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Abstract
We consider optimal control problems involving two constraint sets: one comprised
of linear ordinary differential equations with the initial and terminal states specified
and the other defined by the control variables constrained by simple bounds. When
the intersection of these two sets is empty, typically because the bounds on the control
variables are too tight, the problem becomes infeasible. In this paper, we prove that,
under a controllability assumption, the “best approximation” optimal control mini-
mizing the distance (and thus finding the “gap”) between the two sets is of bang–bang
type, with the “gap function” playing the role of a switching function. The critically
feasible control solution (the case when one has the smallest control bound for which
the problem is feasible) is also shown to be of bang–bang type. We present the full
analytical solution for the critically feasible problem involving the (simple but rich
enough) double integrator. We illustrate the overall results numerically on various
challenging example problems.
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1 Introduction

Optimal control problems are infinite-dimensional optimization problems, involving
processes evolving with time. Infeasibility in optimal control arises in many situa-
tions, most typically when resources for a process are overly limited: for example,
insufficient amount of insecticides for a dengue epidemic [32] or a highly restricted
driving motor capacity of a vehicle [36]. Infeasibility can also arise when one aims
to achieve initial or terminal states which are not realistic or when there are state
constraints which are too restrictive [38]. In this paper, we consider infeasible and
critically feasible optimal control problems, where the dynamics are governed by lin-
ear ordinary differential (state) equations with initial and end states specified and the
control variables constrained by simple bounds.

Infeasibility is also widely encountered in finite-dimensional optimization prob-
lems: Error in measurements, for example the noise in images taken during computer
tomography, may give rise to an inconsistent set of equations in a pertaining optimiza-
tion model, making the problem infeasible [33]. In [15], and in its extension [14],
algorithms, which incorporate sequential quadratic programming methods, are pro-
posed for infeasible finite-dimensional nonconvex optimization problems. Under a set
of conditions, these algorithms are shown to be convergent to an infeasible stationary
point, minimizing a measure of infeasibility [14, 15].

In their paper [6], Bauschke and Moursi study the Douglas–Rachford (DR) algo-
rithm for finding a point in the intersection of two nonempty closed and convex sets
in (possibly infinite-dimensional) Hilbert spaces. They show that, for the case when
the intersection of the two sets is empty, i.e., when the problem is infeasible, the DR
algorithm finds a pair of points in the respective sets which minimize (as a measure
of infeasibility) the distance between the two sets; in other words, the DR algorithm
finds the “gap” between the two constraint sets assuming that the gap is attained. The
work in [6] has been further generalized in [7]. Indeed, the authors in [7] proved that
under mild assumptions (see also [26]) the DR algorithm can find a generalized solu-
tion (this is also known as normal solution) (see [4, Definition 3.7]) for inconsistent
convex optimization problems, i.e., when the solution set is empty.

The results in [7] are not only applicable to infinite-dimensional problems (e.g.
optimal control problems), but also if one of the constraints is hard, that is a particular
constraint must be satisfied, then a solution satisfying the hard constraint, that is an
implementable solution, can be returned. In the present paper, we use the idea of the
minimization of the distance between the two sets, namely finding the “gap” between
the two sets (assuming it is attained), as our motivation in finding a best approximation
solution to infeasible optimal control problems so that the optimal control we find is
also implementable.

The optimal control problems we consider have two constraint sets: one involves
the ODE with specified initial and end states (this set is an affine subspace, which
is closed and convex) and the other involves the box constraint on the control (this
set is a box, which is also closed and convex). We pose the problem of finding a
best approximation pair to the infeasible problem as one of minimizing the distance
between these two constraint sets and finding the “gap”. In practical optimal control
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problems, the control variable is expected to satisfy the simple bounds imposed on it;
therefore, we regard the box as a hard constraint set.

A best approximation pair of Problem (Pf) below (see Eq.(10) below) can be
expressed as a solution of a minimization problem which is strongly convex w.r.t.
one the variables (see Lemmas 1–2).

We prove that, under a controllability assumption, the control variable that belongs
to the box and solves the best approximation problem is of bang–bang type, i.e., the
value of the control variable switches between its lower and upper bounds. Inter-
estingly, the sign of a gap function component determines which bound value the
corresponding control variable component in the box must take; in other words, a
gap function component plays the role of a switching function. We also formulate the
problem of finding a critically feasible solution, i.e., a solution for the least bound on
the control resulting in a nonempty intersection of the two constraint sets. We prove
that the critically feasible optimal control is also of bang–bang type. For the case of a
double integrator problem, which is often employed as part of case studies for optimal
control, we derive the full analytical solution for the critically feasible optimal control
problem.

For a numerical illustration of the results, both for the critically feasible and infea-
sible cases, we study example problems involving (i) a double integrator, (ii) a damped
oscillator and (iii) a machine tool manipulator, in the order of increasing numerical
difficulty.

The paper is organized as follows. In Sect. 2, we introduce the optimal control
problem and define the two constraint sets, namely the affine space and the box. In
Sect. 3, we define the problem of best approximation, provide the maximum principle,
discuss controllability and existing results, and derive the first main result of the paper
on infeasible problems in Theorem 3. In Sect. 4, we introduce the concept of critical
feasibility and provide the second main result in Theorem 4. We also provide the full
critically feasible solution for a problem involving the double integrator in Theorem 5.
In Sect. 5, we carry out numerical experiments on various example problems to illus-
trate the results of the paper. Finally in Sect. 6, we provide concluding remarks and
comment on future lines of research.

2 Preliminaries

We consider optimal control problems where the aim is to find a control u which
minimizes a general functional

∫ 1

0
f0(x(t), u(t), t) dt , (1)

subject to the differential equation constraints

ẋ(t) = A(t) x(t) + B(t) u(t) , for a.e. t ∈ [0, 1] , (2)
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with ẋ := dx/dt , and the boundary conditions

ϕ(x(0), x(1)) = 0 . (3)

In the optimal control problem above the time horizon is set to be [0, 1], but without
loss of generality it can be taken as any interval [t0, t f ], with t0 and t f specified.
The integrand function f0 : IRn × IRm × [0, 1] → IR+ is continuous. We define the
state variable vector x : [0, 1] → IRn with x(t) := (x1(t) . . . , xn(t)) ∈ IRn and
the control variable vector u : [0, 1] → IRm with u(t) := (u1(t) . . . , um(t)) ∈
IRm . The time-varying matrices A : [0, 1] → IRn×n and B : [0, 1] → IRn×m

are continuous. The vector function ϕ : IR2n → IRr , with ϕ(x(0), x(1)) :=
(ϕ1(x(0), x(1)), . . . , ϕr (x(0), x(1))) ∈ IRr , is affine.

