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Abstract
In this paper, we establish through an openness condition the metric subregularity
of a multimapping with normal ω(·)-regularity of either the graph or values. Various
preservation results for prox-regular and subsmooth sets are also provided.
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1 Introduction

Let M : X ⇒ Y be a multimapping between two Banach spaces with a closed convex
graph {(x, y) ∈ X × Y : y ∈ M(x)} =: gph M and let (x, y) ∈ gph M . In 1975-1976,
C. Ursescu [32] and S.M. Robinson [27] independently established that the existence
of a real γ ≥ 0 such that

d
(
x, M−1(y)

) ≤ γ d
(
y, M(x)

)
for all (x, y) near (x, y) (1.1)

is equivalent to the inclusion y ∈ core M(X), where

core M(X) := {
y ∈ M(X) : ∀y′ ∈ Y , ∃r > 0, y + r y′ ∈ M(X)

} ⊃ int M(X).
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Here and below, M−1 : Y ⇒ X denotes the inverse of the multimapping M defined
by M−1(y) := {x ∈ X : y ∈ M(x)}. In fact, the latter inclusion y ∈ core M(X)

guarantees the existence of a positive constant c such that

d
(
x, M−1(y)

) ≤ (c − ‖y − y‖)−1(1 + ‖x − x‖)d(
y, M(x)

)
,

for all x ∈ X , y ∈ B(y, c).
When the above inequality (1.1) holds, one naturally says that the multimapping M is
γ -metrically regular at x for y. Metric regularity property has a long and deep story
which goes back to the pioneers works by L.A. Lyusternik [20] and L.M. Graves [10]
and has been developed since in numerous papers and books (see, e.g., [8, 14, 21, 30]
and the references therein). Such a property is known to be equivalent either to some
Lipschitz behavior of the multimapping M−1 or to an openness (with linear rate) type
condition, namely the existence of positive constants α, β > 0 such that

B[y, αβt] ⊂ M(B[x, tα]),
for all t ∈]0, 1] and all (x, y) ∈ gph M near (x, y). Besides the so-called Robinson-
Ursescu theorem (which canbe viewed as an extension of the famousBanach-Schauder
open mapping theorem) metric regularity is strongly involved in subdifferential cal-
culus, estimates of coderivatives and optimality conditions (see, e.g., [21, 24, 30] and
the references therein).

Over the years, Robinson-Ursescu type theorems for multimappings with possibly
nonconvex graph have been provided. A first natural way to go beyond convexity in
such a context lies in the concept of paraconvexity. Recall that the (above) multimap-
ping M is said to be (θ, C)-paraconvex [26] for a real θ > 0 and a realC ≥ 0whenever
for all x1, x2 ∈ X , for all t ∈ [0, 1],
t M(x1) + (1 − t)M(x2) ⊂ M(t x1 + (1 − t)x2) + C min(t, 1 − t) ‖x1 − x2‖θ

BY ,

(1.2)

where BY denotes the closed unit ball of Y . It is worth pointing out that the latter class
of multimappings contains the class of multimappings with convex graphs; in fact (as
easily seen) the latter inclusion (1.2) withC = 0 characterizes the convexity of gph M .
A. Jourani [15] proved in 1996 under the θ -paraconvexity of the multimapping M−1

with θ ≥ 1 that the inequality (1.1) is equivalent to the inclusion y ∈ int M(X). In
[18], H. Huang and R.X. Li established that if M−1 is paraconvex, then M is metrically
regular at x for y whenever

B(y, β) ⊂ M
(
B(x, α)

)
(1.3)

for some reals α, β > 0. In fact, under the latter inclusion, from [18, Theorem 2.2] we
have the following estimate for any reals η > 0 and η′ > 0 with η + η′ = β,

d
(
x, M−1(y)

) ≤ η−1(α + Cηθ + ‖x − x‖ )
d
(
y, M(x)

)

for all x ∈ X and for all y ∈ B(y, η′), where θ, C > 0 are such that M−1 is (θ, C)-
paraconvex.
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In 2012, X.Y. Zheng and K.F. Ng [36] showed that prox-regularity of sets [25] is
also a suitable concept to develop nonconvex versions of Robinson-Ursescu theorem.
More precisely, Zheng and Ng established in the Hilbert framework that if gph M is
(r , δ)-prox-regular at (x, y), that is, for some reals r , δ > 0

〈
(x	, y	), (u, v) − (x, y)

〉 ≤ 1

2r
‖(u, v) − (x, y)‖2 ,

for every (u, v), (x, y) ∈ gph M ∩ (
B(x, δ) × B(y, δ)

) =: G M (δ, x, y) and every
(x	, y	) ∈ N C (gph M; (x, y)) ∩ (BX	 × BY 	 ) =: N C

M (x, y), then M is metrically
regular at x for y whenever the inclusion (1.3) holds for some realsα ∈]0, δ

3 [,β ∈]0, δ[
satisfying the inequality β >

4α2+β2

2r . Here and below, N C (S; x) denotes the Clarke
normal cone of a set S ⊂ X at x ∈ S. Twoyears later,X.Y.Zheng andQ.H.Heprovided
in [37] a Robinson-Ursescu type theorem for multimappings with some variational
behavior of order one, namely with a (σ, δ)-subsmooth [3] graph at (x, y), that is, for
some positive constant σ

〈
(x	, y	), (u, v) − (x, y)

〉 ≤ σ‖(u, v) − (x, y)‖,

for every (u, v), (x, y) ∈ G M (δ, x, y) and every (x	, y	) ∈ N C
M (x, y).

As shown by [2], the above results of [36, 37] can be extended to the class of
multimappings M with normally ω(·)-regular graph, that is, for some function ω :
R+ → R+

〈
(x	, y	), (u, v) − (x, y)

〉 ≤ ω(‖(u, v) − (x, y)‖)
for appropriate points u, v, x, y and unit normals x	, y	 (see Sect. 2 for the definition
and more details). More precisely, it is established in [2] that a multimapping M with
a normally ω(·)-regular graph satisfying the openness condition (1.3) for some reals
α, β, ρ > 0 such that

β >
3α

ρ
+ (

1 + 1

ρ

)
ω

(√
4α2 + (β − α

ρ
)2

)
, (1.4)

is γ -metrically regular at x for y for some real γ ≤ ρ. The authors of [2] derive from
their study various preservation results for ω(·)-normally regular sets which comple-
ment previous works devoted to the stability of prox-regularity and subsmoothness
properties [1, 6, 17, 33, 34] (see also the recent paper by G.E. Ivanov [11]).

In the present paper we first show that the metric subregularity property of the
multimapping M (that is the inequality (1.1) with y = y (see Sect. 2)) is a suitable
assumption to get the normal ω(·)-regularity of the inverse image M−1(y). We also
establish the normal regularity of a generalized equation set, say S := {x ∈ X : f (x) ∈
M(x)} with f : X → Y a (single-valued) mapping under a metric subregularity
inequality, namely

d(x, S) ≤ γ d
((

x, f (x)
)
, gph M

)
x near x .
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Of course, we require in both cases a normal ω(·)-regularity property on the involved
multimapping M (either on the coderivative or on the graph).We then naturally replace
(in the line of [2]) the latter metric subregularity assumption by the inclusion (1.3) with
α, β > 0 such that β > ω

(√
α2 + β2

)
. At last but not least, we show that a Lipschitz

(with respect to the Hausdorff-Pompeiu distance) multimapping with normal ω(·)-
regularity values near x enjoys some metric subregularity property at x for y.

The paper is organized as follows:
Section 2 is devoted to the necessary background in variational analysis. In Sect. 3,

we provide general sufficient conditions ensuring the preservation of normal ω(·)-
regularity for generalized equations. Sections4 and 5 focus on normally regular
versions of Robin-Ursescu theorem. Preservation results in the line of Sect. 3 are
also provided.

2 Notation and Preliminaries

Our notation is quite standard. In the whole paper, all vector spaces are real vector
spaces. The set of nonnegative real numbers is denoted R+ := [0,+∞[.

Let (X , ‖ · ‖) be a (real) normed space. We denote by B[x, r ] (resp. B(x, r)) the
closed (resp. open) ball centered at x ∈ X of radius r > 0. The boundary (resp. the
interior) of a nonempty set S ⊂ X is denoted by bdry S (resp. int S). For the unit balls
in X (that is, centered at 0X with radius 1) it will be convenient to set

BX := B[0X , 1] and UX := B(0X , 1).

We also set SX := {x ∈ X : ‖x‖ = 1} = BX\UX . The (topological) dual X	 of X is
endowed with its natural norm ‖ · ‖	 defined by

‖x	‖	 := sup
x∈BX

〈
x	, x

〉
for all x	 ∈ X	,

where 〈x	, x〉 := x	(x). As usual, we define the distance function from the nonempty
set S by setting

d(x, S) = dS(x) := inf
s∈S

‖x − s‖ for all x ∈ X .

For every x ∈ X , the possibly empty set of all nearest points of x in S is defined by

ProjS(x) := {y ∈ S : dS(x) = ‖x − y‖}.

