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Abstract
In a Hilbert setting we aim to study a second order in time differential equation,
combining viscous and Hessian-driven damping, containing a time scaling parameter
function and a Tikhonov regularization term. The dynamical system is related to the
problem of minimization of a nonsmooth convex function. In the formulation of the
problem aswell as in our analysiswe use theMoreau envelope of the objective function
and its gradient and heavily rely on their properties. We show that there is a setting
where the newly introduced system preserves and even improves the well-known fast
convergence properties of the function andMoreau envelope along the trajectories and
also of the gradient of Moreau envelope due to the presence of time scaling. Moreover,
in a different setting we prove strong convergence of the trajectories to the element
of minimal norm from the set of all minimizers of the objective. The manuscript
concludes with various numerical results.
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1 Introduction

In the Hilbert setting H , where 〈·, ·〉 denotes the inner product and the norm is defined
as usual ‖ · ‖ = √〈·, ·〉, we will study the convergence properties of the following
second order in time differential equation

ẍ(t) + α

t
ẋ(t) + β

d

dt
∇�λ(t)(x(t)) + b(t)∇�λ(t)(x(t)) + ε(t)x(t) = 0 for t ≥ t0,

(1)

with initial conditions x(t0) = x0 ∈ H , ẋ(t0) = ẋ0 ∈ H , where α, β and t0 > 0,
λ : [t0,+∞) 
→ R+ and b : [t0,+∞) 
→ R+ are non-negative, non-decreasing and
differentiable,� : H 
→ R = R∪{±∞} is a proper, convex and lower semicontinuous
function and �λ is its Moreau envelope of the index λ > 0 and the function ε :
[t0,+∞) 
→ R+ is continuously differentiable and non-increasing with the property
limt→+∞ ε(t) = 0. In addition, we assume that argmin�, which is the set of global
minimizers of �, is not empty and denote by �∗ the optimal objective value of �.
The system (1) has a connection to the minimization problem

min
x∈H �(x)

of a proper, convex and lower semicontinuous function �. Studying such systems
provides better understanding of their discrete counterpart—optimization algorithms,
since there is a strong connection between them, and the question of transitioning from
one to another attracts a lot of attention in the modern literature.

One of the main goals of this research is to improve (compared to [23]) the fast rates
of convergence for the Moreau envelope of the objective function and the objective
function itself to�∗, as well as for the gradient of theMoreau envelope of the objective
function in terms of the Moreau parameter function λ and the time scaling function
b. Moreover, we also deduce the strong convergence of the trajectory of the dynamics
to the minimal norm element of argmin�. We introduce two settings with different
assumptions for each result. To conclude we provide multiple numerical results in
order to illustrate our theoretical discoveries.

1.1 Nonsmooth Optimization with Time Scaling

In the smooth setting the pioneering research in studying second order dynamical
systems was conducted by Su–Boyd–Candes [30] for the sake of obtaining faster
asymptotic convergence for convex functions. They managed to deduce the rates of
convergence of the function values being of the order 1

t2
. Later Attouch–Peypouquet–

Redont [20] also established the weak (and in some particular cases the strong)
convergence of the trajectories to a minimizer of the objective function. In [19] the
same authors continued the development in this direction by adding Hessian-driven
damping term in order to obtain the rates for the gradient of the objective function and
to eliminate any possible oscillations in the dynamical behaviour of the trajectories.

123



Journal of Optimization Theory and Applications (2024) 202:1385–1420 1387

Concerning the nonsmooth setting we must point out that the Moreau envelope
of a proper, convex and lower semicontinuous function � : H → R proved to be
of a significant importance in designing continuous-time approaches and numerical
algorithms for the minimization of nonsmooth functions. The rigorous definition of
this construction is

�λ : H → R, �λ(x) = inf
y∈H

{
�(y) + 1

2λ
‖x − y‖2

}
,

where λ > 0 is the parameter of the Moreau envelope (see, for instance, [21]). One of
the most important properties of Moreau approximation is that for every λ > 0, the
functions � and �λ share the same optimal objective value and also the same set of
minimizers. Moreover, �λ is convex and continuously differentiable with

∇�λ(x) = 1

λ
(x − proxλ�(x)) ∀x ∈ H , (2)

and ∇�λ is 1
λ
-Lipschitz continuous, where

proxλ� : H → H , proxλ�(x) = argmin
y∈H

{
�(y) + 1

2λ
‖x − y‖2

}
,

denotes the proximal operator of � of parameter λ. The last fact we would like to
mention is that for every x ∈ H , the function λ ∈ (0,+∞) → �λ(x) is nonincreasing
and differentiable (see [14], Lemma A1), namely,

d

dλ
�λ(x) = −1

2
‖∇�λ(x)‖2 ∀λ > 0. (3)

Our research is a logical continuation of the one conducted in [24], where authors
applied the time rescaling technique to a nonsmooth optimization problem (for more
information on time scaling see also [5, 10, 11, 13]). They considered the following
system

ẍ(t) + α

t
ẋ(t) + β(t)

d

dt
∇�λ(t)(x(t)) + b(t)∇�λ(t)(x(t)) = 0, (4)

where α ≥ 1, t0 > 0, and β : [t0,+∞) 
→ [0,+∞) and b, λ : [t0,+∞) 
→ (0,+∞)

are differentiable functions. On the one hand, the presence of the Hessian damping
term is believed to help reducing the oscillations in the dynamical behaviour and
provides the rates for the gradient of the objective function �. On the other hand, the
time-scaling technique (which is considered to be an artificial way to speed up the
convergence of values) affects the convergence rates while bringing more restrictions
to the analysis. The following properties were established

�λ(t)(x(t)) − �∗ = o

(
1

t2b(t)

)
and ‖ẋ(t)‖ = o

(
1

t

)
as t → +∞,
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fromwhere through proximalmapping the convergence rates for the objective function
� itself along the trajectory were obtained

�
(
proxλ(t)�(x(t))

) − �∗ = o

(
1

t2b(t)

)
and ‖ proxλ(t)�(x(t)) − x(t)‖

= o

( √
λ(t)

t
√
b(t)

)
as t → +∞.

Note that by taking b(·) ≡ 1 we arrive at the well-known convergence rate of the

values being of the order o
(

1
t2

)
. In addition, the following rates for the gradient of

the Moreau envelope were deduced

‖∇�λ(t)(x(t))‖ = o

(
1

t
√
b(t)λ(t)

)
, as t → +∞.

Finally, the weak convergence of the trajectories x(t) to a minimizer of� as t → +∞
was obtained.

In our analysis we borrow some ideas of [24] and develop them further in order to
fit the new setting, namely, to adapt to a presence of the whole new term—Tikhonov
regularization. The analysis becomes more involved and technical, some fundamental
properties of Tikhonov regularization had to be proved for a nonsmooth setting. Its
presence affects the set of conditions, which we have to impose on the system param-
eters: even though some of the conditions are formulated in the same spirit as in [24]
(for instance, (11) and (14)), the other ones are completely new due to the presence of
the Tikhonov term. Moreover, depending on how fast ε decays, two different setting
arise providing different fundamental results (Sects. 3 and 4).

1.2 Tikhonov Regularization

It turned out that having additional term with specific properties in a system equation
leads to improving the weak convergence of the trajectories to a minimizer of the
objective function � to a strong one to the element of minimal norm of argmin�.
Such systems were studied, for instance, in [4, 6, 9, 12, 17, 23, 27]. The main goal
of such a research is to show that these systems preserve all the typical properties of
the second order in time dynamical system (fast convergence of the values, the rates
for the gradient etc.) but moreover there is an improvement to the strong convergence
of the trajectories to the minimal norm solution instead of a weak one to an arbitrary
minimizer. One of the many examples of such systems is presented below (see [23])

ẍ(t) + α

t
ẋ(t) + β∇2�(x(t))ẋ(t) + ∇�(x(t)) + ε(t)x(t) = 0 for t ≥ t0,

where α ≥ 3, t0 > 0, � : H 
→ R is twice continuously differentiable and convex
and for the rest of the section the function ε : [t0,+∞) 
→ R+ is continuously differ-
entiable and non-increasing with the property limt→+∞ ε(t) = 0. In that manuscript
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they provided two settings: one for the fast convergence of values obtaining

�(x(t)) − �∗ = o

(
1

t2

)
, as t → +∞

and the weak convergence of the trajectories to a minimizer of � and another setting
for the strong convergence of x to x∗, as t → +∞.

Another fine example is given in [4]:

ẍ(t) + α
√

ε(t)ẋ(t) + ∇�(x(t)) + ε(t)x(t) = 0 for t ≥ t0, (5)

where α, t0 > 0 and � : H 
→ R is continuously differentiable and convex. In that
paper authors obtained the rates for the function values �(x(t)) − �∗, as well as for
the quantity ‖x(t) − xε(t)‖, as t → +∞, where xε(t) = argminH

(
�(x) + ε(t)‖x‖2

2

)
.

Thus, they assured the strong convergence of the trajectories to the minimal norm
solution x∗ = projargmin�(0) under the appropriate assumptions and properly chosen
energy functional, using the properties of Tikhonov regularization. Themost important
thing about this approach is that authors were able to establish fast convergence of
values and strong convergence of the trajectories in the very same setting.