It is realistic, especially in practical situations, to consider restrictions on the values
u is allowed to take. In many applications, it is common practice to impose simple
bounds on the components of u(t); namely,

ai (t) ≤ ui (t) ≤ ai (t) , for a.e. t ∈ [0, 1] , (4)

where, respectively, the lower and upper bound functions ai , ai : [0, 1] → IR are
continuous and that ai (t) ≤ ai (t), for all t ∈ [0, 1], i = 1, . . . , m. We define for
convenience a := (a1 . . . , am) and a := (a1 . . . , am), and write in concise form
a(t) ≤ u(t) ≤ a(t); in other words, we formally state

u(t) ∈ U (t) := [a(t), a(t)] ⊂ IRm, for a.e. t ∈ [0, 1] , (5)

as an expression alternative but equivalent to (4).
The objective functional in (1) and the constraints in (2)–(3) and (4) can be put

together to present the optimal control problem as follows.

(P)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
u(·)

∫ 1

0
f0(x(t), u(t), t) dt

subject to ẋ(t) = A(t) x(t) + B(t) u(t), for a.e. t ∈ [0, 1],
ϕ(x(0), x(1)) = 0,
ai (t) ≤ ui (t) ≤ ai (t), for a.e. t ∈ [0, 1], i = 1, . . . , m.

We split the constraints of Problem (P) into two sets:

A := {
u ∈ L2([0, 1]; IRm) | ∃x ∈ W 1,2([0, 1]; IRn) which solves

ẋ(t) = A(t) x(t) + B(t) u(t) , for a.e. t ∈ [0, 1] , and

ϕ(x(0), x(1)) = 0
}
, (6)

B := {
u ∈ L2([0, 1]; IRm) | a(t) ≤ u(t) ≤ a(t) , for a.e. t ∈ [0, 1]} . (7)

We assume that the control system ẋ(t) = A(t)x(t) + B(t)u(t) is controllable—
See the precise definition in Sect. 3.3. Then there exists a (possibly not unique) u(·)
such that, when this u(·) is substituted, the boundary-value problem given in A has a
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solution x(·). In other words,A �= ∅. Also, clearly, B �= ∅. Recall that ϕ is affine, so
the constraint set A is an affine subspace. We note that by [10, Corollary 1],

A is closed. (8)

Given that B is a box, the constraints turn out to be two convex sets in Hilbert space.
Moreover, we note that B is closed in L2(0, 1; IRm). It will be convenient to use the
expression

B(t)u(t) =
m∑

i=1

bi (t) ui (t),

where bi (t) is the i th column of the matrix B(t), interpreted as the column vector
associated with the i th control component ui .

IfA∩B �= ∅ , then one has a feasible LQ optimal control problem. The feasibility
problem is posed as one of finding an element in A ∩ B, namely:

Find u ∈ A ∩ B . (9)

If, however, A ∩ B = ∅ , then the problem is said to be infeasible. The feasibility
problem in (9) has obviously no solution in this case, but in Sect. 3 we will pose the
problem of finding (in some sense) a best approximation solution.

3 Best Approximation Solution to the Infeasible Problem

Consider the case when A ∩ B = ∅. We define the best approximation pair as
(u∗

A, u∗
B) ∈ A × B which minimizes the squared distance between the two sets.

Namely (u∗
A, u∗

B) is in this case required to solve

min
uA∈A
uB∈B

1

2
‖uA − uB‖2L2 , (10)

where ‖ · ‖L2 is the L2 norm. In other words, we want to minimize the “gap” between
the two sets. Observe that A − B is convex, closed (by, e.g., [5, Proposition 3.42]),
and nonempty. Therefore, it follows from [2, Sect. 2] and the fact thatA − B is closed
that

u∗
A − u∗

B = PA−B(0). (11)

We define the gap (function) vector (see [6])

v := uA − uB, (uA, uB) ∈ A × B. (12)

Using uA = v + uB and the definitions of A and B in (6)–(7), the problem in (10)
can be rewritten in the format of a classical, or standard, optimal control problem as
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follows.

(Pf)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
v(·),uB(·)

1

2

∫ 1

0
‖v(t)‖22 dt

subject to ẋ(t) = A(t)x(t) +
m∑

i=1

bi (t)(vi (t) + uB,i (t)), for a.e. t ∈ [0, 1],
ϕ(x(0), x(1)) = 0,
ai (t) ≤ uB,i (t) ≤ ai (t), for a.e. t ∈ [0, 1], i = 1, . . . , m,

where ‖·‖2 is the Euclidean norm. Problem (Pf) is an optimal control problemwith two
control variable vectors, namely v and uB, where v(t) := (v1(t), . . . , vm(t)) ∈ IRm

and uB(t) := (uB,1(t), . . . , uB,m(t)) ∈ IRm .

3.1 Properties of Problem (Pf)

Denote by S f the set of solutions of Problem (Pf). Recall that, for any given set C of
a Hilbert space H , the indicator function of C , denoted by ιC : H → R ∪ {+∞}, is
defined as ιC (x) = 0 for every x ∈ C , and ιC (x) = +∞ for every x /∈ C . We show
in this section the main properties of Problem (Pf).

Lemma 1 The constraint set of Problem (Pf) is convex and (strongly and weakly)
closed (i.e., closed w.r.t. the norm topology and w.r.t. the weak topology in L2).

Proof The constraint set of Problem (Pf) can be written as follows:

D := {(v, uB) ∈ L2([0, 1]; IRm) × L2([0, 1]; IRm) : v + uB ∈ A, uB ∈ B}, (13)

where A, B are as in (6) and (7), respectively. Consider the map

� : L2([0, 1]; IRm) × L2([0, 1]; IRm) → L2([0, 1]; IRm) × L2([0, 1]; IRm),

defined by �(z, x) := (z + x, x). By construction, we have that �(D) = A×B. The
map� is a linear bijection which is continuous in L2. The convexity ofD now follows
from the fact that �−1 is linear and A × B (being the product of an affine set and a
box), is convex. Note also thatA× B is closed because each factor is closed. Indeed,
A is closed by (8). The set B is closed in L2([0, 1]; IRm) because every sequence
converging in L2([0, 1]; IRm) has a subsequence converging a.e. in [0, 1]. The latter
implies that every limit in the topology of L2 must belong to B. Altogether, the set
A×B is closed in L2([0, 1]; IRm) and thereforeD is closed because it is the preimage
of a closed set by a continuous function. The fact that the closedness holds for both
the strong and weak topology follows from convexity (see Fact 1(ii) below). 
�

Lemma 2 below makes use of some results from Functional Analysis which are
summarized in Fact 1 for the reader’s convenience. Fact 1(i) is a corollary of the
Bourbaki–Alaoglu theorem [9, Corollary 3.22]. Fact 1(ii) is [9, Theorem 3.7] (see also
[5, Theorem 3.34]), and Fact 1(iii) is [9, Corollary 3.9] (see also [5, Theorem 9.1]).
Fact 1(ii) and (iii) both follow from the Hahn–Banach theorem.
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Fact 1 Let X be a reflexive Banach space.

(i) Let K ⊂ X be bounded, closed, and convex. Then K is weakly compact (i.e., K
is compact w.r.t. the weak topology in X).

(ii) Let C be a convex subset of X. Then C is closed in the weak topology if and only
if it is closed in the strong topology.

(iii) Assume that ϕ : X → IR∪+∞ is convex and lower-semicontinuous in the strong
topology, then it is weakly lower semicontinuous.