The Hausdorff-Pompeiu excess of the set S over another nonempty subset S′ ⊂ X is
defined by

exc(S, S′) := sup
x∈S

d(x, S′) = inf{r > 0 : S ⊂ S′ + rBX }. (2.1)
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2.1 Normal Cones and Subdifferentials

Let X , Y be two normed spaces. The Fréchet (resp. Mordukhovich limiting (resp.
Clarke)) normal cone 1 of a set S ⊂ X at x ∈ S is denoted by N F (S; x) (resp.
N L(S; x) (resp. N C (S; x))). By convention, we put

N F (S; x) = N L(S; x) = N C (S; x) := ∅ for all x /∈ S. (2.2)

The coderivative associated to a concept of normal coneN in X ×Y of amultimapping
M : X ⇒ Y at (x, y) ∈ gph M is defined for every y	 ∈ Y 	 by

DN M(x, y)(y	) := {
x	 ∈ X	 : (x	,−y	) ∈ N (

gph M; (x, y)
)}

.

The Fréchet (resp. Mordukhovich limiting (resp. Clarke)) subdifferential of an
extended real-valued function f : X → R ∪ {+∞} finite at x ∈ X is defined by
saying that x	 ∈ X	 belongs to ∂F f (x) (resp. ∂L f (x) (resp. ∂C f (x))) when (x	,−1)
belongs to the corresponding normal cone of the epigraph of f at (x, f (x)). Through
to (2.2), we easily see that

∂F f (x) = ∂L f (x) = ∂C f (x) = ∅ if f (x) = +∞.

The above normal cones and subdifferentials do not depend on equivalent norms on
X . In particular, the subdifferential of a function f : X → R ∪ {+∞} is always
considered for an equivalent norm with respect to the initial one given on X.

Given any subdifferential ∂ and its corresponding normal cone N , it is well known
that

∂ψS(x) = N (S; x) for all x ∈ X ,

where (as usual)ψS denotes the indicator of the subset S of X (in the sense of variational
analysis) that is, for every x ∈ X ,

ψS(x) :=
{
0 if x ∈ S,

+∞ otherwise.

We also recall that the subdifferential ∂ enjoys Fermat optimality condition, namely

0 ∈ ∂ f (x) if x is a local minimizer of f .

If f is convex, it is known that the subdifferential ∂ coincides with the Moreau-
Rockafellar subdifferential, that is,

∂ f (x) = {
x	 ∈ X	 : 〈

x	, x ′ − x
〉 ≤ f (x ′) − f (x) ∀x ′ ∈ X

}
.

1 Also known as F (resp. L (resp. C))-normal cone.
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For the particular case of the convex function f := ‖ · ‖, it is known (and not difficult
to prove) that for all x ∈ X

∂‖ · ‖(x) =
{ {x	 ∈ X	 : ‖x	‖	 = 1, 〈x	, x〉 = ‖x‖} if x �= 0
BX	 otherwise

Recall that the Fréchet normal cone N F is linked to its subdifferential ∂F through the
equality

∂F dS(x) = N F (S; x) ∩ BX	 for all x ∈ S. (2.3)

A similar equality holds for Mordukhovich-limiting normal cone N L and the subdif-
ferential ∂L while we only have

∂C dS(x) ⊂ N C (S; x) ∩ BX	 for all x ∈ S. (2.4)

We end this section with fundamental results on subdifferentials. We start with the
famous sum rule for the Clarke’s subdifferential (see, e.g., [30, Theorem 2.98] (see
also the references [5, 24])).

Theorem 2.1 (sum rule for C-subdifferential) Let X be a normed space and let
f1, f2 : X → R ∪ {+∞} be two functions which are finite at x ∈ X. If f1(x) < +∞
and f2 is Lipschitz continuous near x, then one has

∂C ( f1 + f2)(x) ⊂ ∂C f1(x) + ∂C f2(x).

A quite similar result holds for the Mordukhovich limiting subdifferential (see the
monographs [21, 30]).

Theorem 2.2 (sum rule for L-subdifferential) Let X be an Asplund space and let
f1, f2 : X → R∪ {+∞} be two functions which are finite at x ∈ X. If f1 is Lipschitz
continuous at x ∈ X and f2 is lower semicontinuous near x, then one has

∂L( f1 + f2)(x) ⊂ ∂L f1(x) + ∂L f2(x).

The next proposition (see, e.g., [30, Theorem 2.135] (see also the references [5,
24])) gives an estimate for the Clarke subdifferential ∂C (g ◦G)(x) for the composition
of a locally Lipschitz function g with an inner strictly Hadamard differentiable vector-
valued mapping G.

Proposition 2.1 Let G : X → Y be a mapping between two normed spaces X and
Y which is strictly Hadamard differentiable at a point x ∈ X and let g : Y → R

be a function Lipschitz continuous near G(x). Then, the function g ◦ G is Lipschitz
continuous near x and

∂C (g ◦ G)(x) ⊂ DG(x)	
(
∂C g(G(x))

)
.
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The following proposition provides a description of N C (gph M; ·) for a multimap-
ping M(·) defined as the translation of a fixed set S, that is, M(x) := f (x) + S for a
given mapping f . For the proof, we refer the reader to [30, Proposition 2.129].

Proposition 2.2 Let S be a nonempty set of a normed space Y and let f : X → Y
be a mapping from a normed space X into Y . Let M : X ⇒ Y be the multimapping
defined by

M(x) := f (x) + S for all x ∈ S.

If f is strictly Hadamard differentiable at x ∈ X, then for every y ∈ M(x)

N C (gph M; (x, y)) =
{
(−D f (x)	(y	), y	) : y	 ∈ N C(

S; y − f (x)
)}

.

For more details on normal cones, coderivatives and subdifferentials, we refer the
reader to the books [5, 21, 24, 28, 30] and the references therein.

2.2 Normally!(·)-regular Sets

This section is devoted to the class of normally ω(·)-regular sets introduced in [2]. Let
us start by giving the definition of such sets:

Definition 2.1 Let S be a subset of a normed space (X , ‖ · ‖) and let ω : R+ → R be
a function with ω(0) = 0. Given a concept of normal cone N in X , one says that S
is N -normally ω(·)-regular relative to an open set V ⊂ X (with respect to the norm
‖ · ‖) whenever

〈
x	, x ′ − x

〉 ≤ ‖x	‖	ω(
∥∥x ′ − x

∥∥),

for all x, x ′ ∈ S ∩ V and for all x	 ∈ N (S; x). When V is the whole space X , we
will just say that S is N -normally ω(·)-regular. It will be also convenient to say that
S is C-normally (resp. F-normally) ω(·)-regular wheneverN is the normal cone N C

(resp. N F ).

The class of normally ω(·)-regular sets contains the class of (σ, δ)-subsmooth sets
[37] which (roughly speaking) expresses a variational behavior of order one.

Definition 2.2 Let S be a subset of a normed space (X , ‖ · ‖) and let x ∈ S. One says
that S is (σ, δ)-subsmooth at x for some reals σ, δ > 0 provided that

〈
x	, x ′ − x

〉 ≤ σ‖x	‖	

∥∥x ′ − x
∥∥ ,

for all x, x ′ ∈ S ∩ B(x, δ) and for all x	 ∈ N C (S; x).

Clearly, if a subset S of a normed space X is (σ, δ)-subsmooth at x ∈ S, then it is
C-normally ω(·)-regular relative to B(x, δ) with ω(t) := σ t for every real t ≥ 0. The
above definition of (σ, δ)-subsmooth property is quite related to the original definition
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of subsmooth sets by D. Aussel, A. Daniilidis and L. Thibault [3] where the authors
declare that the set S is subsmooth at x whenever for every ε > 0 we can find some
δ > 0 such that

〈
x	, x ′ − x

〉 ≤ ε‖x	‖	‖x ′ − x‖.

for all x, x ′ ∈ S ∩ B(x, δ) and all x	 ∈ N C (S; x). It is readily seen that the set S
is subsmooth at x ∈ S if and only if for all σ > 0 there is a real δσ > 0 such that
S is (σ, δσ )-subsmooth at x ∈ S. Given a real σ > 0, there are (σ, δ)-subsmooth
sets S in R

2 for every δ > 0 which fails to be Fréchet-Clarke regular at x ∈ S (i.e.,
N F (S; x) = N C (S; x)). Such sets are not hemi-subsmooth at x (hence one-sided
subsmooth at x /subsmooth at x (see, e.g., [31, Chapter 8])). An example of such a set
S has been given by X.Y. Zheng and Q.H. He in their 2014 paper [37]: namely, for
any real σ > 0 the set S = epi f where

f (x) :=
{
0 if x ≤ 0,

−σ x otherwise.

is (σ, δ)-subsmooth at x := (0, 0) for every real δ > 0 for the 1-norm ‖ · ‖1 in R2 and
fails to be Fréchet-Clarke regular at (0, 0).

The class of normally ω(·)-regular sets also contains the class of uniform
prox-regular sets in Hilbert spaces. Prox-regularity has been well recognized as a
fundamental tool in variational analysis which allows to go beyond convexity prop-
erty in many topics of modern analysis (see the survey [6] and the references therein).
Taking the above definitions ofω(·)-regularity and (σ, δ)-subsmoothness into account,
it will be convenient for us to use as definition of r -prox-regularity of sets ( [25]) the
following property.

Definition 2.3 A nonempty closed set S of a Hilbert space H is said to be r-prox-
regular (or prox-regular with constant/thickness r ) for some r ∈]0,+∞] if

〈
v, x ′ − x

〉 ≤ ‖v‖
2r

∥∥x ′ − x
∥∥2 , (2.5)

for all x, x ′ ∈ S, for all v ∈ N C (S; x) (or N F (S; x) (or N L(S; x)).

