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Abstract
In this paper, we establish new necessary and sufficient conditions guaranteeing the
uniform LP duality for linear problems of Copositive Programming and formulate
these conditions in different equivalent forms. The main results are obtained using
the approach developed in previous papers of the authors and based on a concept
of immobile indices that permits alternative representations of the set of feasible
solutions.
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1 Introduction

A conic optimization problem is characterized by a constraint stipulating that the opti-
mization variables have to belong to a closed convex cone. Linear conic optimization
dealswith the optimization of a linear function in a feasible set given by the intersection
of an affine space and a convex cone.

Communicated by Giancarlo Bigi.

B T. V. Tchemisova
tatiana@ua.pt

O. I. Kostyukova
kostyukova@im.bas-net.by

O. S. Dudina
dudina@bsu.by

1 Institute of Mathematics, National Academy of Sciences of Belarus, Surganov Str. 11, 220072
Minsk, Belarus

2 Department of Mathematics, University of Aveiro, Campus Universitário Santiago, Building 11,
3800-192 Aveiro, Portugal

3 Department of Applied Mathematics and Computer Science, Belarusian State University,
Nezavisimosti Ave. 4, 220030 Minsk, Belarus

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-024-02515-1&domain=pdf
http://orcid.org/0000-0002-2678-2552


Journal of Optimization Theory and Applications

Conic problems form a broad and important class of optimization problems since,
according to [21], any convex optimization problem can be represented as a conic one.
This class includes some of the most well-known types of convex problems, such as
linear and semidefinite programming problems ((LP) and (SDP), respectively). Many
Semi-infinite Programming (SIP) problems which are to optimize the cost function
w.r.t. an infinite number of functional constraints can also be considered as conic
problems.

Copositive Programming (CoP) problems are linear conic optimization problems
where a linear function is optimized over a cone of matrices that are positive semidef-
inite in the non-negative ortant Rp

+ (copositive matrices). CoP can be thought of as a
special case of SIP and a generalization of SDP.

Formally, problems of CoP are rather similar to that of SDP, but CoP deals with
more complex and less studied problems. Being a fairly new field of research, CoP
has already gained popularity, as it has been proven to be very useful in modeling
particularly complex problems of nonconvex optimization, graph theory, algebra, and
different applications (see, for example, [1, 8], and the references there).

In spite of the request for applications and great interest in them, CoP problems still
remain insufficiently studied. This is explained by the complexity of these problems
which in turn is due to the complexity of the underlying cone.

Optimality conditions and duality relations are among the most emerging optimiza-
tion topics whose importance has long been recognized (see e.g., [2, 7, 14, 20, 27]).
Duality plays a central role in testing optimality, identifying infeasibility, establishing
lower bounds for the optimal objective value, and designing and analyzing iterative
algorithms.

Traditionally, for a given (primal) convex problem, based on its initial data, the
Lagrangian dual problem is constructed. The difference between the optimal values
of the primal and dual cost functions is called the duality gap. The primal and the dual
problems are closely related. The strength of this relationship depends on the initial
problem data, which specify the form of the constraints and the cost function. Roughly
speaking, a pair of dual problems is said to satisfy (i) weak duality if the duality gap
is non-negative, (ii) strong duality if, for a given cost function, the duality gap is zero,
and (iii) uniform duality if the duality gap is zero for any cost function. It is evident
that (iii) implies (ii), and (ii) implies (i).

Guaranteeing strong anduniformduality provides researcherswith a deeper theoret-
ical understanding and insights into the structure of an optimization problem, which
is crucial for the development of stronger optimality conditions and more efficient
solution methods. Therefore, a thorough study of the duality issues and the derivation
of explicit criteria for achieving strong and uniform duality properties is an extremely
important challenge.

Speaking about conic linear problems, in [22], G. Pataki says that these problems
“often behave pathologically: the optimal values of the primal and dual programs
may differ, and may not be attained”. Such “pathological” problems are (see [23])
“theoretically interesting and often impossible to solve”. This is one more argument
explaining the importance of investigating strict and uniform duality for conic opti-
mization problems.
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It is well-known that even the strong duality is guaranteed unconditionally only for
the LP problems, while for the most important classes of conic problems, this property
is satisfied only under certain rather strong assumptions. There is an extensive literature
on sufficient conditions for strong duality in conic problems (see, for example, [3, 9,
12], and the references therein).

In this paper, we study the uniform duality property which, as it is mentioned above,
is a more powerful property than strong duality. The concept of uniform LP duality
was considered in the work of Duffin et al. ( [7]) for linear SIP problems, and in [11],
it has been used for a wider class of convex SIP problems in the form of an uniform
convex duality.

In literature, the uniform duality property was studied mostly for convex SIP and
SDP problems and certain classes of linear conic problems with nice cones (see [26]
for definition).

In [22, 23], the author uses a normal (canonical) form of a semi-definite system
to characterize semi-definite systems which do not satisfy the uniform LP duality.
Uniform LP duality for the second order conic systems, was studied in version 2 of
the online version of the paper [22] (see arXiv:1709.02423v2).

It is known (see, e.g., [22], Lemma 2) that the closedness of the linear image of
a closed convex cone ensures that a conic linear system yields uniform LP duality.
Some closedness criteria for the linear image of a closed convex cone are studied in
[25], and the results therein allow to obtain the necessary conditions for a conic linear
system to satisfy uniform LP duality (Theorem 1 in [22]). If the cone defining this
system is nice, then these conditions are necessary and sufficient.

In [20], for a problem introduced by the authors as a special SDP-SIP problem
(SDSIP), uniform duality conditions are established in the form of a closedness con-
dition for a certain cone. In [28], it is shown that the problem (SDSIP) is an ordinary
linear semi-infinite program and, therefore, all the existing results regarding duality
and uniform LP duality for linear SIP can be applied to it. Using this observation, in
[28], new proofs for the results from [20] are given.

In [30], the author uses a semi-infinite optimization technique from [7] to charac-
terize semi-definite systems that satisfy or do not satisfy uniform duality and provides
a different explanation of the conditions guaranteeing uniform duality. A characteri-
zation of objective functions for SDP problems satisfying the strong duality property
is given there as well.

Recent references also confirm the interest in studying uniform LP duality for conic
systems.

Not much literature is available for optimality and duality conditions for CoP.
Moreover, the strong/uniform duality in CoP is not easy to establish due to intrinsic
complexity of copositive problems. The complexity arises from the fact that the cone
of copositivematrices and the corresponding dual cone of completely positivematrices
lack certain "good" properties: they are neither self-dual, nor symmetric, nor facially
exposed (see [5, 13, 29]), and, consequently, not nice [26]. Therefore, the results
obtained for conic systems with nice cones (such as SDP and second order problems)
cannot be applied to CoP problems. On the other hand, the results obtained for general
linear SIP problems do not take into account specific features of CoP problems and
could be too intricate for them.
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The aim of this paper is to establish a new criterion for the uniform LP duality
for linear CoP, and to formulate it in different equivalent forms thus broadening its
scope. The main results are obtained on the base of an approach developed in previous
papers of the authors and based on a concept of immobile indices. This approach first
was described for SIP problems (see, e.g., [15]) and then applied to various classes of
convex conic problems in [14] and others.

The remainder of this paper is organized as follows. The problem’s statement and
relevant research are overviewed in Sect. 2. The main results of the paper, new nec-
essary and sufficient conditions of uniform LP duality for linear CoP problems, are
proved in Sect. 3. Several equivalent formulations of the uniform duality conditions
from Sect. 3, are deduced in Sect. 4. Section5 contains examples confirming that the
conditions obtained in the paper are essential. Some comparison with known results is
given. In Sect. 6, we analyze the uniform duality conditions for SIP problems applied
to CoP. We show that results obtained in this paper allow one to reformulate these
conditions in a more explicit form. The final Sect. 7 contains some conclusions. Some
technical proofs are given in the Appendix.

2 Problem Statement and Preliminary Results

Given a finite-dimensional inner product space X, let’s, first, recall some generally
accepted definitions.

A setC ⊂ X is convex if for any x, y ∈ C and anyα ∈ [0, 1], it holdsαx+(1−α)y ∈
C . A set K ⊂ X is a cone if for any x ∈ K and any α > 0, it holds αx ∈ K . For a
cone K ⊂ X, its dual cone K ∗ is given by

K ∗ := {x ∈ X : 〈x, y〉 ≥ 0 ∀y ∈ K }.

