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Abstract
The multi-leader–multi-follower game (MLMFG) involves two or more leaders and
followers and serves as a generalization of the Stackelberg game and the single-leader–
multi-follower game.AlthoughMLMFGcoverswide range of real-world applications,
its research is still sparse. Notably, fundamental solution methods for this class of
problems remain insufficiently established. A prevailing approach is to recast the
MLMFG as an equilibrium problem with equilibrium constraints (EPEC) and solve
it using a solver. Meanwhile, interpreting the solution to the EPEC in the context
of MLMFG may be complex due to shared decision variables among all leaders,
followers’ strategies that each leader can unilaterally change, but the variables are
essentially controlled by followers. To address this issue, we introduce a response
function of followers’ noncooperative game that is a function with leaders’ strategies
as a variable. Employing this approach allows the MLMFG to be solved as a single-
level differentiable variational inequality using a smoothing scheme for the followers’
response function.We also demonstrate that the sequence of solutions to the smoothed
variational inequality converges to a stationary equilibrium of the MLMFG. Finally,
we illustrate the behavior of the smoothing method by numerical experiments.

Keywords Multi-leader–follower game · Equilibrium problem with equilibrium
constraints · Smoothing approximation · Nash equilibrium problem · Bilevel
optimization

Mathematics Subject Classification 91A65 · 91A10 · 90C33

Communicated by Alexander Mitsos.

B Atsushi Hori
atsushi-hori@st.seikei.ac.jp

1 Faculty of Science and Technology, Seikei University, Tokyo, Japan

2 Wakayama Prefectural Board of Education, Wakayama, Japan

3 Graduate School of Informatics, Kyoto University, Kyoto, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-024-02506-2&domain=pdf
http://orcid.org/0000-0002-7020-459X


Journal of Optimization Theory and Applications

1 Introduction

The multi-leader–multi-follower game (MLMFG) is a bilevel structured noncoopera-
tive game featuring two or more leaders who determine their strategies first, followed
by two or more followers who make their choices in a strategic setting. This frame-
work can be viewed as an extension of bilevel optimization, the Stackelberg model,
and single-leader–follower games. The inherent complexity of this class arises from
the fact that each leader’s (upper-level) optimization problem is constrained by a set
of followers’ (lower-level) Nash equilibria, which is computationally challenging to
evaluate.

With the growing focus on noncooperative game theory, the MLMFG is also stud-
ied in economics and computer science. The MLMFG has often been used to analyze
deregulated markets, such as wholesale electricity markets, which consist of several
energy companies (leaders) and the independent system operator (follower) [11, 19,
24]. The class is formulated as a multi-leader–single-follower game (MLSFG). More
recently, researchers in computation and telecommunication formulated an edge com-
puting model with the MLMFG to achieve the best computation resource allocation
[5, 17, 28]. In edge computing, leaders serve as edge computers with medium-scale
computational resources, and followers play terminals such as smartphones, security
cameras, or robot arms in a factory. For more recent advances and applications of
the MLMFG, please refer to the surveys by Aussel and Svensson [2], and Hu and
Fukushima [16].

Theoretical studies on MLMFG have taken two main directions. The first approach
reformulates the followers’ problems into necessary conditions for optimality, known
as the Karush–Kuhn–Tucker (KKT) conditions and incorporates it into the constraint
of each leader’s optimization problem; that is, each leader’s problem solves a mathe-
matical program with equilibrium constraints (MPEC) [21]. The resultant problem is
referred to as an equilibriumproblemwith equilibrium constraints (EPEC) [23, 27] and
is solved with an MPEC solver, e.g., NLPEC [9]. This approach in terms of MLMFG
has also extensively studied over the years [12, 19, 27]. The EPEC approach yields the
so-called shared constraints and variables, which coincides the KKT conditions and all
followers’ strategies, respectively. However, the EPEC formulation introduces shared
variables that can complicate the interpretation within the MLMFG context because
the variables may be unilaterally changed by each leader as they desires, though the
variables are essentially followers’ strategies.

The second approach addresses this issue by considering the best response of the
followers’ noncooperative game given by leaders’ strategies and integrating them
into each leader’s optimization problem [10, 13, 15]; we call this technique the best
response approach. The problem does not explicitly make the followers’ strategies to
appear; that is, the resultant problem is a simple Nash equilibrium problem among
leaders. In general the resultant problem still has complicated objective functions,
non-smooth and non-convex in each leader’s optimization problem, but this approach
allows us to adopt a usual technique used for solving Nash equilibrium problems by
smoothing the followers’ response.

The smoothing method for response functions have particularly been a focus in
MPEC over the decades. To the best of our knowledge, Facchinei et al. [7] first
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considered the smoothing method for the response function in the MPEC, which
means that the response function is characterized by the lower-level equilibrium con-
straint parametrized by the upper-level variable. They showed the convergence to the
Clarke stationary point of the MPEC as the smoothing parameter converges to 0.
Chen and Fukushima [4] then proposed the same method for the MPEC where the
lower-level equilibrium constraint is a P-matrix linear complementarity constraint,
and they showed the convergence to the Bouligand stationary point of the MPEC. Hu
and Fukushima [14] extended this approach to EPEC, confirming convergence to the
Bouligand stationary point, which satisfies the Bouligand stationarity for eachMPEC.
To date, however, no studies have confirmed such convergence for MPEC and EPEC
with nonlinear complementarity constraints at the lower-level.

To the best our knowledge, the best response approach in the class of the MLMFG
has only been studied in the case of quadratic games where the followers’ response
is written in closed form by Hu and Fukushima [13, 15] and Herty et al. [10]. They
demonstrated the existence of the leader–follower Nash equilibrium, where no one has
incentive to change their strategy in both levels, for the quadratic game; each player
solves a convex quadratic programming problem. Hu and Fukushima [13] considered
the quadratic game when one follower solves equality constrained convex quadratic
programming. In [15], they then considered the same class of the MLMFG under
uncertainty anddemonstrated the existence anduniqueness of robustNash equilibrium.
Herty et al. [10] extended the class to which one follower solves linear inequality con-
strained convex quadratic programming, and they proposed the smoothing technique
of the follower’s response function.

However, there are many cases that cannot be formulated as a quadratic game in
real-world applications, and in such a case, the followers’ response may no longer be
obtained explicitly. For example, as often used inmicro economics, the utility function
is often characterized by a logarithm or an exponential function. Not only in economics
but in optimal resource allocation in edge computing, Lyu et al. [22] used log-utility
function for follower’s optimization. Moreover, in the blockchain based cloud/edge
computing network, the utility function for followers is characterized by a fraction,
e.g., Xiong et al. [28].

Currently, the study on the existence of the equilibria in the MLMFG is very
limitedwith the best response approach because demonstrating the existence of leader–
followerNash equilibriumessentially requires that the each leader’s problem is convex.
However, identifying the convexity of the problem often requires the response func-
tion to be explicitly written, which can be very difficult except in special cases as we
introduced above [10, 13, 15].

In this paper, we propose the best response approach for a more general class of
MLMFG with a smoothing method based on Facchinei et al. [7]. Using this technique
allows MLMFG to be solved by a single-level (differentiable) variational inequality
regarding the leaders’ Nash game. Meanwhile, in this class there may not exist the
(global) leader–follower Nash equilibrium, and also if it exists, finding the equilibrium
is NP-hard in general since the objective function of each leader is not convex. Hence,
we concentrate on a weaker concept of the equilibrium, stationary Nash equilibrium,
as the first-order condition for the local leader–follower Nash equilibrium. Then we
demonstrate that the solution of the (smoothed) approximated variational inequality
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converges to the stationary Nash equilibrium of MLMFG as the smoothing parameter
gets 0. We also report the results of numerical experiments conducted and illustrate
the behavior of the proposed method.

In summary, our contributions bridge the following gaps in existing studies:

1. Unlike [10, 13], which focus on cases with explicitly calculated follower(s)’
response,we extend their framework to caseswhere the explicit formof follower(s)’
response is not analytically obtainable;

2. In contrast to [13], which considers only equality constraints in the followers’
optimization problems, our paper considers cases involving nonlinear inequality
constraints;

3. This papermay be regarded as the first to demonstrate convergence to theBouligand
stationary point in a response-based smoothing method for EPECs with nonlinear
complementarity constraints associated with MLMFG.

The remainder of this paper is organized as follows: Sect. 2 outlines mathemati-
cal concepts and basic noncooperative game theory used in our approach. Section 3
describes the MLMFG and its solution concepts. Section 4 introduces a smoothing
method for the MLMFG and then analyzes its convergence to stationary Nash equi-
librium. Section 5 reports on numerical experiments that illustrate the effectiveness
of our proposed method with a toy example. Finally, Sect. 6 offers some concluding
remarks.

2 Preliminaries

This section provides some fundamental concepts about convex analysis and Nash
equilibrium problems. Throughout this paper we use the following notations: Let
F : IRn → IRm be differentiable,∇F(x) := [∇F1(x), . . . ,∇Fm(x)] is the transposed
Jacobian matrix of F at x ∈ IRn ; we simply call ∇F(x) the Jacobian matrix of F(x).
For vectors a ∈ IRn and b ∈ IRn , a ⊥ b denotes a�b = 0.

Definition 2.1 ([6, Definition 2.6.1]) The (transposed) generalized Jacobian of
F : IRn → IRm at x , denoted as ∂F(x), is the convex hull of all n × m matrices
W obtained as the limit of a sequence of the form ∇F(xk), where xk → x and
xk ∈ DF . Here, DF ⊂ IRn is the set of which F is differentiable.