An r -prox-regular closed set S of a Hilbert space H is clearly C-normally ω(·)-
regular relative to the whole space H with ω(t) := 1

2r t2 for every real t ≥ 0. It is
also known (and not difficult to check) that the (nonempty closed) set S ⊂ H is r -
prox-regular if and only if (2.5) holds for all x, x ′ ∈ S with ‖x ′ − x‖ < 2r and for
all v ∈ N F (S; x) ∩BH. The r -prox-regularity of the (nonempty closed) set S inH is
often defined by means of the characterization property requiring that for any x ∈ S
and any nonzero v ∈ N F (S; x) with ‖v‖ ≤ 1, one has x ∈ ProjS(x + tv) for every
non-negative real t ≤ r . The closed subset S inH is also known to be r -prox-regular
if and only if ProjS(x) is a singleton for every x ∈ Ur (S) := {dS < r} and the induced
(single-valued) mapping is continuous on Ur (S).
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Given a real r > 0, we can check (see, e.g., [1, Theorem 4.1]) that the epigraph of
an r−1-semiconvex continuous function f : H → R (that is, f + 1

2r ‖ · ‖2 is convex
continuous) is r -prox-regular. Recall also (see [31, Proposition 15.35]) that a mapping
F : H → H (resp. a function F : H → R) which is differentiable with L-Lipschitz
derivative has its graph (resp. epigraph) 1/L-prox-regular.

The class of strongly convex sets also deserves to be mentioned:

Definition 2.4 A nonempty closed set C of a Hilbert spaceH is said to be R-strongly
convex (or strongly convex with radius R) for some R ∈]0,+∞[ if

〈
v, x ′ − x

〉 ≤ −‖v‖
2R

∥∥x ′ − x
∥∥2 ,

for all x, x ′ ∈ C , for all v ∈ N F (C; x).

It is known (see, e.g., the survey [9]) that a strongly convex set is nothing but
the intersection of a family of closed balls with common radius R (hence convex and
bounded). Of course, a strongly convex set isω(·)-normally regular withω(t) := − t2

2R
for all t ∈ [0,+∞[.

The class ofN -normallyω(·)-regular sets is also quite related to other previous con-
cepts of nonsmooth sets: C1,ϕ-regularity for functions and sets [16], super-regularity
[19], Clarke regularity [7]. Before closing this subsection devoted to nonsmooth sets,
let us give a result ensuring the normalω(·)-regularity for the graph of a multimapping
M given as a sum of a mapping and a set. For the proof, we refer the reader to [2,
Theorem 4.4].

Proposition 2.3 Let f : X → Y be a mapping between two normed spaces X and
Y and let S be a subset of Y which is C-normally ω(·)-regular relative to the whole
space Y for some nondecreasing function ω(·) : R+ → R+ with ω(0) = 0. Assume
that:

(i) there exists a real K ≥ 0 such that

‖ f (x) − f (x ′)‖ ≤ K‖x − x ′‖ for all x, x ′ ∈ X;

(ii) the mapping f is differentiable on X and there exists a real L ≥ 0 such that

∥∥D f (x) − D f (x ′)
∥∥ ≤ L

∥∥x − x ′∥∥ for all x, x ′ ∈ X .

Let ‖ · ‖X×Y a norm on X × Y associated to the product topology (of the norm
topologies of X and Y ) and such that

max(‖x − x ′‖, ‖y − y′‖) ≤ ‖(x, y) − (x ′, y′)‖X×Y for all x, x ′ ∈ X , all y, y′ ∈ Y .

Then, the graph of the multimapping M(·) := f (·) + S is C-normally ρ(·)-regular
where ρ : R+ → R+ is defined by

ρ(t) := ω
(
max(1, K )t

) + Lt2

2
for all t ∈ R+.
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2.3 Metric Subregularity

This section is devoted to the necessary background on metric subregularity theory
needed in the paper. For more details on this topic, we refer to [14, 28, 30] and the
references therein.

Let M : X ⇒ Y be a multimapping from a normed space X to another normed
space Y and let (x, y) ∈ gph M . One says that M is metrically subregular at x for y
whenever there exist a real γ ≥ 0 and a neighborhood U of x such that

d
(
x, M−1(y)

) ≤ γ d
(
y, M(x)

)
for all x ∈ U . (2.6)

The modulus of metric subregularity subreg[M](x | y) of M at x for y is defined as
the infimum of all γ ∈ [0,+∞[ for which there is a neighborhood U of x such that
the inequality (2.6) is fulfilled.

The following proposition is due to X.Y. Zheng and K.F. Ng ( [35]). It provides
important quantitative properties on a multimapping M which fails to fulfill the metric
subregularity inequality (2.6) for some point x , that is,

γ d
(
y, M(x)

)
< d

(
x, M−1(y)

)
.

Proposition 2.4 Let M : X ⇒ Y be a multimapping with closed graph between two
Banach spaces X and Y and let y ∈ Y . Assume that there exist x ∈ X and two reals
γ, r ∈]0,+∞[ such that

γ d
(
y, M(x)

)
< r < d

(
x, M−1(y)

)
.

Then, for all reals η, ε ∈]0,+∞[, there exist (u, v) ∈ gph M satisfying:

(i) ‖u − x‖ < r and 0 < ‖v − y‖ < min{ r
γ
, d(y, M(u)) + ε};

(i i) ‖v − y‖ ≤ ‖b − y‖ + 1
γ

(‖a − u‖ + η‖b − v‖) for all (a, b) ∈ gph M;

(i i i) (0, 0) ∈ {0} × ∂‖ · ‖(v − y) + 1
γ

(
BX	 × ηBY 	

) + N C
(
gph M; (u, v)

)
.

With the above result at hands, Zheng and Ng provide in [35] an important estimate
for the modulus of subregularity:

Proposition 2.5 Let M : X ⇒ Y be a multimapping with closed graph between two
Banach spaces and let (x, y) ∈ gph M. Then, one has

subreg[M](x |y) ≤ inf
ε>0

sup

{

sup
b∈BX	

‖DC M(x, y)−1(b	)‖ :
{

x ∈ B(x, ε) \ M−1(y)

y ∈ M(x) ∩ B(y, ε)

}

.

Remark 2.1 We point out that Proposition 2.4 (resp. Proposition 2.5) also holds for
the Mordukhovich limiting normal cone N L

(
gph M; (u, v)

)
(resp. the coderivative

DL M(x, y)−1(b	)) in the context of Asplund spaces X and Y . �
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3 Preservation of Normal!(·)-regularity of Sets Under Metric
Subregularity

We first give sufficient conditions ensuring the normal ω(·)-regularity (so in particular
the prox-regularity) for sets of the form

{x ∈ X : y ∈ M(x)} =: M−1(y), (3.1)

where M : X ⇒ Y is a multimapping and y ∈ Y . It should be noted that a large
number of sets can be rewritten as in (3.1). For instance, this is the case of constraint
sets, namely sets of the form

{ f1 ≤ 0, . . . , fm ≤ 0, fm+1 = 0, . . . , fm+n = 0} (3.2)

which is nothing but M−1(y) with y = 0 and

M(x) := −(
f1(x), . . . , fm(x), fm+1(x), . . . , fm+n(x)

)+] − ∞, 0]m × {0Rn } .(3.3)

Another case which deserves to be stated lies in the intersection of finitely many sets.
Indeed, for any sets S1, . . . , Sn ⊂ X we note that

n⋂

k=1

Sk = {x ∈ X : 0 ∈ M(x)} with M(x) := −(x, . . . , x) +
n∏

k=1

Sk . (3.4)

More generally, for a single-valued mapping f : X → Y and B ⊂ Y , the inverse
image f −1(B) reduces to M−1(y) with y = 0 and

M(x) := − f (x) + B. (3.5)

Observe that in the above cases (3.3), (3.5) and (3.4), the involved multimapping M(·)
is nothing but the translation of a fixed set. Such multimappings will be at the heart of
Sect. 5.

Let us mention that the uniform prox-regularity of level and sublevel sets has been
studied in [1, 2, 33, 34]. In [34], J.-P. Vial established the uniform prox-regularity
(called weak convexity therein) of a sublevel set S = { f ≤ 0} in R

n of a weakly
convex function f satisfying

inf
ζ∈∂ f (x),x∈bdry S

‖ζ‖ > 0.

We also mention the work [33] where the author gives sufficient conditions ensuring
the prox-regularity of the set S′ = { f1 ≤ 0, . . . , fm ≤ 0} with fi ∈ C2(Rn) and for
some positive constants α, β, M

α ≤ |∇ fi (x)| ≤ β and |D2 fi (x)| ≤ M .
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In [1], the authors establish the prox-regularity of the set S′ for possibly nonsmooth
functions fi defined on a Hilbert space H with their C-subdifferentials enjoying an
hypomonotone property and under a generalized Slater’s condition, namely the exis-
tence of a real δ > 0 such that for every x ∈ bdry S′ there is a unit vector vx such that
for all k = 1, . . . , m and for all ζ ∈ ∂C fk(x),

〈ζ, vx 〉 ≤ −δ.

The prox-regularity of the level L := {F = 0} of a smooth function F is also developed
in [1], under an openness condition, say for some real δ > 0

δB ⊂ DF(x)(B) for all x ∈ bdry L.

