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Abstract
Wegive a general Lagrangemultiplier rule formathematical programming problems in
a Hausdorff locally convex space. We consider infinitely many inequality and equality
constraints. Our results gives in particular a generalisation of the result of Jahn (Intro-
duction to the theory of nonlinear optimization, Springer, Berlin, 2007), replacing
Fréchet-differentiability assumptions on the functions by theGateaux-differentiability.
Moreover, the closed convex cone with a nonempty interior in the constraints is
replaced by a strictly general class of closed subsets introduced in the paper and
called “admissible sets”. Examples illustrating our results are given.

Keywords Lagrange multipliers · Optimization problems · Admissible sets ·
Equi-Gateaux-differentiability

Mathematics Subject Classification Primary 46N10 · 49J50; Secondary 46G05

1 Introduction

Let E be an Hausdorff locally convex topological vector space (in short l.c.t.v space,
the term “Hausdorff” will be implicit) and � ⊂ E be a nonempty open subset. Let
f : � → R be a function. The aim of this paper consists in giving a necessary
condition, using Lagrange multipliers, for a point x̂ ∈ � to be a solution of the
following optimization problem with (finite or infinite) inequality constraints
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(P)

⎧
⎨

⎩

max f
x ∈ �

x ∈ A := [C]× := {x ∈ E : φ(x) ≥ 0, ∀φ ∈ C},

where C is a set of functions φ : E → R. We prove in our first main results (Theorem
2 and Proposition 6) that a natural condition to obtain non-trivial Lagrange multipliers
for the problem (P) in a genaral l.c.t.v space E with finite or infinite inequality
constraints, is that:

• The function f is Gateaux differentiable at the optimal solution x̂ , the familyC is
equi-Gateaux differentiable at x̂ (i.e. Gateaux differentiable at x̂ with a samemodulus)
and the set {φ ∈ C : φ(x̂) �= 0} is either empty or equi-lower semicontinuous at x̂
(see, the definitions in Sect 2.2). We also assume that infφ∈C φ(x̂) = 0, otherwize x̂
belongs to the interior of A and so there is non constraints.

•• The weak-star closed convex hull convw∗{dGφ(x̂) : φ ∈ C} in the topological
dual E∗, isw∗-compact (where, dGφ(x̂) denotes the Gateaux-differential of a function
φ at x̂).

A set A = [C]× where C satisfies the above conditions, will be said weak-
admissible at x̂ (Definition 1).

Under these natural conditions, we obtain non-trivial Lagrange multipliers as fol-
lows: there exists (λ∗, β∗) ∈ R

+ × R
+ such that (λ∗, β∗) �= (0, 0) and λ∗dG f (x̂) ∈

−β∗TC (x̂), (“condition of Fritz John”) where, TC (x̂) := ∩n≥1convw∗{dGφ(x̂) :
φ(x̂) ∈ [

0, 1
n

]
, φ ∈ C} ⊂ E∗. If moreover we assume that 0 /∈ TC (x̂), then we

can assume that λ∗ = 1 (“condition of Karush-Kuhn-Tucker”).
The set TC (x̂) is small enough to encompass known results, such as when the set

of constraints is finite or when A = [C]× is a closed convex set (see Example 4 and
Proposition 6). In addition, the set TC (x̂) defined above is optimal in the sens that it
cannot be replaced in general (when C is infinite) by the set convw∗{dGφ(x̂) : φ(x̂) =
0, φ ∈ C} (a simple example even in R

2 is given in Example 7). Examples of more
explicit sets containing TC (x̂) are given in Example 4 and Example 5.

The above mentioned result extends to infinitely many inequality constraints in
l.c.t.v spaces under the Gateaux-differentiability assumption, results established for
finitely many inequality constraints in finite dimension (see for instance the works of
Michel in [20], Blot in [1] and Yilmaz in [24]). Our work also generalises the so called
semi-infinite programming (SIP) problems (see Example 5 and Corollary 1).

On the other hand, we prove in our second main results (Theorem 3 and Corollary
4) a Lagrange multiplier rule in Banach spaces for mathematical programming with
both infinitely many inequality and equality constraints of the form

(P̃)

⎧
⎪⎪⎨

⎪⎪⎩

max f
x ∈ �

g(x) ∈ A
h(x) = 0,

where, E and W are Banach spaces, � an open subset of E , Y is a normed space,
A ⊂ Y and g : � → Y , h : � → W and f : � → R are mappings.
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There are several works in the literature addressing this subject with different con-
ditions (see for instance [2, 13, 15–18]. For the convex and affine frame, we refer to
[7]). The classical conditions given by Jahn in [13, Theorem 5.3 ] assume that the
functions f , g and h are Fréchet differentiable and that the set A is a closed convex
cone with a nonempty interior. In Theorem 3 and Corollary 4, we generalize the result
given by Jahn [13] in the following directions:

• The objective function f and the function g in the constraint are assumed to be
Gâteaux differentiable at the optimal solution not necessarilly Fréchet differen-
tiable at this point.

• We extend the assumption that A is a closed convex cone with nonempty interior
in [13, Theorem 5.3 ] to a more general class of closed subsets which are not
necessarily neither cone nor even convex but includes the class of all closed convex
subset Awhose recession coneRA (see Sect. 2) has a nonempty interior, it includes
in particular closed convex cones with nonempty interiors (see Corollary 4). This
class of setswill be introduced inSect. 3,whichwewill call the class of“admissible
sets” (Definition 2).

In infinite dimension, most of the authors assumed that A is a closed convex cone with
nonempty interior. The first result which gives conditions in the case of closed sets is
due to Jourani and Thibault [14, 16, 17], dealing with the approximate subdifferential
(see [11, 12]). Our conditions are on the one hand different from those given in [14, 16,
17] and on the other hand cannot be deduced from the theory of approximate subdiffer-
ential because, just like the Clarke’s subdifferential, the approximate subdifferential
of a Gateaux differentiable function at some point does not generally coincide with
the Gateaux-differential of the function at this point.

This paper is organized as follows. In Sect. 2, we recall some classical notions
around convex cones and equi-differentiability and we give some examples. In Sect. 3,
we introduce the notion of admissible sets, we give non-convex examples of such
sets and prove that a closed convex cones with a nonempty interior is a particular
admissible set. In Sect. 4, we give our main results and some corollaries, propositions
and examples as consequences.

2 Preliminaries

Because we will need certain notions later, we recall in this section some classical
notions around convex cones, their duals, the barrier cone, recession cone, etc. On
the other hand, we will recall the notion of Gateaux-differentiability, equi-Gateaux-
differentiability, equi-lower semicontinuity, etc.

2.1 The Dual Convex Cone in a Hausdorff Locally Convex Space

Let Y be an Hausdorff locally convex space and Y ∗ its topological dual. By int(A), we
denote the interior of a subet A of Y . By convw∗

(B) we denote the w∗-closed convex
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hull of a set B ⊂ Y ∗. By A∗ we denote the dual positive cone of A ⊂ Y , defined by

A∗ := {y∗ ∈ Y ∗ : y∗(y) ≥ 0; ∀y ∈ A}.

The negative polar cone of A is denoted A◦ := −A∗. We define the bidual cone of a
set A by

A∗∗ := {y ∈ Y : y∗(y) ≥ 0; ∀y∗ ∈ A∗}.

Recall that we have A ⊂ A∗∗ = cone(A) (the closed conique hull of A) and that
A∗ = cone(A)∗.

Let K be a closed convex subset of Y , the barrier cone of K is the closed convex
cone defined as follows

bar(K ) := {y∗ ∈ Y ∗ : sup
y∈K

y∗(y) < +∞}.

We denote RK for the recession cone of the closed convex set K , that is,

RK = {v ∈ Y : ∀λ > 0,∀x ∈ K , x + λv ∈ K }.

It is well known (see for instance [25], Ex. 2.45) that the w∗-closure of the barrier
cone of K is the polar of the recession cone of K ,

bar(K )
w∗ = (RK )◦ = −(RK )∗. (1)

Notice that bar(K ) = −K ∗ andRK = K , if K is a closed convex cone. We recall the
following known consequence of the Hahn-Banach theorem.

Proposition 1 Let K be a closed convex subset of Y . Then, we have

K = ∩y∗∈bar(K ){y ∈ Y : y∗(y) ≤ sup
z∈K

y∗(z)}.

In particular, K = Y if and only if bar(K ) = {0}.

Proof Set L := ∩y∗∈bar(K ){y ∈ Y : y∗(y) ≤ supz∈K y∗(z)} and let us prove that
K = L . Clearly, we have that K ⊂ L . Suppose that y0 /∈ K . By the Hahn-Banach
theorem, there exists y∗

0 ∈ Y ∗\{0} and r ∈ R such that

y∗
0 (y0) ≥ r > sup{y∗

0 (y) : y ∈ K }.