Symbolically, one has

∂F(x) = conv

{
lim
xk→x

∇F(xk)

∣∣∣∣ xk ∈ DF

}
,

where conv denotes the convex hull of a set.
For a real-valued function ψ : IRn → IR, a directional derivative ψ ′(x; d) of ψ at

x ∈ IRn in the direction d ∈ IRn is defined to be

ψ ′(x; d) := lim
τ↓0

f (x + τd) − f (x)

τ
, (1)

123



Journal of Optimization Theory and Applications

when the limit exists. The Clarke generalized directional derivative ψ◦(x; d) of the
function ψ at x in the direction d ∈ IRn is defined as

ψ◦(x; d) := lim sup
y→x,τ↓0

ψ(y + τd) − ψ(y)

τ
.

The regularity of a real-valued function is defined as follows.

Definition 2.2 ([6, Definition 2.3.4]) A function ψ : IRn → IR is regular at x ∈ IRn

if, for every d ∈ IRn , the directional derivative ψ ′(x; d) exists and satisfies

ψ ′(x; d) = ψ◦(x; d).

Moreover, a vector-valued function Ψ : IRn → IRm is regular if each element of the
function ψi , i = 1, . . . ,m, is regular.

The tangent cone TX (x) of X ⊂ IRn at x is defined by

TX (x) :=
{
d ∈ �n

∣∣∣ d = lim
ν→∞ αν(xν − x), lim

ν→∞ xν = x, xν ∈ X , αν ≥ 0, ν = 1, 2, . . .
}

,

and the normal cone NX (x) of X ⊂ IRn at x is defined as the set of points v if there
exist sequences {xk} ⊂ X and {vk} with

xk → x, vk → v, vk ∈ TX (xk)◦ ∀k,

where TX (x)◦ := {y ∈ IRn | 〈y, z〉 ≤ 0 ∀z ∈ TX (x)} denotes the polar cone of
TX (x).

Definition 2.3 ([3, Definition 4.6.3]) The set X ⊂ IRn is regular at x ∈ X if

NX (x) = TX (x)◦.

Furthermore, X is (simply called) regular if X is regular at all x ∈ X .

The following lemma is a sufficient condition for the regularity of a set.

Lemma 2.1 ([3, Proposition 4.6.3]) If X ⊂ IRn is convex, then X is regular, and the
normal cone, NX (x) = TX (x)◦ under regularity, of X at x ∈ X is equivalent to

NX (x) = {d ∈ IRn | 〈d, z − x〉 ≤ 0 ∀z ∈ X}.

Next we consider an N -player Nash equilibrium problem (NEP). Player labeled
with ν ∈ {1, . . . , N } has xν ∈ IRnν as the strategy vector and Xν ⊂ IRnν as the
strategy set. Player ν solves the following optimization problem:

min
xν∈IRnν

θν(xν, x−ν) s.t. xν ∈ Xν, (2)
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where x−ν := (x1, . . . , xν−1, xν+1, . . . , xN ) ∈ IRn−nν denotes a tuple of strategies
except player ν’s one. Let n := n1 + · · · + nN and the function θν : IRn → IR be
continuously differentiable.

Definition 2.4 (Nash equilibrium) A tuple of strategies x∗ := (x∗,1, . . . , x∗,N ) ∈
X := X1 × · · · × XN is called a Nash equilibrium if for each ν,

x∗,ν ∈ arg min
xν∈Xν

θν(xν, x∗,−ν).

In other words, a Nash equilibrium is a tuple of strategies in which no one can
reduce their cost unilaterally. However, a Nash equilibrium does not always exist in
general, and it is difficult to find even if it exists.

The NEP may be characterized by a variational inequality (VI). Let θν be
differentiable, and define X := X1 × · · · × XN and

F(x) :=
⎡
⎢⎣

∇x1θ
1(x1, x−1)

...

∇xN θN (xN , x−N )

⎤
⎥⎦ . (3)

Proposition 2.1 ([8, Proposition 1.4.2]) Assume that θν(·, x−ν) is convex for any
x−ν ∈ IRn−nν , and Xν ⊂ IRnν is nonempty, closed, and convex. Then, a tuple of
strategies x∗ is a Nash equilibrium if and only if x∗ is a solution to the following VI:

〈F(x∗), x − x∗〉 ≥ 0 ∀x ∈ X . (4)

Notice that even if each player’s optimization (2) is convex, the existence of Nash
equilibrium is not guaranteed. In other words, the solution to variational inequality
(4) may not exist in general. The following proposition ensures the existence of Nash
equilibrium in an N -player NEP.

Proposition 2.2 (Aubin [1]) Suppose that the assumptions of Proposition 2.1 hold.
Assume that Xν ⊂ IRnν is compact for all ν ∈ {1, . . . , N }. Then, the Nash equilibrium
of the NEP in which player ν solves (2) exists.

The uniqueness of Nash equilibrium is stated as below.

Proposition 2.3 Suppose that the assumptions of Proposition 2.2 hold. Assume that
the mapping F : Rn → Rn defined in (3) is strictly monotone on X ⊂ IRn, i.e.,

〈F(x) − F(x ′), x − x ′〉 > 0 ∀x, x ′ ∈ X such that x �= x ′.

Then, the solution to VI (4) is unique, and it is a Nash equilibrium.

Proof [8, Theorem 2.3.3] ensures that the strictly monotone VI has at most one solu-
tion. By the existence result from Proposition 2.2, the Nash equilibrium uniquely
exists. ��
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3 TheMulti-Leader–Multi-Follower Games

Consider anMLMFGof N leaders andM followers. Let Xν ⊂ IRnν and θν : IRn+m →
IR be the strategy set and cost function of leader ν ∈ {1, . . . , N }, respectively, where
m := m1 + · · · + mM . Let Yω(x) ⊂ IRmω and γ ω : IRn+m → IR be the strategy set
and cost function of follower ω ∈ {1, . . . , M}, respectively.

For a fixed all followers’ strategies y ∈ IRm , determined in the future, leader ν

solves the following optimization problem:

min
xν∈IRnν

θν(xν, x−ν, y) s.t. xν ∈ Xν . (5)

After all leaders simultaneously determine their strategies x ∈ X := X1 × · · · × XN ,
follower ω solves the following optimization problem:

min
yω∈IRmω

γ ω(x, yω, y−ω) s.t. yω ∈ Yω(x). (6)

We can also consider the case inwhich the constraintYω(x) of followerω’s problem
also depends on y−ω, i.e., Yω(x, y−ω), referred to as a generalized Nash equilibrium
problem (GNEP). Finding an equilibrium of GNEP, however, is also technical even
in a single-level Nash game, which is not the scope of this paper. Let S(x) be a set of
Nash equilibria in followers’ Nash game. The equilibrium concept of the MLMFG is
considered as follows [16].

Definition 3.1 (Leader–follower Nash equilibrium)A tuple of leaders’ and followers’
strategies (x∗, y∗) =(x∗,1, . . . , x∗,N , y∗,1, . . . , y∗,M ) ∈ X × S(x∗) is referred to
as a pessimistic leader–follower (LF) Nash equilibrium if the following conditions
simultaneously hold:

x∗,ν ∈ argmin
xν∈Xν

max
y∈S(xν ,x∗,−ν )

θν(xν, x∗,−ν, y) ∀ν ∈ {1, . . . , N }. (7)

A tuple of strategies (x∗, y∗) = (x∗,1, . . . , x∗,N , y∗,1, . . . , y∗,M ) ∈ X × S(x∗) is
referred to as an optimistic leader–follower (LF) Nash equilibrium if the following
conditions simultaneously hold:

x∗,ν ∈ argmin
xν∈Xν

min
y∈S(xν ,x∗,−ν )

θν(xν, x∗,−ν, y) ∀ν ∈ {1, . . . , N }. (8)

If S(x) is a singleton for every x , i.e, there exists a unique followers’ Nash equi-
librium for every given leaders’ strategies, both equilibrium concepts are equivalent;
hence we simply call the equilibrium point a leader–follower (LF) Nash equilibrium.

Unfortunately, the pessimistic LF Nash equilibrium may not exist even if θν is
continuous and Xν is compact since

ϕ(xν, x−ν) = max
y∈S(xν ,x−ν )

θν(xν, x−ν, y)
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is not necessarily lower semicontinuous with respect to xν , which implies that there
may not exist the minimizers of ϕ(xν, x−ν). In this paper, we impose that S(x) is a
singleton for every x ∈ X to avoid such a complicated situation; that is, y is uniquely
determined depending on x . Then, to emphasize that y is a function of x , we rewrite
S(x) as y(x) and call it a response function. The sufficient condition for the uniqueness
of followers’ Nash equilibrium will be given later.

Plugging y(x) into each leader’s problem (5) leads that the MLMFG comprised of
(5)–(6) can be reformulated to the following single-level Nash equilibrium problem
among leaders: Leader ν ∈ {1, . . . , N } solves

min
xν∈IRnν

Θν(xν, x−ν) := θν(xν, x−ν, y(xν, x−ν)) s.t. xν ∈ Xν . (9)

We call (9) a reduced problem of (5), and the single-level game in which leader
ν solves (9) is defined as NEP(X , {Θν}Nν=1). By the definition of response function
y(x), the following statement immediately holds.