Regarding the prox-regularity of a constraint set with finitely many inequality and
equality constraints (see (3.2)), let us say that is has been studied in [1] and [2] through
two approaches, namely two different openness conditions either on the derivatives or
on a perturbation of the involved graphs.

Sublevel and level sets can be seen as a particular case of inverse image. The prox-
regularity of the inverse image f −1(B) has been first studied in the survey [6] under
a theoretical condition

N F ( f −1(B); x) ∩ B ⊂ D f (x)	(N (B; f (x) ∩ γB)

and also investigated in the papers [1] and [2]. Subsmoothness of inverse images have
been studied in [17]. Besides the prox-regularity of inverse images, let us point out
that the direct image case has been also examinated in [2, 6, 11].

Let us also mention that intersection of two uniformly prox-regular sets, say S1
and S2 may fail to be prox-regular, even in R

2 (see, e.g., [6]). To the best of our
knowledge, prox-regularity of the intersection S1 ∩ S2 holds under anyone of the
following conditions:

– the strong convexity of either S1 or S2;
– an openness condition on involved tangent cones, namely the existence of a real

s > 0 such that for all x ∈ bdry(S1 ∩ S2),

sB ⊂ T (S1; x1) ∩ B − T (S2; x2) ∩ B, xi ∈ Si , near x,

– an openness condition on S1, S2, more precisely, the existence of α, β, s > 0 such
that for all x ∈ bdry(S1 ∩ S2),

βBH6 ⊂ −�B[(x,x,x),α]2 + �H3 × H × S1 × S2, (3.6)

where �Em := {(x, . . . , x) : x ∈ E} ⊂ Em .

For a detailed overview on the preservation of nonsmooth sets under set operations,
we refer the reader to the recent book by L. Thibault [31] (see the comments at the
end of Chapters 8, 15 and 16).
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We start our study of preservation of ω(·)-regularity in this section by giving an
important estimate for the normal cone N (M−1(y); x) under a metric subregularity
assumption on the multimapping M . Given a multimapping M : X ⇒ Y between two
normed spaces X and Y , we define �M : X × Y → R ∪ {+∞} by setting

�M (x, y) := d
(
y, M(x)

)
for all (x, y) ∈ X × Y .

It is known that a certain Lipschitz behavior of �M (·, y) is equivalent to the Aubin-
Lipschitz property of M (see, e.g., [30, Proposition 7.7]). Subgradients of the function
�M have been studied in the literature by L. Thibault [29], B.S. Mordukhovich and
N.M. Nam ( [22, 23]) and M. Bounkhel [4, Chapter 4]. It is also known (see, e.g., [30,
Proposition 4.162]) that

∂F�M (x, y) = N F(
gph M; (x, y)

) ∩ (X	 × BY 	 )

and

N F(
gph M; (x, y)

) = R+∂F�M (x, y).

Similar equalities hold true for the Mordukhovich-limiting normal cone and subdif-
ferentials whenever X and Y are Banach spaces and gph M is closed.

Lemma 3.1 Let M : X ⇒ Y be a multimapping between two normed spaces X and
Y and let (x, y) ∈ gph M. The following hold:

(a) One has

∂F d
(
y, M(·))(x) × {0} ⊂ {0} × BY 	 + ∂C�M (x, y)

and

∂F d
(
y, M(·))(x) ⊂ DC M(x, y)(BY 	 ).

(b) Assume that X and Y are Asplund spaces. Then, one has

∂F d
(
y, M(·))(x) ⊂ DL M(x, y)(BY 	 ).

If in addition �M is lower semicontinuous near (x, y), then one has

∂F d
(
y, M(·))(x) × {0} ⊂ {0} × BY 	 + ∂L�M (x, y). (3.7)

(c) Assume that there exists a real γ ≥ 0 and a real δ > 0 such that

d
(
x, M−1(y)

) ≤ γ d
(
y, M(x)

)
for all x ∈ B(x, δ).

Then, one has

N F(
M−1(y); x

) ∩ BX	 = ∂F d
(·; M−1(y)

)
(x) ⊂ γ ∂F d

(
y, M(·))(x). (3.8)
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Proof (a) We denote ‖ · ‖1 the 1-norm on X × Y . Let x	 ∈ ∂F d
(
y, M(·))(x). Define

ϕ, θ : X × Y → R by setting for all (x, y) ∈ X × Y

ϕ(x, y) := �M (x, y) + ‖y − y‖ and θ(x, y) := ψgph M (x, y) + ‖y − y‖.

It is readily seen that

ϕ ≤ θ and ϕ(x, y) = θ(x, y) = 0. (3.9)

Fix any real ε > 0. Through the definition of F-subgradients, we can find some
real η > 0 such that

〈
(x	, 0), (x ′, y′) − (x, y)

〉 ≤ dM(x ′)(y) − dM(x)(y) + ε‖x ′ − x‖
≤ �M (x ′, y′) + ‖y′ − y‖ + ε‖(x ′, y′) − (x, y)‖1
≤ ϕ(x ′, y′) − ϕ(x, y) + ε‖(x ′, y′) − (x, y)‖1,

(3.10)

for all x ′ ∈ B(x, η) and all y′ ∈ Y . It follows that (see Theorem 2.1)

(x	, 0) ∈ ∂Fϕ(x, y) ⊂ ∂Cϕ(x, y) ⊂ {0} × BY 	 + ∂C�M (x, y).

The first inclusion in (a) is then established. Regarding the second inclusion, it
suffices to note that (thanks to (3.10) and (3.9))

〈
(x	, 0), (x ′, y′) − (x, y)

〉 ≤ θ(x ′, y′) − θ(x, y) + ε‖(x ′, y′) − (x, y)‖1,

for all x ′ ∈ B(x, η) and all y′ ∈ Y to get (as above)

(x	, 0) ∈ ∂Fθ(x, y) ⊂ ∂Cθ(x, y) ⊂ {0} × BY 	 + N C(
gph M; (x, y)

)
.

(b) The proof is similar to (a) (see Theorem 2.2 for the inclusion (3.7)).
(c) Let x	 ∈ N F

(
M−1(y); x

) ∩ BX	 = ∂F dM−1(y)(x) (see (2.3)). Fix any real ε > 0.
By definition of F-subgradients, there is a real η > 0 with η < δ such that

〈
x	, x ′ − x

〉 ≤ dM−1(y)(x ′) − dM−1(y)(x) + γ ε‖x − x ′‖,

for every x ′ ∈ B(x, η). It follows from this

〈
γ −1x	, x ′ − x

〉
≤ dM(x ′)(y) − dM(x)(y) + ε‖x − x ′‖ for all x ′ ∈ B(x, η)

and this translates the inclusion x	 ∈ γ ∂F d
(
y, M(·))(x). ��

We easily derive from (c) of the above proposition the following result:

Proposition 3.1 Let M : X ⇒ Y be a multimapping between two normed spaces and
let y ∈ Y with M−1(y) �= ∅. Assume that:
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(i) There exists a real γ ≥ 0 such that for each x ∈ M−1(y) there is a real δ > 0
satisfying

d
(
x, M−1(y)

) ≤ γ d
(
y, M(x)

)
for all x ∈ B(x, δ).

(i i) There exists a function ω : R+ → R+ with ω(0) = 0 and a real c ≥ 0 such that
for all x, x ′ ∈ M−1(y) and for all x	 ∈ ∂F d

(
y, M(·))(x),

〈
x	, x ′ − x

〉 ≤ (‖x	‖ + c
)
ω(‖x ′ − x‖).

Then, the set M−1(y) is F-normally ρ(·)-regular with ρ(·) := (1 + γ c)ω(·).
Proof If suffices to observe that for any x, x ′ ∈ M−1(y) and any x	 ∈ N F

(
M−1(y); x

)∩
BX	 , we have (see Lemma 3.1) γ −1x	 ∈ ∂F d

(
y, M(·))(x) which gives through (i i)

〈
x	, x ′ − x

〉 ≤ γ (γ −1‖x	‖ + c)ω(‖x ′ − x‖) ≤ (1 + γ c)ω(‖x ′ − x‖).

The proof is complete. ��
Remark 3.1 For the above F-normal ω(·)-regularity of M−1(y), we claim that (i i)
in Proposition 3.1 can be replaced by the assumption of C-normal ω(·)-regularity of
gph M at (x, y) ∈ gph M . We endow X × Y with the norm ‖ · ‖2 whose dual norm
‖ · ‖	 is known (and easily seen) to satisfy

‖(x	, y	)‖	 ≤ ‖x	‖ + ‖y	‖ for all (x	, y	) ∈ X	 × Y 	. (3.11)

Fix any x, x ′ ∈ M−1(y) and any x	 ∈ N F
(
M−1(y); x

) ∩ BX	 . According to
Lemma 3.1(c)-(a), we can find y	 ∈ BY 	 such that

(x	, γ y	) ∈ N C (gph M; (x, y))

and this allows us to use the C-normal ω(·)-regularity of gph M at (x, y) ∈ gph M to
get

〈
(x	, γ y	), (x ′, y) − (x, y)

〉 ≤ ‖(x	, γ y	)‖	ω(‖(x ′, y) − (x, y)‖2).