Lemma 2 The solution set of Problem (Pf) is not empty. Moreover, if (v1, u1), (v2, u2)

solve Problem (Pf), then v1 = v2 (i.e., the coordinate v of any solution to Problem (Pf)
is unique).

Proof Note first that (Pf) can be equivalently written as having for objective function

h(v, u) = 1

2

∫ 1

0
‖v(t)‖22 dt + ιB(u),

where ιB is the indicator function of the set B and B is as in (7). Now the second
statement follows directly from the fact that h is strongly convex in the variable v. We
proceed next to prove the first statement. Since the functions a, a are continuous, the
setB is bounded, and hence h is coercive in both variables. Consider the setD as in the
proof of Lemma 1. The coercivity of h allows us to find a closed ball B[0, R] such that
a solution of (Pf) (if any) must be in D0 := D ∩ B[0, R]. By Lemma 1, D0 is convex
and closed. It is also bounded because it is contained in the ball B[0, R]. By Fact 1(i),
D0 is weakly compact. Since the function h1(v) := 1

2

∫ 1
0 ‖v(t)‖22 dt is continuous

and convex, by Fact 1(iii), it is weakly lower-semicontinuous. Recall that the set B is
closed and convex, and hence by Fact 1(ii), it is weakly closed and convex. Therefore,
the function h2 := ιB is weakly lower-semicontinuous. Altogether, h = h1 + h2 is
weakly lower-semicontinuous. We can now consider the problem

(PD) min
(z,x)∈D0

h(z, x).

By construction, the solution set of Problem (PD) is S f . Since h is weakly lower-
semicontinuous and D0 is weakly compact, Problem (PD) has a solution, and hence
Problem (Pf) has (the same) solution(s). 
�

3.2 Maximum Principle for Problem (Pf)

In what follows wewill derive the necessary conditions of optimality for Problem (Pf),
using themaximum principle. Various forms of themaximumprinciple and their proofs
can be found in a number of reference books—see, for example, [30, Theorem 1], [21,
Chapter 7], [35, Theorem 6.4.1], [28, Theorem 6.37], and [18, Theorem 22.2]. We
will state the maximum principle suitably utilizing these references for our setting and
notation.
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First, define the Hamiltonian function H : IRn × IRm × IRm × IRn × [0, 1] → IR
for Problem (Pf) as

H(x, v, uB, λ, t) := λ0

2
‖v‖22 +

〈
λ, A(t) x +

m∑
i=1

bi (t) (vi + uB,i )

〉
, (14)

whereλ0 ≥ 0, andλ(t) := (λ1(t), . . . , λn(t)) ∈ IRn is the adjoint variable (or costate)
vector such that

λ̇(t) := −∂ H

∂x
(x(t), v(t), uB(t), λ(t), t),

i.e.,
λ̇(t) = −AT (t) λ(t) , (15)

where the transversality conditions involving λ(0) and λ(1) depend on the boundary
condition ϕ(x(t0), x(t f )) = 0, but are not expressed here. In (14), the dependence
of variables on t is not shown for clarity in appearance, as often done in the optimal
control literature.

Maximum Principle. Suppose that the triplet

(x, v, uB) ∈ W 1,∞([0, 1]; IRn) × L2([0, 1]; IRm) × L∞([0, 1]; IRm)

is optimal for Problem (Pf). Then there exist a number λ0 ≥ 0 and a continuous adjoint
variable vector λ ∈ W 1,∞([0, 1]; IRn) as defined in (15), such that (λ0, λ(t)) �= 0 for
all t ∈ [0, 1], and that, for a.e. t ∈ [0, 1],

∂ H

∂vi
(x(t), v(t), uB(t), λ(t), t) = λ0 vi (t) + bT

i (t) λ(t) = 0 , (16)

and

uB,i (t) = argmin
wi ∈[ai (t),ai (t)]

H(x(t), v(t), wi , λ(t), t) = argmin
wi ∈[ai (t),ai (t)]

bT
i (t) λ(t) wi ,

(17)
for i = 1, . . . , m. Condition (16) can in turn be rewritten as

λ0 vi (t) = −bT
i (t)λ(t) , (18)

for i = 1, . . . , m, i.e.,
λ0 v(t) = −BT (t)λ(t) , (19)

for all t ∈ [0, 1]. On the other hand, Condition (17) results in, also by incorporat-
ing (18),

uB,i (t) =
⎧⎨
⎩

ai (t) , if vi (t) > 0 ,

ai (t) , if vi (t) < 0 ,

undetermined , if vi (t) = 0 ,

(20)
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for a.e. t ∈ [0, 1], i = 1, . . . , m.
The expression in (20) prompts two types of optimal control that are widely studied

in the optimal control literature, as elaborated next.

Bang–Bang and Singular Types of Optimal Control. If vi (t) �= 0 for a.e. t ∈
[t ′, t ′′] ⊂ [0, 1] with t ′ < t ′′, then the optimal control uB,i (t) in (20) is referred to
be of bang–bang type in the interval [t ′, t ′′]. In this case, the optimal control might
switch from uB,i (t) = ai (t) to uB,i (t) = ai (t), or vice versa, at some finitely many
switching times in [t ′, t ′′]. However, if vi (t) = 0 for a.e. t ∈ [s′, s′′] ⊂ [0, 1], s′ < s′′,
then the optimal control is said to be of singular type in the interval [s′, s′′]. Note that
in general the optimal control might also switch from a bang-arc to a singular arc, and
vice versa.

The optimality conditions we have just derived in (19)–(20) for Problem (Pf) give
rise to Theorem 3 stated further below. If the dynamical control system is controllable,
a definition of which is to be provided next, then the theorem eliminates the singularity
for ui , i.e., that the condition vi (t) = 0 in (20) can happen only at isolated time instants,
and expresses the optimal uB,i (·) as a control which is of bang–bang type.

Before stating Theorem 3 on the best approximation solution we first discuss the
concept of controllability and some existing results.

3.3 Controllability

The state equation, or the control system,

ẋ(t) = A(t)x(t) + B(t)u(t), (21)

is said to be controllable on a finite interval [t0, t f ] if given any initial state x(t0) = x0
there exists a continuous control u(·) such that the corresponding solution of (21)
satisfies x(t f ) = 0.

The solution of the (uncontrolled) system ẋ(t) = A(t)x(t), with x(0) = x0, is
given by x(t) = �A(t0, t f ) x0. Recall that �A(t0, t f ) is the state transition matrix, or
the fundamental matrix, of the differential equation.

Theorem 1 (Controllability via a Gramian test matrix [31, Theorem 9.2]) The system
in (21) is controllable on [t0, t f ] if and only if the n × n (Gramian) matrix

W (t0, t f ) :=
∫ t f

t0
�A(t0, t f )B(t)BT (t)�T

A(t0, t f ) dt,

is invertible.