It follows that y∗
0 ∈ bar(K ) and y0 /∈ L . Thus, L ⊂ K . �

123



Journal of Optimization Theory and Applications (2024) 201:1275–1300 1279

2.2 Equi-Gateaux-Differentiability and Equi-semicontinuity

Let E be an l.c.t.v. space, � be a nonempty open subset of E and (Y , ‖ · ‖) be a
normed space. Let g : E → Y be a function. We say that g is Gateaux differentiable
at x ∈ � if there exists a linear and continuous map dGg(x) : E → Y called the
Gateaux-differential of g at x ∈ � satisfying: ∀v ∈ E

lim
t↘0

∥
∥
∥
∥
g(x + tv) − g(x) − tdGg(x)(v)

t

∥
∥
∥
∥ = 0.

If E is a normed space, we denote BE (x, r) the closed ball centered at x with radius
r > 0. We say that g is Fréchet differentiable at x ∈ � if there exists a linear and
continuous map g′(x) : E → Y called the Fréchet-differential of g at x ∈ � (denoted
also by dFg(x)) such that:

lim
t↘0

sup
v∈BE (0,1)

∥
∥
∥
∥
g(x + tv) − g(x) − tg′(x)(v)

t

∥
∥
∥
∥ = 0.

By 〈·, ·〉we denote the duality pairing between E∗ and E . A familyC of functions from
E into R is said to be equi-Gateaux differentiable (in short, equi-G-differentiable) at
a point x ∈ E if for every φ ∈ C , φ : E → R is Gateaux differentiable at x and for
every v ∈ E

lim
t↘0

sup
φ∈C

∣
∣
∣
∣
φ(x + tv) − φ(x) − t〈dGφ(x), v〉

t

∣
∣
∣
∣ = 0.

If E is a normed space, we say that C is equi-Fréchet differentiable (in short, equi-F-
differentiable) at x ∈ E if

lim
t↘0

sup
v∈BE (0,1)

sup
φ∈C

∣
∣
∣
∣
φ(x + tv) − φ(x) − t〈φ′(x), v〉

t

∣
∣
∣
∣ = 0,

where φ′(x) := dFφ(x) denotes the Fréchet-differential of φ at x .
We say that C is equi-lower semicontinuous (in short equi-lsc) at x ∈ E , if for

every ε > 0 there exists an open neighbourhood Ox,ε of x (depending only on x and
ε) such that φ(y) − φ(x) > −ε, for all y ∈ Ox,ε and for all φ ∈ C . If E is a normed
space, we say that C is r -equi-Lipschitz at x if there exists a ball centered at x on
which every function from C is r -Lipschitz (r ≥ 0).

Example 1 A basic and elementary examples are the following:

(i) A finite family of Gateaux differentiable (resp. lower semicontinuous) functions
from E into R at some point, is equi-G-differentiable (resp. equi-lsc) at this point.

(ii) Every nonempty subset C of E∗ is equi-G-differentiable at every point. The set
of 1-Lipschitz maps in a normed space is a classical example of uniformly equi-
continuous, hence equi-lsc functions at every point.
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We give in the following proposition some general examples of everywhere equi-
F-differentiable functions. Let X be a Banach space. We denote C1,α

b (X) the space of
all real-valued, bounded, Lipschitz and continuously Fréchet differentiable functions
f on X such that the Fréchet-differential f ′(·) := dF f (·) is α-Holder (0 < α ≤ 1),
that is, the space of all continuously Fréchet differentiable functions f such that

‖ f ‖1,α := max(‖ f ‖∞, ‖ f ‖L , ‖ f ‖α) < +∞,

for all f ∈ C1,α
b (X), where ‖ f ‖∞ denotes the sup-norm of f and

‖ f ‖L := sup{ | f (x1) − f (x2)|
‖x1 − x2‖ : x1, x2 ∈ X; x1 �= x2}.

‖ f ‖α := sup{‖ f ′(x1) − f ′(x2)‖
‖x1 − x2‖α

: x1, x2 ∈ X; x1 �= x2}.

The space (C1,α
b (X), ‖ · ‖1,α) is a Banach space. We also need to introduce the space

CG
b (Y ) of all bounded, Lipschitz, Gâteaux-differentiable functions f from X into R

equipped with the norm ‖ f ‖G = max(‖ f ‖∞, ‖dG f ‖∞). Recall that by the mean
value theorem, we have for every f ∈ CG

b (X) that

‖dG f ‖∞ = sup
x,x∈X;x �=x

| f (x) − f (x)|
‖x − x‖ (=: ‖ f ‖L).

The space CG
b (X), endowed with the mentioned norm, is a Banach space (see, [6]).

Proposition 2 Let X be a Banach space. Every nonempty bounded subset C ⊂
C1,α
b (X) is (everywhere) equi-F-differentiable and r-Lipschitz for some r ≥ 0. More-

over, for all x ∈ X, the set convw∗{ f ′(x) : f ∈ C} is a w∗-compact subset of
X∗.

Proof Let r > 0 be such that ‖ f ‖1,α ≤ r , for all f ∈ C . Clearly, C is r -Lipschitz.
Let x0, x ∈ X , t > 0 and f ∈ C . By the mean value theorem applied to the function
ξ �→ f (ξ) − 〈 f ′(x0), ξ 〉 on the intervalle [x0, x0 + t x], there exists θ ∈ (0, 1) such
that

f (x0 + t x) − f (x0) − t〈 f ′(x0), x〉 = 〈 f ′(x0 + θ t x) − f ′(x0), t x〉.

It follows that

| f (x0 + t x) − f (x0) − t〈 f ′(x0), x〉| ≤ ‖ f ′(x0 + θ t x) − f ′(x0)‖‖t x‖
≤ ‖ f ‖α‖t x‖1+αθα

≤ r‖t x‖1+α.
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Then, we have

lim
t↘0

sup
x∈BX (0,1)

sup
f ∈C

| f (x0 + t x) − f (x0) − t〈 f ′(x0), x〉|
t

≤ lim
t↘0

r tα = 0,

that is, C is equi-F-differentiable at x0. On the other hand, clearly we have
convw∗{ f ′(x) : f ∈ C} ⊂ BX∗(0, r), so it is w∗-compact. �

3 Admissible Sets and the Set of Multipliers

In this section we introduce the notions of weak-admissible and admissible sets which
will allow us to generalize closed convex sets whose recession cones have nonempty
interiors, this generalize in particular the class of closed convex cones with nonempty
interiors. Let E be a l.c.t.v space. To each nonempty family C of functions from E
into R, we associated a subset of E , denoted [C]×, as follows

[C]× := ∩φ∈C {x ∈ E : φ(x) ≥ 0}.

Such sets are called in the literature 
-convex subsets of E (A notion introduced
by Ky Fan, see for instance [8]). As an immediate consequence of the Hahn-Banach
theorem, we see that every closed convex subset of E is a 
-convex subset, that is,
every closed convex subset of E is of the form [C]× for some subset C of E∗ + R.

3.1 Weak-Admissible and Admissible Sets

We give the following definitions related to the admissibility of a set at one of its
points.

Definition 1 Let E be a l.c.t.v space. We say that F ⊂ E is weak-admissible at x̂ ∈ F
if there exists a nonempty family C of real-valued functions φ : E → R such that:

(a) F = [C]×.
(b) C is equi-G-differentiable at x̂ .
(c) S := {φ ∈ C : φ(x̂) �= 0} is either empty or equi-lsc at x̂ .
(d) the convex set convw∗{dGφ(x̂) : φ ∈ C} is w∗-compact in E∗.

In this case, we say that F is determined by C . We say that F is weak-admissible if
F = [C]× is weak-admissible at each of its points.

Definition 2 If E is a normed space, we say that F ⊂ E is admissible at x̂ ∈ F if
there exists a nonempty family C of real-valued functions φ : E → R such that:

(a) F = [C]×.
(b) C is equi-G-differentiable and r -equi-Lipschitz at x̂ .
(c) 0 /∈ convw∗{dGφ(x̂) : φ ∈ C} (⊂ BE∗(0, r)).

We say that F is an admissible set if F = [C]× is admissible at each of its points.
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Clearly, an admissible set is weak-admissible but the converse is not true in general.
The problem P is without constraints if the optimal solution x̂ belongs to the interior
of F . Thus, our work is of particular interest when x̂ ∈ F \ int(F). In this case we
have the following proposition.

Proposition 3 Let E be a l.c.t.v space, F ⊂ E be a weak-admissible set at x̂ ∈ F =
[C]×, determined by C. Suppose that x̂ ∈ F \ int(F), then infξ∈C ξ(x̂) = 0.

Proof Recall that since F is weak-admissible at x̂ determined by C , then S := {φ ∈
C : φ(x̂) �= 0} is either empty or equi-lsc at x̂ . It follows that if infξ∈C ξ(x̂) �= 0 (hence
infξ∈C ξ(x̂) > 0), then S = C and so by the equi-lower semicontinuity of S at x̂ , for
some ε ∈ (0, infξ∈C ξ(x̂)), there exists an open neighbourhood Ox̂,ε of x̂ such that
ξ(x)−ξ(x̂) > −ε onOx̂,ε for all ξ ∈ C . Thus, ξ(x) > ξ(x̂)−ε ≥ infξ∈C ξ(x̂)−ε ≥ 0
for all x ∈ Ox̂,ε and all ξ ∈ C . In other words, x̂ ∈ int(F). �

The Banach space (C1,α
b (Y ), ‖ · ‖1,α), where Y is a Banach space, gives a quite

general framework to build examples of both convex and non-convex admissible sets.