This and the inequality (3.11) easily give

〈
x	, x ′ − x

〉 ≤ (‖x	‖ + γ ‖y	‖)ω(‖(x ′ − x, 0)‖) ≤ (1 + γ )ω(‖x ′ − x‖)

which translates the F-normal (1 + γ )ω(·)-regularity of the set M−1(y) at the point
x .

We point out that such a remark obviously holds for the L-normal ω(·)-regularity
of gph M at (x, y) whenever X and Y are Asplund spaces. �
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Remark 3.2 Putting together (c) and the second inclusion of (a) in Lemma 3.1, we eas-
ily see that the F-normal ω(·)-regularity property for the set M−1(y) at x ∈ M−1(y)

also holds true under the following inequality

〈
x	, x ′ − x

〉 ≤ (‖x	‖ + c)ω(‖x ′ − x‖),

for all x, x ′ ∈ M−1(y) and all x	 ∈ DC M(x, y)(BY 	 ). �

We pass now to the normal ω(·)-regularity for a (solution set of) generalized
equation, say S := {x ∈ X : f (x) ∈ F(x)} with f (resp. F) single-valued (resp.
set-valued). Setting M(x) := − f (x) + F(x) for every x ∈ X , we observe that
S = M−1(0) so the above proposition gives sufficient conditions ensuring the desired
normal ω(·)-regularity of the set S. For the above multimapping M , note that (i) and
(i i) of Proposition 3.1 can be rewritten as:

(i ′): There exists a real γ ≥ 0 such that for each x ∈ S there is a real δ > 0 satisfying

d(x, S) ≤ γ d
(

f (x), F(x)
)

for all x ∈ B(x, δ). (3.12)

(i i ′): There exists a function ω : R+ → R+ with ω(0) = 0 and a real c ≥ 0 such that
for all x, x ′ ∈ S and all x	 ∈ ∂F d

(
f (·), F(·))(x)

〈
x	, x ′ − x

〉 ≤ (‖x	‖ + c
)
ω(‖x ′ − x‖).

According to Remark 3.1, we know that (i i ′) above could be replaced by the C-
normalω(·)-regularity of gph M (and by the L-regularity in the context of Asplund
spaces). As shown by the next result, such a regularity can only be required for
gph F .

Proposition 3.2 Let X , Y be normed spaces, F : X ⇒ Y be a multimapping and let
f : X → Y be a mapping. Assume that S := {x ∈ X : f (x) ∈ F(x)} �= ∅ along with:

(i) There exists a real γ ≥ 0 such that for each x ∈ S, there exists a real δ > 0
satisfying

d(x, S) ≤ γ d
(
(x, f (x)), gph F

)
for all x ∈ B(x, δ).

(ii) There exists a nondecreasing function ω : R+ → R+ with ω(0) = 0 such that the
set gph F is C-normally ω(·)-regular with respect to the product norm ‖ · ‖2 on
X × Y .

(iii) The mapping f is K -Lipschitz continuous on X for some real K ≥ 0 and differ-
entiable on X with L-Lipschitz continuous derivative D f for some real L ≥ 0.

Then, the set S is F-normally ω̂(·)-regular with ω̂ : R+ → R+ defined by

ω̂(t) := γ
(
ω(κt) + L

2
t2

)
for all t ∈ R+,

where κ := (1 + K 2)1/2.
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Proof We denote ‖ · ‖2 the 2-norm on X × Y and B	 the unit ball of (X × Y )	. First,
let us define the function θ : X × Y → R by setting

θ(x, y) := d
(
(x, y), gph F

)
for all (x, y) ∈ X × Y .

We also need to consider the mapping ϕ : X → X × Y defined by

ϕ(x) := (
x, f (x)

)
for all x ∈ X

which is obviously κ-Lipschitz continuous and differentiable at each point x ∈ X
with

Dϕ(x)(h) = (
h, D f (x)(h)

)
for all h ∈ X .

Let x, x ′ ∈ S and u	 ∈ N F (S; x) ∩ BX	 . Putting together the equalities dS(x) = 0 =
(θ ◦ ϕ)(x), the inequality given by (i) and the fact that the Fréchet subdifferential is
always included in the Clarke’s one, we get

u	 ∈ ∂F dS(x) ⊂ γ ∂F (θ ◦ ϕ)(x) ⊂ γ ∂C (θ ◦ ϕ)(x). (3.13)

Using Proposition 2.1 and the inclusion (2.4) we obtain

∂C (θ ◦ ϕ)(x) = Dϕ(x)	
(
∂Cθ(ϕ(x))

) ⊂ Dϕ(x)	
(

N C(
gph F; (x, f (x))

) ∩ B	

)
.

(3.14)

The inclusions (3.14) and (3.13) obviously give some (x	, y	)∈ N C
(
gph F; (x, f (x))

)∩
BX	×Y 	 such that u	 = γ Dϕ(x)	(x	, y	). We then have

〈
γ −1u	, h

〉
= Dϕ(x)	(x	, y	)(h) = 〈

(x	, y	), (h, D f (x)(h))
〉

for all h ∈ X .

Now, we observe that

〈
γ −1u	, x ′ − x

〉
= 〈

(x	, y	), (x ′ − x, D f (x)(x ′ − x)
〉

= 〈
(x	, y	), (x ′, f (x ′)) − (x, f (x))

〉

+ 〈
y	,− f (x ′) + f (x) + D f (x)(x ′ − x)

〉
.

Combining (i i), the inclusions (x ′, f (x ′)), (x, f (x)) ∈ gph F and (x	, y	) ∈ B	 and
(i i i), we get

〈
(x	, y	), (x ′, f (x ′)) − (x, f (x))

〉 ≤ ω
(‖(x ′, f (x ′)) − (x, f (x))‖2

)

≤ ω
(
κ‖x ′ − x‖).
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On the other hand, we have

〈
y	,− f (x ′) + f (x) + D f (x)(x ′ − x)

〉

=
〈
y	, D f (x)(x ′ − x) −

∫ 1

0
D f (x + t(x ′ − x))(x ′ − x)dt

〉
,

hence (noticing that ‖y	‖ ≤ 1)

〈
y	,− f (x ′) + f (x) + D f (x)(x ′ − x)

〉

≤
∫ 1

0
‖D f (x) − D f (x + t(x ′ − x))‖‖x ′ − x‖dt

≤ L‖x ′ − x‖2
∫ 1

0
tdt = L

2
‖x ′ − x‖2.

We conclude that

〈
u	, x ′ − x

〉 ≤ γω
(
κ‖x ′ − x‖) + γ L

2
‖x ′ − x‖2

and this translates the fact that the set S is F-normally ω̂(·)-regular. ��
Remark 3.3 In view of (3.14), it is clear that we can replace (ii) by (ii”):
(ii”) There exists a nondecreasing function ω : R+ → R+ with ω(0) = 0 such that

〈
(x	, y	), (x ′, f (x ′)) − (x, f (x))

〉 ≤ ω(‖(x ′, f (x ′)) − (x, f (x))‖),

for all x, x ′ ∈ S and all (x	, y	) ∈ ∂C d(·, gph F)(x, f (x)). �

If F is constant in Proposition 3.2 (say F ≡ B ⊂ Y ) we easily see that (i) (of
Proposition 3.2) becomes

d(x, S) ≤ γ d
(
(x, f (x)), X × B

)
for all x ∈ B(x, δ).

This inequality obviously holds for the distance d on X × Y associated to the norm
‖ · ‖2 whenever

d
(
x, f −1(B)

) ≤ γ d
(

f (x), B
)

for all x ∈ B(x, δ),

which is exactly the estimate in (3.12). Therefore, a direct applicationofProposition3.2
gives the normal ω̂(·)-regularity of S = {x ∈ X : f (x) ∈ B} = f −1(B). In fact, a
direct and similar proof for the constant case F ≡ B allows to slightly improve the
above modulus ω̂ of normal regularity:

Proposition 3.3 Let X , Y be normed spaces, B ⊂ Y and let f : X → Y be a mapping.
Assume that S := f −1(B) �= ∅ along with:
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(i) There exists a real γ ≥ 0 such that for each x ∈ S, there exists a real δ > 0
satisfying

d
(
x, f −1(B)

) ≤ γ d
(

f (x), B
)

for all x ∈ B(x, δ).

(ii) There exists a nondecreasing function ω : R+ → R+ with ω(0) = 0 such that the
set B is C-normally ω(·)-regular.

(iii) The mapping f is K -Lipschitz continuous on X for some real K ≥ 0 and differ-
entiable on X with L-Lipschitz continuous derivative D f for some real L ≥ 0.

Then, the set S is F-normally ω̂(·)-regular with ω̂ : R+ → R+ defined by

ω̂(t) := γ
(
ω

(
K t) + L

2
t2

)
for all t ∈ R+.

Proof Let x, x ′ ∈ S and u	 ∈ N F (S; x) ∩ BX	 . According to Lemma 3.1, we have

u	 ∈ γ ∂F d
(
0,− f (·) + B

)
(x) = γ ∂F d( f (·), B)(x).

