B(ωi )‖ + ‖b(ωi )‖)2

= E[(‖A(ω)‖ + ‖B(ω)‖ + ‖b(ω)‖)2] < +∞, w.p.1
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by Assumption A and (10). Further, putting (14) and (17) together yields

|�k(x
k) − �(x∗)| ≤ |�k(x

k) − �k(x
∗)| + |�k(x

∗) − �(x∗)| → 0, w.p.1. (18)

On the other hand, since xk is the optimal solution of the problem (11), we have

�k(x
k) ≤ �k(x), ∀ x ∈ �n .

This together with (14) and (18) gives

�(x∗) = lim
k→∞ �k(x

k) ≤ lim
k→∞ �k(x) = �(x), ∀ x ∈ �n

with probability one. Hence x∗ ∈ S∗ with probability one. ��
The following result shows that the optimal values of the sample average

approximations have a uniform exponential convergence.

Theorem 5 Suppose that the support set � is a compact set. Let xk be an optimal
solution of (11) for each k and x∗ be an accumulation point of the sequence {xk}.
Then, for every ε > 0, there exist positive constants D(ε) and β(ε), independent of
Nk, such that

Prob
{
|�(xk) − �(x∗)| ≥ ε

}
≤ D(ε)e−Nkβ(ε).

Proof We assume again without loss of generality that {xk} itself converges to x∗. Let
Z be a compact set that contains the whole sequence {xk}. Then x∗ ∈ Z . First, since
Z and � are compact sets, by the continuity of F, there exists a constant c > 0 such
that

‖F(x, ω)‖ ≤ c, ∀(x, ω) ∈ Z × �. (19)

So for every x ∈ Z , the moment generating function E

[
et(‖F(x,ω)‖2−E[‖F(x,ω)‖2])

]
of the random variable ‖F(x, ω)‖2 − E[‖F(x, ω)‖2] is finite-valued whenever t near
zero. Second, for any (x ′, ω), (x, ω) ∈ Z × �, it follows from (19) that

|‖F(x ′, ω)‖2 − ‖F(x, ω)‖2| ≤ 2c|‖F(x ′, ω)‖ − ‖F(x, ω)‖|
≤ 2c‖F(x ′, ω) − F(x, ω)‖
= 2c‖A(ω)(x ′ − x) + B(ω)(|x ′| − |x |)‖
≤ 2c(‖A(ω)‖ + ‖B(ω)‖)‖x ′ − x‖. (20)

Let κ(ω) := 2c(‖A(ω)‖+‖B(ω)‖). Then κ(ω) is bounded on� due to the continuity
of A(ω) and B(ω). This ensures that E[κ(ω)] < +∞ and the moment generating
function E[etκ(ω)] of the random variable κ(ω) is finite-valued for all t near of zero.
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Thus, the conditions (C1)–(C3) assumed in [28, Theorem 5.1] are all satisfied. There-
fore, according to [28, Theorem 5.1], for every ε > 0, there exist positive constants
D(ε) and β(ε), independent of Nk , such that

Prob

{
sup
x∈Z

∣∣∣∣ 1Nk

∑
ωi∈�k

‖F(x, ωi )‖2 − E[‖F(x, ω)‖2]
∣∣∣∣ ≥ ε/2

}
≤ 1

2
D(ε)e−Nkβ(ε),

i.e.,

Prob

{
sup
x∈Z

|�k(x) − �(x)| ≥ ε/2

}
≤ 1

2
D(ε)e−Nkβ(ε). (21)

For each k, since xk is an optimal solution of (11), we have �k(xk) ≤ �k(x∗) and
hence

�k(x
k) − �(x∗) = �k(x

k) − �k(x
∗) + �k(x

∗) − �(x∗)
≤ �k(x

∗) − �(x∗)
≤ sup

x∈Z
|�k(x) − �(x)|. (22)

On the other hand, by Theorem 4, x∗ is an optimal solution of (7) with probability
one. So for each k, �(x∗) ≤ �(xk) with probability one and hence

�k(x
k) − �(x∗) = �k(x

k) − �(xk) + �(xk) − �(x∗)
≥ �k(x

k) − �(xk)

≥ − sup
x∈Z

|�k(x) − �(x)|. (23)

Combining (22) and (23) together yields

|�k(x
k) − �(x∗)| ≤ sup

x∈Z
|�k(x) − �(x)|.