The matrix W (t0, t f ) defined above is called the controllability Gramian, and in gen-
eral it is not easy to compute, making Theorem 1 rather impractical. Hence, we present
next a computable version of this result. Suppose that A(·) and B(·) are not only con-
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tinuous but also “sufficiently” smooth. Let

K0(t) := B(t), (22a)

K j (t) := −A(t)K j−1(t) + K̇ j−1(t), j = 1, 2, . . . . (22b)

With these definitions, a (much more easily) computable version of Theorem 1 can be
given as follows.

Theorem 2 (Controllability via a more easily computable test matrix) ([31, Theorem
9.4], [34]) Suppose q is a positive integer such that, on [t0, t f ], B(t) is q-times con-
tinuously differentiable, and A(t) is (q − 1)-times continuously differentiable. Then
the system in (21) is controllable on [t0, t f ] if for some tc ∈ [t0, t f ],

rank
[
K0(tc) | K1(tc) | · · · | Kq(tc)

] = n , (23)

with K j (tc), j = 1, . . . , q, computed using (22a)–(22b).

Checking (23) is in general far easier than checking the invertibility of W (t0, t f ).

Component-wise Controllability. We call the control system in (21) controllable
w.r.t. ui on [t0, t f ] if given any initial state x(t0) = x0 there exists a continuous i th
component ui (·) of the control u(·) such that the corresponding solution of

ẋ(t) = A(t)x(t) + bi (t)ui (t) (24)

satisfies x(t f ) = 0. Then clearly Theorems 1 and 2, with B(t) replaced by bi (t), hold
for the system in (24), as the component-wise definition of controllability is stronger
than that for the more general definition we gave originally.

3.4 Best Approximation Solution

Next, we provide in a theorem the best approximation solution in the set B, in the case
when the constraint sets A and B are disjoint.

Theorem 3 (Gap vector and the best approximation control in B) With the notation
of Problem (Pf), assume that A ∩ B = ∅. Moreover, suppose that A(·) and B(·) are
sufficiently smooth and that the control system (21) is controllable w.r.t. ui on any
[t ′, t ′′] ⊂ [0, 1], t ′ < t ′′, for some i = 1, . . . , m. Then the optimal gap vector is
given by v(t) = −BT (t)λ(t), for all t ∈ [0, 1], where λ(·) solves (15), and, for a.e.
t ∈ [0, 1],

uB,i (t) =
{

ai (t) , if vi (t) ≥ 0 ,

ai (t) , if vi (t) < 0 .
(25)

In other words, such uB,i is of bang–bang type.

Proof For contradiction purposes, suppose that, for the index i as in the hypothesis
(i.e., verifying the controllability assumption), the solution is not (only) bang–bang.
Using (20), this means that vi (t) = 0 for a.e. t ∈ [t ′, t ′′] ⊂ [0, 1], t ′ < t ′′. Then the
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kth derivative of v(·) is also zero over this nontrivial interval. Namely, v
(k)
i (t) = 0,

for a.e. t ∈ (t ′, t ′′), and all 1 ≤ k ≤ (n − 1). Note that using (15) and (18) one has,
for a.e. t ∈ (t ′, t ′′),

vi (t) = −λT (t) bi (t) = 0, (26a)

v̇i (t) = −λ̇T (t) bi (t) − λT (t) ḃi (t) = λT (t)
(

A(t) bi (t) − ḃi (t)
) = 0, (26b)

v̈i (t) = λ̇T (t)
(

A(t) bi (t) − ḃi (t)
) + λT (t)

(
Ȧ(t) bi (t) + A(t) ḃi (t) − b̈i (t)

)
= λT (t)

(
−A2(t) bi (t) + 2 A(t) ḃi (t) + Ȧ(t) bi (t) − b̈i (t)

)
= 0,

and so on. (26c)

Let pi,0(t) := bi (t). Equations (26a)–(26c) can be rewritten as

vi (t) = −λT (t) pi,0(t) = 0, (27a)

v
(k)
i (t) = −λT (t) pi,k(t) = 0, k = 1, 2, . . . , (27b)

where

pi,0(t) := bi (t), (28a)

pi,k(t) := −A(t) pi,k−1(t) + ṗi,k−1(t), k = 1, 2, . . . . (28b)

Note that pi,k(t), k = 1, 2, . . ., are the same as K j (t), k = 1, 2, . . ., in (22a)–(22b),
but with B(t) replaced by bi (t). From (27a)–(27b), one gets

− λT (t) Qi
c(t) = 0 , (29)

where
Qi

c(t) := [ pi,0(t) | pi,1(t) | . . . | pi,n−1(t) ] . (30)

Suppose that the control system is controllable w.r.t. ui on [t ′, t ′′]. Then by Theorem 2
there exists some tc ∈ [t ′, t ′′] such that rank Qi

c(tc) = n. This implies from (29)
that λ(tc) = 0, and that in turn implies by the ODE in (15) that λ(t) = 0 for all
t ∈ [0, 1]. Consequently, λ0 = 0 from (19) since v(t) �= 0 for some t ∈ [0, 1] because
A∩B = ∅. This results in (λ0, λ(t)) = 0 for all t ∈ [0, 1], which is not allowed by the
maximum principle. Therefore one cannot have that vi (t) = 0 for a.e. [t ′, t ′′] ⊂ [0, 1]
implying that λ0 �= 0 (i.e., Problem (Pf) is normal). As a result, one can choose λ0 = 1
without loss of generality, yielding v(t) = −BT (t)λ(t), for all t ∈ [0, 1], and giving
rise to (25). 
�
Remark 1 (The best approximation control in A) Consider the expressions for the i th
component of the optimal gap vector v(·) and the i th component of the best approx-
imation control uB(·), given as in (12) and (25), respectively. One can then simply
express the i th component of the best approximation control in the affine set A as

uA,i (t) =
{

ai (t) + vi (t) , if vi (t) ≥ 0 ,

ai (t) + vi (t) , if vi (t) < 0 ,
(31)
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for a.e. t ∈ [0, 1]. We observe that while vi (·) as given in (18) is continuous, uA,i (·)
is piecewise continuous. 
�

Remark 2 (Time-invariant systems) Suppose that the control system in (21) is time-
invariant; namely that A(t) = A and B(t) = B, A and B constant matrices, for all
t ∈ [0, 1]. This is a widely encountered case in control theory although the time-
varying case is more general. We note that, in (28a)–(28b), ṗi,k−1 = 0 and so we can
write

pi,k(t) := (−1)k+1 Ak bi , k = 0, 1, . . . , n − 1.