Proposition 3.1 Let x∗ ∈ X be a Nash equilibrium of NEP(X , {Θν}Nν=1). Then,
(x∗, y(x∗)) is an LF Nash equilibrium of the MLMFG.

Proposition 3.1 indicates that under the uniqueness of followers’ Nash equilibrium
y(x), it is enough to only consider NEP(X , {Θν}Nν=1) instead of the MLMFG (5)–(6).
By utilizing the reduction technique into a single-level NEP, the existence of LF Nash
equilibrium can be stated as below.

Proposition 3.2 Assume the following conditions:

• For any tuple of leaders’ strategies x ∈ X, there exists a unique lower-level
response y(x);

• For any ν, the leaders’ objectives θν and the best response function y are
continuous;

• For any ν, the strategy set Xν is nonempty, convex and compact;
• For any ν, the composition function Θν(xν, x−ν) = θν(xν, x−ν, y(xν, x−ν)) is
convex with respect to xν for any fixed x−ν .

Then, an LF Nash equilibrium of the MLMFG exists.

Proof The assertion is immediately shown by Proposition 2.2. ��
Regrettably, verifying the convexity ofΘν is intrinsically hard since the lower-level

response y(x)may not be written explicitly in general; in some special cases, however,
it is possible, e.g., see Hu and Fukushima [15], Sherali [26], and Herty et al. [10].

These facts lead that the existence of Nash equilibrium is not guaranteed, and if it
exists, finding it is NP-hard in general. Hence, we concentrate on a weaker concept of
Nash equilibrium as stated below. The following concept is derived from a Bouligand
stationarity for a mathematical program with equilibrium constraints (MPEC) [21,
Lemma 4.2.5] and an equilibrium problem with equilibrium constraints (EPEC) [14];
we extended the concept to NEP(X , {Θν}Nν=1).
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Definition 3.2 (Bouligand stationary Nash equilibrium) A tuple of leaders’ strategies
x∗ ∈ X is called a Bouligand (B-) stationary Nash equilibrium of NEP(X , {Θν}Nν=1)

if, for every ν ∈ {1, . . . , N }, x∗,ν ∈ IRnν satisfies

(Θν)′(x∗,ν , x∗,−ν; dν) = ∇xν θν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν))�dν

+ y′
xν (x∗,ν , x∗,−ν; dν)�∇yθ

ν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν))≥0 ∀d ν ∈TXν (x∗,ν),

(10)

where y′
xν (xν, x−ν; dν) ∈ IRm is a partial directional derivative of y with respect to

xν along the direction dν ∈ IRnν in the sense of (1).

We also define a weaker concept of stationary Nash equilibrium, which is derived
from a Clarke stationarity in nonsmooth analysis [3].

Definition 3.3 (Clarke stationaryNash equilibrium)A tuple of leaders’ strategies x∗ ∈
X is called aClarke (C-) stationaryNash equilibrium ofNEP(X , {Θν}Nν=1) if, for every
ν ∈ {1, . . . , N }, x∗,ν ∈ IRnν satisfies:

0 ∈ ∂xν Θν(x∗,ν , x∗,−ν) + TXν (x∗,ν)◦.

4 SmoothingMethods and its Convergence to Stationary Nash
Equilibrium

Since the response function y(x) is nonsmooth, it is difficult to obtain the B-/C-
stationary Nash equilibrium of NEP(X , {Θν}Nν=1) numerically. To overcome this, we
propose a smoothing method and show that as the smoothing parameter decreases,
the sequence of stationary Nash equilibria to the smoothed NEP converges to the
B-/C-stationary Nash equilibrium of NEP(X , {Θν}Nν=1).

4.1 SmoothingMethod

Hereinafter, the strategy set Yω(x) ⊂ IRmω of follower ω ∈ {1, . . . , M}, is defined
by

Yω(x) := {yω ∈ IRmω | gω(x, yω) ≤ 0},

where gω(x, ·) : IRmω → IRlω . Let l := l1 + · · · + lM . Note that we omit the equality
constraints in the model since it is not essential in the analysis.

In the following, we also assume the conditions stated below.

Assumption 4.1 For all ν ∈ {1, . . . , N }, the following conditions hold:

(L1) θν is continuously differentiable;
(L2) The set Xν ⊂ IRnν is nonempty and compact.

In addition, for all ω ∈ {1, . . . , M}, the following conditions hold:
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(F1) γ ω and gω are sufficiently smooth, and γ ω(x, ·, y−ω) is convex for arbitrary
given x and y−ω;

(F2) Yω(x) is nonempty, convex and compact;
(F3) For any given x ∈ X and any feasible solution yω ∈ Yω(x), the lin-

ear independence constraint qualification (LICQ) for the inequality constraint
gω(x, yω) ≤ 0 holds.

Let

G(x, y) :=
⎡
⎢⎣

∇y1γ
1(x, y1, y−1)

...

∇yM γ M (x, yM , y−M )

⎤
⎥⎦ , Y (x) := Y 1(x) × · · · × Y M (x).

Under the convexity assumption on each follower’s optimization problem (6), the
condition for the Nash equilibrium in the followers’ Nash game is equivalently
reformulated as the following VI by Proposition 2.1:

〈G(x, y∗), y − y∗〉 ≥ 0 ∀y ∈ Y (x), (11)

where y∗ ∈ Y (x) denotes the Nash equilibrium. In order to ensure the uniqueness of
the Nash equilibrium in the followers’ Nash game, i.e., the solution of VI (11), we
further assume the following assumptions in this paper.

Assumption 4.2 The Jacobian matrix of the mapping G(x, ·) : IRm → IRm is positive
definite for any fixed x .

Remark 4.1 Let us review the assumptions and problem settings used in the previous
literature on MLMFG. Hu and Fukushima [13] considered the multi-leader–single-
follower quadratic game in which one follower solves the strictly convex quadratic
optimization problem with linear equality constraints. In this setting, the optimality
condition for the follower is necessary and sufficient, and hence the unique response
can be analytically solved; in fact, the follower’s response is linear. Herty et al. [10]
also considered the same quadratic game where the follower solves the strictly convex
quadratic optimization with a positive diagonal matrix for the quadratic term but the
constrains only consists of the componentwise lower bound, i.e., y ≥ l(x), where l(x)
is a linear function of x . In the setting, the follower’s unique response is not smooth
but can be solved analytically. They applied the smoothing method for follower’s
optimality conditions, and they then obtained the smoothed unique response even
though the smoothing term is included.

On the other hand, our settings can be seen as a generalization of theirs since we do
not assume the detailed structure of γ ω(x, ·, ·) or Y (x). Note that the scope of both the
literature above is to identify the existence or uniqueness of the LF Nash equilibrium
of the MLMFG, but we do not consider the existence of LF Nash equilibrium, though
the uniqueness of the Nash equilibrium of the followers’ game is always ensured by
Proposition 4.1.
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Proposition 4.1 Suppose that (F1)–(F3) in Assumptions 4.1 and 4.2 hold. Then the
Nash equilibrium of followers’ Nash game is unique.

Proof By the convexity of γ ω(x, ·, y−ω) and compactness of Yω(x) for all ω, there
exists a Nash equilibrium depending on x ∈ X by Proposition 2.2. By the convex-
ity of Yω(x) for all ω, finding a Nash equilibrium is equivalent to solving VI (11).
Assumption 4.2 implies thatG(x, ·) is strictlymonotone for any fixed x . It then follows
from Proposition 2.3 that the solution to the strictly monotone variational inequality
is at most one. Therefore the Nash equilibrium of the followers’ Nash game uniquely
exists. ��
Remark 4.2 If Y (x) is not compact, the uniqueness still holds if the mapping G(x, ·)
is strongly monotone: There exists σ > 0 such that

〈G(x, y) − G(x, y′), y − y′〉 ≥ σ‖y − y′‖2 ∀y, y′ ∈ Y (x).

Omitting the follower’s label ω, we simplify the notations of the followers’
constraint functions as follows:

g(x, y) = [gi (x, y)]li=1 := [gω(x, yω)]Mω=1.

Since gω(x, yω) is independent of y−ω and for any yω such that gω(x, yω) ≤ 0, yω

satisfies Assumption 4.1–(F3), the LICQ for the collection of inequality constraints
g(x, y) ≤ 0 in VI (11) still holds. Then the KKT conditions for the VI are written as
follows:

G(x, y) + ∇yg(x, y)λ = 0,

g(x, y) + z = 0,

0 ≤ λ ⊥ z ≥ 0, (12)

where z ∈ IRl is a slack variable for the inequality constraint g(x, y) ≤ 0, and
λ ∈ IRl represents the Lagrange multiplier. If (12) is incorporated into the constraints
of each leader’s optimization problem (5), the resultant problem is referred to as an
EPEC. Previous works such as [12, 19] have proposed solution methods for the EPEC
associated with the MLMFG.

Now, using a Fischer–Burmeister function (FB-function) φ0 : IR2 → IR:

φ0(a, b) :=
√
a2 + b2 − (a + b),

the complementarity condition 0 ≤ a ⊥ b ≥ 0 (a ∈ IR, b ∈ IR) is equivalent to
φ0(a, b) = 0. Then, using this property, the complementarity 0 ≤ λ ⊥ z ≥ 0 is
rewritten as

Φ0(λ, z) :=
⎡
⎢⎣

φ0(λ1, z1)
...

