
Journal of Optimization Theory and Applications
https://doi.org/10.1007/s10957-024-02407-4

Catching-Up Algorithmwith Approximate Projections for
Moreau’s Sweeping Processes

Juan Guillermo Garrido1 · Emilio Vilches2

Received: 14 August 2023 / Accepted: 7 February 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
In this paper, we develop an enhanced version of the catching-up algorithm for
sweeping processes through an appropriate concept of approximate projection. We
establish some properties of this notion of approximate projection. Then, under suit-
able assumptions, we show the convergence of the enhanced catching-up algorithm
for prox-regular, subsmooth, and merely closed sets. Finally, we briefly discuss some
efficient numericalmethods for obtaining approximate projections. Our results recover
classical existence results in the literature and provide new insights into the numerical
simulation of sweeping processes.
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1 Introduction

Given a Hilbert spaceH, Moreau’s sweeping process is a first-order differential inclu-
sion involving the normal cone to a family of closed moving sets (C(t))t∈[0,T ]. In its
simplest form, it can be written as

ẋ(t) ∈ −N (C(t); x(t)) a.e. t ∈ [0, T ],
x(0) = x0 ∈ C(0),

(SP)
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where N (C(t); ·) denotes an appropriate normal cone to the sets (C(t))t∈[0,T ]. Since
its introduction by J.J. Moreau in [25, 26], the sweeping process has allowed the
development of various applications in contact mechanics, electrical circuits, and
crowd motion, among others (see, e.g., [1, 9, 24]). Furthermore, so far, we have a
well-consolidated existence theory for moving sets in the considerable class of prox-
regular sets.

The most prominent (and constructive) method for solving the sweeping process
is the so-called catching-up algorithm. Developed by J.J. Moreau in [26] for convex
moving sets, it consists in taking a time discretization {tn

k }n
k=0 of the interval [0, T ]

and defining a piecewise linear and continuous function xn : [0, T ] → H with nodes

xn
k+1 := projC(tn

k+1)
(xn

k ) for all k ∈ {0, . . . , n − 1}.

Moreover, under general assumptions, it could be proved that the sequence (xn) con-
verges to the unique solution of (SP) (see, e.g., [8]).

The applicability, from the numerical point of view, of the catching-up algorithm
is based on the possibility of calculating an exact formula for the projection to the
moving sets. However, for the majority of sets, the projection onto a closed set is
not possible to obtain exactly, and only numerical approximations can be computed.
Since there are still no guarantees on the convergence of the catching-up algorithm
with approximate projections, in this paper, we develop a theoretical framework for the
numerical approximation of the solutions of the sweeping process using an appropriate
concept of approximate projection that is consistent with the numerical methods for
the computation of the projection onto a closed set.

Regarding numerical approximations of sweeping processes, we are aware of the
paper [33], where the author proposes an implementable numerical method for the
particular case of the intersection of the complement of convex sets, which is used to
study crowd motion. Our approach follows a different path and is based on numerical
optimization methods to find an approximate projection in the following sense: given
a closed set C ⊂ H, ε > 0 and x ∈ H, we say that x̄ ∈ C is an approximate projection
of C at x ∈ H if

‖x − x̄‖2 < inf
y∈C

‖x − y‖2 + ε.

We observe that the set of approximate projections is always nonempty and can be
obtained through numerical optimization methods. Hence, in this paper, we study the
properties of approximate projections and propose a general numerical method for
the sweeping process based on approximate projections. We prove that this algorithm
converges in three general cases: (i) prox-regular moving sets (without compactness
assumptions), (ii) ball-compact subsmooth moving sets, and (iii) general ball-compact
fixed closed sets. Hence, our results cover a wide range of existence results for the
sweeping process and provide important insights into the numerical simulation of
sweeping processes.

The paper is organized as follows. Section 2 provides themathematical tools needed
for the presentation of the paper and also develops the theoretical properties of approxi-
mate projections. Section3 is devoted topresenting theproposed algorithmand itsmain
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properties. Then, in Sect. 4, we prove the convergence of the algorithm when the mov-
ing set has uniformly prox-regular values (without compactness assumptions). Next,
in Sect. 5, we provide the convergence of the proposed algorithm for ball-compact
subsmooth moving sets. Section 6 shows the convergence for a fixed ball-compact set.
Finally, Sect. 7 discusses numerical aspects for obtaining approximate projections.
The paper ends with concluding remarks.

2 Preliminaries

From now on, H stands for a real Hilbert space, whose norm, denoted by ‖ · ‖, is
induced by an inner product 〈·, ·〉. The closed (resp. open) ball centered at x with
radius r > 0 is denoted by B[x, r ] (resp. B(x, r)), and the closed unit ball is denoted
by B. The notation Hw stands for H equipped with the weak topology, and xn⇀x
denotes the weak convergence of a sequence (xn) to x . For a given set S ⊂ H, the
support and the distance function of S of at x ∈ H are defined, respectively, as

σ(x, S) := sup
z∈S

〈x, z〉 and dS(x) := inf
z∈S

‖x − z‖.

Given ρ ∈]0,+∞] and γ < 1 positive, the ρ-enlargement and the γρ-enlargement
of S are defined, respectively, as

Uρ(S) = {x ∈ H : dS(x) < ρ} and U γ
ρ (S) := {x ∈ H : dS(x) < γρ}.

Given A, B ⊂ H two sets, we define the excess of A over B as the quantity e(A, B) :=
supx∈A dB(x). From this, we define the Hausdorff distance between A and B as

dH (A, B) := max{e(A, B), e(B, A)}.

Further properties about Hausdorff distance can be found in [3, Sec. 3.16].
A vector h ∈ H belongs to the Clarke tangent cone T (S; x) (see [10]); when for
every sequence (xn) in S converging to x and every sequence of positive numbers
(tn) converging to 0, there exists a sequence (hn) in H converging to h such that
xn + tnhn ∈ S for all n ∈ N. This cone is closed and convex, and its negative polar
N (S; x) is the Clarke normal cone to S at x ∈ S, that is,

N (S; x) := {v ∈ H : 〈v, h〉 ≤ 0 for all h ∈ T (S; x)} .