This together with (21) gives

Prob
{
|�k(x

k) − �(x∗)| ≥ ε/2
}

≤ Prob

{
sup
x∈Z

|�k(x) − �(x)| ≥ ε/2

}

≤ 1

2
D(ε)e−Nkβ(ε). (24)

Since

|�(xk) − �(x∗)| ≤ |�(xk) − �k(x
k)| + |�k(x

k) − �(x∗)|,
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it follows from (21) and (24) that

Prob
{
|�(xk) − �(x∗)| ≥ ε

}

≤ Prob
{
|�(xk) − �k(x

k)| ≥ ε/2
}

+ Prob
{
|�k(x

k) − �(x∗)| ≥ ε/2
}

≤ Prob

{
sup
x∈Z

|�(x) − �k(x)| ≥ ε/2

}
+ Prob

{
|�k(x

k) − �(x∗)| ≥ ε/2
}

≤ D(ε)e−Nkβ(ε).

This completes the proof. ��
At the end of this section, we give some discussions on the computational com-

plexity of the Monte Carlo approximation method. Denote π(x, ω) := ‖F(x, ω)‖2 −
E[‖F(x, ω)‖2]. We further assume that the moment generating function E

[
etπ(x,ω)

]
of the random variable π(x, ω) satisfies the following condition: there exists σ > 0
such that for all x ∈ R

n,

E

[
et(π(x,ω))

]
≤ exp(σ 2t2/2), ∀t ∈ R. (25)

This condition was introduced by Shapiro and Xu [28]. It is noticed that the right side
of (25) is just the moment generating function of normal distribution with a variance
σ 2. Hence, the inequality (25) holds as an equality as π(x, ω) has normal distribution.
In addition, this condition can also be satisfied if π(x, ω) has a subguass distribution.

From the proof process of Theorem 5, we know that the conditions (C1)–(C3)
assumed in [28, Theorem 5.1] are all satisfied. Moreover, by (20) we have

|E[‖F(x ′, ω)‖2] − E[‖F(x, ω)‖2]| ≤ E[2c(‖A(ω)‖ + ‖B(ω)‖)]‖x ′ − x‖, ∀x ′, x ∈ Z.

Let L := E[2c(‖A(ω)‖ + ‖B(ω)‖)]. Obviously, L is finite on the compact set � due
to the continuity of A(ω) and B(ω). Denote by D := supx ′,x∈Z‖x ′ − x‖ the diameter
of Z . Then, according to (5.14) in [28], we know that for α ∈ (0, 1), if the sample
size Nk satisfies

Nk ≥ O(1)σ 2

ε2

[
nlog

(O(1)DL

ε

)
+ log

(
2

α

)]
, (26)

then

Prob

{
sup
x∈Z

∣∣∣∣ 1Nk

∑
ωi∈�k

‖F(x, ωi )‖2 − E[‖F(x, ω)‖2]
∣∣∣∣ ≥ ε/2

}
≤ α

2
,

i.e.,

Prob

{
sup
x∈Z

|�k(x) − �(x)| ≥ ε/2

}
≤ α

2
.
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Then by following the proof of Theorem 5, we can obtain

Prob
{
|�(xk) − �(x∗)| ≥ ε

}
≤ α.

This means that xk is an ε-optimal solution with probability at least 1 − α. Hence, to
obtain an ε-optimal solution, the computational complexity of Monte Carlo approx-

imation method is O
(

n
ε2
log1

ε

)
by (26). For the computational complexity of Monte

Carlo based methods, more research and discussions can be founded in [1, 27]

4 Robustness of ERM Problem

In this section, we discuss the robustness of solutions of the ERM problem (7). This
indicates from a new perspective that ERM is an effective reformulation of SAVE. To
this end, we first consider the error bound conditions for the original AVE (1). Let

F(x) := Ax + B|x | − b.

It is easy to see that F(x) is globally Lipschitz continuous and semismooth on �n .
Hence, F(x) is differentiable almost everywhere by Rademacher’s theorem. Let DF
be the set of points at which F is differentiable. The Clarke generalized Jacobian of F
at x , denoted by ∂F(x), is defined by

∂F(x) := conv

{
lim
xk→x

F′(xk)| xk ∈ DF

}
,

where conv denotes the convex hull and F′(x) is the Jacobian whenever F(x) is dif-
ferentiable at x . The mapping F(x) is said to be BD-regular at x if all subgradients in
∂F(x) are nonsingular.

Denote the solution set of AVE (1) as X∗, that is,

X∗ := {x ∈ �n|Ax + B|x | = b}.