Example 2 Let D be a bounded subset of (C1,α
b (Y ), ‖ · ‖1,α) and let p ∈ Y ∗ such that

‖p‖ > r := supφ∈D ‖φ′‖∞ = supφ∈D ‖φ‖L . Then, the set

A := [D − p]× := {y ∈ Y : (φ − p)(y) ≥ 0, ∀φ ∈ D},

is an admissible set. Indeed, C := D − p is equi-G-differentiable by Proposition
2. Moreover, each function from C is k-Lipschitz with a same k > 0 (we can take
k = r + ‖p‖) and convw∗{φ′(y) : φ ∈ D} ⊂ BY ∗(0, r) is w∗-compact. Finally, since
‖p‖ > supφ∈D ‖φ′‖∞, it follows that p /∈ convw∗{φ′(y) : φ ∈ D}. In consequence,

0 /∈ convw∗{ψ ′(y) : ψ ∈ C}.
More generally, we have the following proposition. For each fixed point y ∈ Y ,

consider the following surjective bounded linear operator

δ′
y : (C1,α

b (Y ), ‖ · ‖1,α) → (Y ∗, ‖ · ‖)
ψ �→ δ′

y(ψ) := dFψ(y).

Proposition 4 Let y ∈ Y and K be a convexw∗-compact subset of Y ∗ such that 0 /∈ K.
Then, for every bounded subset C of C1,α

b (Y ) such that δ′
y(C) ⊂ K, we have that the

set [C]× is a admissible at y.

Proof We use the definition of admissible set together with Proposition 2. �
Notice that if K has a nonempty norm-interior, then by the continuity of δ′

y , we see

that (δ′
y)

−1(K ) has also a nonempty interior in (C1,α
b (Y ), ‖ · ‖1,α).

Now, we consider a class of closed convex admissible sets. Let C be a bounded
subset of Y ∗ and (λy∗)y∗∈C ⊂ R, then the set

A = {y ∈ Y : y∗(y) − λy∗ ≥ 0; ∀y∗ ∈ C}
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is a closed convex, weak-admissible set at each of its points and is determined by
the set {y∗ − λy∗ : y∗ ∈ C}. If moreover we assume that 0 /∈ convw∗

C , then A
is admissible at each of its points. We prove in Theorem 1 below that the class of
admissible sets includes in particular convex closed sets A �= Y whose recession cone
RA has a nonempty interior, this includes in particular the classe of closed convex
cones (different from Y ) with a nonempty interior. We need the following lemma.

Lemma 1 Let Y be a real normed space. Then the following assertions hold.

(i) Let A �= Y be a nonempty closed convex cone of Y (equivalently A∗ �= {0}) and
e ∈ Y . Then, e ∈ int(A) if and only if inf{y∗(e) : y∗ ∈ SY ∗ ∩ A∗} > 0. In
consequence, int(A) �= ∅ if and only if, either A = Y (equivalently A∗ = {0}) or
0 /∈ convw∗

(SY ∗ ∩ A∗).
(ii) Let K be a nonempty closed convex set. Then, int(RK ) �= ∅ if and only if either

K = Y or 0 /∈ convw∗
(SY ∗ ∩ (−bar(K )).

Proof (i) Suppose that inf{y∗(e) : y∗ ∈ SY ∗ ∩ A∗} = α > 0. For all h ∈ BY (0, α
2 )

and for all y∗ ∈ SY ∗ ∩ A∗, we have y∗(h + e) ≥ −‖h‖ + y∗(e) ≥ −‖h‖ + α ≥ α
2 .

In consequence, by positive homogeneity, we have z∗(h + e) ≥ 0 for all z∗ ∈ A∗. It
follows that h + e ∈ A for all h ∈ BY (0, α

2 ). In other words, e ∈ int(A). To see the
converse, let e ∈ int(A). Recall that,

int(A) ⊂ {y ∈ Y : y∗(y) > 0; ∀y∗ ∈ A∗ \ {0}}.

Suppose by contradiction that the inclusion is not true, that is, there exists a ∈ int(A)

and some y∗
0 ∈ A∗\{0} satisfying y∗

0 (a) = 0. There exists ε > 0 such that BY (a, ε) ⊂
A. Let h ∈ BY (0, 1), then we have y∗

0 (εh) = y∗
0 (−a)+ y∗

0 (a+εh) = y∗
0 (a+εh) ≥ 0

since a+εh ∈ A and y∗
0 ∈ A∗\{0}. This implies that y∗

0 (εh) = 0 for all h ∈ BY (0, 1).
Thus, y∗

0 = 0 which is a contradiction. Thus, our inclusion is true. Now, since e ∈
int(A), then BY (e, ε) ⊂ int(A) for some ε > 0. It follows that

BY (e, ε) ⊂ {y ∈ Y : y∗(y) > 0; ∀y∗ ∈ A∗ \ {0}}.

Thus, for every h ∈ BY (0, 1) and every y∗ ∈ A∗\{0}, we have that y∗(e − εh) > 0.
Equivalently, y∗(e) > εy∗(h) for all y∗ ∈ SY ∗ ∩ A∗. By taking the supremum over
h ∈ BY (0, 1), since ‖y∗‖ = 1, we get y∗(e) ≥ ε for all y∗ ∈ SY ∗ ∩ A∗. It follows that

inf
y∗∈SY∗∩A∗ y

∗(e) ≥ ε.

This completes the proof of the equivalence. To finish the part (i), it suffices to see
that for each e ∈ A, inf y∗∈SY∗∩A∗ y∗(e) = inf y∗∈convw∗

(SY∗∩A∗) y
∗(e) and that by the

Hahn-Banach theorem 0 /∈ convw∗
(SY ∗ ∩ A∗) if and only if there exists e ∈ A \ {0}

such that inf y∗∈convw∗
(SY∗∩A∗) y

∗(e) > 0. To prove (i i), we apply part (i) with the
closed convex cone A := RK , using the formula in (1). �

123



1284 Journal of Optimization Theory and Applications (2024) 201:1275–1300

Theorem 1 Let Y be a normed vector space and A be a closed convex set A such that
bar(A) �= {0} (equivalently A �= Y ). Then, A is weak-admissible at each of its points
and is determined by the set

C = {y∗ − inf
x∈A

y∗(x) : y∗ ∈ SY ∗ ∩ (−bar(A))}.

Moreover, A is an admissible set (everywhere, and determined by C) whenever 0 /∈
convw∗

(SY ∗ ∩ (−bar(A))). In consequence, the following assertions hold.

(i) Every closed convex set A such that A �= Y and int(RA) �= ∅ is admissible (at
each of its points), determined by C.

(ii) In particular, every closed convex cone A of Y with A �= Y and int(A) �= ∅ is an
admissible set determined by C = SY ∗ ∩ A∗.

Proof From Proposition 1, we have

A = ∩y∗∈bar(A){y ∈ Y : y∗(y) ≤ sup
z∈A

y∗(z)}
= {y ∈ Y : y∗(y) − inf

x∈A
y∗(x) ≥ 0, ∀y∗ ∈ −bar(A)}

= {y ∈ Y : y∗(y) − inf
x∈A

y∗(x) ≥ 0, ∀y∗ ∈ SY ∗ ∩ (−bar(A))}
= [C]×,

where, C = {y∗ − infx∈A y∗(x) : y∗ ∈ SY ∗ ∩ (−bar(A))}. Clearly, C is everywhere
equi-G-differentiable family of 1-Lipschitz functionals so A is weak-admissible at
each of its points by Definition 1. If we assume that 0 /∈ convw∗

(SY ∗ ∩ (−bar(A)))

then, clearly

0 /∈ convw∗{dGφ(x̂) : φ ∈ C} = convw∗
(SY ∗ ∩ (−bar(A))),

and so A is an admissible set determined by C (Definition 2). The parts (i) and (i i)
are consequences of Lemma 1. �

3.2 The Set of Multipliers

We introduce the following subset of the dual E∗. If x̂ ∈ [C]× for some set C of
Gateaux differentiable functions at x̂ , we denote

TC (x̂) := ∩n≥1conv
w∗{dGφ(x̂) : φ(x̂) ∈

[

0,
1

n

]

, φ ∈ C} ⊂ E∗.

This set plays a crucial role in obtaining non-trivial Lagrangemultipliers. In this paper,
the set of non-trivial multipliers associated to the prolem (P), will be given from the
set R+ × R

+TC (x̂). It is clear that

convw∗{dGφ(x̂) : φ(x̂) = 0, φ ∈ C} ⊂ TC (x̂) ⊂ convw∗{dGφ(x̂) : φ ∈ C}.
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However, in the general framework when C is infinite, these inclusions can be strict
even in R2 as shown in the following example.