For a set B ⊂ X, denote by convB its convex hull, i.e., the minimal (by inclusion)
convex set, containing this set, by spanB its span, i.e., the smallest linear subspace
containing B, and by coneB its conic hull, i.e., the set of all conic combinations of
the points of B. In what follows, we will denote by clB the closure of the set B, by
intB its interior, and by relintB its relative interior.

Given an integer p > 1, consider the vector spaceRp with the standard orthogonal
basis {ek, k = 1, 2, . . . , p}. Denote byRp

+ the set of all p - vectors with non-negative
components, by S p the space of real symmetric p × p matrices, and by S p

+ the cone
of symmetric positive semi-definite p × p matrices. The space S p is considered here
as a vector space with the trace inner product A • B := trace (AB).

In this paper, we deal with special classes of cones, the elements of which are
matrices, in particular, with the cones of copositive and completely positive matrices.

Let COP p denote the cone of symmetric copositive p × p matrices:

COP p := {D ∈ S p : t	Dt ≥ 0 ∀t ∈ R
p
+}.
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Consider a compact subset of Rp
+ in the form of the simplex

T := {t ∈ R
p
+ : e	t = 1} (1)

with e = (1, 1, . . . , 1)	 ∈ R
p. It is evident that the cone COP p can be equivalently

described as follows:

COP p = {D ∈ S p : t	Dt ≥ 0 ∀t ∈ T }. (2)

The dual cone to COP p is the cone of completely positive matrices defined as

(COP p)∗ =: CP p = conv{tt	 : t ∈ R
p
+}.

The cones of copositive and completely positive matrices are known to be proper
cones, which means that they are closed, convex, pointed, and full-dimensional.

Consider a linear copositive programming problem in the form

P : min
x∈Rn

c	x s.t. A(x) ∈ COP p,

where x = (x1, . . . , xn)	 is the vector of decision variables, the constraint matrix

function A(x) is defined as A(x) :=
n∑

m=1

Amxm + A0; vector c ∈ R
n and matrices

Am ∈ S p, m = 0, 1, . . . , n are given. Denote by X the set of feasible solutions of this
problem:

X = {x ∈ R
n : A(x) ∈ COP p}.

For the problem (P), the Lagrange dual problem takes the form:

D : max−U • A0, s.t. U • Am = cm ∀m = 1, 2, . . . , n; U ∈ CP p.

In what follows, for an optimization problem (Q), Val(Q) denotes the optimal
value of the objective function in the problem (Q) (shortly, the optimal value of the
problem (Q)).

It is a known fact (see, for example, [17] and Sect. 5 below) that for CoP problems,
the optimal values Val(P) and Val(D) of the primal problem (P) and the correspond-
ing Lagrange dual problem (D) are not necessarily equal, even if they exist and are
finite. A situation where, assuming Val(P) > −∞, the problem (D) has an optimal
solution and the so-called duality gap (the difference Val(P) − Val(D)) equals to
zero, is called a strong duality.

In this paper, for linear CoP problems, we consider a slightly different duality
property of their feasible sets, ensuring the vanishing of the duality gap for all cost
vectors c. As this property is related to the constraint system A(x) ∈ COP p of the
problem (P), we will refer to it as a property of this system.
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Definition 2.1 A consistent system A(x) ∈ COP p yields the property of uniform LP
duality if for all c ∈ R

n , such that the optimal value of the problem (P) is finite,
the corresponding Lagrange dual problem (D) has an optimal solution, and it holds
Val(P) = Val(D).

It is known that under the Slater condition (the property that for some x ∈ R
n , it

holds A(x) ∈ int(COP p)), the system A(x) ∈ COP p yields the uniform LP duality
property.

Given the set X of feasible solutions of the problem (P), denote by Tim the set of
normalized immobile indices of constraints in this problem:

Tim := {t ∈ T : t	A(x)t = 0 ∀x ∈ X}.

It is known (see, e.g., [14, 16]) that the set Tim is either empty or an union of a finite
number of convex bounded polyhedra. Also, it was shown in [14] that the emptiness
of the set Tim is equivalent to the fulfillment of the Slater condition.

Suppose that the set Tim is not empty and denote by

T := {τ ( j), j ∈ J }, J ⊂ N, |J | < ∞,

the set of all vertices of convTim . It was shown in [14] that

X ⊂ Z := {x ∈ R
n : A(x)τ ( j) ≥ 0, j ∈ J }. (3)

Denote P := {1, . . . , p} and introduce the following sets:

M( j) := {k ∈ P : e	
k A(x)τ ( j) = 0 ∀x ∈ Z}, j ∈ J , (4)

M( j) = {k ∈ P : e	
k A(x)τ ( j) = 0 ∀x ∈ X}, j ∈ J , (5)

N∗( j) := {k∈ P : ∃ x(k, j) ∈ X such that e	
k A(x(k, j))τ ( j) = 0}, j ∈ J . (6)

It was shown in [16] (see Theorem 7.1 with V = T and Theorem 3.1 with Q =
{D = A(x), x ∈ X}) that

X = {x ∈ R
n : t	A(x)t ≥ 0 ∀t ∈ Ω, A(x)τ ( j) ≥ 0 ∀ j ∈ J } (7)

and there exists a feasible solution x∗ ∈ X , such that

t	A(x∗)t > 0 ∀t ∈ T \ Tim,

e	
k A(x∗)τ ( j) = 0 ∀k ∈ M( j); e	

k A(x∗)τ ( j) > 0 ∀k ∈ P \ M( j),∀ j ∈ J .
(8)

Here and in what follows, we will use the set

Ω := {t ∈ T : ρ(t, convTim) ≥ σ } ⊂ T \ Tim, (9)

where σ := min{τk( j), k ∈ P+(τ ( j)), j ∈ J } > 0, P+(t) := {k ∈ P : tk > 0} for
t = (tk, k ∈ P)	 ∈ R

p
+, ρ(t,B) = min

τ∈B
∑
k∈P

|tk − τk | for some set B ⊂ R
p.
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Proposition 2.1 For the sets M( j) and M( j), j ∈ J , defined in (4) and (5), the
following equalities hold true:

M( j) = M( j) ∀ j ∈ J . (10)

The proposition is proved in Appendix.
It follows from Proposition A.1 (see Appendix) that the problem (P) is equivalent

to the following one:

P∗ : min c	x
s.t. t	A(x)t ≥ 0 ∀t ∈ Ω, e	

k A(x)τ ( j) ≥ 0 ∀k ∈ N∗( j) ∀ j ∈ J . (11)

For t ∈ T and k ∈ P , denote

b̄(k, t) =
(

e	
k Amt

m = 0, 1, . . . , n

)
∈ R

n+1, a(t)=
(

t	Amt
m = 0, 1, . . . , n

)
∈ R

n+1, (12)

b(k, j) =
(

e	
k Amτ ( j)

m = 0, 1, . . . , n

)
= b̄(k, τ ( j)) ∈ R

n+1. (13)

Proposition 2.2 Consider a consistent system A(x) ∈ COP p with the corresponding
sets M( j), j ∈ J , and the vectors b(k, j), k ∈ M( j), j ∈ J , defined above. For any
j0 ∈ J and k0 ∈ M( j0), there exist numbers αk j = αk j (k0, j0), k ∈ M( j), j ∈ J ,

such that

− b(k0, j0) =
∑

j∈J

∑

k∈M( j)

αk jb(k, j), αk j ≥ 0 ∀k ∈ M( j), j ∈ J . (14)

Proof Using the notation (13), the set Z defined in (3) can be represented as

Z = {x ∈ R
n : (1, x	)b(k, j) ≥ 0 ∀k ∈ P, ∀ j ∈ J }. (15)

Consider the following LP problem:

LP∗ : max(1, z	)b(k0, j0) s.t. z ∈ Z .