Assume that X∗ is nonempty. A function r : �n → �+ is called a residual function
of AVE (1) if r(x) ≥ 0 for all x and

r(x) = 0 ⇐⇒ x ∈ X∗.

With the help of residual functions, the AVE problem is transformed into finding out
the roots of nonlinear equations. The property of error bound plays an important role
in theoretical and numerical analysis. Recall that a residual function r has a local
error bound for AVE (1) if there exist constants κ > 0 and δ > 0 such that for each
x ∈ {x ∈ �n|dist(x, X∗) ≤ δ},

κr(x) ≥ dist(x, X∗), (27)
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where dist(x, X∗) := inf y∈X∗‖x − y‖. The residual function r has a global error
bound for AVE (1) if (27) holds for all x ∈ �n .

Let

r(x) := ‖Ax + B|x | − b‖. (28)

Clearly r(x) is a residual function of the AVE (1).

Lemma 2 Let r(x) be defined by (28). If {A, B} is an R0 pair, then the level set

L(θ) := {x ∈ �n|r(x) ≤ θ}

is compact for any θ > 0.

Proof By similarly following the arguments given in Theorem 3, we can prove that
L(θ) is bounded for all θ > 0. This together with the continuity of r yields the desired
result. ��
Theorem 6 Suppose that {A, B} is an R0 pair and F(x) is BD-regular at any x ∈ X∗.
Then r(x) provides a global error bound for AVE (1), that is, there exists a constant
ξ > 0 such that

ξr(x) ≥ dist(x, X∗), ∀ x ∈ �n .

Proof We first show that the residual r(x) provides a local error bound for AVE (1).
In fact, if this conclusion is not true, there must exist a sequence {xk} such that

lim
k→∞

r(xk)

dist(xk, X∗)
= 0,

which in turn implies r(xk) → 0 as k → ∞. Hence there is a constant θ > 0 such
that r(xk) ≤ θ for all k ≥ 0. By Lemma 2, {xk} has an accumulation point x∗, and we
assume without loss of generality that xk → x∗ as k → ∞. Since r(x) is continuous,
r(x∗) = 0, i.e., x∗ ∈ X∗. Thus

lim
k→∞

r(xk)

‖xk − x∗‖ ≤ lim
k→∞

r(xk)

dist(xk, X∗)
= 0. (29)

Because F(x) is semismooth and BD-regular at x∗, according to [23, Proposition
3], there exist � > 0 and δ > 0 such that r(x) ≥ �‖x − x∗‖ for all x satisfying
‖x − x∗‖ ≤ δ, which contradicts (29). Thus, r(x) provides a local error bound for
AVE (1).

Next, we show that r(x) further provides a global error bound for AVE (1). Suppose
on the contrary that for any k > 0, there exists xk such that

dist(xk, X∗) > kr(xk). (30)
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Choose a fixed solution x̂ ∈ X∗. Then

‖xk − x̂‖ ≥ dist(xk, X∗) > kr(xk). (31)

We claim that there exist K > 0 and δ > 0 such that r(xk) > δ for every k > K . If
not, then for any integer K > 0 and any δ > 0, there exists k > K such that r(xk) ≤ δ.

By (30) and the property of local error bound of r(x), we have

δ

k
dist(xk, X∗) > δr(xk) ≥ δdist(xk, X∗).

It implies δ/k > 1, leading to a contradiction as k → +∞. Thus, by (31) we have
‖xk − x̂‖ > kδ for every k > K , which further yields ‖xk‖ → +∞ as k → +∞.

Since the sequence
{ xk

‖xk‖
}
is bounded,we assume by taking a subsequence if necessary

that lim
k→∞

xk

‖xk‖ = x∗. It then follows from (31) that

1 = lim
k→∞

‖xk − x̂‖
‖xk‖ ≥ lim

k→∞ k
r(xk)

‖xk‖
= lim

k→∞ k

∥∥∥∥A xk

‖xk‖ + B

∣∣∣∣ xk

‖xk‖
∣∣∣∣− b

‖xk‖
∥∥∥∥,

which gives

lim
k→∞

∥∥∥∥A xk

‖xk‖ + B

∣∣∣∣ xk

‖xk‖
∣∣∣∣− b

‖xk‖
∥∥∥∥ = ‖Ax∗ + B|x∗|‖ = 0,

i.e., Ax∗ + B|x∗| = 0. Since {A, B} is an R0 pair, then x∗ = 0, a contradiction with
‖x∗‖ = 1. This completes the proof. ��

Let us discuss the relation between the solution of the ERM problem (7) and that
of (3). For a fixed ω ∈ �, denote by X∗(ω) the solution set of the SAVE (3), that is,

X∗(ω) := {x ∈ �n|A(ω)x + B(ω)|x | = b(ω)}.