Example 3 In E = R
2 letC = {φk : k ≥ 0}∪{ψ}, whereψ(x, y) = x+y, φ0(x, y) =

x , and for all k ≥ 1, φk(x, y) = y + 1
k . We see that (0, 0) ∈ [C]× = R

+ × R
+,

TC ((0, 0)) = conv{(1, 0), (0, 1)}, but conv{dGφ(x̂) : φ(x̂) = 0, φ ∈ C} = {(1, 0)}
and conv{dGφ(x̂) : φ ∈ C} = conv{(1, 0), (0, 1), (1, 1)}.

Remark 1 The set TC (x̂) is of no interest when the optimal solution x̂ ∈ int([C]×)

since in this case the problem (P) is free of constraints. However, this set is crucial
when x̂ ∈ [C]×\int([C]×). The following proposition guarantees that in this case, the
set TC (x̂) is always nonempty.

Proposition 5 Let E be a l.c.t.v space and x̂ ∈ [C]× for some set C of real-valued
Gateaux differentiable functions at x̂ such that convw∗{dGφ(x̂) : φ ∈ C} is w∗-
compact in E∗. Then, TC (x̂) �= ∅ if and only if infξ∈C ξ(x̂) = 0. In particular,
TC (x̂) �= ∅ whenever x̂ ∈ F\int(F) where F is a nonempty subset of E weak-
admissible at x̂ and determined by C.

Proof Suppose that infξ∈C ξ(x̂) = 0. Then, for each n ≥ 1, the set Dn :=
convw∗{dGφ(x̂) : φ(x̂) ∈ [

0, 1
n

]
, φ ∈ C} is nonempty and w∗-compact. Moreover,

the sequence (Dn)n≥1 is non-increasing and TC (x̂) = ∩n≥1Dn . Hence, TC (x̂) is a
nonempty w∗-compact set as intersection of non-increasing sequence of nonemppty
w∗-compact sets. The converse is trivial. Finally, if x̂ ∈ F\int(F) where F is a non
empty subset of E , which is weak-admissible at x̂ and determined by C , then using
Proposition 3 we get that infξ∈C ξ(x̂) = 0. Hence, TC (x̂) �= ∅ using what has just
been proved above. �

3.3 Examples

The examples below and Example 6 shows that the set TC (x̂) is precise enough to
encompass the classical results found in the literature, such as when the set of con-
straints is finite or when A = [C]× is a closed convex set.

Example 4 Let E be a l.c.t.v space and F = [C]× be a nonempty subset of E weak-
admissible at x̂ ∈ F\int(F) and determined by C , so that TC (x̂) �= ∅ by Proposition
5. Then, the following assertions hold.

(i) if S := {φ ∈ C : φ(x̂) �= 0} is a finite set, we have

TC (x̂) = convw∗{dGφ(x̂) : φ(x̂) = 0, φ ∈ C}.

In particular if the set C is finite, then

TC (x̂) = conv{dGφ(x̂) : φ(x̂) = 0, φ ∈ C}.
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(ii) Assume that E = Y is a Banach space and C is relatively compact in (CG
b (Y ), ‖ ·

‖G). Then,

TC (x̂) ⊂ {dGψ(x̂) : ψ(x̂) = 0, ψ ∈ conv‖·‖G (C)}.

If moreover, C is assumed to be convex and norm-compact, then

TC (x̂) = {dGψ(x̂) : ψ(x̂) = 0, ψ ∈ C}.

(iii) Assume that E = Y is a normed vector space and F �= Y is closed and convex,
then F = [C]×, whereC = {y∗ − inf x∈F y∗(x) : y∗ ∈ SY ∗ ∩ (−bar(F))} and we
have

TC (x̂) ⊂
{

y∗ ∈ convw∗
(SY ∗ ∩ (−bar(F))) : y∗(x̂) = inf

x∈F y∗(x)
}

⊂
{

y∗ ∈ (RF )∗ : y∗(x̂) = inf
x∈F y∗(x)

}

.

If F �= Y is a closed convex cone, then F = [C]× where C = SY ∗ ∩ F∗ and

TC (x̂) ⊂ {y∗ ∈ convw∗
(SY ∗ ∩ F∗) : y∗(x̂) = 0}

⊂ {y∗ ∈ F∗ : y∗(x̂) = 0}.

Proof The part (i) is trivial. We prove (i i). Indeed, we have

TC (x̂) := ∩n≥1conv
w∗{dGφ(x̂) : φ(x̂) ∈

[

0,
1

n

]

, φ ∈ C}

⊂ ∩n≥1{dGψ(x̂) : ψ(x̂) ∈
[

0,
1

n

]

, ψ ∈ conv‖·‖G (C)}
w∗

.

The set Qn := {ψ ∈ conv‖·‖G (C) : ψ(x̂) ∈ [
0, 1

n

]} is compact as a closed subset
of the compact conv‖·‖G (C) in the Banach space (CG

b (Y ), ‖ · ‖G). Since the linear
map δ′

x̂ : (CG
b (Y ), ‖ · ‖G) → (Y ∗, ‖ · ‖) defined by δ′

x̂ (ψ) = dGψ(x̂) is continuous,
it follows that δ′

x̂ (Qn) is norm compact in Y ∗. In particular it is w∗-compact and so
w∗-closed. Thus, we get

TC (x̂) ⊂ ∩n≥1{dGψ(x̂) : ψ(x̂) ∈
[

0,
1

n

]

, ψ ∈ conv‖·‖G (C)}
= {dGψ(x̂) : ψ(x̂) = 0, ψ ∈ conv‖·‖G (C)}.

If moreover we assume that C is convex and compact, that is, conv‖·‖G (C) = C , then
clearly from the above inclusion we have TC (x̂) ⊂ {dGψ(x̂) : ψ(x̂) = 0, ψ ∈ C}.
The reverse inclusion is always true.
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In a similar way we prove (i i i). Indeed, by Theorem 1, since F is a closed convex
set, it is determined by C = {y∗ − inf x∈F y∗(x) : y∗ ∈ SY ∗ ∩ (−bar(F))} . Thus, by
definition

TC (x̂) := ∩n≥1conv
w∗{dGφ(x̂) : φ(x̂) ∈

[

0,
1

n

]

, φ ∈ C}

= ∩n≥1conv
w∗

{

y∗ ∈ SY ∗ ∩ (−bar(F)) : y∗(x̂) − inf
x∈F y∗(x) ∈

[

0,
1

n

]}

⊂ ∩n≥1

{

y∗ ∈ convw∗
(SY ∗ ∩ (−bar(F))) : y∗(x̂) − inf

x∈F y∗(x) ∈
[

0,
1

n

]}

{

y∗ ∈ convw∗
(SY ∗ ∩ (−bar(F))) : y∗(x̂) = inf

x∈F y∗(x)
}

⊂
{

y∗ ∈ (RF )∗ : y∗(x̂) = inf
x∈F y∗(x)

}

(by the formula(1)).

If F is a closed convex cone, we know that F∗ = −bar(F) and inf x∈F y∗(x) = 0, for
all y∗ ∈ F∗. �

Semi-infinite programming (SIP) problems are optimization problems in which
there is an infinite number of variables or an infinite number of constraints (but not
both). A general SIP problem can be formulated as

(P)

⎧
⎨

⎩

max f
x ∈ �

h(x, t) ≥ 0,∀t ∈ T ,

where � is a nonempty open subset of Rp, x = (x1, . . . , xp) ∈ R
p, T is an infinite

set, and all the functions are real-valued. We denote T (x) = {t ∈ T : h(x, t) = 0},
for x ∈ R

p.

Example 5 Let T be a nonempty Hausdorff compact topological space, x̂ ∈ R
n and

h : Rp × T → R be a function such that:

(i) for each t ∈ T , the function h(·, t) is Gateaux-differentiale at x̂ , we denote
∇xh(x̂, t) the Gateaux-differential of h(·, t) at x̂ ,

(i i) the functions t �→ h(x̂, t) and t �→ ∇xh(x̂, t) are continuous,
(i i i) T (x̂) �= ∅.
Set C = {h(·, t) : t ∈ T } and suppose that x̂ ∈ [C]×. Then,

TC (x̂) = conv{∇xh(x̂, t) : t ∈ T (x̂)}.

Proof First, notice that by using the continuity of the functions h(x̂, ·), ∇xh(x̂, ·)
and the compactness of T , we get that ∇xh(x̂, T ) := {∇xh(x̂, t) : t ∈ T } is a
compact subset of Rp and that {∇xh(x̂, t) : h(x̂, t) ∈ [

0, 1
n

]
, t ∈ T } is a closed

subset of ∇xh(x̂, T ) and so it is a compact subset, for each n ≥ 1. It follows that
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conv{∇xh(x̂, t) : h(x̂, t) ∈ [
0, 1

n

]
, t ∈ T } is a compact subset of Rp for each n ≥ 1.

On the other hand, by the coincidence of the weak∗ and norm topologies onRp, using
the definition of TC (x̂), we get

TC (x̂) := ∩n≥1conv
w∗{∇xh(x̂, t) : h(x̂, t) ∈

[

0,
1

n

]

, t ∈ T }

= ∩n≥1conv{∇xh(x̂, t) : h(x̂, t) ∈
[

0,
1

n

]

, t ∈ T }

⊂ ∩n≥1{dGφ(x̂) : φ(x̂) ∈
[

0,
1

n

]

, φ ∈ conv{h(x̂, t), t ∈ T }}
= {dGφ(x̂) : φ(x̂) = 0, φ ∈ conv{h(x̂, t), t ∈ T }}.