φ0(λl , zl)

⎤
⎥⎦ = 0.
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Let

H0(x, y, z, λ) :=
⎡
⎣G(x, y) + ∇yg(x, y)λ

g(x, y) + z
Φ0(λ, z)

⎤
⎦ .

Then, KKT conditions (12) coincide with H0(x, y, z, λ) = 0. Hereinafter, let w :=
(y, z, λ) and H0(x, w) := H0(x, y, z, λ).

Proposition 4.2 Given x ∈ X, let w∗ := (y∗, z∗, λ∗) be the zero of the nonlinear
equation H0(x, w) = 0. If (F1)–(F3) in Assumptions 4.1 and 4.2 hold, then, y∗ is a
Nash equilibriumof the followers’Nash game, and it is uniquely determined depending
on x ∈ X.

Proof Since w∗ = (y∗, z∗, λ∗) satisfies H0(x, w∗) = 0, the tuple also satisfies KKT
conditions (12) for VI (11). It follows from the convexity of Y (x) and [8, Proposition
1.3.4] that y∗ solves (11), which implies y∗ is a Nash equilibrium of the followers’
game by Proposition 2.1. The uniqueness is ensured from Proposition 4.1. ��

Given leaders’ strategies x ∈ X , we denotew(x) := (y(x), z(x), λ(x)) as a solution
to H0(x, w) = 0. Proposition 4.2 states that we can obtain a Nash equilibrium of
followers’ Nash game by solving H0(x, w) = 0. Nevertheless, since H0 is nonsmooth
at which zi = λi = 0, degenerate point, y(x) is nonsmooth. Consequently, reduced
problem (9) is nonsmooth; it is numerically difficult to deal with. To overcome it, we
propose a smoothing approximation scheme for the equation.

Given a positive number ε, the smoothing FB-function φε : IR2 → IR is defined as

φε(a, b) :=
√
a2 + b2 + 2ε2 − (a + b).

It is easy to see that φε is continuously differentiable everywhere, and φε(a, b) →
φ0(a, b) (ε → 0) by continuity.

Replacing φ0 with φε in H0, the perturbed nonlinear system is given by

Hε(x, w) ≡ Hε(x, y, z, λ) = 0.

Now we delve into some properties of H0 and Hε.

Proposition 4.3 Let x ∈ X be fixed. For any ε ≥ 0, if (F1)–(F3) in Assump-
tions 4.1 and 4.2 hold, then the system Hε(x, w) = 0 has a unique solution
wε(x) := (yε(x), zε(x), λε(x)), and (zε(x), λε(x)) satisfies zε(x) > 0 and λε(x) > 0
with [zε(x)]i [λε(x)]i = ε2, where [zε(x)]i and [λε(x)]i denote the i th element of the
vectors zε(x) and λε(x), respectively.

Proof It suffices to show the claim when ε > 0 since we have proved the statement
in the case where ε = 0 in Proposition 4.2. The solvability and uniqueness of the
solution to Hε(x, w) = 0 is proved by Kanzow and Jiang [18, Lemma 3.11]. The
latter statement is easily verified. ��
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We next show the nonsingularity of the (generalized) Jacobian matrix of Hε for any
ε ≥ 0.

Lemma 4.1 Let L ∈ IRm×m be a (not necessarily symmetric) positive definite matrix
and A ∈ IRm×l be arbitrary. Suppose that Ξ ∈ IRl×l and H ∈ IRl×l are diagonal
matrices with negative entries. Then, the matrix

M :=
⎡
⎣ L A O

O I Ξ

A� O H

⎤
⎦ ∈ IR(m+2l)×(m+2l)

is nonsingular.

Proof It suffices to show that the system of equation Mv = 0 has only the trivial
solution v = 0. Let v = (v1, v2, v3), and then we have

Lv1 + Av2 = 0, (13)

v2 + Ξv3 = 0, (14)

A�v1 + Hv3 = 0. (15)

It follows from (13) that v1 = −L−1Av2. Since Ξ is a negative diagonal matrix,
v3 = −Ξ−1v2 in (14). Substituting them for (15) yields

(A�L−1A + HΞ−1)v2 = 0.

Since A�L−1A is positive semidefinite for any A, and HΞ−1 is a diagonal matrix
whose diagonal entries are positive, the coefficient matrix A�L−1A + HΞ−1 is pos-
itive definite. This implies v2 = 0, and then v3 = v1 = 0. We have completed the
proof. ��

The following lemmas are slight modifications of Theorem 3.5 and Lemma 3.12 in
Kanzow and Jiang [18].

Lemma 4.2 Suppose that (F1)–(F3) in Assumptions 4.1 and 4.2 hold. Let x ∈ X and
for ε > 0, w∗ = (y∗, z∗, λ∗) be a solution to Hε(x, w) = 0. Then, the Jacobian
matrix ∇wHε is nonsingular.

Proof The Jacobian of Hε with respect to w = (y, z, λ) is given as follows:

⎡
⎣ L A O

O I Ξ

A� O H

⎤
⎦ ,

where

L := ∇yG(x, y) +
l∑

i=1

∇2
yygi (x, y)λi , (16)
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A := ∇yg(x, y),

Ξ := diag
i=1,...,l

(
zi√

(zi )2 + (λi )2 + 2ε2
− 1

)
= diag

i=1,...,l

(
zi

zi + λi
− 1

)
,

H := diag
i=1,...,l

(
λi√

(zi )2 + (λi )2 + 2ε2
− 1

)
= diag

i=1,...,l

(
λi

zi + λi
− 1

)
. (17)

Here we use zi > 0, λi > 0, and ziλi = ε2. It is obvious that Ξ and H consist of
negative diagonal entries. Since ∇yG(x, ·) is positive definite and g(x, ·) is convex, L
is positive definite. Hence, applying Lemma 4.1 yields the result. ��

For a given x ∈ IRn , we define the index sets below:

J0+(x) := {i | zi (x) = 0 < λi (x)},
J00(x) := {i | zi (x) = 0 = λi (x)},
J+0(x) := {i | zi (x) > 0 = λi (x)},

where zi (x) and λi (x) denote the i th element of z(x) and λ(x).

Lemma 4.3 Suppose that (F1)–(F3) in Assumptions 4.1 and 4.2 hold. For a given
x ∈ X, let w∗ be a solution to H0(x, w) = 0. Assume that the LICQ holds at w∗.
Then, the generalized Jacobian matrix ∂wH0(x, w∗) is nonsingular.

Proof The generalized Jacobian matrix of H0(x, w∗) with respect to w is given by

∂wH0(x, w
∗) =

{
M =

⎡
⎣ L A O

O I Ξ

A� O H

⎤
⎦
∣∣∣∣ L = (16), A = (17),

Ξ = diag
i=1,...,l

(ξi − 1), H = diag
i=1,...,l

(ηi − 1).

}
,

where

ξi ∈
⎧⎨
⎩

{0} if i ∈ J0+(x)
[0, 1] if i ∈ J00(x)
{1} if i ∈ J+0(x)

, ηi ∈
⎧⎨
⎩

{1} if i ∈ J0+(x)
[0, 1] if i ∈ J00(x)
{0} if i ∈ J+0(x)

such that ξ2i + η2i ≤ 1 for all i ∈ J00(x).
It suffices to show the nonsingularity of M for any M ∈ ∂wH0(x, w∗). We show

the the nonsingularity of M� for convenience. Let v = (v1, v2, v3), and M�v = 0 is
given as follows:

L�v1 + Av3 = 0, (18)

A�v1 + v2 = 0, (19)

Ξv2 + Hv3 = 0. (20)
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For i ∈ J0+(x), Ξi = −1 and Hi = 0. Then [v2]i = 0 from (20). For i ∈ J00(x),
since either Ξi or Hi is negative, [v2]i [v3]i ≤ 0 by (20). For i ∈ J+0(x), Ξi = 0 and
Hi = −1. Then [v3]i = 0 from (20). Summarizing these results yields (v2)

�v3 ≤ 0.
Then premultiplying (19) with v3 leads to

(v3)
�A�v1 + (v3)

�v2 = 0

⇐⇒ (v3)
�A�v1 ≥ 0.

Furthermore, premultiplying (18) with v1 follows

(v1)
�L�v1 + (v1)

�Av3 = 0.

Since L� is positive definite and (v1)
�Av3 ≥ 0, v1 = 0, which implies v2 = 0 by

(19). In (18), we have

Av3 = 0 ⇐⇒
l∑

i=1

∇ygi (x, y)v3 =
∑

i∈Ig(x)

∇ygi (x, y)v3 = 0, (21)

where Ig(x) := {i | gi (x, y) = 0, i = 1, . . . , l}, and the last equality holds from
[v3]i = 0 for i ∈ J+0(x). By the LICQ assumption and (21), v3 = 0. Hence, we have
v = 0, and this implies that M is nonsingular. This completes the proof. ��

Summarizing the results of Lemmas 4.2 and 4.3 yields the following proposition.

Proposition 4.4 Suppose that (F1)–(F3) in Assumptions 4.1 and 4.2 hold. For every
ε ≥ 0 and x ∈ X, the (generalized) Jacobian of Hε(x, ·) : IRm+l+l → IRm+l+l is
nonsingular.

In what follows, we also use the notation H(ε, x, w) := Hε(x, w) to emphasize
that ε is one of the variables. In the same way, w(ε, x) ≡ wε(x) and w(ε, x) =
(y(ε, x), z(ε, x), λ(ε, x)) ≡ (yε(x), zε(x), λε(x)).