We assume that X∗(ω) is nonempty.

Theorem 7 Let � = {ω1, ..., ωN }. For each ω ∈ �, suppose that F(x, ω) defined by
(6) is BD-regular at any x ∈ X∗(ω) and {A(ω), B(ω)} is an R0 pair. Then there is a
constant η > 0 such that

E[dist(x, X∗(ω))] ≤ η
√

�(x), ∀ x ∈ �n .

Proof By Theorem 6, there exists a constant η > 0 such that

dist(x, X∗(ωi )) ≤ η‖A(ωi )x + B(ωi )|x | − b(ωi )‖, ∀i ∈ {1, ..., N }.
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Therefore

E[dist(x, X∗(ω))] ≤ ηE[‖A(ω)x + B(ω)|x | − b(ω)‖]
≤ η
√
E[‖A(ω)x + B(ω)|x | − b(ω)‖2]

= η
√

�(x),

where the second inequality comes from the Schwarz inequality. ��
Theorem 7 indicates that, for an optimal solution x∗ of ERM problem (7), it holds

that

E[dist(x∗, X∗(ω))] ≤ η
√

�(x∗). (32)

Unlike an error bound for AVE (1), the left hand side of the inequality (32) is in general
positive at a solution of ERM problem (7). Nevertheless, the inequality (32) suggests
that the expectation of the distance from x∗ to the solution set X∗(ω) is bounded by the
expectation residual function �(x∗). This nice property tells us that the solutions of
ERM problem (7) may have a minimum sensitivity with respect to random variables
in SAVE (3). In this sense, the solutions of ERM problem (7) are robust for SAVE.

In our previous paper [30], we proved that the AVE (1) is uniquely solvable for
any b ∈ �n if the interval matrix [A − |B|, A + |B|] is regular. For the definitions
of the interval matrix and its regularity, one may refer to [21, 30] for more detailed
information. Based on Theorem 7 and regularity conditions, we obtain the following
result.

Theorem 8 Let � = {ω1, ..., ωN }. Suppose that the interval matrix [A(ω) −
|B(ω)|, A(ω) + |B(ω)|] is regular for each ω ∈ �. Then there is a constant λ > 0
such that

E[‖x − x∗(ω)‖] ≤ λ
√

�(x), ∀ x ∈ �n,

where x∗(ω) denotes the unique solution of SAVE (3) for each fixed ω ∈ �.

Proof For a fixed ω ∈ �, by [30, Theorem 2.2], the SAVE (3) is uniquely solvable and
so {A(ω), B(ω)} is an R0 pair. Thus, according to Theorem 7, it only needs to prove
that F(x, ω) defined by (6) is BD-regular at x∗(ω). In fact, for ω ∈ �, the element V
in ∂F(x, ω) takes the format

V = A(ω) + B(ω)Dx ,

where Dx = diag(dx ) with

(dx )i :=
⎧⎨
⎩

1, if xi > 0
τ, if xi = 0
−1, if xi < 0
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and τ takes any number in the interval [−1, 1]. Since diag(dx ) ∈ [−I , I ], then
B(ω)Dx ∈ [−|B(ω)|, |B(ω)|] andhence A(ω)+B(ω)Dx ∈ [A−|B(ω)|, A+|B(ω)|].
This together with the regularity of [A(ω) − |B(ω)|, A(ω) + |B(ω)|] implies that
A(ω) + B(ω)Dx is nonsingular, i.e., V is nonsingular. This completes the proof. ��

5 A Class of Special SAVE

We consider in this section the following SAVE:

A(ω)x − |x | = b(ω). (33)

This SAVE is a special case of SAVE (3) by letting B(ω) = −I , see [8]. Due to the
existence of absolute value, SAVE (33) is nonsmooth. However, it can be equivalently
transformed into a smooth SAVE by exploiting its special structure. For i = 1, ..., n,
denote by ai (ω)T the i-th row of A(ω). Then

A(ω)x − |x | = b(ω) ⇐⇒ |x | = A(ω)x − b(ω)

⇐⇒ |xi | = ai (ω)T x − bi (ω)