Now, we prove that

{dGφ(x̂) : φ(x̂) = 0, φ ∈ conv{h(x̂, t), t ∈ T }} ⊂ conv{dGh(x̂, t) : t ∈ T (x̂)}.

Indeed, if q ∈ {dGφ(x̂) : φ(x̂) = 0, φ ∈ conv{h(x̂, t), t ∈ T }}, then there exists
t1, . . . , tm ∈ T , λ1, . . . , λm ≥ 0 such that

∑m
i=1 λi = 1, q = ∑m

i=1 λi dGh(x̂, ti ) and∑m
i=1 λi h(x̂, ti ) = 0. Since, h(x̂, ti ) ≥ 0 for all 1 ≤ i ≤ m, we have λi h(x̂, ti ) = 0 for

all 1 ≤ i ≤ m. Thus, λi = 0 if h(x̂, ti ) �= 0 and so q ∈ conv{dGh(x̂, t) : t ∈ T (x̂)}.
Finally, we have TC (x̂) ⊂ conv{dGh(x̂, t) : t ∈ T (x̂)}. The reverse inclusion is always
true. �

Example 6 Let Y be a normed vector space and A = [C]× be an admissible set at
x̂ ∈ A \ int(A). Then, 0 /∈ TC (x̂) �= ∅. In consequence, the following assertions hold.
(i) If A �= Y is a closed convex subset such that int(RA) �= ∅ then, with C =

{y∗ − infx∈A y∗(x) : y∗ ∈ SY ∗ ∩ (−bar(A))} we have A = [C]×, A is admissible
at x̂ ∈ A \ int(A), 0 /∈ TC (x̂) �= ∅ and

TC (x̂) ⊂ {y∗ ∈ convw∗
(SY ∗ ∩ (−bar(A))) : y∗(x̂) = inf

x∈A
y∗(x)}

⊂ {y∗ ∈ (RA)∗ \ {0} : y∗(x̂) = inf
x∈A

y∗(x)}.

(i i) In particular, if A �= Y is a closed convex cone with a nonempty interior, then
A = [SY ∗ ∩ A∗]× and 0 /∈ TSY∗∩A∗(x̂) ⊂ {y∗ ∈ convw∗

(SY ∗ ∩ A∗) : y∗(x̂) =
0} ⊂ {y∗ ∈ A∗ \ {0} : y∗(x̂) = 0}.

Proof By Proposition 5, TC (x̂) �= ∅. By the definition of admissible set, 0 /∈
convw∗{dGφ(x̂) : φ ∈ C} and by the definition of TC (x̂), we have TC (x̂) ⊂
convw∗{dGφ(x̂) : φ ∈ C}. Hence, 0 /∈ TC (x̂) �= ∅. For the rest, we use the part
(i i i) of Example 4 and Theorem 1. �
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4 TheMain Results

This section is divided into two parts. We first treat the case of optimization problems
with only constraints of inequalities in the general framework of l.c.t.v. spaces. Then,
we will consider the case of problems with both inequality and equality constraints,
in the framework of Banach spaces.

4.1 Inequalities Constraints in a Hausdorff Locally Convex Space

Before giving Theorem 2, we need some notation and reminders. Let D be a compact
convex subset of an l.c.t.v. space E . We denote by (C(D), ‖ · ‖∞) the Banach space
of all real-valued continuous functions on D. By C+(D) we denote the positive cone
of C(D) which has a nonempty interior and C(D)∗ denotes the topological dual of
C(D). The space Aff(D) denotes the space of all affine continuous functions from D
to R. We also recall (see [21]) that the dual space C(D)∗ is naturally identified with
the Radon measures on D via the duality map

〈μ, f 〉 =
∫

D
f dμ, for all μ ∈ C(D)∗ and f ∈ C(D).

In particular, the evaluation map δx : f �→ f (x) is the Dirac measure of x ∈ D and
we have:

δx ( f ) := 〈δx , f 〉 = f (x).

Furthermore, the dual norm ||μ||∗ coincides with the total variation of the measure μ

denoted ‖μ‖T V .

We denote by M1(D) the set of all Borel probability measures on D. This set is
a w∗-compact convex subset of C(D)∗ and coincides with the weak∗ closed convex
hull of the set δ(D) := {δx : x ∈ D}, that is,

M1(D) = {
μ ∈ C(D)∗ : ‖μ‖∗ = 〈μ, 1D〉 = 1

}

= convw∗
(δ(D)) , (2)

where 1D(x) = 1, for all x ∈ D.

If w ∈ E and K ⊂ E is a nonempty set, we denote [w, K ] the convex hull of the
point w and the set K , that is, [w, K ] = {λw + (1 − λ)x : λ ∈ [0, 1], x ∈ K }.
Lemma 2 Let E be a l.c.t.v space, w ∈ E and (Kn)n≥1 be a non-increasing sequence
of nonempty compact sets. Then, ∩n≥1[w, Kn] = [w,∩n≥1Kn].
Proof Clearly, [w,∩n≥1Kn] ⊂ ∩n≥1[w, Kn]. Let x ∈ ∩n≥1[w, Kn], then for every
n ≥ 1 there exists xn ∈ Kn and λn ∈ [0, 1] such that x = λnw + (1 − λn)xn . Since
[0, 1] is compact and (Kn)n≥1 is a non-increasing sequence of nonempty compact
sets, there are subnets (xα) and a (λα) converging respectively to some x̄ ∈ ∩n≥1Kn

and λ̄ ∈ [0, 1]. Thus, x = limα(λαw+ (1−λα)xα) = λ̄w+ (1− λ̄)x̄ ∈ [w,∩n≥1Kn].
�
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Now, we give the proof of our first main result mentioned in the introduction.

Theorem 2 Let E be a l.c.t.v space,� be a nonempty open subset of E and F be a non
empty subset of E. Let f : � → R be a function. Assume that x̂ ∈ � is an optimal
solution of the problem (P):

(P)

⎧
⎨

⎩

max f
x ∈ �

x ∈ F,

that f isGateaux differentiable at x̂ and that F is weak-admissible at x̂ and determined
by C. Then, either x̂ ∈ int(F) and therefore dG f (x̂) = 0, otherwize if x̂ ∈ F \ int(F),
we have 0 ∈ [dG f (x̂), TC (x̂)]. That is, there exists (λ∗, β∗) ∈ R

+ × R
+ and x∗ ∈

TC (x̂) such that

(i) (λ∗, β∗) �= (0, 0).
(ii) λ∗dG f (x̂) + β∗x∗ = 0.

If moreover, we assume that 0 /∈ TC (x̂) (in particular if E is a normed space and F is
admissible at x̂), then we can choose λ∗ = 1.

Proof Clearly, dG f (x̂) = 0 if x̂ ∈ int(F). Suppose that x̂ ∈ F \ int(F). Then,
by Proposition 3, we have infξ∈C ξ(x̂) = 0. For each integer number n ≥ 1,
set Sn = {

φ ∈ C : φ(x̂) > 1
n

}
(may be an empty set) and Cn = C\Sn =

{
φ ∈ C : 0 ≤ φ(x̂) ≤ 1

n

} �= ∅ (since infξ∈C ξ(x̂) = 0). Clearly, the sequence (Cn)n≥1

is non-increasing. Let us set Dn = convw∗{dGφ(x̂) : φ ∈ Cn}, which is nonempty and
w∗-compact convex subset of E∗ (the sequence (Dn)n≥1 is non-increasing). Notice
that for each u ∈ E , the evaluation mapping δu : p ∈ Dn �→ 〈p, u〉, is linear and w∗-
continuous, thus δu ∈ Aff(Dn) ⊂ C(Dn), where Dn is equippedwith thew∗-topology.
Let us set

X := {(δu, dG f (x̂)(u)) : u ∈ E} ⊂ C(Dn) × R,

which is a vector subspace and let us prove that

(−1Dn ,−1) /∈ X + C+(Dn) × R+,

where 1Dn denotes the constant function equal to 1 on Dn and the closure is taken
in the Banach space C(Dn) × R. Suppose by contradiction that (−1Dn ,−1) ∈
X + C+(Dn) × R+. There exists u ∈ E and (h0, z0) ∈ C+(Dn) × R

+ such that

‖h0 + 1Dn − δu‖∞ + |z0 + 1 − dG f (x̂)(u)| <
1

2
.

It follows that, for all p ∈ Dn = convw∗{dGφ(x̂)) : φ ∈ Cn}

〈p, u〉 > h0(p) + 1D(p) − 1

2
≥ 1

2
(3)
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dG f (x̂)(u) > z0 + 1

2
≥ 1

2
. (4)

By assumption, f is Gateaux differentiable at x̂ and the family C is equi-Gateaux
differentiable at x̂ , then there exists δ0 > 0 such that for all δ ∈ (0, δ0), we have
x̂ + δu ∈ � and

sup
φ∈C

|φ(x̂ + δu) − φ(x̂) − δ〈dGφ(x̂), u〉
δ

| <
1

4

| f (x̂ + δu) − f (x̂) − δdG f (x̂)(u)

δ
| <

1

4
.