As usual, N (S; x) = ∅ if x /∈ S. Through that normal cone, the Clarke subdifferential
of a function f : H → R ∪ {+∞} is defined by

∂ f (x) := {v ∈ H : (v,−1) ∈ N (epi f , (x, f (x)))} ,

where epi f := {(y, r) ∈ H × R : f (y) ≤ r} is the epigraph of f . When the function
f is finite and locally Lipschitzian around x , the Clarke subdifferential is characterized
(see [11]) in the following simple and amenable way
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∂ f (x) = {
v ∈ H : 〈v, h〉 ≤ f ◦(x; h) for all h ∈ H} ,

where

f ◦(x; h) := lim sup
(t,y)→(0+,x)

t−1 [ f (y + th) − f (y)] ,

is the generalized directional derivative of the locally Lipschitzian function f at
x in the direction h ∈ H. The function f ◦(x; ·) is in fact the support of ∂ f (x),
i.e., f ◦(x; h) = supz∈∂ f (x)〈h, z〉. That characterization easily yields that the Clarke
subdifferential of any locally Lipschitzian function is a set-valued map with nonempty
and convex values satisfying the important property of upper semicontinuity from H
intoHw.
Let f : H → R ∪ {+∞} be an lsc (lower semicontinuous) function and x ∈ dom f .
We say that

(i) An element ζ belongs to the proximal subdifferential of f at x , denoted by ∂P f (x),
if there exist two non-negative numbers σ and η such that

f (y) ≥ f (x) + 〈ζ, y − x〉 − σ‖y − x‖2 for all y ∈ B(x; η).

(ii) An element ζ ∈ H belongs to the Fréchet subdifferential of f at x , denoted by
∂F f (x), if

lim inf
h→0

f (x + h) − f (x) − 〈ζ, h〉
‖h‖ ≥ 0.

(iii) An element ζ belongs to the limiting subdifferential of f at x , denoted by ∂L f (x),
if there exist sequences (ζn) and (xn) such that ζn ∈ ∂P f (xn) for all n ∈ N and
xn → x , ζn⇀ζ , and f (xn) → f (x).

Through these concepts, we can define the proximal, Fréchet, and limiting normal
cone of a given set S ⊂ H at x ∈ S, respectively, as

N P (S; x) := ∂P IS(x), N F (C; x) := ∂F IC (x) and N L(S; x) := ∂L IS(x),

where IS is the indicator function of S ⊂ H (recall that IS(x) = 0 if x ∈ S and
IS(x) = +∞ if x /∈ S). It is well-known that (see [7, Theorem 4.1])

N P (S; x) ∩ B = ∂P dS(x) for all x ∈ S. (1)

The equality (see [11])

N (S; x) = co∗N L(S; x) = cl∗ (R+∂dS(x)) for x ∈ S,

gives an expression of the Clarke normal cone in terms of the distance function.
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Now, we recall the concept of uniformly prox-regular sets. Introduced by Federer in
the finite-dimensional case (see [17]) and later developed byRockafellar, Poliquin, and
Thibault in [30], the prox-regularity generalizes and unifies convexity and nonconvex
bodies with C2 boundary. We refer to [12, 31] for a survey.

Definition 1 Let S be a closed subset of H and ρ ∈]0,+∞]. The set S is called
ρ-uniformly prox-regular if for all x ∈ S and ζ ∈ N P (S; x) one has

〈ζ, x ′ − x〉 ≤ ‖ζ‖
2ρ

‖x ′ − x‖2 for all x ′ ∈ S.

It is important to emphasize that convex sets are ρ-uniformly prox-regular for any
ρ > 0. The following proposition provides a characterization of uniformly prox-
regular sets (see, e.g., [12, 27]).

Proposition 1 Let S ⊂ H be a closed set and ρ ∈]0,+∞]. The following assertions
are equivalent:

(a) S is ρ-uniformly prox-regular.
(b) For any positive γ < 1 the mapping projS is well-defined on U γ

ρ (S) and Lipschitz
continuous on Uγ

ρ (S) with (1 − γ )−1 as a Lipschitz constant, i.e.,

∥∥projS (u1) − projS (u2)
∥∥ ≤ (1 − γ )−1 ‖u1 − u2‖

for all u1, u2 ∈ U γ
ρ (S).

(c) For any xi ∈ S, vi ∈ N P (S; xi ), with i = 1, 2, one has

〈v1 − v2, x1 − x2〉 ≥ − 1

2ρ
(‖v1‖ + ‖v2‖) ‖x1 − x2‖2 ,

that is, the set-valued mapping N P (S; ·) ∩ B is 1/ρ-hypomonotone.
(d) For all γ ∈]0, 1[, for all x, x ′ ∈ U γ

ρ (S), for all ξ ∈ ∂P dS(x), one has

〈ξ, x ′ − x〉 ≤ 1

2ρ(1 − γ )2
‖x ′ − x‖2 + dS(x ′) − dS(x).

Next, we recall the class of subsmooth sets that includes the concepts of convex and
uniformly prox-regular sets (see [4] and also [31, Chapter 8] for a survey).

Definition 2 Let S be a closed subset of H. We say that S is subsmooth at x0 ∈ S, if
for every ε > 0 there exists δ > 0 such that

〈ξ2 − ξ1, x2 − x1〉 ≥ −ε ‖x2 − x1‖ , (2)

whenever x1, x2 ∈ B [x0, δ] ∩ S and ξi ∈ N (S; xi ) ∩ B for i ∈ {1, 2}. The set S is
said subsmooth if it is subsmooth at each point of S. We further say that S is uniformly
subsmooth, if for every ε > 0 there exists δ > 0, such that (2) holds for all x1, x2 ∈ S
satisfying ‖x1 − x2‖ ≤ δ and all ξi ∈ N (S; xi ) ∩ B for i ∈ {1, 2}.
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Let (S(t))t∈I be a family of closed sets of H indexed by a nonempty set I . The
family is called equi-uniformly subsmooth, if for all ε > 0, there exists δ > 0 such
that for all t ∈ I , inequality (2) holds for all x1, x2 ∈ S(t) satisfying ‖x1 − x2‖ ≤ δ

and all ξi ∈ N (S(t); xi ) ∩ B with i ∈ {1, 2}.
Given an interval I, a set-valued map F : I ⇒ H is said to be measurable if

for all open set U of H, the inverse image F−1(U ) = {t ∈ I : F(t) ∩ U �= ∅}
is a Lebesgue measurable set. When F takes nonempty and closed values and H
is separable, this notion is equivalent to the L ⊗ B(H)-measurability of the graph
gph F := {(t, x) ∈ I × H : x ∈ F(t)} (see, e.g., [28, Theorem 6.2.20]).