⇐⇒ |xi |3 = (ai (ω)T x − bi (ω))3

⇐⇒ |x |3 = (A(ω)x − b(ω))3,

where α3 := (α3
1, ..., α

3
n)

T for α = (α1, ..., αn)
T ∈ �n . Thus, solving SAVE (33) is

equivalent to solving the following SAVE:

(A(ω)x − b(ω))3 − |x |3 = 0. (34)

Since the function f (t) = |t |3 is twice continuously differentiable on � with f ′(t) =
3|t |t and f ′′(t) = 6|t |, SAVE (34) is smooth. Let

F̃(x, ω) := (A(ω)x − b(ω))3 − |x |3.

The corresponding ERM model for SAVE (34) takes the form

min
x∈�n

�̃(x) := E[‖F̃(x, ω)‖2], (35)

and its sample average approximation is

min
x∈�n

�̃k(x) := 1

Nk

∑
ωi∈�k

‖F̃(x, ωi )‖2. (36)

Since the function F̃(·, ω) is twice continuously differentiable on�n , the problems (35)
and (36) are both smooth and hence some smoothing-type algorithms are applicable.
The limiting behavior of the stationary points of (36) is established as below.
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Theorem 9 Let the support set � be a compact set. Assume that xk is a stationary
point of (36) and x∗ is an accumulation point of {xk}. Then x∗ is a stationary point of
(35) with probability one.

Proof For the sake of simplicity, we assume without of generality that lim
k→∞ xk = x∗.

Let D be a compact and convex set containing the whole sequence {xk}. For each k,
since xk is a stationary point of (36), then

2

Nk

∑
ωi∈�k

∇x F̃(xk, ωi )F̃(xk, ωi ) = 0. (37)

By the continuity of F̃,∇x F̃ and ∇2
x F̃j ( j = 1, ..., n) on the compact setD×�, there

exists a constant M > 0 such that

‖F̃(x, ω)‖ ≤ M, ‖∇x F̃(x, ω)‖ ≤ M, (38)

‖∇2
x F̃j (x, ω)‖ ≤ M( j = 1, ..., n) (39)

hold for every (x, ω) ∈ D × �. Therefore

∣∣∣∣ 1Nk

∑
ωi∈�k

∇x F̃j (x
k, ωi )T F̃(xk, ωi ) − 1

Nk

∑
ωi∈�k

∇x F̃j (x
∗, ωi )T F̃(x∗, ωi )

∣∣∣∣

≤ 1

Nk

∑
ωi∈�k

‖∇x F̃j (x
k, ωi )‖‖F̃(xk, ωi ) − F̃(x∗, ωi )‖

+ 1

Nk

∑
ωi∈�k

‖∇x F̃j (x
k, ωi ) − ∇x F̃j (x

∗, ωi )‖‖F̃(x∗, ωi )‖

≤ M

Nk

∑
ωi∈�k

∫ 1

0

(
‖∇x F̃

(
t xk + (1 − t)x∗, ωi )‖F

+‖∇2
x F̃j
(
t xk + (1 − t)x∗, ωi )‖F

)
‖xk − x∗‖dt

≤ 2M2‖xk − x∗‖
→ 0 as k → +∞,

where the second inequality comes from the mean-value theorem and (38), and the
third inequality follows from (38) and (39). Thus

lim
k→∞

2

Nk

∑
ωi∈�k

∇x F̃(xk, ωi )F̃(xk, ωi )

= lim
k→∞

2

Nk

∑
ωi∈�k

∇x F̃(x∗, ωi )F̃(x∗, ωi )
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= 2E[∇x F̃(x∗, ω)F̃(x∗, ω)]
= E[∇x‖F̃(x∗, ω)‖2], w.p.1. (40)

Moreover, it follows from (38) that

‖∇x F̃(x, ω)F̃(x, ω)‖ ≤ M2, ∀ (x, ω) ∈ D × �.