Due to (10), we have k0 ∈ M( j0) = M( j0) and it follows from the definition of the set
M( j0) that Val(LP∗) = 0. Hence a vector x∗ satisfying (8) is an optimal solution of
the problem (LP∗). Taking into account representation (15) of the set Z and relations
(8), we see that relations (14) are necessary and sufficient optimality conditions for x∗
in the problem (LP∗). �
Proposition 2.3 There is the partition of the set J into subsets J (s), s ∈ S, |S| ≥ 1,
such that

Tim =
⋃

s∈S
Tim(s), where Tim(s) := conv{τ ( j), j ∈ J (s)} ∀s ∈ S, (16)
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P∗(s) :=
⋃

j∈J (s)

P+(τ ( j)) ⊂ M( j) ∀ j ∈ J (s), ∀s ∈ S. (17)

The proposition is proved in Appendix.

Proposition 2.4 Consider a consistent system A(x) ∈ COP p with the corresponding
sets Tim, T , M( j), j ∈ J , and the vectors a(t),b(k, j), k ∈ M( j), j ∈ J , defined
above. The following inclusions hold true:

a(t) ∈ cone{b(k, j), k ∈ M( j), j ∈ J } ∀t ∈ Tim . (18)

Proof Consider any t ∈ Tim . It follows from (16) that t ∈ Tim(s) = conv{τ ( j),
j ∈ J (s)}with some s ∈ S.Hence, there existsΔJ (s) ⊂ J (s) such that the following
relations hold true:

t =
∑

j∈ΔJ (s)

α jτ ( j), α j > 0 ∀ j ∈ ΔJ (s);
∑

j∈ΔJ (s)

α j = 1. (19)

Then we obtain

a(t) =
∑

k∈P+(t)

tk b̄(k, t) =
∑

j∈ΔJ (s)

∑

k∈M( j)

tkα jb(k, j). (20)

Here we took into account (17) and the inclusion P+(t) ⊂ P∗(s). Since tkα j ≥ 0 for
all k ∈ M( j) and j ∈ ΔJ (s) ⊂ J , we conclude from (20) that inclusions (18) take
place. �

3 Necessary and Sufficient Uniform LP Duality Conditions

In this section, we will prove two statements containing new necessary and sufficient
uniform LP duality conditions for linear CoP systems.

Proposition 3.1 A consistent linear CoP systemA(x) ∈ COP p yields the uniform LP
duality iff the following relations hold:

b(k, j) ∈ cone{a(t), t ∈ T } ∀k ∈ N∗( j), ∀ j ∈ J . (21)

Proof Notice that if Tim = ∅, then J = ∅, and we consider that conditions (21) are
fulfilled.

⇒) Suppose that the consistent system A(x) ∈ COP p yields the uniform LP
duality. Then for any c ∈ R

n forwhich Val(P) > −∞, there exists amatrixU = U (c)
in the form

U =
∑

i∈I
αi t(i)(t(i))	, αi > 0, t(i) ∈ T , i ∈ I , |I | < ∞, (22)
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such that
Am •U = cm, m = 1, . . . , n; A0 •U = −Val(P). (23)

For fixed j ∈ J and k ∈ N∗( j), consider the problem (P) with c	 = (cm =
e	
k Amτ ( j),m = 1, . . . , n). It follows from (3) that

c	x =
n∑

m=1

e	
k Amxmτ ( j) ≥ −e	

k A0τ ( j) ∀x ∈ X ,

and (6) implies the existence of x(k, j) ∈ X such that c	x(k, j) = −e	
k A0τ ( j). Thus

we can conclude that Val(P) = −e	
k A0τ ( j) > −∞. Taking into account that the

system A(x) ∈ COP p yields the uniform LP duality, we conclude that there exists a
matrix U in the form (22) such that

Am •U =
∑

i∈I
αi (t(i))	Amt(i) = e	

k Amτ ( j), m = 1, . . . , n;

A0 •U =
∑

i∈I
αi (t(i))	A0t(i) = e	

k A0τ ( j).

It is easy to see that these equalities can be rewritten as

b(k, j) =
(

Am •U
m = 0, . . . , n

)
=

∑

i∈I
αia(t(i)) with αi > 0, t(i) ∈ T , i ∈ I .

Thus we have shown that inclusions (21) hold true.
⇐) Now, having supposed that inclusions (21) hold true, let us show that the

consistent system A(x) ∈ COP p yields the uniform LP duality.
Consider any c ∈ R

n such that Val(P) > −∞. It was stated in Sect. 2 that the
problem (P) is equivalent to the problem (P∗) and there exists x∗ ∈ R

n satisfying (8).
Notice that Val(P∗) = Val(P) and system (11) in the problem (P∗) can be rewritten
as

(1, x	)a(t) ≥ 0 ∀t ∈ Ω, (1, x	)b(k, j) ≥ 0 ∀k ∈ N∗( j), ∀ j ∈ J . (24)

Taking into account the inequalities in (8) (which can be viewed as a generalized
Slater condition for the problem (P∗)), let us show that system (11) yields the uniform
LP duality. In fact, it follows from Theorem 1 in [19] that under conditions (8), there
exist vectors t(i) ∈ Ω, i ∈ I , |I | ≤ n, such that an LP problem

LP : min c	x
s.t. (1, x	)a(t(i)) ≥ 0 ∀i ∈ I , (1, x	)b(k, j) ≥ 0 ∀k ∈ N∗( j), ∀ j ∈ J ,

has the same optimal value as the problem (P∗): Val(P∗) = Val(LP) > −∞. The
problem (LP) is consistent since any x ∈ X is feasible in this problem. Hence the
problem (LP) has an optimal solution. Consequently, there exist numbers and vector
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αi , t(i) ∈ Ω, i ∈ I , λk( j), k ∈ N∗( j), j ∈ J , such that

αi ≥ 0, i ∈ I , λk( j) ≥ 0, k ∈ N∗( j), j ∈ J ,
∑

i∈I
αia(t(i))+

∑

j∈J

∑

k∈N∗( j)
λk( j)b(k, j)=(−Val(P), cm, m=1, . . . , n)	. (25)

From (21), one can conclude that for all indices j ∈ J , k ∈ N∗( j) and any
λk( j) > 0, the vector λk( j)b(k, j) admits a representation

λk( j)b(k, j) =
∑

i∈I (k, j)
αi (k, j)a(τ (i, k, j))

with αi (k, j) > 0, τ (i, k, j) ∈ T , i ∈ I (k, j), |I (k, j)| < ∞.

It follows from the representation above and from (25) that

∑

i∈ Ī
ᾱia(t̄(i)) = (−Val(P), cm,m = 1, . . . , n)	 (26)

with some ᾱi > 0, t̄(i) ∈ T , | Ī | < ∞.

Denote U := ∑

i∈ Ī
ᾱi t̄(i)(t̄(i))	. It is evident that U ∈ CP p and relations (26) can

be rewritten as (23). Hence we have shown that if inclusions (21) hold true, then for
any c ∈ R

n for which Val(P) > −∞, there exists a matrix U = U (c) ∈ CP p such
that equalities (23) hold true.

By definition, this means that the system A(x) ∈ COP p yields the uniform LP
duality. �

For j ∈ J and k ∈ N∗( j), consider the following sets:

X(k, j) := {x ∈ X : e	
k A(x)τ ( j) = 0},

Tim(k, j) := {t ∈ T : t	A(x)t = 0 ∀x ∈ X(k, j)},

and vectors x∗(k, j) ∈ X(k, j) such that

e	
k A(x∗(k, j))τ ( j) = 0, t	A(x∗(k, j))t > 0 ∀t ∈ T \ Tim(k, j). (27)

For j ∈ J and k ∈ N∗( j), it follows from Theorem 3.1 in [16] with Q = X(k, j)
that such a vector x∗(k, j) exists. Notice that by construction, for all j ∈ J , the
following inclusions and equalities are satisfied:

∅ �= X(k, j) ⊂ X \ {x∗}, Tim ⊂ Tim(k, j) ∀k ∈ N ( j),

X(k, j) = X , Tim = Tim(k, j) ∀k ∈ M( j),

where N ( j) := N∗( j)\M( j), j ∈ J , and x∗ is a vector satisfying (8).
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Theorem 3.1 A consistent linear system A(x) ∈ COP p with the corresponding sets
Tim, T , and other defined above, yields the uniform LP duality iff the following con-
ditions hold:

I) b(k, j) ∈ cone{a(t), t ∈ Tim} ∀k ∈ M( j), ∀ j ∈ J , (28)

II) b(k, j) ∈ cone{a(t), t ∈ Tim(k, j)} ∀k ∈ N ( j), ∀ j ∈ J . (29)

Proof It follows from Proposition 3.1 that to prove the theorem, it is enough to show
that relations (21) are equivalent to relations (28) and (29). Since Tim ⊂ T and
Tim(k, j) ⊂ T ∀k ∈ N ( j), j ∈ J , and N∗( j) = N ( j) ∪ M( j), it is evident that the
relations (28) and (29) imply the inclusions (21).