Given a set-valuedmap F : H ⇒ H, we say F is upper semicontinuous fromH into
Hw if for all weakly closed setC ofH, the inverse image F−1(C) is a closed set ofH. It
is known (see, e.g., see [28, Proposition 6.1.15 (c)]) that if F is upper semicontinuous,
then the map x �→ σ(ξ, F(x)) is upper semicontinuous for all ξ ∈ H. When F
takes convex and weakly compact values, these two properties are equivalent (see [28,
Proposition 6.1.17]).
A set S ⊂ H is said ball compact if the set S ∩ rB is compact for all r > 0. The
projection onto S ⊂ H is the (possibly empty) set

ProjS(x) := {z ∈ S : dS(x) = ‖x − z‖} .

When the projection set is a singleton, we denote it as projS(x). For ε > 0, we define
the set of approximate projections:

projεS(x) :=
{

z ∈ S : ‖x − z‖2 < d2
S(x) + ε

}
.

By definition, the above set is nonempty and open. Moreover, it satisfies similar prop-
erties as the projection map (see Proposition 2 below). The approximate projections
have been considered several times in variational analysis. In particular, they were
used to characterize the subdifferential of the Asplund function of a given set. Indeed,
let S ⊂ H and consider the Asplund function of the set S

ϕS(x) := 1

2
‖x‖2 − 1

2
d2

S(x) x ∈ H.

Then, the following formula holds (see, e.g., [21, p. 467]):

∂ϕS(x) =
⋂

ε>0

co(projεS(x)).

We recall that for any set S ⊂ H and x ∈ H, where ProjS(x) �= ∅, the following
formula is a consequence of formula (1):

x − z ∈ dS(x)∂P dS(z) for all z ∈ ProjS(x).

The next result provides an approximate version of the above formula for any closed
set S ⊂ H.
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Lemma 1 Let S ⊂ H be a closed set, x ∈ H, and ε > 0. For each z ∈ projεS(x) there
is v ∈ projεS(x) such that ‖z − v‖ < 2

√
ε and

x − z ∈ (4
√

ε + dS(x))∂P dS(v) + 3
√

εB.

Proof Fix ε > 0, x ∈ H and z ∈ projεS(x). According to the Borwein-Preiss Varia-
tional Principle [6, Theorem 2.6] applied to y �→ g(y) := ‖x − y‖2 + IS(y), there
exists v ∈ projεS(x) such that ‖z − v‖ < 2

√
ε and 0 ∈ ∂P g(v) + 2

√
εB. Then, by the

sum rule for the proximal subdifferential (see, e.g., [11, Proposition 2.11]), we obtain
that

x − v ∈ N P (S; v) + √
εB,

which implies that x − z ∈ N P (S; v) + 3
√

εB. Next, since ‖x − z‖ ≤ dS(x) + √
ε,

we obtain that

x − z ∈ N P (S; v) ∩ (4
√

ε + dS(x))B + 3
√

εB.

Finally, the result follows from formula (1) and the above inclusion. ��

The following proposition displays some properties of approximation projections
for uniformly prox-regular sets.

Proposition 2 Let S ⊂ H be a ρ-uniformly prox-regular set. Then, one has:

(a) Let (xn) be a sequence converging to x ∈ Uρ(S). Then for any (zn) and any
sequence of positive numbers (εn) converging to 0 with zn ∈ projεn

S (xn) for all
n ∈ N, we have that zn → projS(x).

(b) Let γ ∈]0, 1[ and ε ∈]0, ε0] where ε0 is such that

γ + 4
√

ε0

(
1 + γ + 1

ρ
(1 + 4

√
ε0)

)
= 1.

Then, for all zi ∈ projεS(xi ) with xi ∈ U γ
ρ (S) for i ∈ {1, 2}, we have

(1 − �)‖z1 − z2‖2 ≤ √
ε‖x1 − x2‖2 + M

√
ε + 〈x1 − x2, z1 − z2〉,

where � := α
ρ

+4
√

ε
(
1 + α

ρ
+ 1

ρ
(1 + √

ε)
)

with α := max{dS(x1), dS(x2)} and

M is a non-negative constant only dependent on ε, ρ, γ .

Proof (a) We observe that for all n ∈ N

‖zn‖ ≤ ‖zn − xn‖ + ‖xn‖ ≤ dC (xn) + √
εn + ‖xn‖.
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Hence, since εn → 0 and xn → x , we obtain (yn) is bounded. On the other hand,
since x ∈ Uρ(S), we obtain projS(x) is well-defined and

‖zn − projS(x)‖2 = ‖zn − xn‖2 − ‖xn − projS(x)‖2
+ 2〈x − projS(x), zn − projS(x)〉 + 2〈zn − projS(x), xn − x〉

≤ d2
S(xn) + εn − ‖xn − projS(x)‖2

+ 2〈x − projS(x), zn − projS(x)〉 + 2〈zn − projS(x), xn − x〉
≤ εn + 2〈x − projS(x), zn − projS(x)〉

+ 2〈zn − projS(x), xn − x〉

where we have used zn ∈ projεn
S (xn) and that d2

S(xn) ≤ ‖xn − projS(x)‖2. Moreover,
since x − projS(x) ∈ N P (S; projS(x)) and S is ρ-uniformly prox-regular, we obtain
that

2〈x − projS(x), zn − projs(x)〉 ≤ dS(x)

ρ
‖zn − projS(x)‖2.

Therefore, by using the above inequality and rearranging terms, we obtain that

‖zn − projS(x)‖2 ≤ ρ

ρ − dS(x)

(
εn + 2〈zn − projS(x), xn − x〉) .

Finally, since xn → x and (zn) is bounded, we conclude that zn → projS(x).
(b) By virtue of Lemma 1, for i ∈ {1, 2} there exists vi , bi ∈ H such that

bi ∈ B, vi ∈ projεS(xi ), ‖zi − vi‖ < 2
√

ε and
xi − zi − 3

√
εbi

4
√

ε + dS(xi )
∈ ∂P dS(vi ).