The next step was done in [6]:

ẍ(t)+α
√

ε(t)ẋ(t)+β
d

dt

(
∇ϕt (x(t)) + (p − 1)ε(t)x(t)

)
+∇ϕt (x(t)) = 0 for t ≥ t0,

where ϕt (x) = �(x) + ε(t)‖x‖2
2 , � : H 
→ R is twice continuously differentiable

and convex and p ∈ [0, 1]. This system while preserving all the properties of (5),
additionally provides the integral estimate for the norm of the gradient of ϕt .

1.3 Our Contribution

In that paper we will develop the ideas presented in [23] to cover the nonsmooth case
with time scaling. We will obtain the fast convergence of the function values (as well
as for the gradient of the Moreau envelope of the objective fucntion �) for the family
of dynamical systems (1) governed by theMoreau envelope of the nonsmooth function
� and having the Tiknonov term in their formulation:

�λ(t)(x(t)) − �∗ = o

(
1

t2b(t)

)
as t → +∞;

in terms of the function itself:

�(proxλ(t)�(x(t))) − �∗ = o

(
1

t2b(t)

)
as t → +∞,
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where

‖ proxλ(t)�(x(t)) − x(t)‖ = o

( √
λ(t)

t
√
b(t)

)
as t → +∞

and finally

‖∇�λ(t)(x(t))‖ = o

(
1

t
√
b(t)λ(t)

)
as t → +∞.

We will also deduce (under some appropriate conditions) the following result

lim inf
t→+∞ ‖x(t) − x∗‖ = 0,

which under some restrictions will be improved to the full strong convergence of the
trajectories of (1) to the minimal norm solution.

The paper is organized in the following way. Section 2 is devoted to some prelimi-
nary results, which we will need later. We will establish the fast rates of convergence
of function values and its Moreau envelope, as well as the gradient of Moreau enve-
lope along the trajectories of the dynamical system (Sect. 3). We will show that under
some assumptions the strong convergence of the trajectories to the element of minimal
norm from the set of all minimizers of the objective function takes place (Sect. 4). We
will provide two settings for the polynomial choice of parameter functions to fulfill
the assumptions made through the analysis (Sect. 5) and equip this manuscript with
various numerical results (Sect. 6).

2 Preparatory Results

We start with the following lemma (see [21], Proposition 12.22, for the first term of
the lemma and [18], Appendix, A1, for the second one).

Lemma 1 Let � : H 
→ R be a proper, convex and lower semicontinuous function,
λ,μ > 0. Then

1. (�λ)μ = �λ+μ.
2. proxμ�λ

= λ
λ+μ

Id+ μ
λ+μ

prox(λ+μ)�.

Let us mention two key properties of the Tikhonov regularization, which we will
use later in the analysis (see, for instance, [2] or [21] Theorem 23.44 for its classic
analogue). First let us introduce the strongly convex function ϕε(t),λ(t) : H 
→ R as

ϕε(t),λ(t)(x) = �λ(t)(x) + ε(t)‖x‖2
2 and denote the unique minimizer of ϕε(t),λ(t) as

xε(t),λ(t) = argminH ϕε(t),λ(t). Thus, the first order optimality condition reads as

∇�λ(t)(xε(t),λ(t)) + ε(t)xε(t),λ(t) = 0. (6)

Now we are ready to formulate the following result:
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Lemma 2 Suppose that

lim
t→+∞ λ(t)ε(t) = 0. (7)

Then the following properties of the mapping t 
→ xε(t),λ(t) are satisfied:

for x∗ = proj
argmin�

(0), ‖xε(t),λ(t)‖ ≤ ‖x∗‖ for all t ≥ t0 (8)

and

lim
t→+∞ ‖xε(t),λ(t) − x∗‖ = 0. (9)

Proof By the monotonicity of ∇�λ we deduce

〈∇�λ(t)(xε(t),λ(t)) − ∇�λ(t)(x
∗), xε(t),λ(t) − x∗〉 ≥ 0.

By (6) we obtain

〈−ε(t)xε(t),λ(t), xε(t),λ(t) − x∗〉 = ε(t)
(
−‖xε(t),λ(t)‖2 + 〈

xε(t),λ(t), x
∗〉) ≥ 0.

Using Cauchy–Schwarz inequality we derive

‖xε(t),λ(t)‖ ≤ ‖x∗‖.

This proves the first claim. For the second one consider (6) again and note that it is
equivalent to

xε(t),λ(t) = prox 1
ε(t) �λ(t)

(0) =
prox(

λ(t)+ 1
ε(t)

)
�
(0)

λ(t)ε(t) + 1

by the item 2. of Lemma 1. Note that λ(t) + 1
ε(t) → +∞, as t → +∞. Thus, the rest

of the proof goes in line with Theorem 23.44 of [21]. ��
Our nearest goal is to deduce the existence and uniqueness of the solutions of the

dynamical system (1). Suppose β > 0. Let us integrate (1) from t0 to t to obtain

ẋ(t) + β∇�λ(t)(x(t)) +
∫ t

t0

(α

s
ẋ(s) + b(s)∇�λ(s)(x(s)) + ε(s)x(s)

)
ds

− (
ẋ(t0) + β∇�λ(t0)(x(t0))

) = 0.

Denoting z(t) := ∫ t
t0

(
α
s ẋ(s) + b(s)∇�λ(s)(x(s)) + ε(s)x(s)

)
ds−(

ẋ(t0)+β∇�λ(t0)

(x0))
)
for every t ≥ t0 and noticing that ż(t) = α

t ẋ(t) + b(t)∇�λ(t)(x(t)) + ε(t)x(t)
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we deduce, that (1) is equivalent to

ẋ(t) + β∇�λ(t)(x(t)) + z(t) = 0,

ż(t) − α

t
ẋ(t) − b(t)∇�λ(t)(x(t)) − ε(t)x(t) = 0,

x(t0) = x0, z(t0) = − (
ẋ(t0) + β∇�λ(t0)(x0)

)
.

Let us multiply the first line by the function b and the second one by the constant β

and then sum them up to get rid of the gradient of the Moreau envelope in the second
equation

ẋ(t) + β∇�λ(t)(x(t)) + z(t) = 0,

β ż(t) +
(
b(t) − αβ

t

)
ẋ(t) − βε(t)x(t) + b(t)z(t) = 0,

x(t0) = x0, z(t0) = − (
ẋ(t0) + β∇�λ(t0)(x0)

)
.

We denote now y(t) = βz(t)+
(
b(t) − αβ

t

)
x(t), and, after simplification, we obtain

the following equivalent formulation for the dynamical system

ẋ(t) + β∇�λ(t)(x(t)) +
(

α

t
− b(t)

β

)
x(t) + 1

β
y(t) = 0,

ẏ(t) −
(
ḃ(t) + αβ

t2
+ βε(t) + b2(t)

β
− αb(t)

t

)
x(t) + b(t)

β
y(t) = 0,

x(t0) = x0, y(t0) = −β
(
ẋ(t0) + β∇�λ(t0)(x0)

) +
(
b(t0) − αβ

t0

)
x0.

In case β = 0 for every t ≥ t0, (1) can be equivalently written as

ẋ(t) − y(t) = 0,

ẏ(t) + α

t
y(t) + b(t)∇�λ(t)(x(t)) + ε(t)x(t) = 0,

x(t0) = x0, y(t0) = ẋ(t0).

Based on the two reformulations of the dynamical system (1) we formulate the fol-
lowing existence and uniqueness result, which is a consequence of Cauchy-Lipschitz
theorem for strong global solutions. The result can be proved in the lines of the proofs
of Theorem 1 in [16] or of Theorem 1.1 in [19] with some small adjustments.

Theorem 3 Suppose that there exists λ0 > 0 such that λ(t) ≥ λ0 for all t ≥ t0.
Then for every (x0, ẋ(t0)) ∈ H · H there exists a unique strong global solution x :
[t0,+∞) 
→ H of the continuous dynamics (1) which satisfies the Cauchy initial
conditions x(t0) = x0 and ẋ(t0) = ẋ0.
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3 Fast Convergence Rates of the Function andMoreau Envelope
Values

This chapter is devoted to obtaining the rates of convergence for the Moreau envelope
values and for the values of function � itself. We will heavily rely on the tools and
techniques providedby theLyapunov analysis.We introduce a slightlymodified energy
function from [23]. For 2 ≤ q ≤ α − 1 we define

Eq (t) = (t2b(t) − β(q + 2 − α)t)
(
�λ(t)(x(t)) − �∗) + t2ε(t)

2
‖x(t)‖2

+ 1

2
‖q(x(t) − x∗) + t

(
ẋ(t) + β∇�λ(t)(x(t))

) ‖2 + q(α − 1 − q)

2
‖x(t) − x∗‖2.

(10)

The key assumptions which are essential to our analysis are the following: for all
t ≥ t0

(α − 3)tb(t) − t2ḃ(t) + β(2 − α) ≥ 0, (11)

∃a ≥ 1 such that 2ε̇(t) ≤ −aβε2(t), (12)

∫ +∞

t0
tε(t)dt < +∞, (13)

b(t0) ≥ β

t0
and b(t0) >

1

a
(14)

and

∃δ : 0 < δ < α − 3 such that (α − 3)tb(t) − t2ḃ(t) + β(2 − α) ≥ δtb(t).
(15)

Theorem 4 Suppose α ≥ 3 and assume that (11), (12), (13), (14) hold for all t ≥ t0.
Then

�λ(t)(x(t)) − �∗ = O

(
1

t2b(t)

)
, as t → +∞,

‖ẋ(t) + β∇�λ(t)(x(t))‖ = O

(
1

t

)
, as t → +∞.
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Moreover, one has for all a ≥ 1

tε(t)‖x(t) − x∗‖2, tε(t)‖x(t)‖2,
(
(α − 3)tb(t) − t2ḃ(t) + β(2 − α)

)
(
�λ(t)(x(t)) − �∗) and((
t2b(t) − βt

) λ̇(t)

2
− β2t+βt2

(
b(t) − 1

a

))
‖∇�λ(t)(x(t))‖2∈ L1([t0,+∞),R

)
.