Suppose that inclusions (21) take a place. Hence for any j ∈ J and k ∈ N∗( j), the
equality

b(k, j) =
∑

i∈I
αia(t(i)) (30)

holds true with some αi = αi (k, j) > 0, t(i) = t(i, k, j) ∈ T , i ∈ I = I (k, j). Let’s
multiply the right and left sides of (30) by (1, (x∗(k, j))	). As a result, we get

∑

i∈I
αi (t(i))	A(x∗(k, j))t(i) = e	

k A(x∗(k, j))τ ( j) = 0 (31)

with some αi > 0, t(i) ∈ T , i ∈ I . Here we took into account the equality in (27). It
follows from (31) and the inequalities in (27), that in (30) vectors t(i), i ∈ I , should
satisfy the conditions t(i) ∈ Tim(k, j), i ∈ I .

Consequently, we have shown that inclusions (21) imply the inclusions b(k, j) ∈
cone{a(t), t ∈ Tim(k, j)}, k ∈ N∗( j) = M( j) ∪ N ( j), j ∈ J . Taking into account
that Tim(k, j) = Tim ∀k ∈ M( j), ∀ j ∈ J , we conclude that inclusions (21) imply
(28) and (29). �

Notice that in (28) and (29), we have a finite number of inclusions.

4 Equivalent Formulations of the Condition I)

In this section, we will present several equivalent formulations of condition I), as set
forth in the previous section. This condition is one of the requirements ensuring the
uniform LP duality of the copositive system. This gives us the opportunity to analyze
this condition fromdifferent points of view and create a theoretical basis for comparing
our results with those known in the literature.

Proposition 4.1 Given a linear system A(x) ∈ COP p with the corresponding sets
Tim, T , M( j), j ∈ J , and the vectors a(t),b(k, j), k ∈ M( j), j ∈ J , defined
above, the following statements are equivalent:

j) the condition I) is satisfied;
jj) the cones cone{b(k, j), k∈M( j), j ∈ J } and cone{a(t), t∈ Tim} coincide;
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jjj) the equality span{b(k, j), k∈M( j), j ∈ J }=cone{a(t), t∈Tim} holds true.
In the terminology from [7], the condition jj) means that the sets {b(k, j), k ∈

M( j), j ∈ J } and {a(t), t ∈ Tim} are positively equivalent.
Proof It is evident that the condition jj) implies the condition j).

Let us show that j) implies jj). In fact, it follows from j) that cone{b(k, j), k ∈
M( j), j ∈ J } ⊂ cone{a(t), t ∈ Tim}. On the other hand, it follows from Propo-
sition 2.4 that cone{a(t), t ∈ Tim} ⊂ cone{b(k, j), k ∈ M( j), j ∈ J }. Hence,
cone{b(k, j), k ∈ M( j), j ∈ J } = cone{a(t), t ∈ Tim}, and we have shown that j)
implies jj). Thus the equivalence of j) and jj) is proved.

To prove the equivalence of jj) and jjj), it is enough to show that

cone{b(k, j), k ∈ M( j), j ∈ J } = span{b(k, j), k ∈ M( j), j ∈ J }. (32)

From Proposition 2.2, it follows that relations (14) hold true for all k0 ∈ M( j0) and
j0 ∈ J . This implies equality (32) and hence, the conditions jj) and jjj) are equivalent.

�
Let the set J be partitioned into subsets J (s), s ∈ S, such that relations (16) hold

true. Introduce finite sets

V (s) := {(i, j), i ∈ J (s), j ∈ J (s), i ≤ j}, s ∈ S, V :=
⋃

s∈S
V (s). (33)

For a given vector z = (z0, z1, . . . , zn)	, denote

B(z) :=
n∑

m=0

Amzm . (34)

Proposition 4.2 The condition I) of Theorem 3.1 (see (28)) is equivalent to the fol-
lowing two conditions:

A1) the set L := cone{a(t), t ∈ Tim} is a subspace;
B1) for any z ∈ R

n+1, the equalities

(τ (i))	B(z)τ ( j) = 0 ∀(i, j) ∈ V , (35)

imply the equalities

e	
k B(z)τ ( j) = 0 ∀k ∈ M( j), ∀ j ∈ J . (36)

Proof Suppose that inclusions (28) hold true. Then it follows from Proposition 4.1
that L is a subspace. Let us prove that inclusions (28) imply the condition B1). Note
that (see Proposition 9 in [18])

(τ (i))	B(z)τ ( j) = 0 ∀(i, j) ∈ V ⇐⇒ t	B(z)t = 0 ∀t ∈ Tim . (37)
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Hence equalities (35), (36) can be written as follows:

z	a(t) = 0 ∀t ∈ Tim, (38)

z	b(k, j) = 0 ∀k ∈ M( j), ∀ j ∈ J . (39)

Then it is evident that under conditions (28), equalities (38) imply (39). Thus we have
shown that the condition B1) follows from (28).

Now we will show that the conditions A1) and B1) imply inclusions (28). Notice
that under the condition A1) a vector z satisfies (38) iff z ∈ L⊥, where L⊥ is the
orthogonal complement to L in R

n+1. Hence it follows from the condition A1) and
(37) that the conditionB1) can be reformulated as e	

k B(z)τ ( j) = 0 ∀k ∈ M( j), ∀ j ∈
J , ∀z ∈ L⊥, or, equivalently,

z	b(k, j) = 0 ∀k ∈ M( j), ∀ j ∈ J , ∀z ∈ L⊥. (40)

Given j ∈ J and k ∈ M( j), the vector b(k, j) admits the representation

b(k, j) = b1(k, j) + b2(k, j) with b1(k, j) ∈ L and b2(k, j) ∈ L⊥,

where due to (40) we have b2(k, j) = 0 and b(k, j) = b1(k, j) ∈ L . Hence the
conditions A1) and B1) imply the inclusions (28). �
Remark 4.1 It follows from the proof of the proposition that conditions A1) and B1)
can be reformulated as follows: the set L is a subspace and conditions (40) hold true.
In this form, conditions A1) and B1) resemble the conditions formulated in Theorem
2.1 in [30], which provides necessary and sufficient conditions for uniform LP duality
for SDP problems.

Remark 4.2 Let us introduce (n+1)-dimensional vectors a(i, j) := ((τ (i))	Amτ ( j),
m = 0, 1, . . . , n)	, (i, j) ∈ V , and consider finite-dimensional matrices

A := (a(i, j), (i, j) ∈ V ), B := (b(k, j), k ∈ M( j), j ∈ J ).

Then the condition B1) can be formulated as rankA = rank(A, B).

Based on (19) we can prove the following statements:

• the following equality holds true:

rim := rank(a(t), t ∈ Tim) = rank(a(τ (l) + τ (q)), (l, q) ∈ V ), (41)

• for any t ∈ Tim , there exist numbers βlq ∈ R, where (l, q) ∈ V , such that

tt	 =
∑

(l,q)∈V
βlq(τ (l) + τ (q))(τ (l) + τ (q))	. (42)
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Proposition 4.3 The condition A1) is equivalent to the following one:
A2) There exists a matrix U∗ ∈ CP p in the form

U∗ =
∑

i∈I
αi t(i)(t(i))	 + 1

4

∑

(l,q)∈V
(τ (l) + τ (q))(τ (l) + τ (q))	

with αi > 0, t(i) ∈ Tim, i ∈ I , |I | < ∞, (43)

such that
Am •U∗ = 0 ∀m = 0, 1, . . . , n. (44)

Proof Suppose that the condition A1) holds true. Notice that 1
2 (τ (l) + τ (q)) ∈ Tim

for all (l, q) ∈ V . Then, due to Propositions 10 and 11 in [18], there exist vectors and
numbers t(i) ∈ Tim, αi > 0, i ∈ I , |I | < ∞, such that

∑

i∈I
αia(t(i)) + 1

4

∑

(l,q)∈V
a(τ (l) + τ (q)) = 0. (45)

Let U∗ be a matrix in the form (43). Then (45) can be rewritten in the form (44).
Thus we have proved that the condition A1) implies the condition A2). Now, suppose
that the condition A2) holds true and let us rewrite equalities (44) in the form (45). It
follows from (41) that

rank(a(t(i)), i ∈ I , a(τ (l) + τ (q)), (l, q) ∈ V ) = rim .