The hypomonotonicity of proximal normal cone (see Proposition 1 (b)) implies that

〈ζ1 − ζ2, v1 − v2〉 ≥ −1

ρ
‖v1 − v2‖2,

where ζi := xi −zi −3
√

εbi
4
√

ε+α
for i ∈ {1, 2} and α := max{dS(x1), dS(x2)}. On the one

hand, we have

‖v1 − v2‖ ≤ ‖v1 − z1‖ + ‖z1 − z2‖ + ‖z2 − v2‖ ≤ 4
√

ε + ‖z1 − z2‖,

and for all z ∈ H and i ∈ {1, 2}

|〈z, vi − zi 〉| ≤
√

ε‖z‖2
2

+ ‖vi − zi‖2
2
√

ε
≤

√
ε‖z‖2
2

+ 2
√

ε.
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On the other hand,

〈(x1 − z1 − 3
√

εb1) − (x2 − z2 − 3
√

εb2), v1 − v2〉
= 3

√
ε〈b2 − b1, v1 − v2〉 + 〈(x1 − x2) − (z1 − z2), v1 − v2〉

= 3
√

ε〈b2 − b1, v1 − v2〉 + 〈x1 − x2, v1 − z1〉 + 〈x1 − x2, z1 − z2〉
+ 〈x1 − x2, z2 − v2〉 − 〈z1 − z2, v1 − z1〉 − ‖z1 − z2‖2 − 〈z1 − z2, z2 − v2〉

≤ 6
√

ε(4
√

ε + ‖z1 − z2‖) + √
ε‖x1 − x2‖2 + 8

√
ε + 〈x1 − x2, z1 − z2〉

− (1 − √
ε)‖z1 − z2‖2

≤ 24ε + 11
√

ε + √
ε‖x1 − x2‖2 + 〈x1 − x2, z1 − z2〉 − (1 − 4

√
ε)‖z1 − z2‖2.

It follows that
[
1 − α

ρ
− 4

√
ε(1 + 1

ρ
(1 + 4

√
ε + α))

]
‖z1 − z2‖2

≤ √
ε‖x1 − x2‖2 + 〈x1 − x2, z1 − z2〉 + 4(4ε + √

ε)(4

√
ε

ρ
+ γ ) + 24ε + 11

√
ε

which proves the desired inequality. ��
The following result provides a stability result for a family of equi-uniformly sub-
smooth sets. We refer to see [20, Lemma 2.7] for a similar result.

Lemma 2 Let C = {Cn}n∈N∪{C} be a family of nonempty, closed, and equi-uniformly
subsmooth sets. Assume that

lim
n→∞ dCn (x) = 0, for all x ∈ C .

Then, for any sequence αn → α ∈ R and any sequence (yn) converging to y with
yn ∈ Cn and y ∈ C, one has

lim sup
n→∞

σ(ξ, αn∂dCn (yn)) ≤ σ(ξ, α∂dC (y)) for all ξ ∈ H.

Proof Fix ξ ∈ H. Since ∂dS(x) ⊂ B for all x ∈ H, we observe that

β := lim sup
n→∞

σ(ξ, αn∂dCn (yn)) < +∞.

Let us consider a subsequence (nk) such that

β = lim
k→∞ σ(ξ, αnk ∂dCnk

(ynk )).

Given that ∂dCnk
(ynk ) is weakly compact for all k ∈ N, there is vnk ∈ ∂dCnk

(ynk ) such
that

σ(ξ, αnk ∂dCnk
(ynk )) = 〈ξ, αnk vnk 〉 for all k ∈ N.
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Moreover, the sequence (vnk ) is bounded. Hence, without loss of generality, we can
assume that vnk ⇀v ∈ B. It follows that β = 〈ξ, αv〉. By equi-uniformly subsmooth-
ness of C, for any ε > 0, there is δ > 0 such that for all D ∈ C and x1, x2 ∈ D with
‖x1 − x2‖ < δ, one has

〈ζ1 − ζ2, x1 − x2〉 ≥ −ε‖x1 − x2‖, (3)

whenever ζi ∈ N (D; xi )∩B for i ∈ {1, 2}. Next, let y′ ∈ C such that ‖y − y′‖ < δ/2.
Then, since dCnk

(y′) converges to 0, there is a sequence (y′
nk

) converging to y′ with
y′

nk
∈ Cnk for all k ∈ N. Hence, there is k0 ∈ N such that ‖y′

nk
− y′‖ < δ/2 for all k ≥

k0. On the other hand, since yn → y, then there is k′
0 ∈ N such that ‖ynk − y‖ < δ/2

for all k ≥ k′
0. Hence, if k ≥ max{k0, k′

0} =: k̂ we have ‖ynk − y′
nk

‖ < δ. Therefore,
it follows from the fact that 0 ∈ ∂dCnk

(y′
nk

) and inequality (3) that

〈vnk , ynk − y′
nk

〉 ≥ −ε‖ynk − y′
nk

‖ for all k ≥ k̂.

By taking k → ∞, we obtain that

〈v, y − y′〉 ≥ −ε‖y − y′‖ for all y′ ∈ C ∩ B(y, δ/2),

which implies that v ∈ N F (C; y). Then, by [29, Lemma 4.21],

v ∈ N F (C; y) ∩ B = ∂F dC (y) ⊂ ∂dC (y).

Finally, we have proved that

β = 〈ξ, αv〉 ≤ σ(ξ, α∂dC (y)),

which ends the proof. ��
The following lemma is a convergence theorem for a set-valuedmap froma topological
space into a Hilbert space.

Lemma 3 Let (E, τ ) be a topological space and G : E ⇒ H be a set-valued map with
nonempty, closed, and convex values. Consider sequences (xn) ⊂ E, (yn) ⊂ H and
(εn) ⊂ R+ such that

(i) xn → x (in E), yn⇀y (weakly in H) and εn → 0;
(ii) For all n ∈ N, yn ∈ co(G(xk) + εkB : k ≥ n);

(iii) lim sup
n→∞

σ(ξ,G(xn)) ≤ σ(ξ,G(x)) for all ξ ∈ H.

Then, y ∈ G(x).

Proof Assume by contradiction that y /∈ G(x). By virtue of Hahn–Banach theorem
there exists ξ ∈ H \ {0}, δ > 0 and α ∈ R such that

〈ξ, y′〉 + δ ≤ α ≤ 〈ξ, y〉, ∀y′ ∈ G(x).
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Then, it follows that σ(ξ,G(x)) ≤ α − δ. Besides, according to (ii) we have for all
n ∈ N, there is a finite set Jn ⊂ N such that for all m ∈ Jn , m ≥ n and

yn =
∑

j∈Jn

α j (y′
j + ε jv j )

where for all j ∈ Jn , α j ≥ 0, v j ∈ B, y′
j ∈ G(x j ) and

∑
j∈Jn

α j = 1. Also, there

exists N ∈ N such that for all n ≥ N , εn < δ
2‖ξ‖ . Thus, for n ≥ N

〈ξ, yn〉 =
∑

j∈Jn

α j 〈ξ, y′
j + ε jv j 〉

≤
∑

j∈Jn

α j sup
k≥n

σ(ξ,G(xk)) +
∑

j∈Jn

α jε j 〈ξ, v j 〉

≤ sup
k≥n

σ(ξ,G(xk)) + ‖ξ‖
∑

j∈Jn

α j
δ

2‖ξ‖ ≤ sup
k≥n

σ(ξ,G(xk)) + δ

2
.