Since pi,k(·) is constant, write Qi
c := Qi

c(tc). In turn the rank condition rank Qi
c = n

can explicitly be stated as

rank [ bi | A bi | . . . | An−1 bi ] = n . (32)

The condition in (32) for time-invariant control systems is referred to as the Kalman
controllability rank condition [31] in control theory. In conclusion, for invariant sys-
tems, if the rank condition in (32) holds then the control component uB,i for the
infeasible optimal control problem is of bang–bang type as given in (25). 
�

Remark 3 (Feasible problem) IfA∩B �= ∅ then the gap vector function v = 0 for all
t ∈ [0, 1], and, to the contrary of Theorem 3, the optimal control is not necessarily of
bang–bang type—see, for example, [3, 10, 11, 13]. An exception iswhen the feasibility
is “critical,” which is elaborated in the next section. 
�

4 Critical Feasibility

Suppose that ai (t) = a > 0 and ai (t) = −a for all t ∈ [0, 1] and i = 1, . . . , m.
Since it is assumed that A �= ∅, if a = ∞ or large enough, the optimal control
problem given in (1)–(4) is feasible, i.e.,A∩B �= ∅. By the same token, if a is small
enough, the problem is infeasible for some specified initial and terminal end states,
i.e., A ∩ B = ∅. In fact, from the geometry of the sets A and Ba , where Ba indicates
the explicit dependence of B on a, there exists a critical bound ac such that for all
a < ac, A ∩ Ba = ∅, since Ba is strictly contained by (or strictly smaller than) Bac .
By this definition, when a = ac we say that the problem is critically feasible.

We are interested in knowing when a problem becomes critically feasible. In other
words, we want to find the smallest value ac of a for which the problem is feasible.
We can pose this question as a new (parametric) optimal control problem, where the
parameter a is to be minimized subject to the constraint sets A and Ba :
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(Pcf)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
u(·), a

a

subject to ẋ(t) = A(t)x(t) +
m∑

i=1

bi (t)ui (t), for a.e. t ∈ [0, 1],
ϕ(x(0), x(1)) = 0,
|ui (t)| ≤ a, for a.e. t ∈ [0, 1], i = 1, . . . , m,

the optimal value of which will be ac.

Remark 4 We observe that |ui (t)| ≤ a, i = 1, . . . , m, can be written as ‖u(t)‖∞ ≤ a,
where ‖·‖∞ is the �∞-norm in IRm . By also observing that the problem of “minimizing
the value of the variable a subject to ‖u(t)‖∞ ≤ a, for a.e. t ∈ [0, 1],” is equivalent
to “minimizing the L∞-norm of u,” Problem (Pcf) can be re-written as follows.

(Pcf1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min ‖u‖L∞

subject to ẋ(t) = A(t)x(t) +
m∑

i=1

bi (t)ui (t), for a.e. t ∈ [0, 1],
ϕ(x(0), x(1)) = 0.

It is interesting to note that Problem (Pf1) is a generalized form of the problem studied
in [24]. In what follows we will use the procedure in [24]. 
�

Before we apply the maximum principle, it is convenient to re-write Problem (Pcf)
as an optimal control problem in standard (or classical) form. First, we define a new
state variable y(t) := a and a new control variable

w(t) := u(t)/a . (33)

Problem (Pcf) can then be re-cast using these new variables as

(Pcf2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min y(1)

subject to ẋ(t) = A(t)x(t) + y(t)
m∑

i=1

bi (t) wi (t), for a.e. t ∈ [0, 1],
ϕ(x(0), x(1)) = 0,
ẏ(t) = 0, |wi (t)| ≤ 1, for a.e. t ∈ [0, 1], i = 1, . . . , m.

The Hamiltonian function H : IRn × IR× IRm × IRn × IR×[0, 1] → IR for the critical
feasibility problem (Pcf2) can be written as

H(x, y, w, λ, μ, t) :=
〈
λ, A(t) x + y

m∑
i=1

bi (t) wi

〉
+ μ · 0 , (34)

where λ(t) := (λ1(t), . . . , λn(t)) ∈ IRn is the adjoint variable solving (15), and μ(t)
is an additional adjoint variable such that

μ̇(t) := −∂ H

∂ y
(x(t), y(t), w(t), λ(t), μ(t), t),
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so that
μ̇(t) = −wT (t) BT (t) λ(t) , μ(0) = 0 , μ(1) = 1 . (35)

4.1 Maximum Principle for Problem (Pcf2)

Suppose that the triplet

(x, y, w) ∈ W 1,∞([0, 1]; IRn) × W 1,∞([0, 1]; IR) × L∞([0, 1]; IRm)

is optimal for Problem (Pcf2). Then there exists a continuous adjoint variable vector
λ ∈ W 1,∞([0, 1]; IRn) as defined in (15) and an additional continuous adjoint variable
μ ∈ W 1,∞([0, 1]; IR) as defined in (35) such that (λ(t), μ(t)) �= 0 for all t ∈ [0, 1],
and that, for a.e. t ∈ [0, 1],

w(t) = argmin
ri ∈[−1,1]

H(x(t), y(t), ri , λ(t), μ(t), t) = argmin
ri ∈[−1,1]

y(t) bT
i (t)λ(t)ri , (36)

for i = 1, . . . , m. Condition (36) results in

wi (t) =
⎧⎨
⎩

1 , if bT
i (t)λ(t) < 0 ,

−1 , if bT
i (t)λ(t) > 0 ,

undetermined , if bT
i (t)λ(t) = 0 ,

(37)

for a.e. t ∈ [0, 1], i = 1, . . . , m.
We show next that the solution of (Pcf) is bang–bang. Namely, there is no nontrivial

subinterval of [0, 1] where bT
i (t)λ(t) vanishes almost everywhere.

4.2 Solution to the Critically Feasible Problem

Theorem 4 (Critically feasible control) Suppose that the system and control matrices
A(·) and B(·) are sufficiently smooth. Assume that, for some i = 1, . . . , m, the control
system (21) is controllable w.r.t. ui on any [s′, s′′] ⊂ [0, 1], s′ < s′′. Then, the i th
component ui (·) of the critically feasible control for the optimal control problem
in (1)–(4), with ai (t) = ac and ai (t) = −ac, is given as

ui (t) =
{

ac , if bT
i (t)λ(t) ≤ 0 ,

−ac , if bT
i (t)λ(t) > 0 ,

(38)

for a.e. t ∈ [0, 1], where λ(·) solves (15). In other words, such ui is of bang–bang
type.

Proof Suppose that the control system (21) is controllable w.r.t. ui on any [s′, s′′] ⊂
[0, 1], s′ < s′′. For contradiction purposes, suppose that wi in (37) is singular, i.e.,
λT (t) bi (t) = 0 for all t ∈ [t ′, t ′′] ⊂ [0, 1], with t ′ < t ′′. Then, as in the proof of
Theorem 3, the consecutive time-derivatives of λT (t) bi (t) will also equal to zero for
all t ∈ [t ′, t ′′]. Defining pi,0(t) := bi (t) and pi,k(t) := −A(t) pi,k−1(t)+ ṗi,k−1(t) as
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before, for k = 1, 2, . . . n−1, one similarly gets (29) (with a sign difference) and (30).
Then by means of the same arguments using the controllability of (21), as in the proof
of Theorem 3, λ(t) = 0 for all t ∈ [0, 1]. Then the differential equation in (35) with
the initial condition μ(0) = 0 in (35) yields μ(t) = 0 for all t ∈ [0, 1], contradicting
the terminal condition μ(1) = 1 in (35), and thus furnishing the theorem. 
�

Remark 5 We note that, in the critically feasible case, uA = uB = ui and so vi = 0,
for all i = 1, . . . , m, and thus vi does not serve as the switching function for ui . 
�

4.3 A Double Integrator Problem

References [3, 11] studied applications of splitting and projectionmethods to the feasi-
ble problem of finding the so-called minimum-energy control of the double integrator,
the problem stated as

(PDI)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
1

2

∫ 1

0
u2(t) dt = 1

2
‖u‖2L2

subject to ẋ1(t) = x2(t), x1(0) = s0, x1(1) = s f ,

ẋ2(t) = u(t), x2(0) = v0, x2(1) = v f ,

|u(t)| ≤ a, for all t ∈ [0, 1].