Taking into account this equality, equality (45), andProposition 10 in [18],we conclude
that L := cone{a(t), t ∈ Tim} is a subspace. Thus we have shown that the condition
A2) implies the condition A1). �

To formulate the next propositions and lemmas, we need the following notation
and definitions (see [22]). Given a matrix Y ∈ COP p, denote

dir(Y , COP p) := {D ∈ S p : Y + εD ∈ COP p for some ε > 0},
ldir(Y , COP p) := dir(Y , COP p) ∩ −dir(Y , COP p),

tan(Y , COP p) := cl (dir(Y , COP p)) ∩ −cl (dir(Y , COP p)).

For matrices Y ∈ COP p andU ∈ CP p, we say thatU is strictly complementary to Y
if U ∈ relint(CP p ∩ Y⊥).

Definition 4.1 A matrix Y is called a maximum slack in the system A(x) ∈ COP p if
Y ∈ relintD, where D := {D = A(x), x ∈ X}.
Denote:

R(B) := {D = B(z), z ∈ R
n+1},

N (B∗) := {U ∈ S p : Am •U = 0 ∀m = 0, 1, . . . , n},
where B(z) is defined in (34).

The following Lemma was proved in [18].
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Lemma 4.1 A matrix Y ∗ is a maximum slack in the system A(x) ∈ COP p iff there
exists y∗ ∈ X such that Y ∗ = A(y∗) and

t	A(y∗)t > 0 ∀t ∈ T \ Tim, e	
k A(y∗)τ ( j) > 0 ∀k ∈ P \ M( j), j ∈ J . (46)

Proposition 4.4 The condition A1) is equivalent to the following one:
A3) For a maximum slack Y ∗ in the systemA(x) ∈ COP p, there is U∗ ∈ N (B∗)∩

CP p strictly complementary to Y ∗.

Proof Suppose that the conditionA3) holds true. Since the set CP p∩(Y ∗)⊥ is convex,
then

U∗ ∈ relint(CP p ∩ (Y ∗)⊥) ⇐⇒
∀U ∈ CP p ∩ (Y ∗)⊥ ∃ ε > 0 such that (1 + ε)U∗−εU ∈ CP p ∩ (Y ∗)⊥.

(47)

It follows from Lemma 4.1 that U ∈ CP p ∩ (Y ∗)⊥ iff U admits a representation

U =
∑

i∈ Ī
ᾱi t̄(i)(t̄(i))	 with some ᾱi > 0, t̄(i) ∈ Tim, i ∈ Ī . (48)

Hence U∗ takes the form

U∗ =
∑

i∈I
αi t(i)(t(i))	 with some αi > 0, t(i) ∈ Tim, i ∈ I . (49)

Since U∗ ∈ N (B∗), the equalities (44) hold true.
For any t ∈ Tim , consider the matrix U = tt	 ∈ CP p ∩ (Y ∗)⊥. It follows from

(47), (48) that there exist ε > 0 and ᾱi > 0, t̄(i) ∈ Tim , i ∈ Ī , such that

(1 + ε)U∗ − εtt	 =
∑

i∈ Ī
ᾱi t̄(i)(t̄(i))	 ⇐⇒ (1 + ε)U∗ = εtt	 +

∑

i∈ Ī
ᾱi t̄(i)(t̄(i))	.

Taking into account the latter equality and (44), we obtain the equalities

Am • (εtt	 +
∑

i∈ Ī
ᾱi t̄(i)(t̄(i))	) = 0 ∀m = 0, 1, . . . , n,

which can be rewritten in the form

εa(t) +
∑

i∈ Ī
ᾱia(t̄(i)) = 0 where ε > 0, ᾱi > 0, t̄(i) ∈ Tim ∀i ∈ Ī .

It follows from these relations that−a(t) ∈ L := cone{a(t), t ∈ Tim} for any a(t) ∈ L
and hence, L is a subspace.

Now, suppose that the conditionA1) holds true. It follows from Proposition 4.3 that
the conditionA1) is equivalent to the conditionA2). According to this condition, there
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exists a matrixU∗ ∈ CP p in the form (43) satisfying equalities (44). By construction,
U∗ ∈ CP p ∩ (Y ∗)⊥ and U∗ ∈ N (B∗) ∩ CP p.

Let us show that relations (47) hold true. Consider any matrix U ∈ CP p ∩ (Y ∗)⊥.
It follows from Lemma 4.1 that this matrix admits representation (48). For a fixed
i ∈ Ī , consider the corresponding t̄(i) ∈ Tim . Then it follows from (42) that the
matrix t̄(i)(t̄(i))	 can be presented in the form

t̄(i)(t̄(i))	 =
∑

(l,q)∈V
βl,q(i)(τ (l) + τ (q))(τ (l) + τ (q))	.

Consequently

(1 + ε)U∗ − εU =(1 + ε)
∑

i∈I
αi t(i)(t(i))	 +

∑

(l,q)∈V
β̄l,q (τ (l) + τ (q))(τ (l) + τ (q))	,

where αi > 0, t(i) ∈ Tim ∀i ∈ I , 0.5(τ (l) + τ (q)) ∈ Tim, ∀(l, q) ∈ V , and where
for a sufficiently small ε > 0, it holds

β̄l,q := (1 + ε)/4 − ε
∑

i∈ Ī
ᾱiβl,q(i) > 0 ∀(l, q) ∈ V .

Then (1 + ε)U∗ − εU ∈ CP p ∩ (Y ∗)⊥ for any U ∈ CP p ∩ (Y ∗)⊥ and for some
sufficiently small ε > 0. Hence U∗ ∈ relint(CP p ∩ (Y ∗)⊥). �

Proposition 4.5 The condition B1) is equivalent to the following one:
B2) For a maximum slack Y ∗ in the system A(x) ∈ COP p, the set R(B) ∩

(tan(Y ∗, COP p)\ldir(Y ∗, COP p)) is empty.

Proof In [6] (see Theorems 6, 13), for A ∈ COP p, it is shown that

dir(A, COP p)={
B ∈ S p : t	Bt ≥ 0 ∀t ∈ V A;

e	
k Bt ≥ 0 ∀t ∈ V A ∩ V B, ∀k ∈ {s ∈ P : e	

s At = 0}},
tan(A, COP p)={

B ∈ S p : t	Bτ = 0 ∀{t, τ } ⊂ V A
min s.t. t

	Aτ = 0
}
, (50)

where V A := {t ∈ T : t	At = 0} is the set of zeros of A and V A
min ⊂ V A is the set

of minimal zeros of A. For definitions see [6]. Without loss of generality, we consider
that the minimal zeros are normalized: ||t||1 = 1 for t ∈ V A

min . Note that it was proved
in [16] that for A ∈ COP p, the set of normalized minimal zeros V A

min coincides with
the set of vertices of the set convTim(A), where Tim(A) = {t ∈ T : t	At = 0} is the
set of normalized zeros of A.

Let us present the condition B2) in another form. It follows from Lemma 4.1 that
if Y ∗ is a maximum slack in the system A(x) ∈ COP p, then there exists a vector
y∗ ∈ X such that conditions (46) hold true. Taking into account the relations (46),
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(50) and VY ∗
min = T = {τ ( j), j ∈ J }, it is easy to see that

tan(A(y∗), COP p)\ldir(A(y∗), COP p)={B∈S p :(τ (i))	Bτ ( j)=0 ∀(i, j)∈V ;
and ∃ t̄ ∈ Tim ∩ V B, ∃ k̄ ∈ P such that e	̄

k
A(y∗)t̄ = 0, e	̄

k
B t̄ �= 0}.