Therefore, as yn⇀y, letting n → ∞ in the last inequality we obtain that

〈ξ, y〉 ≤ lim sup
n→∞

σ(ξ,G(xn)) + δ

2
≤ σ(ξ,G(x)) + δ

2
.

Therefore, 〈ξ, y〉 ≤ α − δ/2 ≤ 〈ξ, y〉 − δ/2, which is a contradiction. The proof is
then complete. ��
The next lemma is a technical result whose proof can be found in [23, Lemma 2.2].

Lemma 4 Let (xn) be a sequence of absolutely continuous functions from [0, T ] into
H with xn (0) = xn

0 . Assume that for all n ∈ N

‖ẋn(t)‖ ≤ ψ(t) a.e t ∈ [0, T ]

where ψ ∈ L1([0, T ]; R+) and that xn
0 → x0 as n → ∞. Then, there exists a

subsequence
(
xnk

)
of (xn) and an absolutely continuous function x such that

(i) xnk (t)⇀x(t) in H as k → +∞ for all t ∈ [0, T ].
(ii) xnk ⇀x in L1([0, T ];H) as k → +∞.

(iii) ẋnk ⇀ẋ in L1 ([0, T ] ;H) as k → +∞.
(iv) ‖ẋ(t)‖ ≤ ψ(t) a.e. t ∈ [0, T ].

3 Catching-Up Algorithmwith Errors for Sweeping Processes

In this section, we propose a numerical method for the existence of solutions for the
sweeping process:

ẋ(t) ∈ −N (C(t); x(t)) + F(t, x(t)) a.e. t ∈ [0, T ],
x(0) = x0 ∈ C(0),

(4)
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where C : [0, T ] ⇒ H is a set-valued map with closed values in a Hilbert space H,
N (C(t); x) stands for the Clarke normal cone to C(t) at x , and F : [0, T ] ×H ⇒ H
is a given set-valued map with nonempty closed and convex values. Our algorithm is
based on the catching-up algorithm, except that we do not ask for an exact calculation
of the projections.

The proposed algorithm is given as follows. For n ∈ N
∗, let (tn

k : k = 0, 1, . . . , n)

be a uniform partition of [0, T ] with uniform time step μn := T /n. Let (εn) be
a sequence of positive numbers such that εn/μ2

n → 0. We consider a sequence of
piecewise continuous linear approximations (xn) defined as xn(0) = x0 and for any
k ∈ {0, . . . , n − 1} and t ∈]tn

k , tn
k+1]

xn(t) = xn
k + t − tn

k

μn

(

xn
k+1 − xn

k −
∫ tn

k+1

tn
k

f (s, xn
k )ds

)

+
∫ t

tn
k

f (s, xn
k )ds, (5)

where xn
0 = x0 and

xn
k+1 ∈ projεn

C(tn
k+1)

(

xn
k +

∫ tn
k+1

tn
k

f (s, xn
k )ds

)

for k ∈ {0, 1, . . . , n − 1}. (6)

Here f (t, x) denotes any selection of F(t, x) such that f (·, x) is measurable for all
x ∈ H. For simplicity, we consider f (t, x) ∈ projγF(t,x)(0) for some γ > 0. In
Proposition 3, we prove that it is possible to obtain such measurable selection under
mild assumptions.

The above algorithm is called catching-up algorithm with approximate projections
because the projection is not necessarily exactly calculated. We will prove that the
above algorithm converges for several families of algorithms as long as inclusion (6)
is verified.

Let us consider functions δn(·) and θn(·) defined as

δn(t) =
{

tn
k if t ∈ [tn

k , tn
k+1[

tn
n−1 if t = T ,

and θn(t) =
{

tn
k+1 if t ∈ [tn

k , tn
k+1[

T if t = T .

In what follows, we show useful properties satisfied for the above algorithm, which
will help us to prove the existence of sweeping process (4) in three cases:

(i) The set-valued map t ⇒ C(t) takes uniformly prox-regular values.
(ii) The set-valued map t ⇒ C(t) takes subsmooth and ball-compact values.
(iii) C(t) ≡ C in [0, T ] and C is ball-compact.

Throughout this section, F : [0, T ] × H ⇒ H will be a set-valued map with
nonempty, closed, and convex values. Moreover, we will consider the following con-
ditions:

(HF
1 ) For all t ∈ [0, T ], F(t, ·) is upper semicontinuous from H intoHw.
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(HF
2 ) There exists h : H → R

+ Lipschitz continuous (with constant Lh > 0) such
that

d (0, F(t, x)) := inf{‖w‖ : w ∈ F(t, x)} ≤ h(x),

for all x ∈ H and a.e. t ∈ [0, T ].
(HF

3 ) There is γ > 0 such that the set-valued map (t, x) ⇒ projγF(t,x)(0) has a
selection f : [0, T ] ×H → H such that f (·, x) is measurable for all x ∈ H.

The following proposition provides conditions for the feasibility of hypothesis (HF
3 ).

Proposition 3 Let us assume thatH is a separable Hilbert space. Moreover we suppose
F(·, x) is measurable for all x ∈ H; then, (HF

3 ) holds for all γ > 0.

Proof Let γ > 0 and fix x ∈ H. Since the set-valued map F(·, x) is measurable, the
map t �→ d(0, F(t, x)) is a measurable function. Let us define the set-valued map
Fx : t ⇒ projγF(t,x)(0). Then,

gphFx = {(t, y) ∈ [0, T ] × H : y ∈ projγF(t,x)(0)}
= {(t, y) ∈ [0, T ] × H : ‖y‖2 < d(0, F(t, x))2 + γ and y ∈ F(t, x)}
= gph F(·, x) ∩ {(t, y) ∈ [0, T ] × H : ‖y‖2 < d(0, F(t, x))2 + γ }.

Hence, gphFx is a measurable set. Consequently, Fx has a measurable selection (see
[28, Theorem 6.3.20]). Denoting by t �→ f (t, x) such selection, we obtain the result.

��
Now, we establish the main properties of the proposed algorithm.