If, in addition, α > 3 and (15) holds, then the trajectory x is bounded and

∫ +∞

t0
t‖ẋ(t)‖2dt < +∞

and

∫ +∞

t0
tb(t)

(
�λ(s)(x(s)) − �∗) < +∞.

Proof Let us compute the time derivative of the energy function. For every t ≥ t0
using (3) we derive

Ėq (t) = (
2tb(t) + t2ḃ(t) − β(q + 2 − α)

) (
�λ(t)(x(t)) − �∗) + t2ε(t)〈x(t), ẋ(t)〉

+ q(α − 1 − q)〈ẋ(t), x(t) − x∗〉

+ (
t2b(t) − β(q + 2 − α)t

) (
〈∇�λ(t)(x(t)), ẋ(t)〉 − λ̇(t)

2
‖∇�λ(t)(x(t))‖2

)

+ 2tε(t) + t2ε̇(t)

2
‖x(t)‖2

+
〈
q(x(t) − x∗) + t

(
ẋ(t) + β∇�λ(t)(x(t))

)
, (q + 1)ẋ(t) + β∇�λ(t)(x(t))

+ t

(
ẍ(t) + β

d

dt
∇�λ(t)(x(t))

) 〉
.

Define v(t) = q(x(t) − x∗) + t
(
ẋ(t) + β∇�λ(t)(x(t))

)
. Using (1) to replace ẍ(t) +

β d
dt ∇�λ(t)(x(t)) we obtain

〈v(t), v̇(t)〉 =
〈
q(x(t) − x∗) + t

(
ẋ(t) + β∇�λ(t)(x(t))

)
, (q + 1 − α)ẋ(t)

+ (β − tb(t))∇�λ(t)(x(t)) − tε(t)x(t)

〉

= q(q + 1 − α)
〈
x(t) − x∗, ẋ(t)

〉 + (q + 1 − α)t‖ẋ(t)‖2

+
(
β(q + 2 − α)t − t2b(t)

) 〈∇�λ(t)(x(t)), ẋ(t)
〉

+
(
β2t − βt2b(t)

)
‖∇�λ(t)(x(t))‖2
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− t2ε(t)〈x(t), ẋ(t)〉 − βt2ε(t)〈x(t),∇�λ(t)(x(t))〉
− qt

〈(
b(t) − β

t

)
∇�λ(t)(x(t)) + ε(t)x(t), x(t) − x∗

〉
.

By (14) one has b(t) − β
t > 0 for all t ≥ t0, and thus for a strongly convex function

ϕt (x) =
(
b(t) − β

t

)
�λ(t)(x) + ε(t)

2 ‖x‖2 we have

ϕt (x
∗) − ϕt (x) ≥ 〈∇ϕt (x), x

∗ − x
〉 + ε(t)

2
‖x∗ − x‖2

or

− qt

〈(
b(t) − β

t

)
∇�λ(t)(x(t)) + ε(t)x(t), x(t) − x∗

〉

≤ − qt

(
b(t) − β

t

) (
�λ(t)(x(t)) − �∗)

− qt
ε(t)

2
‖x(t)‖2 − qt

ε(t)

2
‖x(t) − x∗‖2 + qt

ε(t)

2
‖x∗‖2.

Therefore, for every t ≥ t0

Ėq (t) ≤ (
(2 − q)tb(t) + t2ḃ(t) − β(2 − α)

) (
�λ(t)(x(t)) − �∗) + (q + 1 − α)t‖ẋ(t)‖2

−
((

t2b(t) − β(q + 2 − α)t
) λ̇(t)

2
− β2t + βt2b(t)

)
‖∇�λ(t)(x(t))‖2

+ (2 − q)tε(t) + t2ε̇(t)

2
‖x(t)‖2 − qt

ε(t)

2
‖x(t) − x∗‖2 + qt

ε(t)

2
‖x∗‖2

− βt2ε(t)〈x(t),∇�λ(t)(x(t))〉.

Notice that for a ≥ 1

−βt2ε(t)〈x(t),∇�λ(t)(x(t))〉 ≤ βt2

a
‖∇�λ(t)(x(t))‖2 + aβt2ε2(t)

4
‖x(t)‖2,

which leads to

Ėq (t) ≤ (
(2 − q)tb(t) + t2ḃ(t) − β(2 − α)

) (
�λ(t)(x(t)) − �∗) + (q + 1 − α)t‖ẋ(t)‖2

−
((

t2b(t) − β(q + 2 − α)t
) λ̇(t)

2
− β2t + βt2

(
b(t) − 1

a

))
‖∇�λ(t)(x(t))‖2

+ 2(2 − q)tε(t) + 2t2ε̇(t) + aβt2ε2(t)

4
‖x(t)‖2 − qt

ε(t)

2
‖x(t) − x∗‖2 + qt

ε(t)

2
‖x∗‖2

(16)

for every t ≥ t0. Note that b(t) − 1
a > 0 for all t ≥ t0. Then, due to the properties

of b, there exists t∗ ≥ t0 such that t2b(t) − β(q + 2 − α)t ≥ 0 for all t ≥ t∗ and
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all q ∈ (2, α − 1]. Therefore, since λ̇(t) ≥ 0 for all t ≥ t0, there exists t∗∗, namely,

t∗∗ = max

{
t∗, β

b(t0)− 1
a

}
, such that

((
t2b(t) − β(q + 2 − α)t

) λ̇(t)

2
− β2t + βt2

(
b(t) − 1

a

))
≥ 0 for all t ≥ t∗∗.

Consider now two cases with t ≥ t∗∗. First, take q = α − 1 to obtain from (16)

Ėα−1(t) ≤ (
(3 − α)tb(t) + t2ḃ(t) − β(2 − α)

) (
�λ(t)(x(t)) − �∗)

−
((

t2b(t) − βt
) λ̇(t)

2
− β2t + βt2

(
b(t) − 1

a

))
‖∇�λ(t)(x(t))‖2

+ 2(3 − α)tε(t) + 2t2ε̇(t) + aβt2ε2(t)

4
‖x(t)‖2 − (α − 1)t

ε(t)

2
‖x(t) − x∗‖2

+ (α − 1)t
ε(t)

2
‖x∗‖2

(17)

for every t ≥ t0. Under the assumptions (11) and (12) we conclude starting from t∗∗
that

Ėα−1(t) ≤ (α − 1)tε(t)

2
‖x∗‖2. (18)

Under the assumption (13) using the fact that t 
→ Eα−1(t) is bounded from below
we deduce the existence of the limit limt→+∞ Eα−1(t) due to the Lemma A.1 and,
therefore, t 
→ Eα−1(t) is bounded, which leads to

�λ(t)(x(t)) − �∗ = O

(
1

t2b(t)

)
, as t → +∞.

From the boundedness of t 
→ ‖(α − 1)(x(t) − x∗) + t(ẋ(t) + β∇�λ(t)(x(t))‖2 we
obtain

‖ẋ(t) + β∇�λ(t)(x(t))‖ = O

(
1

t

)
, as t → +∞,

using the following inequality, which is true for every t ≥ t0

t2‖ẋ(t) + β∇�λ(t)(x(t))‖2 ≤ 2‖(α − 1)(x(t) − x∗) + t(ẋ(t) + β∇�λ(t)(x(t))‖2
+2(α − 1)2‖x(t) − x∗‖2.

Moreover, integrating (17) one may obtain the integrability of tε(t)‖x(t) − x∗‖2 as
well as the other terms in (17). Consider now q = α − 1 − δ, where δ is defined by
(15). Thus, (16) becomes

Ėα−1−δ(t) ≤
(
(3 − α + δ)tb(t) + t2ḃ(t) − β(2 − α)

) (
�λ(t)(x(t)) − �∗) − δt‖ẋ(t)‖2
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−
((

t2b(t) − β(1 − δ)t
) λ̇(t)

2
− β2t + βt2

(
b(t) − 1

a

))
‖∇�λ(t)(x(t))‖2

+ 2(3 − α + δ)tε(t) + 2t2ε̇(t) + aβt2ε2(t)

4
‖x(t)‖2 − (α − 1 − δ)t

ε(t)

2
‖x(t) − x∗‖2

+ (α − 1 − δ)t
ε(t)

2
‖x∗‖2. (19)

Under the assumptions (12) and (15) we deduce Ėα−1−δ(t) ≤ (α−1−δ)tε(t)
2 ‖x∗‖2

starting from t∗∗. Repeating the same argument we derive that t 
→ Eα−1−δ(t) is
bounded. The function t 
→ ‖x(t) − x∗‖ is also bounded and so is the trajectory x .
Integrating (19) one may additionally obtain the integrability of t‖ẋ(t)‖2. From the
integrability of

(
(α − 3)tb(t) − t2ḃ(t) − β(α − 2)

) (
�λ(t)(x(t)) − �∗) and (15) we

deduce

∫ +∞

t0
tb(t)

(
�λ(s)(x(s)) − �∗) < +∞.