Applying Proposition 2.1 and using the inclusion (2.4), we can write u	 =
γ D f (x)	(y	) = γ

(
y	 ◦ D f (x)

)
for some y	 ∈ N C

(
B; f (x)

) ∩ BY 	 . It then suf-
fices to observe (as in the proof of Proposition 3.2) that

〈
y	, f (x ′) − f (x)

〉 ≤ ω
(‖ f (x ′) − f (x)‖) ≤ ω

(
K‖x ′ − x‖).

and

〈
y	,− f (x ′) + f (x) + D f (x)(x ′ − x)

〉

≤
∫ 1

0
‖D f (x) − D f (x + t(x ′ − x))‖‖x ′ − x‖dt

≤ L‖x ′ − x‖2
∫ 1

0
tdt = L

2
‖x ′ − x‖2

to get the desired F-normal ω̂(·)-regularity of S. ��

4 Metric Subregularity for Multimappings with Normally!(·)-regular
Graph

The main aim of the present section is to replace the metric subregularity assumption
in Proposition 3.1 and Proposition 3.2 by some openness type conditions. This leads
to develop the following result ensuring the metric subregularity of a multimapping
with normally ω(·)-regular graph. We follow for a large part the proof of [2, Theorem
2] (see the introduction for the precise statement). As usual, we set 1/ρ := 0 whenever
ρ := +∞.
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Theorem 4.1 Let X , Y be Banach spaces, M : X ⇒ Y be a multimapping with closed
graph, ω : R+ → R+ be an upper semicontinuous nondecreasing function with
ω(0) = 0. Let also y ∈ Y with M−1(y) �= ∅. Assume that:

(i) there exist α, β ∈]0,+∞[ and ρ ∈]0,+∞] such that

β >
α

ρ
+

(
1 + 1

ρ

)
ω

((
α2 + β2) 1

2
)

and

B(y, β) ⊂ M(B[x, α]) for all x ∈ M−1(y).

(i i) the set gph M is C-normally ω(·)-regular (in X × Y endowed with the 2-norm
‖ · ‖2) relative to the open set V := ⋃

x∈M−1(y) B
(
(x, y),

√
α2 + β2

)
;

Then, there exists a real γ ∈ [0, ρ[ such that for every x ∈ M−1(y), there exists a
real δ > 0 satisfying

d
(
x, M−1(y)

) ≤ γ d
(
y, M(x)

)
for all x ∈ B(x, δ).

Proof By contradiction, assume that for each γ ∈ [0, ρ[, there is x ∈ M−1(y) such
that for every real δ > 0, there is x ∈ B(x, δ) satisfying

d
(
x, M−1(y)

)
> γ d(y, M(x)).

Fix for a moment any ρ′ ∈]0, ρ[. Let (εn)n≥1 be a sequence of ]0, ρ′[ with εn → 0.
Choose some integer N ≥ 1 such that θn := 1

n(ρ′−εn)
<

β
2 and 4

n2
+ θ2n < α2 + β2

for every integer n ≥ N . Fix any integer n ≥ N . There are xn ∈ M−1(y) and xn ∈ X
with ‖xn − xn‖ < 1

n such that

d
(
xn, M−1(y)

)
> (ρ′ − εn)d

(
y, M(xn)

)
.

According to Proposition 2.4, there is (un, vn) ∈ gph M such that

‖un − xn‖ < d
(
xn, M−1(y)

)
and 0 < ‖vn − y‖ <

d
(
xn, M−1(y)

)

ρ′ − εn
(4.1)

along with

(0, 0) ∈ {0} × ∂‖ · ‖(vn − y) + 1

ρ′ − εn
(BX	 × εnBY 	 ) + N C(

gph M; (un, vn)
)
.

Since vn − y �= 0, there is z	
n ∈ SY 	 such that

〈
z	

n, vn − y
〉 = ‖vn − y‖ and (x	

n, y	
n) ∈

N C
(
gph M; (un, vn)

)
satisfying

(x	
n, y	

n) ∈ (0,−z	
n) + 1

ρ′ − εn
(BX	 × εnBY 	 ).
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Therefore, we can write y	
n = −z	

n + εn
ρ′−εn

b	
n for some b	

n ∈ BY 	 along with

‖x	
n‖ ≤ 1

ρ′ − εn
and ‖y	

n‖ ≤ 1 + εn

ρ′ − εn
. (4.2)

We also note that

d
(
xn, M−1(y)

) ≤ ‖xn − xn‖ ≤ 1

n

which obviously gives (see (4.1))

‖vn − y‖ <
d
(
xn, M−1(y)

)

ρ′ − εn
≤ 1

n(ρ′ − εn)
= θn .

and (see again (4.1))

‖un − xn‖ ≤ ‖un − xn‖ + ‖xn − xn‖ < d
(
xn, M−1(y)

) + ‖xn − xn‖ ≤ 2

n
.

(4.3)

Now, set ζn := (β − θn)
vn−y

‖vn−y‖ and observe that (keeping in mind the choice of N )

‖vn − ζn − y‖ = |‖vn − y‖ − β + θn| = β − ‖vn − y‖ − θn < β,

that is, vn − ζn ∈ B(y, β). By assumption, we can find some wn ∈ B[xn, α] such that
vn − ζn ∈ M(wn). Through (4.3), we see that

‖wn − un‖ ≤ ‖wn − xn‖ + ‖xn − un‖ < α + 2

n
. (4.4)

On the other hand, we have

‖(wn, vn − ζn) − (xn, y)‖22 = ‖wn − xn‖2 + ‖vn − ζn − y‖2
< α2 + β2

and

‖(un, vn) − (xn, y)‖22 = ‖un − xn‖2 + ‖vn − y‖2 ≤ 4

n2 + θ2n < α2 + β2.

Thus, we have the inclusions

(wn, vn − ζn), (un, vn) ∈ V .

Denote ‖ · ‖	 the dual norm of the product norm ‖ · ‖2 on X × Y . Putting together the
fact that gph M is C-normally ω(·)-regular, (4.2), (4.4) and the definition of ζn , we
get
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〈
(x	

n, y	
n), (wn, vn − ζn) − (un, vn)

〉 ≤ ‖(x	
n, y	

n)‖	ω
(‖(wn − un,−ζn

)‖)

≤ (‖x	
n‖ + ‖y	

n‖)ω
((‖wn − un‖2 + ‖ζn‖2) 1

2

)

≤ (
1 + 1 + εn

ρ′ − εn

)
ω

((
(α + 2

n
)2 + (β − θn)2

) 1
2
)
.

By (4.4) and (4.2), we also have

〈
x	

n, wn − un
〉 ≥ −‖x	

n‖‖wn − un‖ ≥ − 1

ρ′ − εn
(α + 2

n
).

Combining the definition of ζn with the equality
〈
z	

n, vn − y
〉 = ‖vn − y‖, we obtain

〈
y	

n, ζn
〉 =

〈
−z	

n + εn

ρ′ − εn
b	

n, ζn

〉
≤ θn − β + εn

ρ′ − εn
(β − θn).

Putting what precedes together, we arrive to (having in mind that ω(·) is upper semi-
continuous)

− 1

ρ′ − εn
(α + 2

n
) ≤ θn − β + εn

ρ′ − εn
(β − θn)

+(
1 + 1 + εn

ρ′ − εn

)
ω

((
(α + 2

n
)2 + (β − θn)2

) 1
2
)
.

Letting n → ∞ and ρ′ ↑ ρ obviously yields

β ≤ α

ρ
+ (

1 + 1

ρ

)
ω

((
α2 + β2) 1

2
)

which is the desired contradiction. The proof is then complete. ��
Remark 4.1 If ρ = +∞, the inequality in (ii) of Theorem 4.1 is reduced to

β > ω
(
(α2 + β2)

1
2

)
. (4.5)

Assume there is a real r > 0 such that ω(t) := t2
2r for every t ≥ 0 (which is the case

if X and Y are Hilbert spaces and gph M is an r -prox-regular set of X × Y ). We then
observe that the latter inequality (4.5) can be written as

β >
α2 + β2

2r

which is obviously satisfied for every α, β > 0 with α < r and |β − r | <
√

r2 − α2.
�
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We derive from the latter theorem sufficient conditions ensuring the normal ω(·)-
regularity of an inverse image M−1(y). Doing so, we complement Proposition 3.1.

Proposition 4.1 Let X , Y be two Banach spaces, M : X ⇒ Y be a multimapping
whose graph is closed and let ω : R+ → R+ be an upper semicontinuous nonde-
creasing function with ω(0) = 0. Let y ∈ Y with S := M−1(y) �= ∅. Assume that (i)
and (i i) of Theorem 4.1 hold with ρ < +∞. Then, the set S is F-normally θ(·)-regular
with θ = (1 + ρ)ω.

Proof Let x, x ′ ∈ S and x	 ∈ N F (S; x) ∩ BX	 . Combining Theorem 4.1 and
Lemma 3.1(a)-(c) we can find b	 ∈ BY 	 such that x	 ∈ ρDC M(x, y)(b	), that is,

(ρ−1x	,−b	) ∈ N C(
gph M; (x, y)

)
.