Lemma 4.4 Suppose that (F1)–(F3) in Assumptions 4.1 and 4.2 hold. For every ε ≥ 0,
H(ε, x, w), as a function of the variables (ε, x, w), is locally Lipschitz continuous
and regular.

Proof Since (F1) holds, and thus all the remaining components of H(ε, x, w) except
the FB-function φε when ε = 0 are continuously differentiable from (F1), we only
need to show that the locally Lipschitz continuity and regularity of φ0. It is obvious
that φ0 is convex by its definition. It follows from [6, Proposition 2.3.6-(b)] that φ0 is
regular, and also φ0 is locally Lipschitz continuous whenever λi and zi are bounded,
where the boundedness of λi and zi is satisfied from Assumptions (F2) and (F3). ��
Proposition 4.5 Let (ε, x, w) be such that H(ε, x, w) = 0. If (F1)–(F3) in Assump-
tions 4.1 and 4.2 hold, then there is a neighborhood U × Ω ⊂ IR1+n of (ε, x) and
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a locally Lipschitz continuous function w : U × Ω → IRm+l+l such that for each
(ε, x) ∈ U × Ω ,

H(ε, x, w(ε, x)) = 0.

Moreover, for any fixed ε ∈ U \{0},wε : Ω → IRm+l+l is continuously differentiable.

Proof Lemma 4.4, Proposition 4.4, the implicit function theorem [6, Corollary to
Theorem 7.1.1], and [7, Lemma 2] ensure that w is locally Lipschitz continuous on
Ω . The latter claim is obtained from a well-known result in elementary calculus. ��

Note that the local Lipschitz continuity of w(·, ·) from Proposition 4.5 implies that
wε(x) → w(x∗), i.e.,

yε(x) → y(x∗), zε(x) → z(x∗), λε(x) → λ(x∗),

as x → x∗ and ε ↓ 0, and for any ε > 0. Now we show some properties of w(·, ·) and
wε(·).

By the compactness assumption of X ⊂ IRn and continuity assumption, the
following statement holds, which is derived from the elementary calculus.

Proposition 4.6 Under (F1)–(F3) in Assumption 4.1, if (L2) in Assumption 4.1 holds,
then the function w : IR1+n → IRm+l+l is compact-valued over X, and for any fixed
ε ≥ 0, its partial (generalized) Jacobian matrix ∂xwε is also compact.

Lemma 4.5 For a positive sequence {εk} converging to 0, let aεk > 0 and bεk > 0 for
all k and converging to 0. Suppose that

ξ̂ k := aεk√
a2εk + b2εk + 2ε2k

, η̂k := bεk√
a2εk + b2εk + 2ε2k

.

Then their limits, if they exist, are denoted by ξ̂◦ and η̂◦, respectively, and satisfy
ξ̂◦, η̂◦ ∈ [0, 1] and (ξ̂◦)2 + (η̂◦)2 ≤ 1.

Proof Let aεk = rk cos θk and bεk = rk sin θk , where rk → 0. Then we have

ξ̂ k = cos θk√
1 + 2(εk/rk)2

, η̂k = sin θk√
1 + 2(εk/rk)2

.

Obviously, their limits ξ̂◦, η̂◦ satisfy ξ̂◦, η̂◦ ∈ [0, 1]. Furthermore,

(ξ̂ k)2 + (η̂k)2 = 1

1 + 2(εk/rk)2
< 1,

for all k = 1, 2, . . . . Therefore, (ξ̂◦)2 + (η̂◦)2 ≤ 1. ��
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Proposition 4.7 Under (F1)–(F3) in Assumptions 4.1 and 4.2, there is a positive
sequence {εk} tending to 0 such that

{
lim
k→∞ ∇wεk (x

k)

}
⊂ ∂w(x∗). (22)

Proof By the local Lipschitz continuity of w(·), the generalized Jacobian ∂w(x) is
given by

∂w(x∗) = conv

{
lim
x→x∗ ∇w(x)

∣∣∣∣ x ∈ D
}

,

whereD ⊂ IRn denotes the set of points at which w is differentiable; to be exact, that
of points at which y and λ are differentiable because if y(·) is differentiable at x∗, z(·)
is also differentiable at x∗ from the definition of z. Hence, it suffices to show, instead
of (22), that

{
lim
k→∞ ∇wεk (x

k)

}
⊂ conv

{
lim
x→x∗ ∇w(x)

∣∣∣∣ x ∈ D
}

. (23)

For εk > 0, Proposition 4.5 leads that the gradient of wεk at x
k is given by

∇wεk (x
k) =

[
∇ yεk (x

k), ∇zεk (x
k), ∇λεk (x

k)
]

= −∇x Hεk (x
k, yεk (x

k), zεk (x
k), λεk (x

k))⎡
⎣∇y Hεk (x

k, yεk (x
k), zεk (x

k), λεk (x
k))

∇z Hεk (x
k, yεk (x

k), zεk (x
k), λεk (x

k))

∇λHεk (x
k, yεk (x

k), zεk (x
k), λεk (x

k))

⎤
⎦

−1

= − [L ′
εk

, A′
εk

, O
]⎡⎣ Lεk Aεk O

O I Ξεk

A�
εk

O Hεk

⎤
⎦

−1

, (24)

where

Lεk := ∇yG(xk, yεk (x
k)) +

l∑
i=1

[λεk (x
k)]i∇2

yygi (x
k, yεk (x

k)),

Aεk := ∇yg(x
k, yεk (x

k)),

L ′
εk

:= ∇xG(xk, yεk (x
k)) +

l∑
i=1

[λεk (x
k)]i∇2

xygi (x
k, yεk (x

k)),

A′
εk

:= ∇x g(x
k, yεk (x

k)),

Ξεk := diag
i=1,...,l

⎛
⎝ [zεk (xk)]i√

[zεk (xk)]2i + [λεk (x
k)]2i + 2ε2k

− 1

⎞
⎠
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= diag
i=1,...,l

( [zεk (xk)]i
[zεk (xk)]i + [λεk (x

k)]i − 1

)
,

Hεk := diag
i=1,...,l

⎛
⎝ [λεk (x

k)]i√
[zεk (xk)]2i + [λεk (x

k)]2i + 2ε2k

− 1

⎞
⎠

= diag
i=1,...,l

( [λεk (x
k)]i

[zεk (xk)]i + [λεk (x
k)]i − 1

)
.

Here, the second equality in Ξεk and Hεk holds from Proposition 4.3 and since
ε > 0. Let

ξ̂ ki := [zεk (xk)]i√
[zεk (xk)]2i + [λεk (x

k)]2i + 2ε2k

, η̂ki := [λεk (x
k)]i√

[zεk (xk)]2i + [λεk (x
k)]2i + 2ε2k

,

and the limits of ξ̂ k and η̂k be ξ̂◦ and η̂◦, respectively. Since (zεk , λεk ) is compact-
valued on X from Proposition 4.6, there exists a limit for appropriately chosen {εk}
and using Lemma 4.5, we have

Ξ̄◦
i =

⎧⎨
⎩

−1 if i ∈ J0+(x∗),
ξ̂◦
i − 1 if i ∈ J00(x∗),
0 if i ∈ J+0(x∗),

H̄◦
i =

⎧⎨
⎩
0 if i ∈ J0+(x∗),
η̂◦
i − 1 if i ∈ J00(x∗),

−1 if i ∈ J+0(x∗),

where ξ̂◦
i , η̂◦

i ∈ [0, 1] such that (ξ̂◦
i )2 + (η̂◦

i )
2 ≤ 1. In addition, since G(·) and g(·) are

smooth, and (y, z, λ)(·, ·) is continuous, we can take the limits Lεk → L̄ , Aεk → Ā,
L ′

εk
→ L̄ ′, and A′

εk
→ Ā′. Letting∇w◦(x∗) := (∇ y◦(x∗),∇z◦(x∗),∇λ◦(x∗)) be the

limit of (24), we have

∇w◦(x∗)� =
⎡
⎣∇ y◦(x∗)�

∇z◦(x∗)�
∇λ◦(x∗)�

⎤
⎦ = −

⎡
⎣ L̄� O Ā
Ā� I O
O Ξ̄◦ H̄◦

⎤
⎦

−1
⎡
⎢⎣
L̄ ′�

Ā′�

O

⎤
⎥⎦ .

Now we show that

∇w◦(x∗) ∈ conv

{
lim

x→x∗,x∈D
∇w(x)

}
. (25)

for {εk} appropriately chosen.
We first consider the case where x∗ ∈ D. Let

T (x) := H0(x, w(x)) ≡ 0 ∀x ∈ X ,
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because w(x) is the solution to the system H0(x, w) = 0 for a fixed x ∈ X . For a
given xk ∈ D, by differentiating both sides of T (x) ≡ 0, we have

∇w(xk)� =
⎡
⎣∇ y(xk)�

∇z(xk)�
∇λ(xk)�

⎤
⎦ = −

⎡
⎣ Lk

� O Ak

A�
k I O
O Ξk Hk

⎤
⎦

−1⎡
⎣ L ′

k
�

A′
k
�

O

⎤
⎦ ,

where

Lk := ∇yG(xk, y(xk)) +
l∑

i=1

λi (x
k)∇2

yygi (x
k, y(xk)),

Ak := ∇yg(x
k, y(xk)),

L ′
k := ∇xG(xk, y(xk)) +

l∑
i=1

λi (x
k)∇2

xygi (x
k, y(xk)),

A′
k := ∇x g(x

k, y(xk)),

Ξk := diag
i=1,...,l

(
zi (xk)√

zi (xk)2 + λi (xk)2
− 1

)
,

Hk := diag
i=1,...,l

(
λi (xk)√

zi (xk)2 + λi (xk)2
− 1

)
,

Note that letting

ξ ki := zi (xk)√
zi (xk)2 + λi (xk)2

, ηki := λi (xk)√
zi (xk)2 + λi (xk)2

,

where ξ ki , ηki ∈ [0, 1] such that (ξ ki )2 + (ηki )
2 = 1 yields

(Ξk)i =
⎧⎨
⎩

−1 if i ∈ J0+(xk),
ξ ki − 1 if i ∈ J00(xk),
0 if i ∈ J+0(xk),

(Hk)i =
⎧⎨
⎩
0 if i ∈ J0+(xk),
ηki − 1 if i ∈ J00(xk),
−1 if i ∈ J+0(xk).