��
The next theorem shows that we can actually improve the rates of convergence of

the function values in case α > 3.

Theorem 5 Assume that α > 3 and (12), (13),(14) and (15) hold. Then

t

〈(
b(t) − β

t

)
∇�λ(t)(x(t)), x(t) − x∗

〉
∈ L1([t0,+∞),R

)
. (20)

In addition, limt→+∞ ψ(t) = 0, where for 2 ≤ q ≤ α − 1

ψ(t) = (t2b(t) − β(q + 2 − α)t)
(
�λ(t)(x(t)) − �∗) + t2ε(t)

2 ‖x(t)‖2
+ t2

2 ‖ẋ(t) + β∇�λ(t)(x(t))‖2,

which in particular means

�λ(t)(x(t)) − �∗ = o

(
1

t2b(t)

)
as t → +∞,

‖ẋ(t) + β∇�λ(t)(x(t))‖ = o

(
1

t

)
as t → +∞

(21)

and moreover,

�(proxλ(t)�(x(t))) − �∗ = o

(
1

t2b(t)

)
as t → +∞,

‖ proxλ(t)�(x(t)) − x(t)‖ = o

( √
λ(t)

t
√
b(t)

)
as t → +∞
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and

‖∇�λ(t)(x(t))‖ = o

(
1

t
√
b(t)λ(t)

)
as t → +∞.

Proof (i) Let us first prove an auxiliary estimate (20), which will allow us to obtain
the rest of the desired results. We return to

Ėq (t) ≤ (
2tb(t) + t2ḃ(t) − β(q + 2 − α)

) (
�λ(t)(x(t)) − �∗) + (q + 1 − α)t‖ẋ(t)‖2

−
((

t2b(t) − β(q + 2 − α)t
) λ̇(t)

2
− β2t + βt2

(
b(t) − 1

a

))
‖∇�λ(t)(x(t))‖2

+ 4tε(t) + 2t2ε̇(t) + aβt2ε2(t)

4
‖x(t)‖2

− qt

〈(
b(t) − β

t

)
∇�λ(t)(x(t)) + ε(t)x(t), x(t) − x∗

〉
.

Under condition (12) we deduce starting from t∗∗

Ėq(t) ≤
(
2tb(t) + t2ḃ(t) − β(q + 2 − α)

) (
�λ(t)(x(t)) − �∗)

+ tε(t)‖x(t)‖2 − qt

〈(
b(t) − β

t

)
∇�λ(t)(x(t)) + ε(t)x(t), x(t) − x∗

〉
.

Integrating the last inequality on [t0, t] we obtain
∫ t

t0
qs

〈(
b(s) − β

s

)
∇�λ(s)(x(s)), x(s) − x∗

〉
ds ≤ Eq (t0) − Eq (t) +

∫ t

t0
sε(s)‖x(s)‖2ds

+
∫ t

t0

(
2sb(s) + s2ḃ(s) − β(q + 2 − α)

) (
�λ(s)(x(s)) − �∗) ds −

∫ t

t0
qs〈ε(s)x(s), x(s) − x∗〉.

(22)

Since the gradient ∇�λ is monotone, we know that
〈∇�λ(t)(x(t)), x(t) − x∗〉 ≥ 0.

Moreover,

− qt〈ε(t)x(t), x(t) − x∗〉 ≤ qtε(t)

2

(
‖x(t)‖2 + ‖x(t) − x∗‖2

)
. (23)

Notice that by (15) we have

(α − 3 − δ)tb(t) − t2ḃ(t) + β(2 − α) > 0

or

(α − 3 − δ)tb(t) − t2ḃ(t) > β(α − 2).
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Obviuosly,

(α − 3 − δ)tb(t) − t2ḃ(t) > β(α − 2) > β(α − 2 − q) for every q ∈ (2, α − 1).

Introducing δ1 = α − 1 − δ > 0 (by the choice of δ) we obtain

(δ1 − 2)tb(t) − t2ḃ(t) > −β(q + 2 − α)

or

2tb(t) + t2ḃ(t) − β(q + 2 − α) < δ1tb(t).

From Theorem 4 we know that tb(t)
(
�λ(s)(x(s)) − �∗) is integrable and therefore

so is
(
2tb(t) + t2ḃ(t) − β(q + 2 − α)

) (
�λ(s)(x(s)) − �∗). Since the function t 
→

Eq(t) is bounded and the rest of the right hand side of (22) belongs to L1
([t0,+∞),R

)
by Theorem 4 and (23), we conclude with (20) due to (14).

(ii) In order to derive the convergence rates for the quantities of our interest we
require some additional results. Our nearest goal is to establish the existence of the
limits

lim
t→+∞ ‖x(t) − x∗‖ and lim

t→+∞ t
〈
ẋ(t) + β∇�λ(t)(x(t)), x(t) − x∗〉 .

Consider (as was done in [23, 24]) for two different q1, q2 ∈ (2, α − 1) and for every
t ≥ t0 the difference

Eq1(t) − Eq2(t) = (t2b(t) − β(q1 + 2 − α)t)
(
�λ(t)(x(t)) − �∗) + t2ε(t)

2
‖x(t)‖2

+ 1

2
‖q1(x(t) − x∗) + t(ẋ(t) + β∇�λ(t)(x(t))‖2 + q1(α − 1 − q1)

2
‖x(t) − x∗‖2

− (t2b(t) − β(q2 + 2 − α)t)
(
�λ(t)(x(t)) − �∗) − t2ε(t)

2
‖x(t)‖2

− 1

2
‖q2(x(t) − x∗) + t(ẋ(t) + β∇�λ(t)(x(t))‖2 − q2(α − 1 − q2)

2
‖x(t) − x∗‖2

= (q1 − q2)

(
− βt

(
�λ(t)(x(t)) − �∗) + t

〈
ẋ(t) + β∇�λ(t)(x(t)), x(t) − x∗〉

+ α − 1

2
‖x(t) − x∗‖2

)
.

As we have established earlier in Theorem 4 the limits of Eq1(t) − Eq2(t) and
t
(
�λ(t)(x(t)) − �∗) exists (the latter is actually zero). Therefore, the limit

lim
t→+∞

(
t
〈
ẋ(t) + β∇�λ(t)(x(t)), x(t) − x∗〉 + α − 1

2
‖x(t) − x∗‖2

)
also exists.
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Let us introduce for every t ≥ t0 two auxiliary functions

k(t) = t
〈
ẋ(t) + β∇�λ(t)(x(t)), x(t) − x∗〉 + α − 1

2
‖x(t) − x∗‖2

and

r(t) = 1

2
‖x(t) − x∗‖2 + β

∫ t

t0

〈∇�λ(s)(x(s)), x(s) − x∗〉 ds.

Noticing that

ṙ(t) = 〈x(t) − x∗, ẋ(t)〉 + β
〈∇�λ(t)(x(t)), x(t) − x∗〉

we may write for every t ≥ t0

(α − 1)r(t) + tṙ(t) = k(t) + β(α − 1)
∫ t

t0

〈∇�λ(s)(x(s)), x(s) − x∗〉 ds.

From the fact that limt→+∞ k(t) exists using (20) we obtain that limt→+∞(α −
1)r(t) + tṙ(t) also exists. Applying Lemma A.2 we deduce the existence of the limit
limt→+∞ r(t). Using (20) againwe obtain the existence of the limits limt→+∞ ‖x(t)−
x∗‖ and limt→+∞ t

〈
ẋ(t) + β∇�λ(t)(x(t)), x(t) − x∗〉.

(iii) Finally, we are in position to prove (21) and the rest of the convergence rates.
The key idea is to show that the limit

lim
t→+∞

(
(t2b(t) − β(q + 2 − α)t)

(
�λ(t)(x(t)) − �∗) + t2ε(t)

2
‖x(t)‖2

+ t2

2
‖ẋ(t) + β∇�λ(t)(x(t))‖2

)

exists and is actually zero. Let us return to the definition of our energy functional and
rewrite it as

Eq(t) = (t2b(t) − β(q + 2 − α)t)
(
�λ(t)(x(t)) − �∗) + t2ε(t)

2
‖x(t)‖2

+ t2

2
‖ẋ(t) + β∇�λ(t)(x(t)‖2 + qt

〈
ẋ(t) + β∇�λ(t)(x(t)), x(t) − x∗〉

+ q(α − 1)

2
‖x(t) − x∗‖2.