Theorem 1 Assume, in addition to (HF
1 ), (HF

2 ) and (HF
3 ), that C : [0, T ] ⇒ H is a

set-valued map with nonempty and closed values such that

dH (C(t), C(s)) ≤ LC |t − s| for all t, s ∈ [0, T ]. (7)

Then, the sequence of functions (xn : [0, T ] → H) generated by numerical scheme
(5) and (6) satisfies the following properties:

(a) There are non-negative constants K1, K2, K3, K4, K5 such that for all n ∈ N and
t ∈ [0, T ]:
(i) dC(θn(t))(xn(δn(t))+∫ θn(t)

δn(t) f (s, xn(δn(t)))ds) ≤ (LC +h(x(δn(t)))+√
γ )μn .

(ii) ‖xn(θn(t)) − x0‖ ≤ K1.

(iii) ‖xn(t)‖ ≤ K2.

(iv) ‖xn(θn(t)) − xn(δn(t))‖ ≤ K3μn + √
εn .

(v) ‖xn(t) − xn(θn(t))‖ ≤ K4μn + 2
√

εn.

(b) There exists K5 > 0 such that for all t ∈ [0, T ] and m, n ∈ N we have

dC(θn(t))(xm(t)) ≤ K5μm + LCμn + 2
√

εm .
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(c) There exists K6 > 0 such that for all n ∈ N and almost all t ∈ [0, T ], ‖ẋn(t)‖ ≤
K6.

(d) For all n ∈ N and k ∈ {0, 1, . . . , n − 1}, there is vn
k+1 ∈ C(tn

k+1) such that for all
t ∈]tn

k , tn
k+1[:

ẋn(t) ∈ −λn(t)

μn
∂P dC(θn(t))(v

n
k+1) + f (t, xn(δn(t))) + 3

√
εn

μn
B, (8)

where λn(t) = 4
√

εn + (LC + h(x(δn(t))) + √
γ )μn.

Moreover, ‖vn
k+1 − xn(θn(t))‖ < 2

√
εn.

Proof (a): Setμn := T /n and let (εn) be a sequence of non-negative numbers such that

εn/μ2
n → 0.We define c := supn∈N

√
εn

μn
. We denote by Lh the Lipschitz constant of h.

For all t ∈ [0, T ] and n ∈ N, we define τn(t) := xn(δn(t))+ ∫ θn(t)
δn(t) f (s, xn(δn(t)))ds.

Since f (t, xn(δn(t))) ∈ projγF(t,xn(δn(t)))(0) we obtain that

dC(θn(t))(τn(t)) ≤ dC(θn(t))(xn(δn(t))) +
∥∥∥∥∥

∫ θn(t)

δn(t)
f (s, xn(δn(t)))ds

∥∥∥∥∥

≤ LCμn +
∫ θn(t)

δn(t)
‖ f (s, xn(δn(t)))‖ds

≤ LCμn +
∫ θn(t)

δn(t)
(h(xn(δn(t))) + √

γ )ds

≤ (LC + h(xn(δn(t))) + √
γ )μn,

which proves (i). Moreover, since xn(θn(t)) ∈ projεn
C(θn(t))(τn(t)), we get that

‖xn(θn(t)) − τn(t)‖ ≤ dC(θn(t))(τn(t)) + √
εn

≤ (LC + h(xn(δn(t))) + √
γ )μn + √

εn,
(9)

which yields

‖xn(θn(t)) − xn(δn(t))‖ ≤ (LC + 2h(xn(δn(t))) + 2
√

γ )μn + √
εn

≤ (LC + 2h(x0) + 2
√

γ + 2Lh‖xn(δn(t)) − x0‖)μn

+ √
εn .

(10)

Hence, for all t ∈ [0, T ]
‖xn(θn(t)) − x0‖ ≤ (1 + 2Lhμn)‖xn(δn(t)) − x0‖

+ (LC + 2h(x0) + 2
√

γ )μn + √
εn .

The above inequality means that for all k ∈ {0, 1, . . . , n − 1}:

‖xn
k+1 − x0‖ ≤ (1 + 2Lhμn)‖xn

k − x0‖ + (LC + 2h(x0) + 2
√

γ )μn + √
εn .
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Then, by [11, p. 183], we obtain that for all k ∈ {0, . . . , n − 1}

‖xn
k+1 − x0‖ ≤ (k + 1)((LC + 2h(x0) + 2

√
γ )μn + √

εn) exp(2Lh(k + 1)μn)

≤ T (LC + 2h(x0) + √
γ + c) exp(2Lh T ) =: K1.

(11)

which proves (i i).
(i i i): By definition of xn , for t ∈]tn

k , tn
k+1] and k ∈ {0, 1 . . . , n − 1}, using (5)

‖xn(t)‖ ≤ ‖xn
k ‖ + ‖xn

k+1 − τn(t)‖ +
∫ t

tn
k

‖ f (s, xn
k )‖ds

≤ K1 + ‖x0‖ + (LC + √
γ + h(xn

k ))μn + √
εn + (h(xn

k ) + √
γ )μn,

where we have used (9). Moreover, it is clear that for k ∈ {0, . . . , n}

h(xn
k ) ≤ h(x0) + Lh‖xn

k − x0‖ ≤ h(x0) + Lh K1.

Therefore, for all t ∈ [0, T ]

‖xn(t)‖ ≤ K1 + ‖x0‖ + (LC + 2(h(x0) + Lh K1 + √
γ ))μn + √

εn

≤ K1 + ‖x0‖ + T (LC + 2(h(x0) + Lh K1 + √
γ ) + c) =: K2,

which proves (i i i).
(iv): From (10) and (11) it is easy to see that there exists K3 > 0 such that for all

n ∈ N and t ∈ [0, T ]: ‖xn(θn(t)) − xn(δn(t))‖ ≤ K3μn + √
εn .

(v): To conclude this part, we consider t ∈]tn
k , tn

k+1] for some k ∈ {0, 1, . . . , n −1}.
Then xn(θn(t)) = xn

k+1 and also

‖xn(θn(t)) − xn(t)‖ ≤‖xn
k+1 − xn

k ‖ + ‖xn
k+1 − τn(t)‖ +

∫ t

tn
k

‖ f (s, xn
k )‖ds

≤ K3μn + √
εn + (LC + √

γ + h(x0) + Lh K1)μn + √
εn

+ μn(h(xn
k ) + √

γ )

≤ (K3 + LC + 2(h(x0) + Lh K1) + 2
√

γ
︸ ︷︷ ︸

=:K4

)μn + 2
√

εn,

and we conclude this first part.
(b): Let m, n ∈ N and t ∈ [0, T ], then

dC(θn(t))(xm(t)) ≤ dC(θn(t))(xm(θm(t))) + ‖xm(θm(t)) − xm(t)‖
≤ dH (C(θn(t)), C(θm(t))) + K4μm + 2