Using (3), (4) and the two last inequalities, we get that for all δ ∈ (0, δ0), x̂ + δu ∈ �

and

∀φ ∈ Cn ⊂ C, φ(x̂ + δu) > δ(〈dGφ(x̂), u〉 − 1

4
) + φ(x̂)

> δ
1

4
> 0

f (x̂ + δu) − f (x̂) > δ(dG f (x̂)(u) − 1

4
)

> δ
1

4
> 0.

It follows that, for all δ ∈ (0, δ0) and for all φ ∈ Cn , we have

x̂ + δu ∈ �,φ(x̂ + δu) > 0 and f (x̂ + δu) − f (x̂) > 0. (5)

If Sn = ∅, then Cn = C and so (5) contradicts the fact that x̂ is an optimal solution of
(P). We will show that there is also a contradiction in the case where Sn �= ∅. Indeed,
since the family S = {φ ∈ C : φ(x̂) �= 0} is equi-lsc at x̂ (see Definition 1), the same
applies to Sn ⊂ S, so there exists αn > 0 such that: ∀δ ∈ (0, αn),∀φ ∈ Sn

x̂ + δu ∈ � and φ(x̂ + δu) > φ(x̂) − 1

n
> 0. (6)

The formulas (5) and (6) applied with δ ∈ (0,min(δ0, αn)), contradict also the
fact that x̂ is an optimal solution of (P). Finally, we proved that (−1Dn ,−1) /∈
X + C+(Dn) × R+. By the Hahn-Banach theorem, (and using the fact that
X + C+(Dn) × R+ is a cone) there exists a Radon measure μ∗

n and λ∗
n ∈ R such

that (μ∗
n, λ

∗
n) �= (0, 0) and

∫

Dn

hdμ∗
n + λ∗

nz ≥ 0, ∀(h, z) ∈ X + C+(Dn) × R
+.
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This implies in particular that μ∗
n ≥ 0, λ∗

n ≥ 0 and for all u ∈ E ,

λ∗
ndG f (x̂)(u) +

∫

Dn

δudμ∗
n = 0. (7)

Case 1. If there exists some n0 ≥ 1 such that μ∗
n0 = 0, then λ∗

n0 �= 0 (since
(μ∗

n0 , λ
∗
n0) �= (0, 0)) and so from (7), we get that dG f (x̂) = 0 and in consequence the

theorem works with (λ∗, β∗) = (1, 0).
Case 2.Suppose thatμ∗

n �= 0 for all n ≥ 1. Then ν∗
n := μ∗

n‖μ∗
n‖T V is a Borel probability

measure on the w∗-compact convex set Dn and from (7), we have

λ∗
n

λ∗
n + ‖μ∗

n‖T V
dG f (x̂)(u) + ‖μ∗

n‖T V
λ∗
n + ‖μ∗

n‖T V
∫

Dn

δudν∗
n = 0. (8)

As a Borel probability measure, ν∗
n has a unique barycenter pn ∈ Dn =

convw∗{dGφ(x̂) : φ ∈ Cn} (see for instance [3, Chapitre IV, section 7, n◦1, Corol-
laire de Proposition 1.] or [5, Lemma 10]), that is, k(pn) = ∫

Dn
kdν∗

n , for every
k ∈ Aff(Dn). In particular, since for every u ∈ E the map δu ∈ Aff(Dn), we obtain∫

Dn
δudν∗

n = 〈pn, u〉. Using (8) and the fact that
∫

Dn
δudν∗

n = 〈pn, u〉 for all u ∈ E ,
we get,

0 ∈ [dG f (x̂), Dn],∀n ≥ 1.

Hence, 0 ∈ ∩n≥1[dG f (x̂), Dn] = [dG f (x̂),∩n≥1Dn] by using Lemma 2, since
(Dn)n≥1 is a non-increasing sequence of w∗-compact subsets. Equivalently, there
exists (λ∗, β∗) ∈ R

+ × R
+ and x∗ ∈ ∩n≥1Dn := TC (x̂) such that

(i) (λ∗, β∗) �= (0, 0).
(i i) λ∗dG f (x̂) + β∗x∗ = 0.

Finally, we see from (i) and (i i) that if λ∗ = 0 then β∗ �= 0 and so 0 ∈ TC (x̂).
Thus, if 0 /∈ TC (x̂) then λ∗ �= 0 and so, dividing by λ∗ we can assume that λ∗ = 1
(in particular in a normed space if F is admissible at x̂ , we have by Example 6 that
0 /∈ TC (x̂)). �

We show in Example 7 below, that the set TC (x̂) in Theorem 2 cannot, in general,
be replaced by the set convw∗{dGφ(x̂) : φ(x̂) = 0, φ ∈ C} even in R2.

Example 7 Indeed, in E = R
2, let � =] − 1, 1[×] − 1, 1[, C = {φk : k ≥ 0}, where

φ0(x, y) = x , and for all k ≥ 1, φk(x, y) = y + 1
k and f (x, y) = −x2 − y for all

(x, y) ∈ �. We set F := [C]× = R
+ ×R

+. In this case, the problem (P) has (0, 0) as
a solution, F is clearly weak-admissible at (0, 0) ∈ F\int(F). We have φ0(0, 0) = 0,
φk(0, 0) = 1

k > 0 for all k ≥ 1, φ′
0(0, 0) = (1, 0), φ′

k(0, 0) = (0, 1) for all k ≥ 1 and
f ′(0, 0) = (0,−1). We see that

conv{φ′(0, 0) : φ(0, 0) = 0, φ ∈ C} = {(1, 0)},
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TC (x̂) := ∩n≥1conv

{

φ′(0, 0) : φ(0, 0) ∈
[

0,
1

n

]

, φ ∈ C

}

= [(1, 0), (0, 1)],
(0, 0) /∈ [(0,−1), (1, 0)] = [ f ′(0, 0), φ′

0(0, 0)],

but clearly, (0, 0) ∈ [(0,−1), TC (x̂)] = [ f ′(0, 0), TC (x̂)].
Remark 2 In a normed vector space, the condition of w∗-compactness of convw∗

{dGφ(x̂) : φ ∈ C} in the definition of weak-admissibility of a set F can be omit-
ted by replacing the set C by the set C̃ := { φ

max(1,‖dGφ(x̂)‖) : φ ∈ C} and TC (x̂) by

TC̃ (x̂), since C and C̃ determine the same set F , that is, F = [C]× = [C̃]× and the
set convw∗{dGφ(x̂) : φ ∈ C̃} is w∗-compact.

An application to semi-infinite programming (SIP) problems is given in the follow-
ing corollary. Some general literature on semi-infinite programming problems can be
found in [4, 10, 19, 22, 23]. Recall that ∇xh(x̂, t) denotes the Gateaux-differential of
h(·, t) at x̂ and T (x̂) := {t ∈ T : h(x̂, t) = 0}.
Corollary 1 Let T be a nonempty Hausdorff compact topological space and h : Rp ×
T → R, f : Rp → R be functions. Assume that x̂ ∈ R

p is an optimal solution of the
problem:

(P)

⎧
⎨

⎩

max f
x ∈ �

h(x, t) ≥ 0,∀t ∈ T ,

and that:

(a) T (x̂) �= ∅.
(b) the function f is Gateaux differentiable at x̂ and family (h(·, t))t∈T is equi-

Gateaux-differentiale at x̂ ,
(c) the family (h(·, t))t∈T \T (x̂) is equi-lsc at x̂ ,
(d) the functions t �→ h(x̂, t) and t �→ ∇xh(x̂, t) are continuous.

Then, there exists λi ≥ 0, ti ∈ T (x̂), i = 0, . . . , k such that k ≤ p,
∑k

i=0 λi = 1 and

λ0dG f (x̂) +
k∑

i=1

λi∇xh(x̂, ti ) = 0.

If moreover, we assume that 0 /∈ conv{∇xh(x̂, t), t ∈ T (x̂)}, then λ0 �= 0.

Proof Set F := [C]× := {x ∈ R
p : h(x, t) ≥ 0,∀t ∈ T }, where C = {h(·, t) :

t ∈ T }. From our hypothesis, the set F is weak-admissible at x̂ and by Example
5, TC (x̂) = conv{∇xh(x̂, t) : t ∈ T (x̂)}. Using Theorem 2, we have that either
dG f (x̂) = 0 or 0 ∈ [dG f (x̂), TC (x̂)] ⊂ R

p. If dG f (x̂) = 0, then the corollary works
with λ0 = 1 and λi = 0 for 1 ≤ i ≤ k and k ≤ p. If 0 ∈ [dG f (x̂), TC (x̂)], then by
Carathéodory’s theorem there are λi ≥ 0, ti ∈ T (x̂), i = 0, . . . , k such that k ≤ p,∑k

i=0 λi = 1 and λ0dG f (x̂) + ∑k
i=1 λi∇xh(x̂, ti ) = 0. Finally, it is clear that if

0 /∈ conv{∇xh(x̂, t), t ∈ T (x̂)}, then λ0 �= 0. �
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Corollary 2 Let E = Y be a normed vector space and C be a nonempty relatively
compact subset of (C1,α

b (Y ), ‖ · ‖1,α). Let � be a nonempty open subset of Y , x̂ ∈ �

and f : � → R be a Gateaux differentiable function. Suppose that x̂ is a solution of
the problem

(P)

⎧
⎨

⎩

max f
x ∈ �

φ(x) ≥ 0,∀φ ∈ C .