Since the limits

lim
t→+∞ Eq (t) and lim

t→+∞

(
qt

〈
ẋ(t) + β∇�λ(t)(x(t), x(t) − x∗〉 + q(α − 1)

2
‖x(t) − x∗‖2

)
exist,

123



Journal of Optimization Theory and Applications (2024) 202:1385–1420 1401

it follows that

lim
t→+∞

(
(t2b(t) − β(q + 2 − α)t)

(
�λ(t)(x(t)) − �∗) + t2ε(t)

2
‖x(t)‖2

+ t2

2
‖ẋ(t) + β∇�λ(t)(x(t))‖2

)

exists as well. Denote

ψ(t) = (t2b(t) − β(q + 2 − α)t)
(
�λ(t)(x(t)) − �∗) + t2ε(t)

2
‖x(t)‖2

+ t2

2
‖ẋ(t) + β∇�λ(t)(x(t))‖2

and consider

0 ≤ ψ(t)

t
≤ 2tb(t)

(
�λ(t)(x(t)) − �∗) + tε(t)

2
‖x(t)‖2

+ t

2
‖ẋ(t) + β∇�λ(t)(x(t))‖2. (24)

Let us show that the right hand side of (24) is integrable. Indeed, the first term is
integrable by Theorem 4. As we have also established in Theorem 4, starting from t∗∗

(
tb(t) − β

) λ̇(t)

2
+ βt

(
b(t) − 1

a

)
≥ β2,

where a ≥ 1. Then, by (14) and λ̇(t) ≥ 0 for all t ≥ t0, we deduce that there exists
t1 ≥ t∗∗ such that for all t ≥ t1

(
tb(t) − β

) λ̇(t)

2
+ βt

(
b(t) − 1

a

)
≥ 3β2

2

or

t2b(t)

(
λ̇(t)

2
+ β

(
1 − 1

ab(t)

))
≥ (

3β + λ̇(t)
) βt

2

or

(
t2b(t) − βt

) λ̇(t)

2
− β2t + βt2

(
b(t) − 1

a

)
≥ β2t

2
,

So, by Theorem 4 the right hand side of (24) belongs to L1
([t1,+∞),R

)
. Therefore,

ψ(t)
t also belongs to L1

([t1,+∞),R
)
and since the limit limt→+∞ ψ(t) exists we
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deduce that it should be actually zero, which gives us (21). To complete the proof
notice that by the definition of the proximal mapping, we have

�λ(t)(x(t)) − �∗ = �(proxλ(t)�(x(t))) − �∗ + 1

2λ(t)
‖ proxλ(t)�(x(t)) − x(t)‖2 ∀t ≥ t0.

The conclusion follows immediately from (2) and (21). ��

4 Strong Convergence of the Trajectories

In this chapter we will establish the strong convergence of the trajectories to the
minimal norm element of argmin�.

In order to do so,wewill need tomodify assumption (13) from the previous chapter:

∫ +∞

t0

ε(t)

tb(t)
dt < +∞. (25)

Before moving to the main point of the section, let us prove an auxiliary result first.

Theorem 6 Suppose that α > 3, the function λ is bounded for all t ≥ t0 and (11),
(12), (14) and (25) hold. Then

lim
t→+∞ ‖ proxλ(t)�(x(t)) − x(t)‖ = 0

and

lim
t→+∞ �

(
proxλ(t)�(x(t))

) − �∗ = 0.

Proof Let us return to (18):

Ėα−1(t) ≤ (α − 1)t
ε(t)

2
‖x∗‖2.

Let us integrate the last inequality on [T, t]

Eα−1(t) ≤ Eα−1(T ) + (α − 1)‖x∗‖2
2

∫ t

T
sε(s)ds.

On the other hand, for every t ≥ t0

Eα−1(t) ≥ (t2b(t) − βt)
(
�λ(t)(x(t)) − �∗) .
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Thus,

�λ(t)(x(t)) − �∗ ≤ Eα−1(T )

t2b(t) − βt
+ (α − 1)‖x∗‖2

2(t2b(t) − βt)

∫ t

T
sε(s)ds.

We deduce due to (25) and the Lemma A.3 that

lim
t→+∞

1

t2b(t)

∫ t

T
s2b(s)

ε(s)

sb(s)
ds = 0.

Therefore,

lim
t→+∞

(α − 1)‖x∗‖2
2(t2b(t) − βt)

∫ t

T
sε(s)ds = 0

and clearly

lim
t→+∞

Eα−1(T )

t2b(t) − βt
= 0.

Thus, we establish

lim
t→+∞ �λ(t)(x(t)) − �∗ = 0.

By the definition of the proximal mapping

�λ(t)(x(t)) − �∗ = �
(
proxλ(t)�(x(t))

) − �∗ + 1

2λ(t)
‖ proxλ(t)�(x(t)) − x(t)‖2 ∀t ≥ t0.

Using the fact that λ is bounded for all t ≥ t0 we deduce

lim
t→+∞ ‖ proxλ(t)�(x(t)) − x(t)‖ = 0

and

lim
t→+∞ �

(
proxλ(t)�(x(t))

) − �∗ = 0.

��
For the remaining part of this section we will use a different energy functional.

Inspired by [23] we introduce the following functional, which we will heavily rely on
throughout this section

Ep,q(t) = t p+1 (tb(t) + β(α − p − q − 2))
(
�λ(t)(x(t)) − �∗)

+ε(t)t p+2

2

(
‖x(t)‖2 − ‖x∗‖2

)
+ t p

2
‖v(t)‖2 , (26)
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where v(t) = q(x(t) − x∗) + t(ẋ(t) + β∇�λ(t)(x(t)) and p, q ≥ 0.
The proof of the following theorem draws inspiration from [10, 15, 23].

Theorem 7 Suppose that λ is bounded for all t ≥ t0, α > 3, b(t0) ≥ 1
2 + β

t0
and (11),

(12) and (25) are fulfilled. Suppose additionally that for all t ≥ t0

(α

3
− 1

)
tb(t) − t2ḃ(t) + αβ

3
≥ 0 (27)

and moreover that for all t ≥ t0

2α(α − 3) − 9t2ε(t) + 6αβ ≤ 0, (28)

18βt + 9βλ̇(t) − 9tb(t)
(
λ̇(t) + 2β

) + 3(α + 3)β2 + α2β ≤ 0 (29)

and

lim
t→+∞

β

t
α
3 +1ε(t)

∫ t

t0
s

α
3 +1ε2(s)ds = 0. (30)

If x : [t0,+∞) 
→ H is a solution to (1) and the trajectory x(t) stays either inside
or outside the ball B(0, ‖x∗‖), then x(t) converges to minimal norm solution x∗ =
projargmin�(0), as t → +∞. Otherwise, lim inf t→+∞ ‖x(t) − x∗‖ = 0.

Proof As in [23] we will consider several cases with respect to the trajectory x staying
either inside or outside the ball B (0, ‖x∗‖).

Case I.

Assume that the trajectory x stays in the complement of the ball B for all t ≥ t0.
This means nothing but ‖x(t)‖ ≥ ‖x∗‖ for every t ≥ t0.

(i)Our nearest goal is to obtain the upper bound for the derivative of Ep,q . In order
to do so, let us evaluate its time derivative for every t ≥ t0 first.

d

dt
Ep,q (t) = t p

(
(p + 2)tb(t) + t2ḃ(t) + (p + 1)β(α − p − q − 2)

) (
�λ(t)(x(t)) − �∗)

+ t p+1 (tb(t) + β(α − p − q − 2))

(〈∇�λ(t)(x(t)), ẋ(t)
〉 − λ̇(t)

2
‖∇�λ(t)(x(t))‖2

)

+ (p + 2)t p+1ε(t) + t p+2ε̇(t)

2

(‖x(t)‖2 − ‖x∗‖2) + t p+2ε(t)〈ẋ(t), x(t)〉

+ pt p−1

2
‖q(x(t) − x∗) + t(ẋ(t) + β∇�λ(t)(x(t))‖2 + t p〈v̇(t), v(t)〉.

(31)

Consider for every t ≥ t0 the inner product 〈v̇(t), v(t)〉:
〈
(q + 1)ẋ(t) + β∇�λ(t)(x(t)) + t

(
ẍ(t) + β

d

dt
∇�λ(t)(x(t))

)
, q(x(t) − x∗) + t(ẋ(t)

+ β∇�λ(t)(x(t))

〉
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=
〈
(q + 1 − α)ẋ(t) + β∇�λ(t)(x(t)) − t

(
b(t)∇�λ(t)(x(t)) + ε(t)x(t)

)
, q(x(t) − x∗) + t(ẋ(t)

+ β∇�λ(t)(x(t))

〉

= q(q + 1 − α)〈ẋ(t), x(t) − x∗〉 + (q + 1 − α)t
(
‖ẋ(t)‖2 + 〈

β∇�λ(t)(x(t)), ẋ(t)
〉)

+ βq〈∇�λ(t)(x(t)), x(t) − x∗〉 + βt〈∇�λ(t)(x(t)), ẋ(t)〉 + β2t‖∇�λ(t)(x(t))‖2
− qt

〈
b(t)∇�λ(t)(x(t)) + ε(t)x(t), x(t) − x∗〉 − t2

〈
b(t)∇�λ(t)(x(t)) + ε(t)x(t), ẋ(t)

〉
− βt2

〈
b(t)∇�λ(t)(x(t)) + ε(t)x(t),∇�λ(t)(x(t))

〉
,

where above we used (1). Consider now for every t ≥ t0,

‖q(x(t) − x∗) + t(ẋ(t) + β∇�λ(t)(x(t)))‖2 = q2‖x(t) − x∗‖2 + 2qt〈ẋ(t), x(t) − x∗〉
+ 2qβt〈∇�λ(t)(x(t)), x(t) − x∗〉 + t2‖ẋ(t)‖2 + 2βt2〈∇�λ(t)(x(t)), ẋ(t)〉
+ β2t2‖∇�λ(t)(x(t))‖2.