√
εm

≤ LC |θn(t) − θm(t)| + K4μm + 2
√

εm

≤ LC (μn + μm) + K4μm + 2
√

εm
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where we have used (v). Hence, by setting K5 := K4 + LC we prove (b).
(c): Let n ∈ N, k ∈ {0, 1, . . . , n − 1} and t ∈]tn

k , tn
k+1]. Then,

‖ẋn(t)‖ =
∥∥∥∥∥
1

μn

(

xn
k+1 − xn

k −
∫ tn

k+1

tn
k

f (s, xn
k )ds

)

+ f (t, xn
k )

∥∥∥∥∥

≤ 1

μn
‖xn(θn(t)) − τn(t)‖ + ‖ f (t, xn

k )‖

≤ 1

μn
((LC + h(xn

k ) + √
γ )μn + √

εn) + h(xn
k ) + √

γ

≤
√

εn

μn
+ LC + 2(h(x0) + Lh K1 + √

γ )

≤ c + LC + 2(h(x0) + Lh K1 + √
γ ) =: K6,

which proves (c).
(d): Fix k ∈ {0, 1, . . . , n − 1} and t ∈]tn

k , tn
k+1[. Then, xn

k+1 ∈ projεn
C(tn

k+1)
(τn(t)).

Hence, by Lemma 1, there exists vn
k+1 ∈ C(tn

k+1) such that ‖xk+1 − vn
k+1‖ < 2

√
εn

and

τn(t) − xn
k+1 ∈ αn(t)∂P dC(tn

k+1)
(vn

k+1) + 3
√

εnB, ∀t ∈]tn
k , tn

k+1[,

where αn(t) = 4
√

εn + dC(θn(t))(τn(t)). By virtue of (i),

αn(t) ≤ 4
√

εn + (LC + h(x(δn(t))) + √
γ )μn =: λn(t).

Then, for all t ∈]tn
k , tn

k+1[

−μn(ẋn(t) − f (t, xn
k )) ∈ λn(t)∂P dC(tn

k+1)
(vn

k+1) + 3
√

εnB,

which implies that t ∈]tn
k , tn

k+1[

ẋn(t) ∈ −λn(t)

μn
∂P dC(tn

k+1)
(vn

k+1) + f (t, xn
k ) + 3

√
εn

μn
B.

��

4 Prox-Regular Case

In this section, we will study the algorithm under the assumption of uniform prox-
regularity of the moving sets. The classical catching-up algorithm in this framework
was studied in [8], where the existence of solutions for (4) was established for a
set-valued map F taking values in a fixed compact set.
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Theorem 2 Suppose, in addition to the assumptions of Theorem 1, that C(t) is ρ-
uniformly prox-regular for all t ∈ [0, T ], and for all r > 0, there exists a non-negative
integrable function kr such that for all t ∈ [0, T ] and x, x ′ ∈ rB one has

〈y − y′, x − x ′〉 ≤ kr (t)‖x − x ′‖2, ∀y ∈ F(t, x),∀y′ ∈ F(t, x ′). (12)

Then, the sequence of functions (xn) generated by algorithm (5) and (6) converges
uniformly to an absolutely continuous function x, which is a solution of (4). Moreover,
if F satisfies the following growth condition,

sup
y∈F(t,x)

‖y‖ ≤ c(t)(‖x‖ + 1),∀x ∈ H, t ∈ [0, T ], (13)

where c ∈ L1([0, T ]; R+), then the solution x is unique.

Proof Consider m, n ∈ N with m ≥ n big enough such that for all t ∈ [0, T ],
dC(θn(t))(xm(t)) < ρ, this can be guaranteed by Theorem 1. Then, for a.e. t ∈ [0, T ]

d

dt

(
1

2
‖xn(t) − xm(t)‖2

)
= 〈ẋn(t) − ẋm(t), xn(t) − xm(t)〉.

Let t ∈ [0, T ] where the above equality holds. Let k, j ∈ {0, 1, . . . , n − 1} such that
t ∈]tn

k , tn
k+1] and t ∈]tm

j , tm
j+1]. On the one hand, we have that

〈ẋn(t) − ẋm(t), xn(t) − xm(t)〉 = 〈ẋn(t) − ẋm(t), xn(t) − xn
k+1〉

+ 〈ẋn(t) − ẋm(t), xn
k+1 − vn

k+1〉
+ 〈ẋn(t) − ẋm(t), vn

k+1 − vm
j+1〉

+ 〈ẋn(t) − ẋm(t), vm
j+1 − xm

j+1〉
+ 〈ẋn(t) − ẋm(t), xm

j+1 − xm(t)〉
≤ 2K6(K4(μn + μm) + 4(

√
εn + √

εm))

+ 〈ẋn(t) − ẋm(t), vn
k+1 − vm

j+1〉,

(14)

where vn
k+1 ∈ C(tn

k+1) and vm
j+1 ∈ C(tm

j+1) are the given in Theorem 1. We can see
that

max
{
dC(tn

k+1)
(vm

j+1), dC(tm
j+1)

(vn
k+1)

} ≤ dH (C(tm
j+1), C(tn

k+1))

≤ LC |tm
j+1 − tn

k+1| ≤ LC (μn + μm).

From now, m, n ∈ N are big enough such that LC (μn + μm) <
ρ
2 . Moreover, as h is

Lh-Lipschitz, we have that for all p ∈ N, i ∈ {0, 1, . . . , p} and t ∈ [0, T ]

‖ f (t, x p
i )‖ ≤ h(x p

i ) + √
γ ≤ h(x0) + Lh K1 + √

γ =: α.
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On the other hand, using (8) and Proposition 1 we have that

1

�
max{

〈
ζn − ẋn(t), vm

j+1 − vn
k+1

〉
,
〈
ζm − ẋm(t), vn

k+1 − vm
j+1

〉
}

≤ 2

ρ
‖vn

k+1 − vm
j+1‖2 + LC (μn + μm),

where ξn, ξm ∈ B, � := sup{λ�(t)
μ�

: t ∈ [0, T ], � ∈ N} and ζi := f (t, xi (δi (t))) +
3
√

εi
μi

ξi for i ∈ {n, m}. Therefore, we have that

〈ẋn(t) − ẋm(t), vn
k+1 − vm

j+1〉
= 〈ẋn(t) − ζn, vn

k+1 − vm
j+1〉 + 〈ζn − ζm, vn

k+1 − vm
j+1〉

+ 〈ζm − ẋm(t), vn
k+1 − vm

j+1〉
≤ 2�

(
2

ρ
‖vn

k+1 − vm
j+1‖2 + LC (μn + μm)

)
+ 〈ζn − ζm, vn

k+1 − vm
j+1〉

≤ 4�

ρ
(‖xn(t) − xm(t)‖ + 3(

√
εn + √

εm) + K4(μn + μm))2

+ 2�LC (μn + μm) + 〈ζn − ζm, vn
k+1 − vm

j+1〉.