Now as k → ∞, i.e., xk → x∗, by the continuity of the involved functions, we have

∇w(x∗)� =
⎡
⎣∇ y(x∗)�

∇z(x∗)�
∇λ(x∗)�

⎤
⎦ = −

⎡
⎣ L̄� O Ā
Ā� I O
O Ξ̄ H̄

⎤
⎦

−1
⎡
⎢⎣
L̄ ′�

Ā′�

O

⎤
⎥⎦ , (26)

where

Ξ̄i =
⎧⎨
⎩

−1 if i ∈ J0+(x∗),
ξ̄i − 1 if i ∈ J00(x∗),
0 if i ∈ J+0(x∗),

H̄i =
⎧⎨
⎩
0 if i ∈ J0+(x∗),
η̄i − 1 if i ∈ J00(x∗),
−1 if i ∈ J+0(x∗),

(27)
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for ξ̄i , η̄i ∈ [0, 1] such that (ξ̄i )
2 + (η̄i )

2 = 1. Now taking the convex hull of the set
that consists of (26) yields that

conv

⎧⎨
⎩ lim

x→x∗
x∈D

∇w(x)

⎫⎬
⎭ =

{
∇w(x∗)

∣∣∣ (26) and (27) for ξ̄i , η̄i ∈ [0, 1] s.t. ξ̄2i + η̄2i ≤ 1 for all i ∈ J00(x
∗).
}

From the observation above, we can choose ξ̄i and η̄i so that (25) holds.
Next, we consider the case where x∗ /∈ D. For xk ∈ D, by the continuity of ∇wεk ,

we have

lim
ε↓0 ∇wε(x

k) − ∇w(xk) = 0.

Hence for xk ∈ D, there exists εk > 0 such that

‖∇wεk (x
k) − ∇w(xk)‖ ≤ ‖xk − x∗‖,

since the value of the left-hand side of the above inequality is sufficiently close to 0
for εk sufficiently small. This implies that ‖∇wεk (x

k) − ∇w(xk)‖ → 0 as xk → x∗
and εk → 0.

Since {∇wεk (x
k)} has a limit, we have

lim
k→∞ ∇w(xk) = lim

k→∞[∇wεk (x
k) − {∇wεk (x

k) − ∇w(xk)}]
= lim

k→∞ ∇wεk (x
k) − lim

k→∞{∇wεk (x
k) − ∇w(xk)}

= ∇w◦(x∗) − 0 = ∇w◦(x∗).

Hence it follows that

∇w◦(x∗) = lim
k→∞ ∇w(xk) ∈ conv

⎧⎨
⎩ lim

x→x∗
x∈D

∇w(x)

⎫⎬
⎭ .

We have thus completed the proof. ��
Corollary 4.1 Under the same assumption as Proposition 4.7, for a positive sequence
{εk} that satisfies (22), the following inclusion also holds:

{
lim
k→∞ ∇ yεk (x

k)

}
⊂ ∂ y(x∗).

Proof By Proposition 4.7, we have

lim
k→∞ ∇wεk (x

k) = ∇w◦(x∗),
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and [6, Proposition 2.6.2] leads to

∂w(x∗) ⊂ ∂ y(x∗) × ∂z(x∗) × ∂λ(x∗).

It then follows that

∇w◦(x∗) = [∇ y◦(x∗),∇z◦(x∗),∇λ◦(x∗)] ∈ ∂ y(x∗) × ∂z(x∗) × ∂λ(x∗).

��
By the observation from Corollary 4.1, it may be reasonable to assume that

{
lim
k→∞ ∇xν yεk (x

k,ν , xk,−ν)

}
⊂ ∂xν y(x∗,ν , x∗,−ν). (28)

Remark 4.3 Obviously, the relation (28) holds when N = 1, i.e., the single-leader–
multi-follower game.

Herty et al. [10] proposed a smoothing method for a special case of multi-leader–
single-follower game in which the follower’s response y(x) can explicitly be obtained,
while we consider the case where the response cannot be written explicitly in general.
Nevertheless, the gradient of the response function can be computed as indicated
in (24). In fact, computing the inverse of the block matrix in (24), ∇ yεk (x

k) is given
as follows:

∇ yεk (x
k) = − L ′

εk

(
I + L−1

εk
[Aεk O]

[
I Ξεk

A�
εk
L−1

εk
Aεk Hεk

]−1 [ O
A�

εk

])
L−1

εk

+ [A′
εk

O]
[

I Ξεk

A�
εk
L−1

εk
Aεk Hεk

]−1 [ O
A�

εk

]
L−1

εk
.

By Proposition 4.5, reduced problem (9) may be approximated by a differentiable
optimization problem:

min
xν∈Xν

Θν
ε (xν, x−ν) := θν(xν, x−ν, yε(x

ν, x−ν)). (29)

Now let NEP(X , {Θν
ε }Nν=1) be the game in which leader ν ∈ {1, . . . , N } solves (29).

If NEP(X , {Θν
ε }Nν=1) has a Nash equilibrium, i.e., there exists x∗ such that

x∗,ν ∈ arg min
xν∈Xν

Θν
ε (xν, x∗,−ν),

then the following assertion holds.

Theorem 4.3 Let a sequence {xk}k∈N be such that each xk is a Nash equilibrium
of NEP(X , {Θν

εk
}Nν=1). If {xk}k∈N converges to x∗, then x∗ is a Nash equilibrium of

NEP(X , {Θν}Nν=1). Moreover, (x∗, y(x∗)) is an LF Nash equilibrium of the MLMFG.
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Proof The former assertion can be shown using [14, Theorem 4.5], and the latter one
holds from Proposition 3.1. ��

However, analogous to the claim forNEP(X , {Θν}Nν=1) before, since (29) is also not
convex in general, the Nash equilibrium of NEP(X , {Θν

ε }Nν=1) may not exist. Hence,
we introduce the following stationary equilibrium concept for the nonconvex NEP.

Definition 4.1 (Stationary Nash equilibrium) A tuple of strategies x∗ ∈ X is referred
to as a stationary Nash equilibrium of NEP(X , {Θν

ε }Nν=1) if x
∗,ν satisfies the following

condition for all ν ∈ {1, . . . , N }:

(Θν
ε )′(x∗,ν , x∗,−ν; dν) = 〈∇xν Θν

ε (x∗,ν , x∗,−ν), dν〉 ≥ 0 ∀dν ∈ TXν (x∗,ν), (30)

which is equivalent to

∇xν θν(x∗,ν , x∗,−ν, yε(x
∗,ν , x∗,−ν))�dν+

dν�∇xν yε(x
∗,ν , x∗,−ν)∇yθ

ν(x∗,ν , x∗,−ν, yε(x
∗,ν , x∗,−ν)) ≥ 0 ∀dν ∈ TXν (x∗,ν).

Definition 4.1 implies that for all ν, x∗,ν ∈ Xν is a stationary point of reduced problem
(29) for fixed x∗,−ν . Note that since Θν

ε is differentiable, Eq. (30) is equivalent to

0 ∈ ∇xν Θν
ε (x∗,ν , x∗,−ν) + TXν (x∗,ν)◦,

which means that the B-/C-stationary Nash equilibrium, introduced in Definitions 3.2
and 3.3, are equivalent under the differentiability of Θν

ε .
In practice, we obtain a stationary Nash equilibrium of NEP(X , {Θν

ε }Nν=1) sequen-
tially as ε > 0 decreases to find an approximate B-/C-stationary Nash equilibrium for
NEP(X , {Θν}Nν=1).

If Xν is convex for all ν, the equilibrium can be computed by solving the following
variational inequality problem: Find x∗ ∈ X such that

〈F�
ε (x∗), x − x∗〉 ≥ 0 ∀x ∈ X , (31)

where

F�
ε (x) :=

⎡
⎢⎣

∇x1Θ
1
ε (x1, x−1)

...

∇xN ΘN
ε (xN , x−N )

⎤
⎥⎦ .

The following proposition guarantees that the solution to VI (31) is the stationaryNash
equilibrium for NEP(X , {Θν

ε }Nν=1).