The two estimates that we made above lead to (31) becoming

d

dt
Ep,q (t) = t p

(
(p + 2)tb(t) + t2ḃ(t) + (p + 1)β(α − p − q − 2)

) (
�λ(t)(x(t)) − �∗)

+ (p + 2)t p+1ε(t) + t p+2ε̇(t)

2

(‖x(t)‖2 − ‖x∗‖2) + pq2t p−1

2
‖x(t) − x∗‖2

+ (p + 2)β2t p+1

2
‖∇�λ(t)(x(t))‖2 +

(
q + 1 − α + p

2

)
t p+1‖ẋ(t)‖2

+ q(q + 1 − α + p)t p
〈
ẋ(t), x(t) − x∗〉 + qβ(p + 1)t p

〈∇�λ(t)(x(t)), x(t) − x∗〉
− qt p+1

〈
b(t)∇�λ(t)(x(t)) + ε(t)x(t), x(t) − x∗〉

− βt p+2
〈
b(t)∇�λ(t)(x(t)) + ε(t)x(t),∇�λ(t)(x(t))

〉

− λ̇(t)t p+1 (tb(t) + β(α − p − q − 2))

2
‖∇�λ(t)(x(t))‖2.

Let us apply the gradient inequality to the strongly convex function x 
→
b(t)�λ(t)(x) + ε(t)‖x‖2

2 :

−
〈
b(t)∇�λ(t)(x(t)) + ε(t)x(t), x(t) − x∗〉 + ε(t)‖x(t) − x∗‖2

2

≤
(
b(t)�∗ + ε(t)‖x∗‖2

2

)
−

(
b(t)�λ(t)(x(t)) + ε(t)‖x(t)‖2

2

)

and thus

− qt p+1
〈
b(t)∇�λ(t)(x(t)) + ε(t)x(t), x(t) − x∗〉 ≤ −qt p+1b(t)

(
�λ(t)(x(t)) − �∗)

− qt p+1 ε(t)

2

(‖x(t)‖2 − ‖x∗‖2) − qt p+1 ε(t)‖x(t) − x∗‖2
2
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for every t ≥ t0. So, noticing that

− βt p+2
〈
b(t)∇�λ(t)(x(t)) + ε(t)x(t),∇�λ(t)(x(t))

〉

= − βt p+2b(t)‖∇�λ(t)(x(t))‖2 − βt p+2ε(t)
〈
x(t),∇�λ(t)(x(t))

〉

we deduce

d

dt
Ep,q (t) ≤ t p

(
(p + 2 − q)tb(t) + t2ḃ(t) + (p + 1)β(α − p − q − 2)

) (
�λ(t)(x(t)) − �∗)

+ (p + 2 − q)t p+1ε(t) + t p+2ε̇(t)

2

(‖x(t)‖2 − ‖x∗‖2)

+
(
pq2t p−1

2
− qt p+1ε(t)

2

)
‖x(t) − x∗‖2

+ (p + 2)β2t p+1 − 2βt p+2b(t) − λ̇(t)t p+1 (tb(t) + β(α − p − q − 2))

2
‖∇�λ(t)(x(t))‖2

+
(
q + 1 − α + p

2

)
t p+1‖ẋ(t)‖2 + q(q + 1 − α + p)t p

〈
ẋ(t), x(t) − x∗〉

+ qβ(p + 1)t p
〈∇�λ(t)(x(t)), x(t) − x∗〉 − βt p+2ε(t)

〈
x(t), ∇�λ(t)(x(t))

〉
.

In order to proceed further we will need the following estimates:

qβ(p + 1)t p
〈∇�λ(t)(x(t)), x(t) − x∗〉

≤ qβ(p + 1)t p+1

4c2
‖∇�λ(t)(x(t))‖2 + qβ(p + 1)c2t p−1‖x(t) − x∗‖2

and

−βt p+2ε(t)
〈
x(t),∇�λ(t)(x(t))

〉
≤ βt p+2

a
‖∇�λ(t)(x(t))‖2 + aβt p+2ε2(t)

4
‖x(t)‖2

for every t ≥ t0, some c ≥ 1 and a ≥ 1. Thus,

d

dt
Ep,q (t) ≤ t p

(
(p + 2 − q)tb(t) + t2ḃ(t) + (p + 1)β(α − p − q − 2)

) (
�λ(t)(x(t)) − �∗)

+
(

(p + 2 − q)t p+1ε(t) + t p+2 ε̇(t)

2
+ aβt p+2ε2(t)

4

)
‖x(t)‖2

+
(
pq2t p−1

2
− qt p+1ε(t)

2
+ qβ(p + 1)c2t p−1

)
‖x(t) − x∗‖2

+
(

(p + 2)β2t p+1 − 2βt p+2b(t) − λ̇(t)t p+1 (tb(t) + β(α − p − q − 2))

2
+ qβ(p + 1)t p+1

4c2

+ βt p+2

a

)
· ‖∇�λ(t)(x(t))‖2

+
(
q + 1 − α + p

2

)
t p+1‖ẋ(t)‖2 + q(q + 1 − α + p)t p

〈
ẋ(t), x(t) − x∗〉

−
(

(p + 2 − q)t p+1ε(t) + t p+2 ε̇(t)

2

)
‖x∗‖2.
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Let us fix

q = 2α

3
and p = α − 3

3
.

First of all, due to this choice

q + 1 − α + p = 0

and thus we get rid of the term
〈
ẋ(t), x(t) − x∗〉. Secondly,

q + 1 − α + p

2
= − p

2
≤ 0. (32)

Then

p + 2 − q = 1 − α

3
≤ 0. (33)

So,

d

dt
Ep,q (t) ≤ t p

(
(p + 2 − q)tb(t) + t2ḃ(t) + (p + 1)β(α − p − q − 2)

) (
�λ(t)(x(t)) − �∗)

+
(

(p + 2 − q)t p+1ε(t) + t p+2 ε̇(t)

2
+ aβt p+2ε2(t)

4

)
‖x(t)‖2

+
(
pq2t p−1

2
− qt p+1ε(t)

2
+ qβ(p + 1)c2t p−1

)
‖x(t) − x∗‖2

+
(

(p + 2)β2t p+1 − 2βt p+2b(t) − λ̇(t)t p+1 (tb(t) + β(α − p − q − 2))

2
+ qβ(p + 1)t p+1

4c2

+ βt p+2

a

)
· ‖∇�λ(t)(x(t))‖2

+
(
q + 1 − α + p

2

)
t p+1‖ẋ(t)‖2 −

(
(p + 2 − q)t p+1ε(t) + t p+2 ε̇(t)

2

)
‖x∗‖2.

Obviously, for t large enough, say, t ≥ t2 ≥ t0 the following expression is non-positive
due to (27) and p + 1 = α

3 > 0 and α − p − q − 2 = −1

(p + 2 − q)tb(t) + t2ḃ(t) + (p + 1)β(α − p − q − 2)

= (
1 − α

3

)
tb(t) + t2ḃ(t) − αβ

3 ≤ 0.

Moreover, from (28) it follows that for c = 1

pq2t p−1

2
− qt p+1ε(t)

2
+ qβ(p + 1)c2t p−1 = αt

α−6
3

27

(
2α(α − 3) − 9t2ε(t) + 6αβ

) ≤ 0

for all t ≥ t0. Furthermore,

(
(p + 2 − q)t p+1ε(t) + t p+2ε̇(t)

2
+ aβt p+2ε2(t)

4

)
‖x(t)‖2

123



1408 Journal of Optimization Theory and Applications (2024) 202:1385–1420

−
(

(p + 2 − q)t p+1ε(t) + t p+2ε̇(t)

2

)
‖x∗‖2

=
(

(p + 2 − q)t p+1ε(t) + t p+2ε̇(t)

2
+ aβt p+2ε2(t)

4

) (
‖x(t)‖2 − ‖x∗‖2

)

+ aβt p+2ε2(t)

4
‖x∗‖2.

So, under the assumption (12) and the fact that ‖x(t)‖ ≥ ‖x∗‖ for all t ≥ t0 we deduce
due to (33)

(
(p + 2 − q)t p+1ε(t) + t p+2ε̇(t)

2
+ aβt p+2ε2(t)

4

) (
‖x(t)‖2 − ‖x∗‖2

)
≤ 0.

Thus, under the assumptions (12), (27), (28) and (29) (the latest leads to the non-
positivity of the coefficient of ‖∇�λ(x)‖2) we conclude due to (32) that for every
t ≥ t2

d

dt
Ep,q(t) ≤ aβt

α
3 +1ε2(t)

4
‖x∗‖2. (34)

(ii) Let us obtain now the lower bound for Ep,q . Notice that for p = α−3
3 and q = 2α

3
we have α − p − q = 1 and

Ep,q(t) ≥ t p+1 (tb(t) + β(α − p − q − 2))
(
�λ(t)(x(t)) − �∗)

+ ε(t)t p+2

2

(
‖x(t)‖2 − ‖x∗‖2

)

= t p+1 (tb(t) − β)
(
�λ(t)(x(t)) − �∗) + ε(t)t p+2

2

(
‖x(t)‖2 − ‖x∗‖2

)

≥ t p+2

2

(
�λ(t)(x(t)) − �∗) + ε(t)t p+2

2

(
‖x(t)‖2 − ‖x∗‖2

)
,

(35)

since tb(t) − β ≥ t
2 for every t ≥ t0 by b(t0) ≥ 1

2 + β
t0
and b being non-decreasing.

On the other hand, applying the gradient inequality to the strongly convex function
ϕε(t),λ(t)(x) = �λ(t)(x)

2 + ε(t)
2 ‖x‖2 we deduce for xε(t),λ(t) = argminH ϕε(t),λ(t)(x)

ϕε(t),λ(t)(x) − ϕε(t),λ(t)(xε(t),λ(t)) ≥ ε(t)

2
‖x − xε(t),λ(t)‖2 for every x ∈ H .