Let ‖ · ‖2 be the product 2-norm of the norms of X and Y and let ‖ · ‖	 its associated
dual norm. We can then write

〈
x	, x ′ − x

〉 = 〈
(x	,−ρb	), (x ′, y) − (x, y)

〉 ≤ ‖(x	,−ρb	)‖	ω
(‖(x ′, y) − (x, y)‖2

)

≤ (‖x	‖ + ρ‖b	‖)ω(‖x ′ − x‖)

≤ (1 + ρ)ω
(‖x ′ − x‖)

which translates the desired F-normal θ(·)-regularity of the set S. ��
Remark 4.2 If ρ = +∞ in the latter proposition, then we can conclude with similar
arguments that there exists a real λ > 0 such that the set S is F-normally θ(·)-regular
with θ(·) := λω(·). �

Remark 4.3 It is readily seen that we can develop Theorem 4.1 and Proposition 4.1
under the L-normal regularity of gph M and the Asplund property of the Banach
spaces X and Y . �

We now focus on the normal ω(·)-regularity of the solution set of a generalized
equation, say f (x) ∈ F(x) for a single-valued mapping f and a multimapping F .
We point out that the normal ω(·)-regularity for a set of the form {x ∈ X : 0 ∈
F1(x) + F2(x)} with F1, F2 two multimappings has been established in [2] under an
openness condition in the product space (X × Y )2, namely

βU(X×Y )2 ⊂ −{((x, y), (x, y)) : (x, y) ∈ (x, y) + αBX×Y } + gph F1 × gph (−F2),

for two constants α, β > 0 satisfying (1.4) for some real ρ > 0.

Proposition 4.2 Let X , Y be Banach spaces, F : X ⇒ Y be a multimapping
with closed graph and let f : X → Y be a mapping. Assume that S :=
{x ∈ X : f (x) ∈ F(x)} �= ∅ along with:

(i) The mapping f is K -Lipschitz continuous on X for some real K ≥ 0 and differ-
entiable on X with L-Lipschitz continuous derivative D f for some real L ≥ 0.
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(ii) there exists an upper semicontinuous nondecreasing function ω : R+ → R+ with
ω(0) = 0, two reals α, β ∈]0,+∞[ and an extended real ρ ∈]0,+∞] satisfying

with κ := (1 + K 2)
1
2

β >
α

ρ
+

(
1 + 1

ρ

)(
ω

(
κ(α2 + β2)

1
2
) + L

2
(α2 + β2)

)

such that the set gph F is C-normally ω(·)-regular and

βU(X×Y ) ⊂ −gph f ∩ (
B[x, α] × Y

) + gph F for all x ∈ S. (4.6)

Then, there exists a real γ ∈ [0, ρ[ such that for each x ∈ S, there exists a real
δ > 0 satisfying

d(x, S) ≤ γ d
(
(x, f (x)), gph F

)
for all x ∈ B(x, δ). (4.7)

Further, the set S is F-normally ω̂(·)-regular with ω̂ : R+ → R+ defined by

ω̂(t) := γ
(
ω

(
κt

) + L

2
t2

)
for all t ∈ R+.

Proof First, we define the multimapping M : X ⇒ X × Y by setting

M(x) := −(x, f (x)) + gph F for all x ∈ X .

It is readily seen that the multimapping M has its graph closed. It is also evident that
M−1(0, 0) = S and

d
(
(0, 0), M(x)

) = d
(
(x, f (x)), gph F

)
for all x ∈ X .

On the other hand, the mapping ϕ : X → X × Y defined by

ϕ(x) := (x, f (x)) for all x ∈ X

is obviously κ-Lipschitz continuous on X endowed with the 2-norm ‖ · ‖2 and differ-
entiable at each point x ∈ X with

Dϕ(x)(h) := (
h, D f (x)(h)

)
for all h ∈ X .

Further, we observe that the derivative Dϕ is L-Lipschitz continuous on X since we
have for every x, x ′ ∈ X

sup
h∈BX

‖Dϕ(x)(h) − Dϕ(x ′)(h)‖2 = sup
h∈BX

‖(0, (D f (x) − D f (x ′))(h)
)‖2

≤ ‖D f (x) − D f (x ′)‖ ≤ L‖x − x ′‖.
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According to Proposition 2.3, we know that M has a C-normally ω0(·) regular graph
(with respect to the norm ‖ · ‖2) where ω0(t) := ω(κt) + L

2 t2 for all t > 0. The
inequality (4.7) then follows from Theorem 4.1. It remains to apply Proposition 3.2
to conclude the proof. ��

5 Metric Subregularity for Multimappings with Normally!-regular
Values

Theorem 4.1 requires the normal ω(·)-regularity for the graph gph M of the involved
multimapping M . Unfortunately, there are numerous and various multimappings
which fail to enjoy such a property for a given function ω(·). This can be easily
seen with the subdifferential of a nonsmooth function, for instance

gph
(
∂| · |) =] − ∞, 0[×{−1} ∪ {0} × [−1, 1]∪]0,+∞[×{1},

which is obviously non-prox-regular (even not subsmooth) in R2.
Our aim in the present section is to provide some metric subregularity properties

for multimappings normally ω(·)-regular-valued. Doing so, we need to develop an
appropriate version of Proposition 2.4 where the normal cone N C

(
gph M; (u, v)

)
is

replaced by N
(
M(x); v

)
. Our arguments follow those in the work [36].

Proposition 5.1 Let M : X ⇒ Y be a multimapping from a normed space X into a
Banach space Y and let y ∈ Y . Assume that there exists x ∈ X with M(x) nonempty
and closed and two reals γ, r ∈]0,+∞[ such that

γ d
(
y, M(x)

)
< r < d

(
x, M−1(y)

)
. (5.1)

Then, for all reals η, ε ∈]0,+∞[, there exist v ∈ M(x) satisfying:

(i) 0 < ‖v − y‖ < min{ r
γ
, d(y, M(x)) + ε};

(i i) ‖v − y‖ ≤ ‖y − y‖ + η
γ
‖y − v‖ for all y ∈ M(x);

(i i i) 0 ∈ ∂‖ · ‖(v − y) + η
γ
BY 	 + N C

(
M(x); v

)
.

If in addition Y is an Asplund space, then (iii) can be replaced by
(i i i ′) 0 ∈ ∂‖ · ‖(v − y) + η

γ
BY 	 + N L

(
M(x); v

)
.

Proof Let η, ε ∈]0,+∞[. Choose some real γ ′ > γ and some real r ′ < r such that

γ ′d
(
y, M(x)

)
< r ′ < d

(
x, M−1(y)

)
.

According to the first inequality, we can find some y0 ∈ M(x) such that ‖y0−y‖ < r ′
γ ′ .

Thanks to the second inequality in (5.1), we obviously have

B[x, r ] ∩ M−1(y) = ∅. (5.2)
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Let us set θ(·) := ‖ · −y‖ + ψM(x)(·) which is lower semicontinuous and proper
(keeping in mind that M(x) is nonempty and closed). Note that

θ(y0) = ‖y0 − y‖ <
r ′

γ ′ ≤ inf
y∈Y

θ(y) + r ′

γ ′ .

Fix any real η′ ∈]0,min{γ, η}[ with 2η′‖y0−y‖
γ ′−η′ < ε. Observe that (Y , N ) is a Banach

space with N (·) := η′‖ · ‖. We are in a position to apply Ekeland variational principle.
Doing so, we get some v ∈ Y such that

N (y0 − v) ≤ r ′ < r ,

θ(v) ≤ θ(y0) = ‖y0 − y‖ <
r ′

γ ′ <
r

γ
(5.3)

and

θ(v) ≤ θ(y) + 1

γ ′ N (y − v) for all y ∈ Y . (5.4)

From (5.3), we see that v ∈ M(x) (so v �= y by (5.2)) and ‖v − y‖ ≤ ‖y0 − y‖. Then,
by (5.4) we have

θ(v) = ‖v − y‖ ≤ ‖y − y‖ + η′

γ ′ ‖y − v‖ for all y ∈ M(x). (5.5)

Now, let us define f : Y → R by setting

f (y) := ‖y − y‖ + η′

γ ′ ‖y − v‖ for all y ∈ Y .

Through (5.5), we see that v is a global minimizer of f + ψM(x) and this implies that

0 ∈ ∂C f (v) ⊂ ∂‖ · ‖(v − y) + η′

γ ′BY 	 + N C(
M(x); v

)
(5.6)

along with

f (v) = ‖v − y‖ ≤ ‖y − y‖ + η′

γ ′ ‖y − v‖

≤ (1 + η′

γ ′ )‖y − y‖ + η′

γ ′ ‖y − v‖

for every y ∈ M(x). Hence, we have

‖v − y‖ ≤ 1 + η′/γ ′

1 − η′/γ ′ ‖y − y‖ = γ ′ + η′

γ ′ − η′ ‖y − y‖ for all y ∈ M(x).
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We deduce from this

‖v − y‖Y ≤ γ ′ + η′

γ ′ − η′ d
(
y, M(x)

) = d
(
y, M(x)

) + 2η′

γ ′ − η′ d
(
y, M(x)

)
. (5.7)

Coming back to (5.3) and using the definition of η′ yield

d
(
y, M(x)

) ≤ ‖v − y‖ ≤ ‖y − y0‖ <
(γ ′ − η′)ε

2η′ . (5.8)

It remains to put together (5.7) and (5.8) to obtain

‖v − y‖ ≤ d
(
y, M(x)

) + ε.

The proof of (i) − (i i) − (i i i) is complete.
Regarding (i i i ′), if Y is an Asplund space we can write (see (5.6))

0 ∈ ∂L f (v) ⊂ ∂‖ · ‖(v − y) + η′

γ ′BY 	 + N L(
M(x); v

)
.