According to [22, Theorem 16.8], we obtain

lim
k→∞

2

Nk

∑
ωi∈�k

∇x F̃(xk, ωi )F̃(xk, ωi ) = ∇E[‖F̃(x∗, ω)‖2], w.p.1. (41)

Then, by letting k → ∞ in (37) and taking (40) and (41) into account, we have

∇�̃(x∗) = ∇E[‖F̃(x∗, ω)‖2] = 0, w.p.1,

Hence x∗ is a stationary point of (35) with probability one. ��

6 A Smoothing Gradient Method

In this section, we present a smoothing gradient method to solve SAVE (3) and give
somenumerical examples to explain effectiveness of themethod. For theERMproblem
(7), here we use the well-known sample average approximation (SAA) method to get
the approximation of �(x) as

min
x∈�n

�̃(x) : = 1

N

N∑
i=1

‖F(x, ωi )‖2

= 1

N

N∑
i=1

‖A(ωi )x + B(ωi )|x | − b(ωi )‖2, (42)

where ωi (i = 1, ..., N ) is sample points generated by the given distribution. Since
the function F(x, ω) = A(ω)x + B(ω)|x | − b(ω) is nonsmooth with respect to x , we
can not apply smoothing-type methods to solve the problem (42). To overcome this
difficulty, we consider the following smoothing function:

FN (x, ω) = A(ω)x + B(ω)

√
x2 + 1/N − b(ω),

where N is the number of sample points and

√
x2 + 1/N :=

(√
x21 + 1/N , ...,

√
x2n + 1/N

)T

.
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Obviously, FN (x, ω) is smooth with respect to x and lim
N→∞FN (x, ω) = F(x, ω) for

each x ∈ �n . By using FN (x, ω), we define the following smooth approximation of
the problem (42):

min
x∈�n

�N (x) : = 1

N

N∑
i=1

‖FN (x, ωi )‖2

= 1

N

N∑
i=1

‖A(ωi )x + B(ωi )

√
x2 + 1/N − b(ωi )‖2. (43)

It is easy to see that if x∗ is the global optimal solution of the problem (43), then x∗
is an approximation to the global optimization solution of the problem (42) when N
is sufficiently large. Moreover, �N (x) is smooth with respect to x and its gradient is

∇x�N (x) = 2

N

N∑
i=1

(A(ωi ) + B(ωi )Tx )
T (A(ωi )x + B(ωi )

√
x2 + 1/N − b(ωi ))

(44)

with Tx := diag
(

xi√
x2i +1/N

)
. Now we present a smoothing gradient method to solve

the problem (43).

Algorithm A (A smoothing gradient method)
Step 0 Given x0 ∈ �n, σ, ρ ∈ (0, 1) and ε > 0. Set k := 0.
Step 1 If ‖∇x�N (xk)‖ ≤ ε, then stop.
Step 2 Compute the search direction dk = −∇x�N (xk).
Step 3 Let the step-size αk := ρlk , where lk is the smallest nonnegative integer

l satisfying

�N (xk + ρldk) ≤ (1 − σρ2l)�N (xk).

Step 4 Set xk+1 := xk + αkdk . Set k := k + 1 and go to Step l.

Theorem 10 For any positive integer N, let {xk} be the iteration sequence generated
by Algorithm A. Then any accumulation point x∗ of {xk} satisfies ∇x�N (x∗) = 0.

Proof Since x∗ is an accumulation point of {xk}, there exists an infinite subsequence
{xk}k∈K ⊂ {xk} such that lim

k∈K ,k→∞ xk = x∗. Since {�N (xk)} is monotonically

decreasing, it is convergent and so lim
k→∞ �N (xk) = �N (x∗).Note that if�N (x∗) = 0,

then by (43) we have for i = 1, ..., N ,

A(ωi )x∗ + B(ωi )

√
(x∗)2 + 1/N − b(ωi ) = 0,
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which together with (44) gives ∇x�N (x∗) = 0. Now we assume �N (x∗) > 0. Since

�N (xk+1) ≤ (1 − σα2
k )�N (xk),

it follows from lim
k→∞ �N (xk) = �N (x∗) > 0 that lim

k→∞ αk = 0. Moreover, by the line

search criterion in Step 3, we have for all k ∈ K ,

�N (xk + ρ−1αkdk) > (1 − σ(ρ−1αk)
2)�N (xk),

i.e.,

�N (xk + ρ−1αkdk) − �N (xk)

ρ−1αk
> −σρ−1αk�N (xk).