Consequently, the condition B2) can be reformulated as follows:
B2*) For any z ∈ R

n+1, the equalities (35) imply the equalities

e	
k B(z)t = 0 ∀ k ∈ P(t), ∀t ∈ Tim ∩ VB(z) = Tim, (51)

where P(t) := {q ∈ P : e	
q A(y∗)t = 0}.

Suppose that the condition B2*) holds true. For j ∈ J , consider the corresponding
vector τ ( j) ∈ Tim . By construction (see (46)), we have P(τ ( j)) = M( j). Conse-
quently, it follows from conditions (51) that e	

k B(z)τ ( j) = 0 for all k ∈ M( j).Hence
we have shown that the condition B2*) implies the condition B1).

Now, suppose that the condition B1) holds true. Consider any t ∈ Tim . It follows
from (16) that t ∈ Tim(s) with some s ∈ S and consequently, t admits representation
(19). Hence for any k ∈ P(t), we have 0 = e	

k A(y∗)t = ∑
j∈ΔJ (s)

α je	
k A(y∗)τ ( j).

With respect to this equality, the inequalitiesα j > 0∀ j ∈ ΔJ (s), and e	
q A(y∗)τ ( j) >

0 ∀q ∈ P\M( j), ∀ j ∈ ΔJ (s), we conclude that for t ∈ Tim(s), the following
implication is valid:

k ∈ P(t) �⇒ k ∈ M( j) ∀ j ∈ ΔJ (s). (52)

Now, for the same t ∈ Tim(s) and any z ∈ R
n+1 satisfying (35), calculate e	

k B(z)t
for k ∈ P(t), taking into account conditions (19), (36), and (52):

e	
k B(z)t =

∑

j∈ΔJ (s)

α je	
k B(z)τ ( j) = 0.

Thus we have shown that the condition B1) implies B2*). �
The above considerations can be formulated as follows.

Lemma 4.2 For any k ∈ {1, 2, 3} and any m ∈ {1, 2}, the conditions i) and ii) below
are equivalent to eachother, andare necessary for the consistent systemA(x) ∈ COP p

to yield the uniform LP duality property:

i) the condition I) holds true:
ii) the conditions Ak) and Bm) hold true.

The condition i i) with k = 3 and m = 2 (i.e., the conditions A3) and B2)) is a
necessary condition for a linear conic system to yield the uniform LP duality proved
in [22] and applied to the copositive system A(x) ∈ COP p.

It was shown in [22] that when K is a nice cone, the conditions A3) and B2) are
necessary and sufficient for the linear consistent conic system A(x) ∈ K to yield the
uniform LP duality.
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In general, the conditions formulated in Lemma 4.2 are only necessary, but not
sufficient for the systemA(x) ∈ COP p to yield the uniform LP duality. It is illustrated
by a simple example presented in the next section.

5 Examples

In this section, we consider two examples that illustrate our results and help us to
compare our results with ones known in the literature.

Example 1 Consider the system A(x) ∈ COP p with the following data:

n = 2, p = 3, A0 =
⎛

⎝
a 0 0
0 0 0
0 0 0

⎞

⎠ , A1 =
⎛

⎝
0 0 0
0 −1 0
0 0 0

⎞

⎠ ,

A2 =
⎛

⎝
−1 0 0
0 0 −1
0 −1 0

⎞

⎠ , a > 0. (53)

For t∗ = (0, 0, 1)	, we have (t∗)	A(x)t∗ = 0, e	
1 A(x)t∗ = 0, e	

3 A(x)t∗ = 0 for
all x ∈ R

2. It is easy to check that for the vector x∗ = (−1,−1)	 and the data in (53)
we have t	A(x∗)t > 0 for all t ∈ R

3+\{t∗} and e	
2 A(x∗)t∗ > 0.

Hence, for the system under consideration, A(x∗) is a maximum slack, Tim =
{τ (1) = t∗}, M(1) = {1, 3}, J = {1}, a(t∗) = (0, 0, 0)	, b(1, 1) = b(3, 1) =
(0, 0, 0)	, b(2, 1) = (0, 0, −1)	. Hence L := cone{a(t), t ∈ Tim} = {a(t∗)} and
b(k, j) ∈ L for all k ∈ M( j) and all j ∈ J .

Thus we see that for this system, the condition I) is satisfied, and it follows from
Lemma 4.2 that the conditionsAk) for k = 1, 2, 3 and the conditionsBm) form = 1, 2
are satisfied as well. (It worth noting that the fulfillment of the conditions Ak) for
k = 1, 2, 3 and the conditions Bm) for m = 1, 2 can be checked directly.)

However the system under consideration does not yield the uniform LP duality.
In fact, it was shown in [14] that for the primal problem (P) with the cost vector
c	 = (0, −1) and the corresponding dual problem (D), there is a positive duality gap:
Val(P) − Val(D) = a > 0.

The reason for not complying with the uniform duality is that for the system with
the data (53), the condition II) is not satisfied. Indeed, for the vector x̄ = (−1, 0)	,
we have t	A(x̄)t > 0 ∀t ∈ T \{t∗} and e	

k A(x̄)t∗ = 0 for k = 1, 2, 3. Hence for the
system under consideration, we have N (1) = {2}, Tim(k = 2, j = 1) = Tim = {t∗}
and the condition II), for j = 1 ∈ J and k = 2 ∈ N ( j), takes the form

b(2, 1) = (0, 0, −1)	 ∈ cone{a(t), t ∈ Tim(k, j)} = {a(t∗)} = {(0, 0, 0)	}.

It is evident that this condition does not hold true.
Example 1 shows that the condition II) is essential and can not be omitted. This

example also shows that for the cone COP p, the conditions formulated in [22] are
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not sufficient unlike the case with the cone of positive semi-definite matrices S p
+ for

which these conditions are necessary and sufficient.
Let us now consider an example where the condition I) is violated.

Example 2 Let the system A(x) ∈ COP p be formed with the following data:

n = 1, p = 3, A0 =
⎛

⎝
a 0 −a
0 0 0

−a 0 a

⎞

⎠ , A1 =
⎛

⎝
1 −1 2

−1 0 1
2 1 −5

⎞

⎠ , a > 0. (54)

This system admits a unique feasible solution x = x1 = 0. Hence X = {0} and it is
easy to check that Tim = {t ∈ T : t1 = t3}, where T = {t ∈ R

3+ : t1+t2+t3 = 1}.The
vertices of the set convTim are τ (1) = 0.5(1, 0, 1)	, τ (2) = (0, 1, 0)	, and the sets
M( j), N ( j) = N∗( j) \ M( j), defined in (5) and (6) take the form M( j) = {1, 2, 3},
N ( j) = ∅ for j ∈ J = {1, 2}.

It is easy to see that t	A0t = 0, t	A1t = 0 for all t ∈ Tim, and e	
1 A0τ (1) = 0,

e	
1 A1τ (1) = 1.5. Hence, a(t) = 0 ∀t ∈ Tim and b(k0, j0) = (0, 1.5)	 for k0 = 1,
j0 = 1, k0 ∈ M( j0). Thus we obtain b(k0, j0) /∈ cone{a(t), t ∈ Tim}, wherefrom we
conclude that the condition I) does not hold true and, consequently, the system under
consideration does not yield the uniform LP duality.

Let us show this directly. Since the system A(x) ∈ COP p with data (54) has a
unique feasible solution x = x1 = 0, then the corresponding primal problem (P)
has the optimal solution x∗ = x∗

1 = 0 with Val(P) = 0 for any objective function
c	x =c1x1, c1 ∈ R. The corresponding dual problem (D) takes the form

max(−A0 •U ) s.t. A1 •U = c1, U ∈ CP p.

Suppose that the systemA(x) ∈ COP p yields the uniform LP duality. Hence the dual
problem should have an optimal solution U 0 such that

U 0 =
∑

i∈I
αi t(i)(t(i))	 with αi > 0, t(i) ∈ T , i ∈ I ,

− A0 •U 0 = 0, A1 •U 0 = c1.

(55)

Since t	A0t = a(t1− t3)2 for all t ∈ R
3,we conclude that the equality−A0 •U 0 = 0

implies the equalities t1(i) = t3(i) for all i ∈ I and hence (t(i))	A1t(i) = 0 for all
i ∈ I . Then A1 •U 0 = 0. Thus we have shown that for any c1 �= 0, the dual problem
has no solutions satisfying relations (55) which permits to conclude that the system
A(x) ∈ COP p with the data defined in (54) does not yield the uniform LP duality.