Although Problem (PDI) constitutes a relatively simple instance of an optimal control
problem, a solution to it can only be found numerically. This is the first reason why
we find it interesting. Secondly, (PDI) acts as a building block in, for example, the
problem of finding cubic spline interpolants with constrained acceleration, an active
area of research in numerical analysis and approximation theory. A much wider range
of optimal control problems involving the double integrator have been studied in the
relatively recent book [25], however it does not include Problem (PDI). Problem (PDI)
is simple and yet rich enough to study when introducing and illustrating many basic
and new concepts or when testing new numerical approaches in optimal control—see,
in addition to [3, 11, 25], also [12, 22].

With a large enough a (so that the constraint |u(t)| ≤ a never becomes active for
any t ∈ [0, 1]), Problem (PDI) can be solved analytically to find a cubic curve x1(t),
satisfying the initial point and velocity s0 and v0, and the terminal point and velocity
s f and v f , respectively – see [3] for the working of such an unconstrained solution.
A small enough a, on the other hand, restricts the values the function u can take and
thus rules out finding an analytical solution and necessitates the use of a numerical
procedure for finding an approximate solution. This altogether furnishes a testimony
to the practical significance of such a simple looking problem like (PDI).

Critical bound ac : going from feasible to infeasible For the numerical experiments
in [3], the special case when s0 = s f = v f = 0 and v0 = 1 was considered. The
feasible optimal control for this instance of Problem (PDI) is continuous, given by
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u(t) =

⎧⎪⎨
⎪⎩

−a , if 0 ≤ t < t1 ,
2a

t2 − t1
(t − t1) − a , if t1 ≤ t < t2 ,

a , if t2 ≤ t ≤ 1 ,

(39)

where 0 ≤ t1 < t2 ≤ 1 are the so-called junction times. When the value of a is
too small, problem (PDI) becomes inconsistent. Namely, there exists a critical value
ac > 0 such that, when a < ac Problem (PDI) is infeasible. Thus, the control constraint
will be active when a ∈ [ac, 4). The latter is the consistent, or the feasible, case, for
which the control solution u is still active. If a = 4 or larger, then t1 = 0 and t2 = 1
and the solution is the same as that of the case when u is unconstrained. In other words,
when a ≥ 4 the bound constraint on u becomes superfluous. When a ∈ (ac, 4), the
solution u of problem (P) given in (39) is continuous over the time horizon [0, 1]. On
the other hand, when a = ac, as has been stated in Theorem 4 that the control solution
has to be of bang–bang type, or discontinuous. In Remark 2.1 of [3], it is observed
that

2.414 < ac < 2.415 , (40)

based on the numerical experiments conducted, without elaborating further. It is also
reported in the same remark that when a = ac the unique feasible solution appears to
be bang–bang, i.e., in particular, u(t) switches once from −ac to ac at the switching
time

t = tc ≈ 0.71 , (41)

confirming our statement above that the optimal control u in this case is discontinuous.
How to find the solution for ac and tc TheHamiltonian function H : IR3×IR×IR3 → IR
for Problem (Pcf2) emanating from Problem (PDI) is

H((x1, x2, y), w, (λ1, λ2, μ)) := λ1 x2 + λ2 y w + μ · 0,

where (λ1(t), λ2(t), μ(t)) ∈ IR3 is the adjoint variable (or costate) vector such that

λ̇1(t) = −∂ H

∂x1
= 0, λ̇2(t) = −∂ H

∂x2
= −λ1(t), and μ̇ = −∂ H

∂ y
= −λ2(t) w(t),

with the transversality conditions

μ(0) = 0 and μ(1) = 1 . (42)

This leads to the solutions

λ1(t) = c1 , λ2(t) = −c1 t − c2 , (43)

where c1 and c2 are unknown real constants.
The following is a straightforward corollary to Theorem 4 for the double integrator

problem.

123



Journal of Optimization Theory and Applications

Corollary 1 (Critically feasible control) The critically feasible optimal control uc for
the double integrator problem is of bang–bang type with at most one switching; namely

uc(t) =
{

ac , if 0 ≤ t < tc ,

−ac , if tc ≤ t ≤ 1 ,
(44)

where tc is the switching time.

Proof The lemma follows from the expression in (38) in Theorem 4 and the linearity
of λ2 in (43) (which implies that λ2 can change sign at most once). 
�

A similar line of proof with a < ac (the infeasible case) results in the following
corollary to Theorem 3.

Corollary 2 (Best approximation control inB) The best approximation optimal control
uB for the double integrator problem is of bang–bang type with at most one switching;
namely

uB(t) =
{

a , if 0 ≤ t < ts ,

−a , if ts ≤ t ≤ 1 ,
(45)

where ts is the switching time.

The theoremwepresent belowprovides the full analytical solution to Problem (PDI)
when a = ac.

Theorem 5 (Full critically feasible solution to problem (PDI))

(a) If s f − s0 �= (v0 + v f )/2, then the critical control is given by

uc(t) =
{

r , if 0 ≤ t < tc ,

−r , if tc ≤ t ≤ 1 ,
(46)

and
ac = |r | , (47)

with r and the switching time tc given in the following two cases.

(i) v0 �= v f :

r = v f − v0

2 tc − 1
(48)

and tc solves the quadratic equation

(v f − v0) t2c + 2 (s f − s0 − v f ) tc + 1

2
(v0 + v f ) − (s f − s0) = 0 . (49)

(ii) v0 = v f :

r = 4 (s f − s0 − v0) and tc = 1

2
. (50)
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(b) If s f − s0 = (v0 + v f )/2, then tc = 0 or 1 . Furthermore, the critical control is
given by

uc(t) =
{

v f − v0 , if tc = 1 ,

v0 − v f , if tc = 0 ,
(51)

for all t ∈ [0, 1], and so
ac = |v f − v0| . (52)

Proof Recall from (43) that λ2(t) = −c1 t − c2, for all t ∈ [0, 1]. Also note that c1
and c2 cannot both be zero, otherwise, with μ(0) = 0 in (42) and continuity of μ, it
leads to μ(t) = 0 for all t ∈ [0, 1], a contradiction with the fact that μ(1) = 1 in (42).
Therefore in the rest of the proof we examine three cases:

(I) c1 �= 0 and c2 = 0; (II) c1 = 0 and c2 �= 0; and (III) c1 �= 0 and c2 �= 0.