Proposition 4.8 Suppose that Xν ⊂ IRnν is convex for all ν. Let x∗ ∈ X be a solution
to (31). Then, x∗ ∈ X is a stationary Nash equilibrium for NEP(X , {Θν

ε }Nν=1).
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Proof Let (xν, x∗,−ν) = (x∗,1, . . . , x∗,ν−1, xν, x∗,ν+1, . . . , x∗,N ), where xν ∈ Xν is
arbitrary, Eq. (31) is reduced to

〈∇xν Θν
ε (x∗,ν , x∗,−ν), xν − x∗,ν〉 ≥ 0 ∀xν ∈ Xν . (32)

By Lemma 2.1, Eq. (32) is equivalent to

0 ∈ ∇xν Θν(x∗,ν , x∗,−ν; ε) + NXν (x∗,ν)

⇐⇒ 0 ∈ ∇xν Θν(x∗,ν , x∗,−ν; ε) + TXν (x∗,ν)◦,

which coincides with (30). The claim holds for all ν, and thus x∗ ∈ X is a stationary
Nash equilibrium for NEP(X , {Θν

ε }Nν=1). ��
Proposition 4.9 Suppose that Assumptions 4.1 and 4.2 hold, and Xν ⊂ IRnν is
convex for all ν. For each ε > 0, there exists a stationary Nash equilibrium to
NEP(X , {Θν

ε }Nν=1).

Proof It suffices to show that there exists a solution to variational inequality (31) by
the convexity of X . Since F�

ε is continuous, the solution set of (31) is nonempty and
compact by [8, Corollary 2.2.5]. ��

4.2 Convergence to Stationary Nash Equilibrium

In this subsection we show that the sequence of the stationary Nash equilib-
rium of NEP(X , {Θν

εk
}Nν=1) converges to the B-/C-stationary Nash equilibrium of

NEP(X , {Θν}Nν=1) for appropriately chosen {εk}.
Theorem 4.4 Suppose that Assumptions 4.1, 4.2, and (28) hold for all ν ∈ {1, . . . , N }.
Assume that Xν is regular for all ν. Let {xk} be a sequence of stationary Nash
equilibria of NEP(X , {Θν

εk
}Nν=1), i.e., x

k,ν satisfies (30) for all ν. Then every accu-
mulation point x∗ of the sequence {xk} is a C-stationary Nash equilibrium of
NEP(X , {Θν}Nν=1). Moreover, assume that the reduced cost function Θν(xν, x−ν) :=
θν(xν, x−ν, y(xν, x−ν)) is regular with respect to xν at x∗ for all ν. Then, x∗ is a
B-stationary Nash equilibrium of NEP(X , {Θν}Nν=1).

Proof Since xk,ν is a stationary Nash equilibrium of NEP(X , {Θν
εk

}Nν=1), for leader ν

xk,ν ∈ Xν , under the regularity of Xν , satisfies

0 ∈ ∇xν Θν
εk

(xk,ν , xk,−ν) + NXν (xk,ν)

⇐⇒ 0 ∈ ∇xν θν(xk,ν , xk,−ν, yεk (x
k,ν , xk,−ν))+

∇xν yεk (x
k,ν , xk,−ν)∇yθ

ν(xk,ν , xk,−ν, yεk (x
k,ν , xk,−ν)) + NXν (xk,ν).

By the compactness of X , we can assume that x∗ is an accumulation point of {xk}
without loss of generality. The continuity of ∇xν θν , ∇yθ

ν , and y(·) along with
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Proposition 4.5 implies that

lim
k→∞ ∇xν θν(xk,ν , xk,−ν, yεk (x

k,ν , xk,−ν)) = ∇xν θν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν)),

lim
k→∞ ∇yθ

ν(xk,ν , xk,−ν, yεk (x
k,ν , xk,−ν)) = ∇yθ

ν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν)).

From the assumption of (28), there exists a matrix V ∗,ν ∈ IRnν×m such that

V ∗,ν = lim
k→∞ ∇xν yεk (x

k,ν , xk,−ν) ∈ ∂xν y(x∗,ν , x∗,−ν). (33)

Since xk → x∗, −∇xν Θν
εk

(xk,ν , xk,−ν) ∈ NXν (xk,ν), and ∇xν Θν
εk

(xk,ν , xk,−ν) →
∇xν Θν(x∗,ν , x∗,−ν) from the observation above, by [25, Proposition 6.6], we have
−∇xν Θν(x∗,ν , x∗,−ν) ∈ NXν (x∗,ν), which implies that

0 ∈ ∇xν θν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν))

+ V ∗,ν∇yθ
ν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν)) + NXν (x∗,ν). (34)

Since θν is strictly differentiable with respect to y, the Jacobian chain rule [6, Theorem
2.6.6] can be applied and then yields

∂xν Θν(x∗,ν , x∗,−ν) =∇xν θν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν))

+ ∂xν y(x∗,ν , x∗,−ν)∇yθ
ν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν)).

Then (34) implies 0 ∈ ∂xν Θν(x∗,ν , x∗,−ν) + NXν (x∗,ν). The claim simultaneously
holds for all ν; thus, x∗ is a C-stationary Nash equilibrium of NEP(X , {Θν}Nν=1).

Now we show the convergence to B-stationary Nash equilibrium by assuming the
regularity of Θν . Since Xν is regular for all ν, X is also regular. By [3, Proposition
4.6.3], (34) is equivalent to

∇xν θν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν))�dν+
dν�V ∗,ν∇yθ

ν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν)) ≥ 0 ∀dν ∈ TXν (x∗,ν).

The regularity assumption of Θν and [6, Proposition 2.1.2 (b)] leads that

(Θν)′(x∗,ν , x∗,−ν; dν) = max{ζ ν�dν | ζ ν ∈ ∂xν Θν(x∗,ν , x∗,−ν)} ≥
∇xν θν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν))�dν

+ dν�V ∗,ν∇yθ
ν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν)) ≥ 0 ∀dν ∈ TXν (x∗,ν).

The above assertion holds for every ν, which implies that x∗ is a B-stationary Nash
equilibrium point of NEP(X , {Θν}Nν=1). ��
Remark 4.4 Hori and Fukushima [12] showed the convergence to B-stationary Nash
equilibrium with a squared penalty method for an EPEC associated with MLMFG,
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which means that the case when the penalty parameter ρk → ∞. As is well known,
the squared penalty method is easily failed to be ill-conditioned. Then they proposed a
refinement procedure after obtaining an ‘approximated’B-stationaryNash equilibrium
with the penalty method. However, the accumulation point obtained with the refine-
ment may not guarantee the B-stationarity but only the weak stationarity because both
problems are intrinsically different from each other. Meanwhile, our method enables
us to obtain the B-stationary Nash equilibrium accurately.

If Xν ⊂ IRnν is given by

Xν := {xν ∈ IRnν | uν(xν) ≤ 0, vν(xν) = 0}, (35)

where uν : IRnν → IR pν and vν : IRnν → IRqν are continuously differentiable, the
convergence result of Theorem 4.4 can be shown without regularity assumption of Xν

under an appropriate constraint qualification.

Definition 4.2 For each ν ∈ {1, . . . , N }, we say that the Mangasarian–Fromovitz
constraint qualification (MFCQ) holds at x̄ν ∈ Xν if ∇vν

j (x̄
ν), j = 1, . . . , qν , are

linearly independent, and there exists dν ∈ IRnν such that 〈∇uν
i (x̄

ν), dν〉 < 0 for all
i ∈ I(x̄ν) := {i | uν

i (x̄
ν) = 0} and 〈∇vν

j (x̄
ν), d〉 = 0 for all j = 1, . . . , qν .

Corollary 4.2 Suppose that Assumptions 4.1 and 4.2 hold, and assume that (28) holds
for all ν ∈ {1, . . . , N }. Suppose also that the MFCQ holds for all ν at every accumu-
lation point x∗ of the sequence {xk}. Then x∗ is a C-stationary Nash equilibrium for
NEP(X , {Θν}Nν=1). Moreover, if Θν is regular with respect to xν at x∗ for all ν, then
x∗ is a B-stationary Nash equilibrium for NEP(X , {Θν}Nν=1).

Proof Under the MFCQ assumption, there exists Lagrange multipliers ζ≤,k,ν ∈ IR pν+
and ζ=,k,ν ∈ IRqν satisfying the following optimality condition of (29):

∇xν Θν
εk

(xk,ν , xk,−ν) + ∇uν(xk,ν)ζ≤,k,ν + ∇vν(xk,ν)ζ=,k,ν = 0, (36)

0 ≤ ζ≤,ν ⊥ −uν(xk,ν) ≥ 0, (37)

vν(xk,ν) = 0. (38)

By the continuity of ∇xν θν , ∇yθ
ν , and y along with Proposition 4.5, there exists a

limit (x∗, ζ≤,∗, ζ=,∗) of KKT conditions (36) because the sequence {(xk, ζ≤,k, ζ=,k)}
of KKT tuple is bounded by the MFCQ. Then we obtain

∇xν θν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν)) + V ∗,ν∇yθ
ν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν))

+∇uν(x∗,ν)ζ≤,∗,ν + ∇vν(x∗,ν)ζ=,∗,ν = 0, (39)

0 ≤ ζ≤,∗,ν ⊥ −uν(x∗,ν) ≥ 0, (40)

vν(x∗,ν) = 0, (41)

where V ∗,ν is defined in (33). It follows from the Jacobian chain rule that (39) implies
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0 ∈ ∇xν θν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν))

+ ∂xν y(x∗,ν , x∗,−ν)∇yθ
ν(x∗,ν , x∗,−ν, y(x∗,ν , x∗,−ν))

+ ∇uν(x∗,ν)ζ≤,∗,ν + ∇vν(x∗,ν)ζ=,∗,ν . (42)

Under the MFCQ, KKT conditions (42), (40), and (41) coincide with 0 ∈
∂xν Θν(x∗,ν , x∗,−ν) + TXν (x∗,ν)◦, and thus x∗ is a C-stationary Nash equilibrium
of NEP(X , {Θν}Nν=1).