By the definition of ϕε(t),λ(t)(x) we deduce

ϕε(t),λ(t)(xε(t),λ(t)) − ϕε(t),λ(t)(x
∗)

= 1

2

(
�λ(t)(xε(t),λ(t)) − �∗) + ε(t)

2

(
‖xε(t),λ(t)‖2 − ‖x∗‖2

)
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≥ ε(t)

2

(
‖xε(t),λ(t)‖2 − ‖x∗‖2

)
.

We may now add the last two inequalities to obtain

ϕε(t),λ(t)(x) − ϕε(t),λ(t)(x
∗)

≥ ε(t)

2

(
‖x − xε(t),λ(t)‖2 + ‖xε(t),λ(t)‖2 − ‖x∗‖2

)
for every x ∈ H . (36)

Plugging (36) into (35) we conclude that for every t ≥ t2

Ep,q(t) ≥ t p+2ε(t)

2

(
‖x(t) − xε(t),λ(t)‖2 + ‖xε(t),λ(t)‖2 − ‖x∗‖2

)
. (37)

(iii) Finally, using the lower and upper bounds for Ep,q we can prove the strong
convergence of the trajectories to a minimal norm solution. Integrating (34) on [t2, t]
we obtain

Ep,q(t) ≤ Ep,q(t2) + aβ‖x∗‖2
4

∫ t

t2
s

α
3 +1ε2(s)ds

and using (37) we deduce for every t ≥ t2

‖x(t) − xε(t),λ(t)‖2 ≤ ‖x∗‖2 − ‖xε(t),λ(t)‖2 + 2Ep,q (t2)

t
α
3 +1ε(t)

+ aβ‖x∗‖2
2t

α
3 +1ε(t)

∫ t

t2
s

α
3 +1ε2(s)ds.

Note that due to (28)

t2ε(t) ≥ 2α(α − 3) + 6αβ

9
= Ĉ ≥ 0

and

t
α
3 +1ε(t) = t2ε(t)t

α
3 −1 ≥ Ĉt

α
3 −1.

Since α > 3 we deduce

lim
t→+∞ t

α
3 +1ε(t) = +∞

and thus

lim
t→+∞

2Ep,q(t2)

t
α
3 +1ε(t)

= 0.

Finally, by (9) and (30) we conclude

lim
t→+∞ x(t) = x∗.
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Case II.

Assume now the opposite to the first case, namely, ‖x(t)‖ < ‖x∗‖ for every t ≥ t0.
According to Theorem 6

lim
t→+∞ ‖ proxλ(t)�(x(t)) − x(t)‖ = 0

and

lim
t→+∞ �

(
proxλ(t)�(x(t))

) − �∗ = 0.

Denote ξ(t) = proxλ(t)�(x(t)). Considering a sequence {tk}k∈N such that {x(tk)}k∈N
convergesweakly to an element x̂ ∈ H as k → ∞, we notice that {ξ(tk)}k∈N converges
weakly to x̂ as k → ∞. Now, the function � being convex and lower semicontinuous
in the weak topology, allows us to write

�(x̂) ≤ lim inf
k→∞ �(ξ(tk)) = lim

t→+∞ �(ξ(t)) = �∗

and hence, x̂ ∈ argmin�. The norm is weakly semicontinuous, so

‖x̂‖ ≤ lim inf
k→∞ ‖ξ(tk)‖ ≤ ‖x∗‖,

which means that x̂ = x∗ by the uniqueness of the element of the minimum norm in
argmin�λ. Therefore, the trajectory x converges weakly to x∗ and

‖x∗‖ ≤ lim inf
t→+∞ ‖x(t)‖ ≤ lim sup

t→+∞
‖x(t)‖ ≤ ‖x∗‖

and thus

lim
t→+∞ ‖x(t)‖ = ‖x∗‖.

From this and the weak convergence of the trajectory x follows the strong one:
limt→+∞ x(t) = x∗.

Case III.

Assume that for t ≥ t0 the trajectory x finds itself both inside and outside the ball
B(0, ‖x∗‖). Since x is continuous, there exists a sequence {tn}n∈N ⊆ [t0,+∞) such
that tn → ∞ as n → ∞ and ‖x(tn)‖ = ‖x∗‖ for every n ∈ N. Consider again a
weak sequential cluster point x̂ of the sequence {x(tn)}n∈N. By repeating the same
argument as in the previous case we deduce the weak convergence of {x(tn)}n∈N to
x∗, as n → ∞. Since ‖x(tn)‖ → ‖x∗‖, as n → ∞, we obtain that ‖x(tn)− x∗‖ → 0,
as n → ∞, which means lim inf t→+∞ ‖x(t) − x∗‖ = 0. ��
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Remark 1 In this section the condition ḃ(t) ≥ 0 for all t ≥ t0 is not necessary. Our
conjecture is that we can weaken the setting by omitting this condition and thus widen
the range for b, including the functions that decay not faster than 1

t2
for the polynomial

choice of parameters.

Remark 2 There is no setting which guarantees both fast rates for the values and strong
convergence of the trajectories. One of the future goal would be to develop a new
approach (based on [6]), whichwould help us deduce these two results simultaneously.

4.1 Strong Convergence of the Tajectories in Cse˛ = 3

Throughout this section we no longer require that b is non-decreasing. In this case the
analogue of Theorem 6 looks as follows.

Theorem 8 Suppose that for all t ≥ t0 the function λ is bounded, b(t) ≡ b > 0 is
a constant function and (12) and (14) hold. Suppose additionally that (25) holds for
constant b, namely

∫ +∞

t0

ε(t)

t
dt < +∞.

Then

lim
t→+∞ ‖ proxλ(t)�(x(t)) − x(t)‖ = 0

and

lim
t→+∞ �

(
proxλ(t)�(x(t))

) − �∗ = 0.

Proof In this case the energy functional becomes

E2(t) = (bt2 − βt)
(
�λ(t)(x(t)) − �∗) + t2ε(t)

2
‖x(t) + 1

2
‖2(x(t) − x∗)

+t
(
ẋ(t) + β∇�λ(t)(x(t))

) ‖2.

Relation (16) thus becomes for all t ≥ t0

Ė2(t) ≤ β
(
�λ(t)(x(t)) − �∗) −

((
bt2 − βt

) λ̇(t)

2
− β2t + βt2

(
b − 1

a

))
‖∇�λ(t)(x(t))‖2

+ 2t2ε̇(t) + aβt2ε2(t)

4
‖x(t)‖2 − tε(t)‖x(t) − x∗‖2 + tε(t)‖x∗‖2.

Thus, repeating the same arguments as in Theorem 4 we obtain

Ė2(t) ≤ β
(
�λ(t)(x(t)) − �∗) + tε(t)‖x∗‖2.
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Let us multiply this expression with t(bt − β) to obtain

t(bt − β)Ė2(t) ≤ βt(bt − β)
(
�λ(t)(x(t)) − �∗) + t2(bt − β)ε(t)‖x∗‖2

≤ βE2(t) + t2(bt − β)ε(t)‖x∗‖2.

Now, we will divide by (bt − β)2 to conclude

t

(bt − β)
Ė2(t) ≤ β

(bt − β)2
E2(t) + t2

(bt − β)
ε(t)‖x∗‖2

or

d

dt

(
t

bt − β
E2(t)

)
≤ t2

(bt − β)
ε(t)‖x∗‖2.

Integrating the last inequality on [T , t], where T ≥ t0, we deduce

t

bt − β
E2(t) ≤ T

bT − β
E2(T ) + ‖x∗‖2

∫ t

T

s2

(bs − β)
ε(s)ds.

By the definition of E2 we know

E2(t) ≥ (bt2 − βt)
(
�λ(t)(x(t)) − �∗) .

Combining these two inequalities, we deduce

�λ(t)(x(t)) − �∗ ≤ T

t2(bT − β)
E2(T ) + ‖x∗‖2

t2

∫ t

T

s2

(bs − β)
ε(s)ds.

Now,

lim
t→+∞

T

t2(bT − β)
E2(T ) = 0.

Applying Lemma A.3 we deduce due to (25)

lim
t→+∞

bt − β

t3

∫ t

T

s3

(bs − β)

ε(s)

s
ds = 0

and thus

lim
t→+∞

‖x∗‖2
t2

∫ t

T

s2

(bs − β)
ε(s)ds = 0.

Therefore, we establish

lim
t→+∞ �λ(t)(x(t)) − �∗ = 0.
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Again, by the definition of the proximal mapping

�λ(t)(x(t)) − �∗ = �
(
proxλ(t)�(x(t))

) − �∗ + 1

2λ(t)
‖ proxλ(t)�(x(t)) − x(t)‖2 ∀t ≥ t0.

Using the fact that λ is bounded for all t ≥ t0 we deduce

lim
t→+∞ ‖ proxλ(t)�(x(t)) − x(t)‖ = 0

and

lim
t→+∞ �

(
proxλ(t)�(x(t))

) − �∗ = 0.

��
We are in position now to formulate the analogue of Theorem 7.