This finishes the proof. ��
Remark 5.1 Assume that M(·) = − f (·)+ S for some mapping f : X → Y and some
set S ⊂ Y . Given any v ∈ Y , we obviously have N C (M(x); v) = N C (S; v + f (x)),
so (i i i) in Proposition 5.1 can be rewritten as

0 ∈ ∂‖ · ‖(v − y) + η

γ
BY 	 + N C (S; v + f (x))

without any assumption on the mapping f . �
We are now in a position to establish the following result which complements

Theorem 4.1.

Theorem 5.1 Let M : X ⇒ Y be a multimapping from a normed space X into a
Banach (resp. Asplund) space Y and let y ∈ Y . Assume that M(·) is closed and
C-normally (resp. L-normally) ω(·)-regular valued for some upper semicontinuous
nondecreasing function ω : R+ → R+ with ω(0) = 0. Assume also that there exist
α, β, κ ∈]0,+∞[ with β > κα + ω(β + κα) such that:

(i) for all x ∈ M−1(y), there exists a real η > 0 satisfying

exc
(
M(x), M(x ′)

) ≤ κ‖x ′ − x‖ for all x ∈ B[x, α], all x ′ ∈ B[x, η];

(i i) for all x ∈ M−1(y), one has B(y, β) ⊂ M(B[x, α]).
Then, there exists a real γ ≥ 0 such that for every x ∈ M−1(y), there exists a real

δ > 0 satisfying

d
(
x, M−1(y)

) ≤ γ d
(
y, M(x)

)
for all x ∈ B(x, δ).
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Proof We only deal with the C-normal ω(·)-regularity for the values of M(·) in the
Banach space Y . We proceed as in the proof of Theorem 4.1. By contradiction, assume
that for each γ ≥ 0, there is x ∈ M−1(y) such that for every real δ > 0, there is
x ∈ B(x, δ) satisfying

d
(
x, M−1(y)

)
> γ d

(
y, M(x)

)
. (5.9)

Fix any real γ > 0 and any real κ ′ > κ . According to assumption (i), for each
x ∈ M−1(y) we can find a real ηx > 0 (see (2.1)) such that

M(x) ⊂ M(x ′) + κ ′‖x − x ′‖BY for all x ∈ B[x, α], all x ′ ∈ B[x, ηx ]. (5.10)

Pick any sequence (εn)n≥1 in ]0, γ [ with εn → 0. Choose some integer N ≥ 1 such
that θn := 1

n(γ−εn)
<

β
2 for every integer n ≥ N . Fix for a moment any integer n ≥ N .

Thanks to (5.9), there are xn ∈ M−1(y) and xn ∈ X with ‖xn − xn‖ < min{ 1n , ηxn }
such that

d
(
xn, M−1(y)

)
> (γ − εn)d

(
y, M(xn)

)
.

According to Proposition 5.1, there is vn ∈ M(xn) such that

0 < ‖vn − y‖ <
d
(
xn, M−1(y)

)

γ − εn

along with

0 ∈ ∂‖ · ‖(vn − y) + εn

γ − εn
BY 	 + N C(

M(xn); vn
)
.

Since vn − y �= 0, the latter inclusion gives y	
n ∈ N C

(
M(xn); vn

)
, z	

n ∈ SY 	 with〈
z	

n, vn − y
〉 = ‖vn − y‖ and b	

n ∈ BY 	 such that

y	
n = −z	

n + εn

γ − εn
b	

n .

Setting ζn := (β − θn)
vn−y

‖vn−y‖ and noticing that vn − ζn ∈ B(y, β), we can find some
wn ∈ B[xn, α] such that vn − ζn ∈ M(wn). Thanks to (5.10), there is ξn ∈ M(xn)

and some bn ∈ BY such that

vn − ζn = ξn + κ ′‖xn − wn‖bn .
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Using the fact that M(xn) is C-normally ω(·)-regular, we obtain
〈
y	

n,−ζn
〉 = 〈

y	
n, ξn − vn + κ ′‖xn − wn‖bn

〉

= 〈
y	

n, ξn − vn
〉 + κ ′‖xn − wn‖ 〈

y	
n, bn

〉

≤ ‖y	
n‖

(
ω(‖ξn − vn‖) + κ ′‖xn − wn‖

)

≤
(
1 + εn

γ − εn

)(
ω(‖ξn − vn‖) + κ ′‖xn − wn‖

)
.

On the other hand, we have

‖xn − wn‖ ≤ ‖xn − xn‖ + ‖xn − wn‖ <
1

n
+ α

and this entails

‖ξn − vn‖ = ‖ − ζn − κ ′‖xn − wn‖bn‖ ≤ β − θn + κ ′(1
n

+ α).

Combining the definition of ζn with the equality
〈
z	

n, vn − y
〉 = ‖vn − y‖, we obtain

〈
y	

n, ζn
〉 =

〈
−z	

n + εn

γ − εn
b	

n, ζn

〉
≤ θn − β + εn

γ − εn
(β − θn).

Putting what precedes together, we arrive to

β − θn − εn

γ − εn
(β − θn) ≤ (

1 + εn

γ − εn

)(
ω

(
β − θn + κ ′(1

n
+ α)

) + κ ′(1
n

+ α)
)
.

Keeping in mind that the function ω(·) is upper semicontinuous and letting n → ∞
and κ ′ ↓ κ give

β ≤ κα + ω(β + κα)

which is the desired contradiction. The proof is then complete. ��
The Lipschitz behavior with respect to the Hausdorff-Pompeiu excess in (ii) of

Theorem 5.1 obviously holds for the Lipschitz translation of a fixed set, say M(x) =
− f (x) + B for some Lipschitz mapping f .

Corollary 5.1 Let f : X → Y be a κ-Lipschitz continuous mapping between a normed
space X and a Banach (resp. Asplund) space Y with κ ≥ 0. Let also B be a closed
C-normally (resp. L-normally) ω(·)-regular set for some upper semicontinuous non-
decreasing function ω : R+ → R+ with ω(0) = 0. Assume that there exist two reals
α, β > 0 such that

β > κα + ω(β + κα) and βUY ⊂ − f (B[x, α]) + B for all x ∈ f −1(B).
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Then, there exists a real γ ≥ 0 such that for every x ∈ f −1(B), there exists a real
δ > 0 satisfying

d
(
x, f −1(B)

) ≤ γ d
(

f (x), B
)

for all x ∈ B(x, δ).

Proof It suffices to apply Theorem 5.1 with the multimapping M(·) := − f (·) + B
and the point y := 0. ��
Remark 5.2 Wekeep notation and assumptions of the latter corollary. If in addition f is
strictlyHadamard differentiable, thenwe can combine Proposition 2.5 and Proposition
2.2 to obtain

γ ≤ inf
ε>0

sup
y	∈Ωε

‖y	‖Y 	 ,

where for each real ε > 0, we denote Ωε the set of y	 ∈ Y 	 for which there are
x ∈ B(x, ε) with y + f (x) /∈ S and y ∈ B(y, ε) with y + f (x) ∈ S such that
y	 ∈ N (S; f (x) + y) and ‖D f (x)	(y	)‖ ≤ 1. �

Coming back to Proposition 4.2 with F ≡ B, we see that the openness condition
(4.6) can be written as

βU(X×Y ) ⊂ −{(x, f (x)) : x ∈ B[x, α]} + X × B.

Using Corollary 5.1 allows us to drop the whole space X in the latter formula. More
precisely:

Proposition 5.2 Let X be a normed space, Y be a Banach (resp. an Asplund) space,
B ⊂ Y and let f : X → Y be a mapping. Assume that S := f −1(B) �= ∅ along with:

(i) There exists a nondecreasing upper semicontinuous function ω : R+ → R+ with
ω(0) = 0 such that the set B is C-normally (resp. L-normally) ω(·)-regular.

(ii) The mapping f is K -Lipschitz continuous on X for some real K ≥ 0 and differ-
entiable on X with L-Lipschitz continuous derivative D f for some real L ≥ 0.

(iii) There exist two reals α, β > 0 such that

β > Kα + ω(β + Kα) and βUY ⊂ − f (B[x, α]) + B for all x ∈ f −1(B).

Then, there exists a real γ ≥ 0 such that the set S is F-normally ω̂(·)-regular with
ω̂ : R+ → R+ defined by

ω̂(t) := γ
(
ω

(
K t) + L

2
t2

)
for all t ∈ R+.

Proof It directly follows from Proposition 3.3 and Corollary 5.1. ��
Proposition 5.2 allows to get sufficient conditions ensuring the normal regularity

of an intersection set, say S1 ∩ S2 with S1 × S2 normally ω(·)-regular. Indeed, with
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f (x) := (x, x) (which is obviously Lipschitz continuous with Lipschitz derivative)
we see that

f −1(S1 × S2) = S1 ∩ S2.

Hence, we see through Proposition 5.2 that the latter set S1 ∩ S2 is normally regular
under an openness condition of the form

βUX2 ⊂ −{(x, x) : x ∈ B[x, α]} + S1 × S2 for all ∈ x ∈ S1 ∩ S2.

This complements (3.6) which comes from [2, Proposition 7]. A similar remark holds
for the normal regularity of the constraint set (3.2) denoted S. In such a case, a suitable
openness condition is given by

βURm+n ⊂ −F(B[x, α])+] − ∞, 0]m × {0Rn } for all x ∈ S,

where

F(x) := (
f1(x), . . . , fm(x), fm+1(x), . . . , fm+n(x)

)
.
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