Since �N (x) is continuously differentiable everywhere, by letting k → ∞ with
k ∈ K on both sides of the above inequality, we have ∇x�N (x∗)T d∗ ≥ 0, where
d∗ = −∇x�N (x∗). It follows that −‖∇x�N (x∗)‖2 ≥ 0 and so ∇x�N (x∗) = 0. We
complete the proof. ��

In the following, we give some numerical examples to explain effectiveness of
Algorithm A. All experiments are carried on a PC with CPU of 12th Gen Intel(R)
Core(TM) i9-12,900 2.40 GHz and RAM of 64.0GB. The program codes are written
inMATLABand run inMATLABR2018a environment. In our experiments,we choose
ρ = 0.2, σ = 10−3, ε = 10−5. For the purpose of comparison, we also apply the
smoothing gradient method proposed by Du [8] to solve these examples. The main
difference between two methods is that for the generated sampling {ω1, ..., ωN }, our
method takes the smooth parameter μ = 1

N which is fixed, while Du’s method [8]
takes the smooth parameter μ = μk which is updated in every iteration.

In the following tables, N-SGM denotes AlgorithmA, SGM denotes the smoothing
gradient method proposed in [8], N is the number of sample points, IT denotes the
iteration numbers, CPU denotes the CPU time in seconds and xk denotes the obtained
solution when the algorithms terminate.

Example 1 Consider SAVE (3), in which

A(ω) =
(
2 + ω 1
2 1 + ω

)
, B(ω) =

(
3 + ω −1
0 2ω

)
, b(ω) =

(
5 + 2ω
4 + 6ω

)
.

This SAVE has a solution x∗ = (1, 2)T . We generate samples ωi , i = 1, 2, ..., N ,

which obey the the uniform distribution of [0, 1]. We take x0 = rand(2, 1) as the
starting point. Numerical results are given in Table 1.

Example 2 Consider SAVE (3), in which ω = (ω1, ω2, ω3, ω4)
T and

A(ω) =

⎛
⎜⎜⎝
1 + ω1 1 0 0

−1 2 + ω2 1 0
0 −1 3 + ω3 1
0 0 −1 4 + ω4

⎞
⎟⎟⎠ ,
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Table 1 Numerical results of
Example 1

N IT CPU xk

N-SGM 102 53 0.02 (0.9975, 2.0007)

103 56 0.08 (0.9998, 2.0001)

104 40 0.56 (1.0000, 2.0000)

105 40 5.13 (1.0000, 2.0000)

SGM 102 50 0.04 (0.9998, 2.0001)

103 50 0.09 (0.9998, 2.0001)

104 48 0.87 (1.0000, 2.0000)

105 27 4.35 (1.0000, 2.0000)

Table 2 Numerical results of Example 2

N IT CPU xk

N-SGM 102 426 0.12 (0.9987, 0.9994, 0.9986, 0.9978)

103 311 0.58 (0.9999, 0.9999, 0.9999, 0.9998)

104 276 4.36 (1.0000, 1.0000, 1.0000, 1.0000)

105 304 66.13 (1.0000, 1.0000, 1.0000, 1.0000)

SGM 102 232 0.11 (0.9987, 0.9994, 0.9986, 0.9978)

103 242 0.23 (0.9999, 0.9999, 0.9999, 0.9998)

104 311 6.62 (0.9999, 0.9999, 0.9999, 0.9998)

105 318 96.34 (1.0000, 1.0000, 1.0000, 1.0000)

B(ω) =

⎛
⎜⎜⎝

ω1 0 0 0
0 ω2 0 0
0 0 ω3 0
0 0 0 ω4

⎞
⎟⎟⎠ , b(ω) =

⎛
⎜⎜⎝
2ω1 + 2
2ω2 + 2
2ω3 + 3
2ω4 + 3

⎞
⎟⎟⎠ ,

where ω1 and ω2 are distributed uniformly, ω3 is distributed exponentially, ω4 is
distributed normally, respectively, with the following parameters:

ω1 ∼ U (−0.5, 0.5), ω2 ∼ U (−1, 1), ω3 ∼ Exp(1.5), ω4 ∼ N (0, 5).

This SAVE has a solution x∗ = (1, 1, 1, 1)T . We take x0 = rand(4, 1) as the starting
point. Numerical results are given in Table 2.