Theorem 9 Suppose that λ is bounded for all t ≥ t0, b(t) ≡ b ≥ 1
2 + β

t0
and (12) and

(25) hold. Assume, in addition, that

lim
t→+∞ t2ε(t) = +∞, (38)

2βt + βλ̇(t) − bt
(
λ̇(t) + 2β

) + 2β2 + β ≤ 0 for all t ≥ t0 (39)

and

lim
t→+∞

β

t2ε(t)

∫ t

t0
s2ε2(s)ds = 0. (40)

If x : [t0,+∞) 
→ H is a solution to (1) and the trajectory x(t) stays either inside
or outside the ball B(0, ‖x∗‖), then x(t) converges to minimal norm solution x∗ =
projargmin�(0), as t → +∞. Otherwise, lim inf t→+∞ ‖x(t) − x∗‖ = 0.

Proof The proof goes in linewith the one of Theorem7 by takingα = 3, b(t) ≡ b > 0,
q = 2, p = 0 and referring to Theorem 8 instead of Theorem 6 in the second and
third cases. ��

5 Analysis of the Conditions

Since all the conditions cannot be satisfied simultaneously, let us treat them separately,
namely:

1. In order to obtain the fast convergence rates of the function values we require that
for all t ≥ t0:

• α > 3;
• the existence of a ≥ 1 such that 2ε̇(t) ≤ −aβε2(t),
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• b(t0) ≥ β
t0
and b(t0) > 1

a ;

• ∫ +∞
t0

tε(t)dt < +∞ and

• the existence of 0 < δ < α − 3 such that (α − 3)tb(t) − t2ḃ(t) + β(2− α) ≥
δtb(t).

2. For the strong convergence of the trajectories we require the following for all
t ≥ t0:

• α > 3;
• λ is bounded;
• α−3

3 b(t) − t ḃ(t) + αβ
3 ≥ 0;

• (α − 3)tb(t) − t2ḃ(t) + β(2 − α) ≥ 0;
• the existence of a ≥ 1 such that 2ε̇(t) ≤ −aβε2(t), b(t0) > 1

a and b(t0) ≥
1
2 + β

t0
;

• ∫ +∞
t0

ε(t)
tb(t)dt < +∞;

• 2α(α − 3) − 9t2ε(t) + 6αβ ≤ 0;
• 18βt + 9βλ̇(t) − 9tb(t)

(
λ̇(t) + 2β

) + 3(α + 3)β2 + α2β ≤ 0;

• limt→+∞ β

t
α
3 +1

ε(t)

∫ t
t0
s

α
3 +1ε2(s)ds = 0.

We will analyse these conditions in details for the polynomial choice of functions
b and ε, namely, b(t) = btn and ε(t) = ε

td
, where b is positive, n ≥ 0 and ε, d > 0.

5.1 Setting for the Fast Convergence Rates of the FunctionValues

The set of the conditions becomes for all t ≥ t0
1. α > 3;
2. there exists a ≥ 1 such that − 2dε

td+1 ≤ − aβε2

t2d
,

3. b(t0) ≥ β
t0
and b(t0) > 1

a ;

4.
∫ +∞
t0

ε
td−1 dt < +∞ and

5. there exists 0 < δ < α−3 such that (α−3)btn+1−bntn+1+β(2−α) ≥ δbtn+1.

After some simple algebraic computations one may discover that in order to satisfy
all the conditions at the same time it is enough to assume

α − 3 > n ≥ 0 (condition 5)

and

d > 2 and d ≥ βε

2
(conditions 2 and 4) ,

since all the other inequalities could be fulfilled by taking the appropriate t0, namely,

t0 ≥ max

{
n+1

√
β

b
,

n+1

√
β(α − 2)

b(α − 3 − n)

}
and t0 >

1
n
√
b
.
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5.2 Setting for the Strong Convergence of the Trajectories

The set of the conditions becomes for all t ≥ t0

1. α > 3;
2. λ is bounded;
3. α−3

3 btn+1 − bntn+1 + αβ
3 ≥ 0;

4. (α − 3)btn+1 − bntn+1 + β(2 − α) ≥ 0;

5. there exists a ≥ 1 such that − 2dε
td+1 ≤ − aβε2

t2d
, b(t0) > 1

a and b(t0) ≥ 1
2 + β

t0
;

6.
∫ +∞
t0

ε
btn+d+1 dt < +∞;

7. 2α(α − 3) − 9ε
td−2 + 6αβ ≤ 0;

8. 18βt + 9βλ̇(t) − 9btn+1
(
λ̇(t) + 2β

) + 3(α + 3)β2 + α2β ≤ 0;

9. limt→+∞ β

εt
α
3 −d+1

∫ t
t0

ε2s
α
3 −2d+1ds = 0.

Again, analysis of the set of conditions leads to the following conclusion:

• λ is bounded (condition 2) ;
• 0 ≤ n ≤ α−3

3 and α > 3 (condition 3) ;

• max
{
1, βε

2

}
≤ d ≤ 2 (conditions 5, 7, 8, 9) .

As before, t0 should be chosen appropriately.

5.3 The Case˛ = 3

In this case the following has to be assumed: there exists a ≥ 1 such that for all t ≥ t0

1. λ(t) is bounded;
2. 2ε̇(t) ≤ −aβε2(t), b > 1

a and b ≥ 1
2 + β

t0
;

3.
∫ +∞
t0

ε(t)
t dt < +∞;

4. limt→+∞ t2ε(t) = +∞;
5. 2βt + βλ̇(t) − bt

(
λ̇(t) + 2β

) + 2β2 + β ≤ 0;

6. limt→+∞ β

t2ε(t)

∫ t
t0
s2ε2(s)ds = 0.

Essentially, for the polynomial choice of parameters that means b ≥ 1 and

• λ(t) is bounded (condition 2) ;

• max
{
1, βε

2

}
≤ d < 2 (conditions 4, 5, 6) ,

so with the appropriate choice of t0 the whole set of conditions is fulfilled.

6 Numerical Examples

6.1 The Rates of Convergence of theMoreau EnvelopeValues

Consider the objective function � : R → R, �(x) = |x | + x2
2 and let us plot the

values of its Moreau envelope as well as the gradient of its Moreau envelope for
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Fig. 1 l = 0 and d = 3

Fig. 2 d = 3 and n = 0

different polynomial functions λ, ε and b to illustrate the theoretical results with some
numerical examples. We take λ(t) = t l , ε(t) = 1

td
, b(t) = tn with x(t0) = x0 = 10,

ẋ(t0) = 0, α = 10 and t0 = 1.4.
First, let us take different time scaling parameter b with l = 0 and d = 3 and see

how it affects the behaviour of the system (1) (see Fig. 1).
As expected, the faster b grows, the faster the convergence is.
Consider now different Moreau envelope parameter λ with d = 3 and n = 0 (see

Fig. 2).
Note that the difference in the starting point comes from the fact that t0 �= 1, and

for different exponents l the value t l0 is also different. As predicted by theory, a faster
growing function λ leads to faster convergence of not only the gradient of Moreau
envelope of the objective function �, but also of the values of the Moreau envelope
themselves.

Varying the Tikhonov function ε for n = 0 and l = 0 does not affect the system,
which is illustrated by the following plot (see Fig. 3).
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Fig. 3 n = 0 and l = 0

Fig. 4 The role of the Tikhonov term

6.2 Strong Convergence of the Trajectories

For a different objective function let us investigate the strong convergence of the
trajectories of (1):

�(x) =

⎧⎪⎨
⎪⎩

|x − 1|, x > 1

0, x ∈ [−1, 1]
|x + 1|, x < −1.

The set argmin� is nothing but the segment [−1, 1] and 0 is its element of minimal
norm. Let us fix α = 6 and n = 0.7. First we take constant lambda (λ(t) = 1 for all
t ≥ t0) and plot the behaviour of the trajectories of (1) with and without Tikhonov
term (see Fig. 4.

As we see in case there is no Tikhonov regularization the trajectories converge to
the minimizer 1 of �, but the Tikhonov term actually guarantees the convergence
towards the minimal norm solution, which is 0.

Another comparison was made for non-constant lambda: λ(t) = 1 − 1
tl
for l = 1

(for different l’s the picture is the same), illustrating similar behaviour (see Fig. 5).
Finally, for the same choice of λ let us take different Tikhonov terms to figure out

how changing them affects the trajectories of (1) (see Fig. 6).
We see, that the faster ε decays, the slower trajectories converge.
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Fig. 5 The role of the Tikhonov term

Fig. 6 n = 0.7 and λ(t) = 1 − 1
t

Appendix A

Let us state here some auxiliary lemmas which we used in our analysis. For the proof
of the following lemma we refer to [3].

Lemma A.1 Suppose that f : [t0,+∞) → R is locally absolutely continuous and
bounded from below and there exists g ∈ L1([t0,+∞),R) such that for almost all
t ≥ t0

d

dt
f (t) ≤ g(t).

Then there exists limt→+∞ f (t) ∈ R.

For the proof of the next lemma we refer to [19].

Lemma A.2 Let H be a real Hilbert space and x : [t0,+∞) 
→ H be a continuously
differentiable function satisfying x(t) + t

α
ẋ(t) → L as t → +∞, with α > 0 and

L ∈ H. Then x(t) → L as t → +∞.

For the proof of the final Lemma we refer to [9].
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Lemma A.3 Let δ > 0 and f ∈ L1 ((δ,+∞),R) be a non-negative and continu-
ous function. Let g : [δ,+∞) → [0,+∞) be a non-decreasing function such that
limt→+∞ g(t) = +∞. Then it holds

lim
t→+∞

1

g(t)

∫ t

δ

g(s) f (s)ds = 0.
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