Then, either dG f (x̂) = 0 or there exists (λ∗, β∗) ∈ R
+ ×R

+ and ψ ∈ conv‖·‖1,α (C)

such that,

(i) (λ∗, β∗) �= (0, 0).
(ii) λ∗dG f (x̂) + β∗dFψ(x̂) = 0,
(iii) ψ(x̂) = 0.

If moreover, we assume that 0 /∈ {dFφ(x̂) : φ(x̂) = 0, φ ∈ conv‖·‖1,α (C)}, then we
can take λ∗ = 1.

Proof Using Proposition 2, we see that F = [C]× is weak-admissible at each point,
then we apply Theorem 2 and part (i i) of Example 4. �

In order to deal with problems of the form

(P)

⎧
⎨

⎩

max f
x ∈ �

g(x) ∈ A

we need the following lemma.

Lemma 3 Let E be an l.c.t.v. space, � an open subset of E and (Y , ‖ · ‖) be a normed
space. Let g : � → Y be a Gateaux differentiable and continuous function at x̂ ∈ �.
Let C be a family of functions from Y into R, r -equi-Lipschitz (r ≥ 0) at g(x̂) and
equi-Gateaux differentiable at g(x̂). Then,

(i) the set convw∗{dGφ(g(x̂)) : φ ∈ C}, is a w∗-compact subset of Y ∗.
(ii) the family {φ◦g : φ ∈ C} is equi-Gateaux differentiable at x̂ and dG(φ◦g)(x̂) =

dGφ(g(x̂)) ◦ dGg(x̂) for all φ ∈ C.

Proof Since C is equi-Gateaux differentiable at g(x̂), then for every y ∈ Y and every
ε > 0, there exists δ > 0 such that for all t ∈]0, δ[

sup
φ∈C

∣
∣
∣
∣
φ(g(x̂) + t y) − φ(g(x̂)) − tdGφ(g(x̂))(y)

t

∣
∣
∣
∣ < ε.

With y = dGg(x̂)(u) ∈ Y for u ∈ E , we have that for every u ∈ E and every ε > 0,
there exists δ > 0 such that for all t ∈]0, δ[

α := sup
φ∈C

∣
∣
∣
∣
φ(g(x̂) + tdGg(x̂)(u)) − φ(g(x̂)) − tdGφ(g(x̂))(dGg(x̂)(u))

t

∣
∣
∣
∣ < ε.
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Set

β := sup
φ∈C

∣
∣
∣
∣
φ ◦ g(x̂ + tu) − φ ◦ g(x̂) − tdGφ(g(x̂))(dGg(x̂)(u))

t

∣
∣
∣
∣ .

Using the triangular inequality, the continuity of g at x̂ and the fact that C is r -equi-
Lipschitz at g(x̂), we get that for t > 0 small enough

β < sup
φ∈C

∣
∣
∣
∣
φ(g(x̂ + tu)) − φ(g(x̂) + tdGg(x̂)(u))

t

∣
∣
∣
∣ + α

< r

∥
∥
∥
∥
g(x̂ + tu) − g(x̂) − tdGg(x̂)(u)

t

∥
∥
∥
∥
Y

+ ε.

Since g is Gateaux differentiable at x̂ , we get using the above inequality and the
expression of β that the family {φ ◦ g : φ ∈ C} is equi-Gateaux differentiable at x̂
and that dG(φ ◦ g)(x̂) = dGφ(g(x̂)) ◦ dGg(x̂) for all φ ∈ C . On the other hand, since
C is r -equi-Lipschitz at g(x̂), then we see easily that convw∗{dGφ(g(x̂)) : φ ∈ C} ⊂
BY ∗(0, r). It follows that convw∗{dGφ(g(x̂)) : φ ∈ C}, is a w∗-compact subset of Y ∗.
This ends the proof. �
Proposition 6 Let E be an l.c.t.v space, x̂ ∈ � be an open subset of E and Y be
a normed space. Let g : � → Y and f : � → R be two mappings Gateaux
differentiable at x̂ and g continuous at x̂ . Let A := [C]× be an admissible set at g(x̂)
determined by a family C of functions from Y intoR. Assume that x̂ ∈ � is an optimal
solution of the problem (Pg):

(Pg)

⎧
⎨

⎩

max f
x ∈ �

g(x) ∈ A.

Then, there exists (λ∗, β∗) ∈ R
+ × R

+ and y∗ ∈ TC (g(x̂)) such that

(a) (λ∗, β∗) �= (0, 0), y∗ �= 0.
(b) λ∗dG f (x̂) + β∗y∗ ◦ dGg(x̂) = 0.

Proof Using the fact that A = [C]× is an admissible set at g(x̂) together with Lemma
3 we get that:

(i) the set convw∗{dGφ(g(x̂)) : φ ∈ C}, is a w∗-compact subset of Y ∗.
(i i) the family {φ◦g : φ ∈ C} is equi-Gateaux differentiable at x̂ and dG(φ◦g)(x̂) =

dGφ(g(x̂)) ◦ dGg(x̂) for all φ ∈ C .
(i i i) the set {φ ◦ g : φ ∈ C} is equi-continuous at x̂ , since C is r -equi-Lipschitz at

g(x̂) and g is continuous at x̂ .
(iv) 0 /∈ convw∗{dGφ(g(x̂)) : φ ∈ C}.
From (iv), since TC (g(x̂)) ⊂ convw∗{dGφ(g(x̂)) : φ ∈ C}, we have that 0 /∈
TC (g(x̂)). With the family Cg := {φ ◦ g : φ ∈ C} and F = [Cg]×, we see that
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g(x) ∈ A = [C]× if and only if x ∈ F = [Cg]×. From (i), (i i) and (i i i)we see easily
that F is weak-admissible at x̂ . Clearly, x̂ is an optimal solution of the problem

(P)

⎧
⎨

⎩

max f
x ∈ �

x ∈ F .

Now, if x̂ ∈ int(F), then dG f (x̂) = 0 and so the proposition works with λ∗ = 1,
β∗ = 0 and any y∗ ∈ TC (g(x̂)). If x̂ /∈ int(F), by Theorem 2 applied to F , there
exists (λ∗, β∗) ∈ R

+ × R
+ and x∗ ∈ TCg (x̂) ⊂ E∗ such that

(a) (λ∗, β∗) �= (0, 0).
(b) λ∗dG f (x̂) + β∗x∗ = 0,

where,

TCg (x̂) := ∩n≥1conv
w∗

{

dG(φ ◦ g)(x̂) : φ(g(x̂)) ∈
[

0,
1

n

]

, φ ∈ C

}

= ∩n≥1conv
w∗

{

dGφ(g(x̂)) ◦ dGg(x̂) : φ(g(x̂)) ∈
[

0,
1

n

]

, φ ∈ C

}

= {y∗ ◦ dGg(x̂) : y∗ ∈ TC (g(x̂)) ⊂ Y ∗}.

Hence, from (b) we have λ∗dG f (x̂) + β∗y∗ ◦ dGg(x̂) = 0 for some y∗ ∈ TC (g(x̂)),
with y∗ �= 0 since 0 /∈ TC (g(x̂)) �= ∅ by Example 6. This completes the proof. �

Our results can also be appliedwhen the constraints are in integral form.An example
is given in the following corollary. Let K be a Hausdorff compact space and X be a
Banach space. The space C(K , X) denotes the Banach space of X -valued bounded
continuous functions on K equipped with the sup-norm. If X = R, we simply note
C(K ).

Corollary 3 Let E be an l.c.t.v space and K be an Hausdorff topological space. Let
� be an open subset of E, S ⊂ M1(K ) (the set of all Borel probability measures),
g : � → C(K ), f : � → R be two mappings Gateaux differentiable at x̂ ∈ � and g
continuous at x̂ . Assume that x̂ is an optimal solution of the problem:

(P)

⎧
⎨

⎩

max f
x ∈ �∫

K g(x)dμ ≥ 0 : ∀μ ∈ S.