As noted in [24] (see page 3), for the SDP system A(x) ∈ S p
+ with n = 1, the

uniform LP duality property is always satisfied. In our example, however, for n = 1
we present the CoP systemA(x) ∈ COP p that does not yield the uniform LP duality.
This further confirms the assertion that CoP systems are much more complex (and
more pathological) than SDP systems.
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6 On a Relationship of the Obtained Results with the UniformDuality
for SIP Problems

Consider a general linear SIP problem in the form

P∗
SI P : min

x∈Rn
c	x s.t. (1, x	)a(t) ≥ 0 ∀t ∈ T ,

where T is an index set and a(t) = (am(t),m = 0, 1, . . . , n)	, t ∈ T . Denote

G :=
{
a(t), t ∈ T ; (1, 0	

n )	
}

. (56)

The following theorem is proved in [7] (Theorem 3.2, conditions (ii) and (v)).

Theorem 6.1 The consistent constraint system of the problem (P∗
SI P ) yields the uni-

form LP duality iff
cone(G) = cone(F ∪ W ) (57)

with some F ⊂ R
n+1 and W ⊂ R

n+1 satisfying the following conditions: F is finite,
W is compact, and there exists a vector x̄ ∈ R

n such that

s0 + s	x̄ = 0 ∀(s0, s	)	 ∈ F, s0 ∈ R,

t0 + t	x̄ > 0 ∀(t0, t	)	 ∈ W , t0 ∈ R.
(58)

It follows from the equivalent description (2) of the cone COP p that the problem
(P) is equivalent to the linear SIP problem (P∗

SI P ) where the set T and the vector a(t)
are defined in (1) and (12), respectively. Let us denote this special SIP problem by
(PSI P ).

Since the problem (PSI P ) is a special case of a general linear SIP problem, the
statements of Theorem 6.1 should be satisfied for the problem (PSI P ) as well. In
Theorem6.1, there is no reference of the construction of the sets F andW mentioned in
the theorem. Obviously, it is interesting to know how to find these sets and characterize
their properties for our CoP problem. The following theorem provides a response to
this question regarding the CoP problem under consideration.

Theorem 6.2 Given the problem (PSI P ), the sets F and W, mentioned in Theorem
6.1, can be chosen as follows:

F := {b(k, j), k ∈ M( j), j ∈ J }, (59)

W := {a(t), t ∈ Ω} ∪ {b(k, j), k ∈ N ( j), j ∈ J } ∪ (1, 0	
n )	, (60)

where the set Ω is defined in (9).

Proof In what follows, we suppose that the sets G, F and W are defined in (56), (59),
and (60). Let us prove the theorem in three steps.
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• First, let us show that the inclusion

cone(G) ⊂ cone(F ∪ W ) (61)

holds true. To do this, let us consider the problem (P∗) (see (11)) that can be rewritten
in the form

P∗ : min
x∈Rn

c	x s.t. (1, x	)a(t) ≥ 0 ∀t ∈ Ω, (1, x	)b(k, j) ≥ 0, k ∈ N∗( j), j ∈ J .

It follows from (7) that X is the set of feasible solutions in problem (P∗) and since there
exists x∗ ∈ X satisfying (8), it is easy to show that this problem yields the uniform LP
duality (see proof of Proposition 3.1).

For a fixed t ∈ T , consider the consistent problem (P∗) with c	 = (cm =
t	Amt, m = 1, . . . , n). Then for all x ∈ X , we have

c	x =
n∑

m=1

t	Amtxm ≥ −t	A0t > −∞.

Consequently, Val(P∗) = β − t	A0t with some β ≥ 0. Taking into account that the
problem (P∗) yields the uniform LP duality, we conclude that there exist numbers and
vectors αi , t(i) ∈ Ω, i ∈ I , λk( j), k ∈ N∗( j), j ∈ J , such that αi > 0, i ∈ I ,
|I | < ∞, λk( j) ≥ 0, k ∈ N∗( j), j ∈ J , and equality (25) holds true with c = (cm =
e	
ma(t), m = 1, . . . , n) and Val(P∗) = β − t	A0t. This implies

a(t) =
∑

i∈I
αia(t(i)) +

∑

j∈J

∑

k∈N∗( j)
λk( j)b(k, j) + (1, 0	

n )	β ∈ cone(F ∪ W ).

The inclusion above is satisfied for any t ∈ T , and hence, inclusion (61) takes place.
• Now, let us show that the following conditions are equivalent:
C1: b(k, j) ∈ cone{a(t), t ∈ T } ∀k ∈ N∗( j), ∀ j ∈ J ,

C2: cone(F ∪ W ) ⊂ cone(G).

Notice that since Ω ⊂ T and (1, 0	
n )	 ∈ G, we always have

cone(a(t), t ∈ Ω, (1, 0	
n )	) ⊂ cone(G). (62)

Suppose that the condition C1 holds true. Then it follows from this condition and
the inclusion (62) that the condition C2 holds true as well.

Now, suppose that the conditionC2 holds true. Hence the following inclusions take
place:

b(k, j) ∈ cone(a(t), t ∈ T , (1, 0	
n )	) ∀k ∈ N∗( j), ∀ j ∈ J .
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This implies that for j ∈ J and k ∈ N∗( j), we have

b(k, j) =
∑

i∈I (k, j)
αia(t(i)) + β(1, 0	

n )	 (63)

with some finite index set I (k, j) ⊂ N, αi > 0, t(i) ∈ T , i ∈ I (k, j) and β ≥ 0.
Let us multiply the left and right sides of equality (63) by a vector x∗(k, j) satisfying
relations (27). As a result, we obtain

0 =
∑

i∈I (k, j)
αi (t(i))	A(x∗(k, j))t(i)) + β.

From this equality and the inequalities αi > 0, (t(i))	A(x∗(k, j))t(i)) ≥ 0 for
i ∈ I (k, j), and β ≥ 0, we can conclude that β = 0. Then it follows from (63) with
β = 0 that the condition C1 holds true. Thus, the equivalence of the conditions C1
and C2 is proved.

• Now, let us finalize the proof of the theorem. Note that the problems (PSI P )
and (P) are equivalent and the respective dual problems are equivalent too. Hence the
problem (PSI P ) yields the uniform LP duality simultaneously with the problem (P).

Suppose that the uniform LP duality property is satisfied for the problem (PSI P ).
Then the problem (P) also satisfies this property and it follows from Proposition 3.1
that the condition C1 is fulfilled. This implies that the condition C2 holds as well. It
is evident that the equality (57) follows from the condition C2 and inclusion (61).

Suppose now that the equality (57) holds true. This implies that the conditionC2 is
fulfilled, and hence the conditionC1 is also fulfilled. It follows from the conditionC1
and Proposition 3.1 that the problem (P) yields the uniform LP duality. Consequently,
the problem (PSI P ) yields the uniform LP duality as well.

Thus we have shown that the consistent system of the problem (PSI P ) yields the
uniform LP duality iff condition (57) is satisfied.

By construction, the set F is finite and the set W is a compact. Relations (58) hold
true with x̄ = x∗ where x∗ is defined in (8). �

7 Conclusion

The main result of the paper is the establishment of the necessary and sufficient
conditions that guarantee the uniform LP duality for linear CoP problems. These
conditions are derived using the concept of immobile indices and the sets generated by
them, and are formulated in various equivalent forms, thereby expanding the scope of
their application. The examples illustrate how the conditions obtained can be applied to
confirmor refute the uniformLPduality of aCoP system.Additionally, the relationship
between the uniform LP duality conditions for the related problems of CoP and SIP
is explored.
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A Appendix: Proofs of Technical Propositions

Proposition A.1 The set of feasible solutions of the problem (P) coincides with the
following set:

X∗ := {x ∈ R
n : t	A(x)t ≥ 0 ∀t ∈ Ω, e	

k A(x)τ ( j) ≥ 0 ∀k ∈ N∗( j) ∀ j ∈ J }.

Proof Since the set of feasible solutions of the problem (P) can be presented in the
form (7) and, by construction, it holds N∗( j) ⊂ P for all j ∈ J , one can conclude
that X ⊂ X∗.