Case (I): Suppose that c2 = 0. Then λ2(t) = −c1 t , c1 �= 0, and by (44) u(t) =
sgn(c1) ac, for all t ∈ [0, 1] (no switching). By solving the state equations with this
u(t) substituted, one gets x2(t) = sgn(c1) ac t + v0 and x1(t) = sgn(c1) ac t2/2 +
v0 t + s0, and subsequently x2(1) = v f = sgn(c1) ac + v0 and x1(1) = s f =
sgn(c1) ac/2 + v0 + s0. Now, from these solutions, sgn(c1) ac = v f − v0, and thus
s f = (v f − v0)/2 + v0 + s0, resulting in s f − s0 = (v0 + v f )/2, which is nothing
but the case in part (b) of the theorem. Finally one gets u(t) = sgn(c1) ac = v f − v0
and thus ac = |v f − v0| as required by (51) and (52).
Case (II): Suppose that c1 = 0. Then λ2(t) = −c2, c2 �= 0, and by (44) u(t) =
sgn(c2) ac, for all t ∈ [0, 1] (no switching). The rest of the arguments follows similarly
to the case when c2 = 0 above simply by replacing c1 by c2 in the expressions. This
case also corresponds to and proves part (b) of the theorem.
Case (III): Finally suppose that λ2(t) = −c1 t − c2 with both c1 �= 0 and c2 �= 0.
Then by Corollary 1, observing that λ2(0) = −c2,

uc(t) =
{

r , if 0 ≤ t < tc ,

−r , if tc ≤ t ≤ 1 ,
(53)

where

r = sgn(c2) ac > 0,

verifying (46). Next substitute u(t) = uc(t) into the differential equations in Prob-
lem (Pc). The respective solutions of ẋ2(t) = r with x2(0) = v0, and ẋ1(t) = x2(t)
with x1(0) = s0, for 0 ≤ t < tc, are simply

x2(t) = r t + v0 and x1(t) = 1

2
r t2 + v0 t + s0.

Furthermore the respective solutions of ẋ2(t) = −r with x2(1) = v f , and ẋ1(t) =
x2(t) with x1(1) = s f , for tc ≤ t < 1, can be obtained as
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x2(t) = r (1 − t) + v f and x1(t) = −1

2
r (1 − t)2 − v f (1 − t) + s f .

Since xi are continuous, limt→t−c xi (t) = limt→t+c xi (t), i = 1, 2. In other words,

r tc + v0 = r (1 − tc) + v f , (54)

1

2
r t2c + v0 tc + s0 = −1

2
r (1 − tc)

2 − v f (1 − tc) + s f . (55)

Case (III)(ii): Suppose that v0 = v f . Then, since r > 0, tc = 1/2 is the unique
solution. Substitution of tc = 1/2 and v0 = v f into (55) and re-arrangements yield
r = 4 (s f − s0 − v0), or ac = 4 |s f − s0 − v0|, verifying (50).
Case (III)(i): Suppose that v0 �= v f . Then, Eq. (54) results in

r = v f − v0

2 tc − 1
, (56)

verifying (48). After algebraic manipulations and re-arranging, (55) can be rewritten
as

r t2c − (v f − v0 + r) tc + 1

2
r + v f − (s f − s0) = 0.

Substituting the expression for r in (48) into the above equation and multiplying both
sides by (2 tc − 1) give

(v f − v0) t2c − (v f − v0) tc (2 tc − 1) − (v f − v0) tc

+1

2
(v f − v0) + [v f − (s f − s0)] (2 tc − 1) = 0.

Further algebraic manipulations reduce the above equation to (49), as required. The
proof is complete. 
�
Remark 6 Suppose that s0 = s f = v f = 0 and v0 = 1, as in the numerical example
studied in [3]. Then one has the case Theorem 5(a)(i): Equation (49) reduces to

−t2c + 1

2
= 0,

yielding tc = 1/
√
2. Then using (50), one gets r = −1/(

√
2 − 1) = −(1 + √

2), or
ac = 1 + √

2. Finally, the optimal control can simply be written from (46) as

uc(t) =
{−(1 + √

2) , if 0 ≤ t < 1/
√
2 ,

1 + √
2 , if 1/

√
2 ≤ t ≤ 1 .

(57)

The numerical observations made in [3], re-iterated in (40)–(41), agree with the result
in (57): ac ≈ 2.4142 and tc ≈ 0.7071, correct to four decimal places.
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5 Numerical Experiments

For computations numerically solving the three problems in Sects. 5.1–5.3, we employ
the AMPL–Ipopt computational suite: AMPL is an optimization modelling lan-
guage [19] and Ipopt is an Interior Point Optimization software [37] (version 3.12.13
is used here). The suite is commonly utilized to solve discretized optimal control
problems. We discretize the optimal control problems (Pf) and (Pcf) using the Euler
scheme, with the number of time discretization nodes (or time partition points) set
in most of the cases as 2000. The number of these nodes is increased (as reported in
situ) only when ac (in the case of critically infeasible solution) needs to be reported
with a higher accuracy. The Euler scheme is more suitable than higher-order Runge–
Kutta discretization for these problems as the solutions exhibit bang–bang types of
control making the state variable solutions only of C0 class of functions. Numerical
chatter is evident when a higher-order discretization scheme, such as the trapezoidal
rule, is used. With 2000 grid points, the resulting large-scale finite-dimensional prob-
lems have about 6000 variables and 4000 constraints for the double integrator and
the damped oscillator problems, and 16,000 variables and 4000 constraints for the
machine tool manipulator problem. We set the tolerance tol for Ipopt to 10−8 in all
problems. We note that AMPL can also be paired with other optimization software,
such as Knitro [16], SNOPT [20] or TANGO [1, 8].

All three example problems in Sects. 5.1–5.3 have a single control variable and the
constraint on the control is given as

−a ≤ u(t) ≤ a, a.e. t ∈ [0, 1],

where a is a positive constant. The optimality condition (25) can then be written for
this particular case as

uB(t) =
{

a , if v(t) ≥ 0 ,

−a , if v(t) < 0 ,
(58)

for a.e. t ∈ [0, 1]. We will conveniently verify the optimality of the numerical results
using (58).

5.1 Double Integrator

From the double integrator problem (PDI) in Sect. 4.3, one simply has

A =
[
0 1
0 0

]
, b =

[
0
1

]
,

using the notation in Problem (Pf) in Sect. 3 and Problem (Pcf) in Sect. 4. As in
Remark 6, we take s0 = s f = v f = 0 and v0 = 1. In other words, the boundary
conditions in ϕ(x(0), x(1)) = 0 are expressed as x(0) = (0, 1) and x(1) = (0, 0).

First of all, we establish that the double integrator control system is controllable
since rank Qc = rank[b | Ab] = 2 = n.

123



Journal of Optimization Theory and Applications

Fig. 1 Double Integrator: a critically feasible solution and b–d best approximation solutions (infeasible
case)

We have solved Problem (Pcf) to find the critically feasible solution depicted in
Fig. 1, where the solution curves for uA, uB and v are graphed. With 10,000 time
partition points, we obtained ac ≈ 2.414 (2000 time partition points only yields
ac ≈ 2.4), which reconfirms the analytical solution ac = 1 + √

2 ≈ 2.4142 that was
reported in Remark 6. We also observe (after zooming into the plot) that tc = 0.707
which agrees with tc = 1/

√
2 ≈ 0.7071 in Remark 6 up to three decimal places. The

control uA overlaps uB since, in the critically feasible case,A∩B �= ∅ and so the gap
function v is the zero function. The graph of u = uA = uB in Fig. 1a in turn verifies
the analytical expression in (57).