The latter claim can also be shown by the same manner as Theorem 4.4. ��
Remark 4.5 It is easy to see that B- and C-stationarity are equivalent when z and λ

satisfy the strict complementarity; that is, zi + λi > 0 for all i = 1, . . . , l.

5 Numerical Experiments

In this section, we report results of numerical experiments conducted to illustrate the
behavior of the proposedmethodwith a toy example. First, we introduce a two-leader–
two-follower game, i.e., N = 2 and M = 2.

We refer to the extended model of Hori and Fukushima [12] with the nonnegative
constraint xν ≥ 0 on each leader’s optimization problem. Leader ν ∈ {1, 2} solves the
following problem:

min
xν∈IR2

1

2
(xν)�Hνx

ν + (xν)�Gν,−νx
−ν +

∑
ω=1,2

(xν)�Dν,ωy
ω + (qν)�xν

s.t. Aνx
ν ≤ bν, xν ≥ 0, (43)

where Hν ∈ IRnν×nν , Gν,−ν ∈ IRnν×n−ν , Dν,ω ∈ IRnν×mω , Aν ∈ IR pν×nν , and
bν ∈ IR pν . Since the number of leaders is two, i.e., N = 2, the label−ν for adversarial
leaders is the other one; for example, for ν = 1, −ν = 2, and then x−ν = x2 and
Gν,−ν = G1,2. For ν = 2, x−ν = x1, Gν,−ν = G2,1, and vice versa, i.e., for ν = 2,
x−ν = x1 and Gν,−ν = G2,1.

Follower ω ∈ {1, 2} solves the following problem:

min
yω∈IR2

1

2
(yω)�Mωy

ω + (yω)�Qω,−ωy
−ω −

∑
ν=1,2

(xν)�Dν,ωy
ω

s.t. (cω)�yω +
∑

ν=1,2

(dν)�xν + aω ≥ 0, yω ≥ 0. (44)

where Mω, ω = 1, 2, are symmetric positive definite. Similarly, the label −ω for
adversarial followers is the other one; for example, for ω = 1, y−ω = y2, Qω,−ω =
Q1,2, and vice versa. Although it is a quadratic game, it cannot be solved by the
approaches given in the previous works [13] and [10] because the response y(x)
cannot be obtained explicitly due to the non-diagonal matrices Mω and the coefficient
vector cω of yω as also indicated in Remark 4.1.
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The KKT conditions of (44), ω = 1, 2, are given as follows:

0 ≤
[
y1

y2

]
⊥
[

M1 Q1,2
Q2,1 M2

] [
y1

y2

]
−
[
D�
1,1 D�

2,1
D�
1,2 D�

2,2

] [
x1

x2

]
−
[
c1 0
0 c2

] [
λ1
λ2

]
≥ 0,

0 ≤
[

λ1
λ2

]
⊥
[

(c1)� 0
0 (c2)�

] [
y1

y2

]
+
[

(d1)� (d2)�
(d1)� (d2)�

] [
x1

x2

]
+
[
a1
a2

]
≥ 0.

To ensure the uniqueness of the Nash equilibrium y, we assume that

[
M1 Q1,2
Q2,1 M2

]

is positive definite. Let yε(x) be a partial solution to the perturbed KKT conditions of
(44) with the smoothing method. Here, we define

A :=
[
A1

A2

]
, b :=

[
b1

b2

]
, X := {x ∈ IRn | Ax ≤ b, x ≥ 0},

and

F�
ε (x) :=

[∇x1Θ
1
ε (x1, x2)

∇x2Θ
2
ε (x1, x2)

]
,

where

∇xν Θν
ε (xν, x−ν) =Hνx

ν + Gν,−νx
−ν+∑

ω=1,2

(
Dν,ωy

ω
ε (xν, x−ν) + ∇xν yω

ε (xν, x−ν)D�
ν,ωx

ν
)
.

Then the stationary Nash equilibrium of NEP(X , {Θν
ε }Nν=1)must satisfy the following

VI: Find x∗
ε ∈ X such that

〈F�
ε (x∗

ε ), x − x∗
ε 〉 ≥ 0 ∀x ∈ X , (45)

and its KKT conditions are written as the nonlinear complementarity problem:

0 ≤ F�
ε (x) + A�μ ⊥ x ≥ 0, (46)

0 ≤ b − Ax ⊥ μ ≥ 0. (47)

Let v := (x, μ) ∈ IRn+p and

F̂ε(v) :=
[
F�

ε (x) + A�μ

b − Ax

]
, Ψ ε(v) :=

⎡
⎢⎣

φ0(v1, F̂ε
1 (v))

...

φ0(vn+p, F̂ε
n+p(v))

⎤
⎥⎦ .
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Then NCP (46)–(47) is reformulated as the nonsmooth equationΨ ε(v) = 0. We solve
NCP (46)–(47) by semismooth Newton’s method proposed for NCP by Luca et al.
[20], and we use 1/2‖Ψ ε(v)‖22 as a merit function in the line search algorithm. The
stopping criterion is given by

‖min{v, F̂ε(v)}‖∞ < (n + p) × 10−6,

where the min operator means the componentwise minimum value. The numerical
instances are shown below:

n1 = n2 = 2, p1 = p2 = 2, m1 = m2 = 2,

H1 =
[

3 −4
−4 2

]
, H2 =

[
4 −5

−5 −3

]
,G1,2 =

[
2 −1
2 2

]
,G2,1 = −G�

1,2,

D1,1 =
[
1 2
2 1

]
, D2,1 =

[
2 1
1 1

]
, D1,2 =

[
1 2
1 1

]
, D2,2 =

[
2 1
1 2

]
,

q1 =
[−6

−6

]
, q2 =

[−6
−6

]
, A1 =

[
2 1
1 2

]
, A2 =

[
1 2
2 1

]
, b1 =

[
3
1

]
, b2 =

[
3
1

]
,

M1 =
[
3 1
1 3

]
, M2 =

[
2 1
1 3

]
, Q1,2 =

[
1 1
1 2

]
, Q2,1 = −Q�

1,2,

c1 =
[−1

−1

]
, c2 =

[−1
−1

]
, d1 =

[
1
1

]
, d2 =

[
1
1

]
, a1 = 4, a2 = 4.

We solve NCP (46)–(47) sequentially as εk decreases, where εk = 0.9k , k =
0, . . . , 74. We run the algorithm with the initial point x0 := (3, 3, 3, 3). Here, y, z, λ
is unique then without initial points, they are uniquely determined depending on x0.
Figure1a–d depict the stationary Nash equilibrium for εk , k = 0, . . . , 74, and the
sequence {xk} converges to x∗. We set other initial points, but the convergent point
and the curve are similar to those figures.

Remark 5.1 The semismooth Newton’s method uses ∇F�
ε (x) with the Hessian matrix

∇2yε(x) of the response function yε(x), which requires the Hessian of Hε(x, y, z, λ)

with respect to (y, z, λ) and so on. However, the formula of ∇2yε(x) is much compli-
cated to obtain, and thus we use a numerical differentiation. Hence, the accuracy of
the numerical results when ε is very small may not be guaranteed.

Wenowconclude this section.Weverified the behavior of the proposedmethodwith
a toy example, and all the solutions xk and yεk (x

k) converge to the B-stationary Nash
equilibrium as εk → 0. Meanwhile, we require the Jacobian matrix of F�

ε (x) to solve
variational inequality (45) with gradient-based method which includes the Hessian
matrix of the response function yε(x). Hence the computation of the Hessian matrix
and its inverse is, of course, expensive when the dimension of followers’ problems is
high. We leave this issue as a topic for future research.
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Fig. 1 Sequence of the stationary Nash equilibrium

6 Conclusion

This paper has presented a smoothing method of the followers’ best response in the
MLMFG in the case where the followers’ optimization problems are more general
than the previous studies [10, 13]. Then we have shown the convergence result for
a Clarke and Bouligand stationary Nash equilibrium on MLMFG as the smooth-
ing parameter tends to zero. Finally, a numerical experiment has been conducted to
check the behavior of the proposed method; specifically, observing the behavior of the
sequence of stationary Nash equilibria as the smoothing parameter approaches zero.
Note that the numerical experiment in Sect. 5 does not indicate the numerical effi-
ciency of the algorithm; therefore, an analysis of the complexity and the convergence
as the problem size increases will be required. In fact, this method requires third-order
derivatives of the followers’ objectives and constraint functions eventually to obtain an
approximate Nash equilibrium. Nevertheless, the convergence result, particularly for
the B-stationary points, justifies our proposed method. In the future, a more efficient
algorithm than the semismooth Newton method should be considered, which would
allow experiments with higher-dimensional problems.
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Furthermore,we remark that in this paperwe did notmention a local surrogate of the
LF Nash equilibrium for MLMFG. To the best of the authors’ knowledge, there is no
such literature onMLMFG that deals with a local LFNash equilibrium. Unfortunately,
verifying local optimality in nonconvex optimization is still NP-hard, and thus as well
as finding an LF Nash equilibrium in MLMFG, finding the LF local Nash equilibrium
may be difficult in practice but theoretically important such as second-order analysis.
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