Let us show that X∗ ⊂ X . Suppose the contrary: there exists x∗ such that x∗ ∈ X∗
and x∗ /∈ X . Hence the following set of pairs is non-empty:

Ṽ := {(k, j) : k ∈ P \ N∗, j ∈ J , e	
k A(x∗)τ ( j) < 0}.

Consider any x̄ ∈ X . It follows from the definition of the sets N∗( j), j ∈ J , that

γk j := e	
k A(x̄)τ ( j) > 0 ∀k ∈ P \ N∗( j),∀ j ∈ J .

Let us consider a function x(λ) := λx∗ + (1 − λ)x̄, λ ∈ [0, 1]. If follows from the
inclusion X ⊂ X∗, convexity of the set X∗, and the definition of the set Ṽ that for all
λ ∈ [0, 1] we have

x(λ) ∈ X∗, e	
k A(x(λ))τ ( j) ≥ 0 ∀(k, j) ∈ {(s, i) : s ∈ P \ N∗(i), i ∈ J } \ Ṽ . (64)

Set γ ∗
k j := e	

k A(x∗)τ ( j), (k, j) ∈ Ṽ . By construction, γ ∗
k j < 0 ∀(k, j) ∈ Ṽ . Hence

λk j := − γk j
γ ∗
k j−γk j

∈ (0, 1) for all (k, j) ∈ Ṽ .

Let a pair (k0, j0) ∈ Ṽ be such that λk0 j0 = max
(k, j)∈Ṽ

λk j . It is evident that λk0 j0 ∈
(0, 1). It follows from relation (64) and the rule of calculation ofλk0 j0 that x(λk0 j0) ∈ X
and e	

k0
A(x(λk0 j0))τ ( j0) = 0, where j0 ∈ J , k0 ∈ P\N∗( j0). But this contradicts the

definition of the set N∗( j0) (see (6)). �
Proof of Proposition 2.1 Since X ⊂ Z , it follows from (4) and (5) that M( j) ⊂ M( j)
∀ j ∈ J .

To prove the proposition, let us show that M( j) ⊂ M( j) ∀ j ∈ J . Suppose the
contrary: there exist j0 ∈ J and k0 ∈ M( j0) such that k0 /∈ M( j0). It follows from
the latter condition and definitions (3), (4) that there exists x̄ ∈ R

n such that

A(x̄)τ ( j) ≥ 0 ∀ j ∈ J , e	
k0A(x̄)τ ( j0) > 0. (65)

Let x∗ be a vector satisfying (8). Notice that, by construction, Tim ⊂ convTim ,
hence Tim ∩ Ω = ∅ and it follows from (8) that

t	A(x∗)t > 0 ∀ t ∈ Ω. (66)
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Using the vectors x̄ and x∗, let us consider a vector x(α) := x∗(1−α)+αx̄ with some
α ∈ [0, 1]. It follows from (65) and (66) that there exists α∗ ∈ (0, 1) such that

t	A(x(α∗))t > 0 ∀t ∈ Ω, A(x(α∗))τ ( j) ≥ 0 ∀ j ∈ J .

Taking into account these relations and (7), we conclude that x(α∗) ∈ X .

It is easy to see that

e	
k0A(x(α∗))τ ( j0) = (1 − α∗)e	

k0A(x∗)τ ( j0) + α∗e	
k0A(x̄)τ ( j0),

where e	
k0
A(x∗)τ ( j0) = 0 (see relations (8)) and, by assumption, e	

k0
A(x̄)τ ( j0) >

0. This implies that e	
k0
A(x(α∗))τ ( j0) > 0. However, the latter inequality and the

inclusion x(α∗) ∈ X proved above contradict the condition k0 ∈ M( j0). It follows
from this contradiction that M( j) ⊂ M( j) ∀ j ∈ J . �
Proof of Proposition 2.3 Let x∗ be a vector satisfying (8). Denote A∗ := A(x∗) ∈
COP p. It follows from (8) that Tim = Tim(A∗), where Tim(A∗) := {t ∈ T : t	A∗t =
0} is the set of all normalized zeros of A∗.

To prove the proposition, we will use some concepts from Graph Theory.
Let T = {τ( j), j ∈ J } be the set of all vertices of the set convTim . Denote

V ∗ := {(i, j) : i ∈ J , j ∈ J , i < j, (τ (i))	A∗τ ( j) = 0}, and consider an
undirected graph G = {J , V ∗} with the vertex set J and the edge set V ∗.

A clique, I , in an undirected graph G is a subset of the vertex set, I ⊂ J , such that
every two distinct vertices from I are adjacent. Amaximal clique is a clique that is not
a subset of a larger clique. In what follows, for j ∈ J , we will consider that J̄ = { j}
is a clique of G.

Let {J (s), s ∈ S} be the set of all (distinct) maximal cliques of G. This set exists
and there are several algorithms that construct this set for a given undirected graph
(see for example, [4, 10]). Let us show that for the set of subsets of J defined above,
relations (16) and (17) hold true.

For a fixed s ∈ S, consider a vector t ∈ Tim(s) := conv{τ ( j), j ∈ J (s)}. Then t
admits a representation

t =
∑

j∈J (s)

α jτ ( j), α j ≥ 0, j ∈ J (s),
∑

j∈J (s)

α j = 1.

Since J (s) is a clique of G, we have (τ (i))	A∗τ ( j) = 0, i ∈ J (s), j ∈ J (s). These
equalities imply the equality

t	A∗t=
( ∑

i∈J (s)

αiτ (i)

)	
A∗

( ∑

j∈J (s)

α jτ ( j)

)
=

∑

i∈J (s)

∑

j∈J (s)

αiα j (τ (i))	A∗τ ( j) = 0.

Hence, t ∈ Tim(A∗) = Tim and, consequently, Tim(s) ⊂ Tim . This implies that⋃
s∈S

Tim(s) ⊂ Tim .
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Now, let us consider t ∈ Tim . Then, evidently, t ∈ convTim , and therefore

t =
∑

j∈J∗
α jτ ( j), α j > 0, j ∈ J∗,

∑

j∈J∗
α j = 1 with some J∗ ⊂ J . (67)

Since t ∈ Tim, then t	A∗t = 0 which can be rewritten in the form

t	A∗t =
( ∑

i∈J∗
αiτ (i)

)	
A∗

( ∑

j∈J∗
α jτ ( j)

)
=

∑

i∈J∗

∑

j∈J∗
αiα j (τ (i))	A∗τ ( j) = 0.

From this equality and the inequalitiesαiα j > 0, (τ (i))	A∗τ ( j) ≥ 0, i ∈ J∗, j ∈ J∗,
it follows that

(τ (i))	A∗τ ( j) = 0 �⇒ (i, j) ∈ V ∗ ∀i ∈ J∗, ∀ j ∈ J∗, i < j .

Consequently, J∗ is a clique of G. It is evident that there exists s̄ ∈ S such that
J∗ ⊂ J (s̄). Then it follows from (67) that t ∈ Tim(s̄) and hence t ∈ ⋃

s∈S
Tim(s).

Thus we have shown that Tim ⊂ ⋃
s∈S

Tim(s). The latter inclusion and the inclusion
⋃
s∈S

Tim(s) ⊂ Tim proved above imply (16).

Now let us prove inclusions (17). Suppose the contrary: there exist s̄ ∈ S, j0 ∈ J (s̄),
and k0 ∈ P∗(s̄) such that k0 /∈ M( j0). The inclusion k0 ∈ P∗(s̄) implies that there
exists i0 ∈ J (s̄) such that k0 ∈ P+(τ (i0)), and the condition k0 /∈ M( j0) implies that
e	
k A∗τ ( j0) > 0. Let us calculate

(τ (i0))
	A∗τ ( j0) =

∑

k∈P+(τ (i0))

τk(i0)e	
k A∗τ ( j0) ≥ τk0(i0)e

	
k0 A

∗τ ( j0) > 0.

The inequality obtained contradicts the condition that J (s̄) is a clique of G, which
means here that the equalities (τ (i))	A∗τ ( j) = 0 ∀ i ∈ J (s̄), ∀ j ∈ J (s̄), should
hold true. �
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