Example 3 Consider SLCP (4), in which ω = (ω1, ω2, ω3, ω4)
T and

M(ω) =

⎛
⎜⎜⎝

ω1 2 2 2
0 ω2 2 2
0 0 ω3 2
0 0 0 ω4

⎞
⎟⎟⎠ , q(ω) =

⎛
⎜⎜⎝

−1
−1
−1
−ω4

⎞
⎟⎟⎠ ,
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Table 3 Numerical results of Example 3

N IT CPU xk

N-SGM 102 91 0.05 (1.0074, 1.0076, 0.9971, −0.9974)

103 92 0.16 (1.0007, 1.0007, 0.9998, −0.9998)

104 92 1.36 (1.0001, 1.0001, 1.0000, −1.0000)

105 93 18.79 (1.0000, 1.0000, 1.0000, −1.0000)

SGM 102 72 0.05 (1.0074, 1.0076, 0.9971, −0.9974)

103 80 0.18 (1.0007, 1.0007, 0.9998, −0.9998)

104 101 1.77 (1.0001, 1.0001, 0.9998, −0.9998)

105 130 31.13 (1.0000, 1.0000, 1.0000, −1.0000)

where ω1 is distributed uniformly, ω2 is distributed exponentially, ω3 and ω4 are
distributed normally, respectively, with the following parameters:

ω1 ∼ U (−1, 1), ω2 ∼ Exp(2), ω3 ∼ N (0, 1), ω4 ∼ N (0, 2).

This SLCP has the solution u∗ = (0, 0, 0, 1)T and v∗ = (1, 1, 1, 0)T . By Remark
1, to obtain the solution of this SLCP, we may solve the SAVE (3) with

A(ω) = I + M(ω), B(ω) = I − M(ω), b(ω) = 2q(ω). (45)

We take x0 = rand(4, 1) as the starting point and the numerical results are given in
Table 3.

Example 4 Consider SLCP (4), in which ω = (ω1, ω2, ω3, ω4, ω5, ω6)
T and

M(ω) =

⎛
⎜⎜⎝

1 1 ω1 ω2
1 1 ω3 ω4

2 − ω5 0 2 0
0 2 − ω6 0 2

⎞
⎟⎟⎠ , q(ω) =

⎛
⎜⎜⎝

−2
−2
ω5
ω6

⎞
⎟⎟⎠ ,

where ω1 and ω2 are distributed uniformly, ω3 is distributed exponentially, ω4, ω5 and
ω6 are distributed normally, respectively, with the following parameters:

ω1 ∼ U (−0.5, 0.5), ω2 ∼ U (−1, 1), ω3 ∼ Exp(2),

ω4 ∼ N (0, 2), ω5 ∼ N (0, 4), ω6 ∼ N (0, 6).

This SLCP has the solution u∗ = (1, 1, 0, 0)T and v∗ = (0, 0, 2, 2)T . Same as
Example 3, we solve the SAVE (3) with

A(ω) = I + M(ω), B(ω) = I − M(ω), b(ω) = 2q(ω).

We take x0 = (1.1, 1, 1)T as the starting point and the numerical results are given in
Table 4.
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Table 4 Numerical results of Example 4

N IT CPU xk

N-SGM 102 493 0.12 (−0.9977, −0.9976, 2.0017, 2.0014)

103 412 0.70 (−0.9998, −0.9998, 2.0002, 2.0001)

104 410 6.36 (−1.0000, −1.0000, 2.0000, 2.0000)

105 409 75.69 (−1.0000, −1.0000, 2.0000, 2.0000)

SGM 102 219 0.05 (−0.9977, −0.9976, 2.0017, 2.0014)

103 295 0.62 (−0.9998, −0.9998, 2.0002, 2.0001)

104 276 4.77 (−0.9998, −0.9998, 2.0001, 2.0001)

105 301 62.65 (−1.0000, −1.0000, 2.0000, 2.0000)

From numerical results listed in Tables 1, 2, 3 and 4, we may observe that, as the
sample size N increases, both N-SGM and SGM converge stably, that is, there is
clearly convergent trend toward the solutions of the test problems. Moreover, we may
see that N-SGM has some advantages over SGM because the former converges faster
as the sample size N increases.

7 Conclusions

We have established the relationship between the SAVE (3) and the SLCP (4). We
have presented the ERM formulation (7) for SAVE and have given its Monte Carlo
approximation. Some results related to existence of solutions, exponential convergence
rate and robustness of solutions have been derived. In particular, we have discussed
a class of special SAVE (33) and have obtained a result related to convergence of
stationary points. Finally, we have proposed a smoothing gradient method to solve
SAVE and have given some numerical examples to explain its effectiveness. Although
Guass/Subguass distribution satisfies the condition (25), it is worth further studying the
computational complexity ofMonteCarlo approximationmethodwhen the underlying
distribution of random vector is not Guass/Subguass or even unknown in advance.
Hence how to establish the computational complexity of Monte Carlo approximation
method for SAVE under weaker conditions is an important but challenging topic and
we prefer to leave this as our future research topic.
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