For the infeasible case, i.e., when a < ac, it is no longer possible to get a solu-
tion analytically, even for the relatively simple-looking double integrator problem. In
Fig. 1b–d, the solution plots for a = 2, 1.5 and 1 are shown, respectively. The solution
for uB is of bang–bang type with one switching, verifying Corollary 2. The role of
v as a switching function is clear from these plots. We recall the fact that v = −λ2
by Theorem 3, and point that v appears linearly in the plots since λ(t) is linear in
t . The switching time for each case shown in Fig. 1b–d is found graphically as: (b)
ts ≈ 0.701, (c) ts ≈ 0.693 and (d) ts ≈ 0.685. Further numerical experiments with
even smaller a suggest that as a → 0, ts → 2/3.

5.2 Damped Oscillator

While the ODE underlying the double integrator problem is z̈(t) = u(t), the ODE
underlying the damped oscillator problem is z̈(t) + 2 ζ ωn ż(t) + ω2

n(t) z(t) = u(t),
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Fig. 2 Damped oscillator: a critically feasible solution and b–d best approximation solutions (infeasible
case)

with the damping and stiffness terms added, where the parameterωn > 0 is the natural
frequency and the parameter ζ ≥ 0 is the damping ratio of the system.When ζ = 0 the
system is referred to as the (simple) harmonic oscillator. Defining the state variables
x1 := z and x2 := ż (as in the case of the double integrator), one gets, for the case of
the damped oscillator,

A =
[

0 1
−ω2

n −2 ζ ωn

]
, b =

[
0
1

]
,

again using the notation in Problems (Pf) and (Pcf). As the time interval of the prob-
lem we take [0, 1], and set the boundary conditions to be the same as those of the
double integrator problem: x(0) = (0, 1) and x(1) = (0, 0). We set the values of the
parameters as ωn = 20 and ζ = 0.1.

First, we can assert that the damped oscillator control system is controllable since
rank Qc = rank[b | Ab] = 2 = n.

Numerical solutions to Problems (Pf) and (Pcf) are depicted in Fig. 2: The critically
feasible solution to (Pcf) appears in Fig. 2a and the infeasible solutions to (Pf) appear in
Fig. 2b–d. With 2×105 time partition points, we have obtained ac ≈ 0.475, correct to
three decimal places. No analytical solution is available. As expected fromTheorem 4,
the control uB is of bang–bang type, and it overlaps with uA. The control uB appears
to be periodic with six switchings. Further experiments with various other boundary
conditions not only result in different ac but also in different number of switchings;
but the control uB still appears to be periodic.
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In Fig. 2b–d, we provide the respective solution plots for a = 0.4, 0.3 and 0.2. The
solution for uB is of bang–bang type as asserted by Theorem 3. It is observed that
not only the control uB appears to be periodic but also the switching times seem to
remain the same as those in the critically feasible solution in Fig. 2a. The role of the
gap function v as a switching function is clear from these plots, verifying (58).

5.3 Machine Tool Manipulator

A linear ODE model and an associated optimal control problem for a machine tool
manipulator is described in [17]. Using the notation in Problems (Pf) and (Pcf), one
has that

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

−4.441 × 107/450 0 0 −8500/450 0 0 −1/450
0 0 0 0 0 0 1/750
0 0 −8.2 × 106/40 0 0 −1800/40 0.25/40
0 0 0 0 0 0 −1/0.0025

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

b = [
0 0 0 0 0 0 1/0.0025

]T
.

Clearly, the control system has seven state variables and one control variable.
In [17], the time interval for the dynamics is chosen to be [0, 0.0522], and the
boundary conditions are imposed as x(0) = (0, 0, 0, 0, 0, 0, 0), x(0.0522) =
(0, 0.0027, 0, 0, 0.1, 0, 0). Moreover, the control variable is constrained as −2000 ≤
u(t) ≤ 2000, under which the problem is feasible. A minimum-energy control model
for this machine tool manipulator has also subsequently been studied in [10, 11, 13].

It can easily be verified that the machine tool manipulator control system is con-
trollable as rank Qc = rank[b | Ab | A2b | · · · | A6b] = 7 = n.

Numerical solutions to Problems (Pf) and (Pcf) are depicted in Fig. 3: The critically
feasible solution to (Pcf) is depicted in Fig. 3a and the infeasible solutions to (Pf)
appear in Fig. 3b–d. With 10,000 time partition points, and implementing SNOPT
(instead of Ipopt) with AMPL, we obtained ac ≈ 1769.46—Just on this occasion
Ipopt was not successful in getting a solution. As asserted by Theorem 4, the control
uB is of bang–bang type, and it overlaps with uA. The control uB appears to have five
switchings.

In Fig. 3b–d, we provide the solutions for a = 1500, 1000 and 500. The solutions
for uB are of bang–bang type as asserted by Theorem 3. We observe that the number
of switchings decreases with decreasing a: With a = 500, and by other experiments
with a < 500, numerical solutions suggest that there is only one switching. The role
of the gap function v as a switching function is clear from these plots for this example
as well, verifying (58).
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Fig. 3 Machine tool manipulator: a critically feasible solution and b–d best approximation solutions (infea-
sible case)

6 Conclusion

We have studied a class of infeasible and critically feasible optimal control problems
and proved that the best approximation control in the box constraint set is of bang–
bang type for each problem. We presented a full analytical solution for the critically
feasible double integrator problem. We numerically illustrated these results on three
increasingly difficult example problems. For numerical computations, we discretized
the example problems and solved large-scale optimization problems using popular
optimization software.

The numerical scheme described in this paper can further be improved: Since the
solution structure is known to beof bang–bang type, one can solve problemsdiscretized
over a coarse time grid first, and then, once there is a rough idea about the number
of switchings and the places of the switchings, a switching time parameterization
technique (see [23, 27, 29]) can be implemented to find the switching times accurately.

The paper [7] motivated us in looking at infeasible optimal control problems and
study the properties of the gap (function) vector. Reference [7] also studies in a theoret-
ical setting an application of the Douglas–Rachford algorithm to infinite-dimensional
infeasible optimization problems in Hilbert space. A next step would be to employ
the Douglas–Rachford algorithm to solve the infeasible optimal control problems we
are looking at in the present paper. It would also be interesting to employ and test the
Peaceman–Rachford algorithm [5, Sect. 26.4 and Proposition 28.8], which is another
projection type method, for the class of problems we have studied.
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It would be interesting to extend the applications in this paper to the case of infeasi-
ble and critically infeasible nonconvex optimal control problems, including those with
state constraints, and carry out numerical experiments, although no theory is available
yet for such more general classes of problems in infinite dimensions.
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