Then, there exists (λ0, β0) ∈ R
+ × R

+\{(0, 0)} and a Borel probability measure
μ0 ∈ convw∗

(S) on K such that for all x ∈ E,

λ0〈dG f (x̂), x〉 + β0

∫

K
〈dGg(x̂), x〉dμ0 = 0

and
∫

K g(x̂)dμ0 = 0.
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Proof We apply Proposition 6 with Y = C(K ) and the family A = [S]× which is an
admissible set, noticing that TS(g(x̂)) ⊂ {μ ∈ convw∗

(S) : ∫

K g(x̂)dμ = 0}. �
Example 8 The above corollary applies with S := {δs : s ∈ K } ⊂ M1(K ), where for
every s ∈ K , we denote δs : C(K ) → R, the evaluation map at s, defined by δs(z) =
z(s) for all z ∈ C(K ), g : � ⊂ C(K , X) → C(K ) of the form g(z) := h(·, z(·)) :
s �→ h(s, z(s)), where h : K × X → R is a continuous function and equi-Gateaux
differentiable on the second variable, that is, the family (h(s, ·))s∈K is equi-Gateaux
differentiable at every point x ∈ X . In this case, g is Gateaux differentiable at every ẑ ∈
C(K , X) and we have for all z ∈ C(K , X): 〈dGg(ẑ), z〉 : s �→ 〈DG,2h(s, ẑ(s)), z(s)〉,
where DG,2h denotes the Gateaux-differential of h with respect to the second variable.

4.2 Optimization with Inequality and Equality Constraints

We give below our second main result which generalize the result of J. Jahn in [13,
Theorem 5.3 ]. Let E and W be Banach spaces, � be an open subset of E . Let Y be a
normed space and A ⊂ Y . Let g : � → Y , f : � → R and h : � → W be mappings.
Consider the following problem:

(P̃)

⎧
⎪⎪⎨

⎪⎪⎩

max f
x ∈ �

g(x) ∈ A
h(x) = 0.

Using the implicit function theorem, we will reduce the problem (P̃) to the problem
(P) without equality constraints, then we apply Proposition 6.

Theorem 3 Let x̂ ∈ � and suppose that A = Y or A = [C]× ⊂ Y is an admissible
set at g(x̂) determined by a family C of functions on Y . Assume that

(α) x̂ is a solution of the problem (P̃).
(β) f and g are Gateaux differentiable at x̂ and Lipschitz in a neighborhood of x̂ .
(γ ) h is Fréchet differentiable in a neighborhood of x̂ , dFh(·) (the Fréchet-

differential of h) is continuous at x̂ and ImdFh(x̂) is closed.
(σ ) Ker(dFh(x̂)) is a complemented subspace of E, that is there exists a closed

subspace E1 of E such that E = Ker(dFh(x̂)) ⊕ E1.
Then, there exists λ∗

0 ∈ R
+, z∗0 ∈ Y ∗ and w∗

0 ∈ W ∗ such that (λ∗
0, z

∗
0, w

∗
0) �=

(0, 0, 0) and

λ∗
0dG f (x̂) + z∗0 ◦ dGg(x̂) + w∗

0 ◦ dFh(x̂) = 0,

where, (λ∗
0, z

∗
0, w

∗
0) can be chosen as follows:

• If dFh(x̂) is not onto: (λ∗
0, z

∗
0, w

∗
0) = (0, 0, w∗

0), with w∗
0 �= 0.

• If dFh(x̂) is onto and A = Y : (λ∗
0, z

∗
0, w

∗
0) = (1, 0, 0).

• If dFh(x̂) is onto and A = [C]×: (λ∗
0, z

∗
0) �= (0, 0), with z∗0 ∈ R

+TC (g(x̂)), where
0 /∈ TC (g(x̂)).
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Proof We have two cases:
Case 1. ImdFh(x̂) �= W . Since ImdFh(x̂) is closed, then by the Hahn-Banach

theorem, there exists w∗ ∈ W ∗ \ {0} such that w∗ ◦ dFh(x̂) = 0. Thus, the theorem
works with λ0 = 0, y∗

0 = 0 and w∗ �= 0.
Case 2. ImdFh(x̂) = W . In this case, dFh(x̂)|E1 : E1 → W is an isomorphism. Let

(â, b̂) ∈ Ker(dFh(x̂))× E1 such that x̂ = â+ b̂. Since, h(x̂) = 0, then by the implicit
function theorem, there exists a neighborhoodU of â in Ker(dFh(x̂)), a neighborhood
V of b̂ in E1 such that U + V ⊂ � and a unique continuous function ϕ : U → V
such that

(i) ϕ(â) = b̂.
(i i) ∀x ∈ U , h(x + ϕ(x)) = 0.

(i i i) ϕ is Fréchet differentiable at â, and dFϕ(â) = 0.

Let us define f̂ : U → R, l : U → Y by f̂ (x) = f (x + ϕ(x)) and l(x) =
g(x+ϕ(x)) for all x ∈ U ⊂ Ker(dFh(x̂)). Notice that l(â) = g(x̂) and f̂ (â) = f (x̂).
By assumption and part (i i) above, we have that â is a solution of

(P)

⎧
⎨

⎩

max f̂
x ∈ U
l(x) ∈ A.

If A = Y , we see that dG f̂ (â) = 0. If A = [C]× is an admissible set at g(x̂) = l(â),
we get using Proposition 6 with f̂ and l, that there exists (λ∗

0, β
∗
0 ) ∈ R

+ × R
+ and

y∗
0 ∈ TC (l(â)) such that (λ∗

0, β
∗
0 ) �= (0, 0), y∗

0 �= 0 and

λ∗
0dG f̂ (â) + β∗

0 y
∗
0 ◦ dGl(â) = 0, (9)

Now, we observe from the expressions of f̂ and l, using (i i i) and the fact that f
and g are Lipschitz in a neighborhood of x̂ , that

dG f̂ (â) = dG f (x̂) ◦ (IKer(dFh(x̂)) + dFϕ(â)) = dG f (x̂) ◦ IKer(dFh(x̂)),

dGl(â) = dGg(x̂) ◦ (IKer(dFh(x̂)) + dFϕ(â)) = dGg(x̂) ◦ IKer(dFh(x̂)).

where IKer(dFh(x̂)) denotes the identity map from Ker(dFh(x̂)) into E . Thus, from (9)
we have

λ∗
0dG f (x̂) ◦ IKer(dFh(x̂)) + β∗

0 y
∗
0 ◦ dGg(x̂) ◦ IKer(dFh(x̂)) = 0. (10)

We set

w∗
0 := (−λ∗

0dG f (x̂)|E1 − β∗
0 y

∗
0 ◦ dGg(x̂)|E1) ◦ (dFh(x̂)|E1)

−1 ∈ W ∗

Then, we have

λ∗
0dG f (x̂)|E1 + β∗

0 y
∗
0 ◦ dGg(x̂)|E1 + w∗

0 ◦ dFh(x̂)|E1 = 0. (11)
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Since dFh(x̂) ◦ IKer(dFh(x̂)) = 0, by using the formulas (10) and (11), we obtain

λ∗
0dG f (x̂) + β∗

0 y
∗
0 ◦ dGg(x̂) + w∗

0 ◦ dFh(x̂) = 0,

where, (λ∗
0, β

∗
0 y

∗
0 ) �= (0, 0) since (λ∗

0, β
∗
0 ) �= (0, 0) and y∗

0 �= 0 (Notice that 0 /∈
TC (g(x̂)), since [C]× is admissible at g(x̂)). �

We give the following corollary (an immediate consequence of Theorem 3) which
is also an extention of the result in [13, Theorem 5.3 ]. The following result extends
results known for closed convex cones under the Fréchet differentiability hypothesis
to the more general case of closed convex sets whose recession cones have nonempty
interiors and under the hypothesis that f and g areGateaux differentiable at the optimal
solution.

Corollary 4 Under the hypothesis of Theorem 3, assume that A is a closed convex set
such that int(RA) �= ∅ (in particular if A is a closed convex cone with a nonempty
interior). Then, there exists λ∗

0 ∈ R
+, z∗0 ∈ (RA)∗ and w∗

0 ∈ W ∗ such that

(i) (λ∗
0, z

∗
0, w

∗
0) �= (0, 0, 0),

(ii) λ∗
0dG f (x̂) + z∗0 ◦ dGg(x̂) + w∗

0 ◦ dFh(x̂) = 0,
(iii) z∗0(g(x̂)) = inf y∈A z∗0(y) (= 0, if A is a closed convex cone, in this case,RA = A),

that is, g(x̂) minimises z∗0 on A.

The multipliers (λ∗
0, z

∗
0, w

∗
0) can be chosen as follows:

• If dFh(x̂) is not onto: (λ∗
0, z

∗
0, w

∗
0) = (0, 0, w∗

0), with w∗
0 �= 0.

• If dFh(x̂) is onto and A = Y : (λ∗
0, z

∗
0, w

∗
0) = (1, 0, 0).

• If dFh(x̂) is onto and A �= Y : (λ∗
0, z

∗
0) �= (0, 0).

Proof We apply directly Theorem 3 using the following fact: in the case where A �= Y
and int(RA) �= ∅, using Example 6, we have that A is admissible at each of its
points and is determined by C = {z∗ − infx∈A z∗(x) : z∗ ∈ SY ∗ ∩ (−bar(A))} and
TC (x̂) ⊂ {z∗ ∈ (RA)∗\{0} : z∗(x̂) = inf x∈A z∗(x)}. �
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