Moreover, by virtue of Theorem 1, we have max{‖xn‖∞, ‖xm‖∞} ≤ K2. Hence, there
is k ∈ L1([0, T ]; R+) satisfying (12) on K2B. Therefore, it follows that

〈ζn − ζm, vn
k+1 − vm

j+1〉
= 〈 f (t, xn(δn(t))) − f (t, xm(δm(t))), xn(δn(t)) − xm(δm(t))〉

+ 〈 f (t, xn(δn(t))) − f (t, xm(δm(t))), vn
k+1 − xn

k+1〉
+ 〈 f (t, xn(δn(t))) − f (t, xm(δm(t))), xn

k+1 − xn
k 〉

+ 〈 f (t, xn(δn(t))) − f (t, xm(δm(t))), xm
j − xm

j+1〉
+ 〈 f (t, xn(δn(t))) − f (t, xm(δm(t))), xm

j+1 − vm
j+1〉

+ 3
√

εn

μn
〈ξn, v

n
k+1 − vm

j+1〉 + 3
√

εm

μm
〈ξm, vm

j+1 − vn
k+1〉

≤ k(t)‖xn(δn(t)) − xm(δm(t))‖2
+ 2α(3(

√
εn + √

εm) + K3(μn + μm))

+ 3
√

εn

μn
‖vn

k+1 − vm
j+1‖ + 3

√
εm

μm
‖vm

j+1 − vn
k+1‖

≤ k(t)(‖xn(t) − xm(t)‖ + 3(
√

εn + √
εm) + (K3 + K4)(μn + μm))2

+ 2α(3(
√

εn + √
εm) + K3(μn + μm))

+ 6

(√
εn

μn
+

√
εm

μm

)
(
√

εn + √
εm + K2).
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These two inequalities and (14) yield

d

dt
‖xn(t) − xm(t)‖2

≤ 4

(
4�

ρ
+ k(t)

)
‖xn(t) − xm(t)‖2 + 4α(3(

√
εn + √

εm) + K3(μn + μm))

+ 4�LC (μn + μm) + 12

(√
εn

μn
+

√
εm

μm

)
(
√

εn + √
εm + K2)

+ 16�

ρ
(3(

√
εn + √

εm) + K4(μn + μm))2

+ 4k(t)(3(
√

εn + √
εm) + (K3 + K4)(μn + μm))2.

Hence, using Gronwall’s inequality, we have for all t ∈ [0, T ] and n, m big enough:

‖xn(t) − xm(t)‖2 ≤ Am,n exp

(
16�

ρ
T + 4

∫ T

0
k(s)ds

)
, (15)

where

Am,n = 4αT (3(
√

εn + √
εm) + K3(μn + μm))

+ 4T �LC (μn + μm) + 12T

(√
εn

μn
+

√
εm

μm

)
(
√

εn + √
εm + K2)

+ 16T �

ρ
(3(

√
εn + √

εm) + K4(μn + μm))2

+ 4‖k‖1(3(√εn + √
εm) + (K3 + K4)(μn + μm))2.

Since Am,n goes to 0 when m, n → ∞, it shows that (xn) is a Cauchy sequence in the
space of continuous functions with the uniform convergence. Therefore, it converges
uniformly to some continuous function x : [0, T ] → H. It remains to check that x is
absolutely continuous, and it is the unique solution of (4). First of all, by Theorem 1
and Lemma 4, x is absolutely continuous and there is a subsequence of (ẋn) which
converges weakly in L1([0, T ];H) to ẋ . So, without relabeling, we have ẋn⇀ẋ in
L1([0, T ];H). On the other hand, using Theorem 1 and defining vn(t) := vn

k+1 for
t ∈]tn

k , tn
k+1] we have

ẋn(t) ∈ −λn(t)

μn
∂P dC(θn(t))(vn(t)) + f (t, xn(δn(t))) + 3

√
εn

μn
B

∈ −κ1∂dC(θn(t))(vn(t)) + κ2B ∩ F(t, xn(δn(t))) + 3
√

εn

μn
B,

where, by Theorem 1, κ1 and κ2 are non-negative numbers which do not depend of
n ∈ N and t ∈ [0, T ].We also have vn → x , θn → Id[0,T ] and δn → Id[0,T ] uniformly.
Theorem 1 ensures that x(t) ∈ C(t) for all t ∈ [0, T ]. By Mazur’s lemma, there is a
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sequence (y j ) such that for all n, yn ∈ co(ẋk : k ≥ n) and (yn) converges strongly to
ẋ in L1([0, T ];H). That is to say

yn(t) ∈ co

(
−κ1∂dC(θk (t))(vk(t)) + κ2B ∩ F(t, xk(δk(t))) + 3

√
εk

μk
B : k ≥ n

)
.

Hence, there exists (yn j ) which converges to ẋ almost everywhere in [0, T ]. Then, by
virtue of Lemma 2, (HF

1 ) and Lemma 3, we obtain that

ẋ(t) ∈ −κ1∂dC(t)(x(t)) + κ2B ∩ F(t, x(t)) for a.e. t ∈ [0, T ].

Since ∂dC(t)(x(t)) ⊂ N (C(t); x(t)) for all t ∈ [0, T ], we have x is the solution of
(4).

To end the proof, we are going to prove that (4) has a unique solution under growth
condition (13). First, take any solution x of (4). Then, for a.e. t ∈ [0, T ] there is
f (t, x(t)) ∈ F(t, x(t)) such that

Rx (t) := f (t, x(t)) − ẋ(t) ∈ N (C(t); x(t)). (16)

Take any t ∈]0, T ] satisfying (16). Suppose that ẋ(t) �= f (t, x(t)), then using (1) and
the uniform prox-regularity of C(t) we have that

Rx (t)

‖Rx (t)‖ ∈ ∂P dC(t)(x(t)).

Take any γ ∈]0, 1[, by continuity there is δ > 0 such that x(s) ∈ Uγ
ρ (C(t)) for all

s ∈]t − δ, t + δ[, using Proposition 1 we have

〈 Rx (t)

‖Rx (t)‖ , x(s) − x(t)

〉
≤ 1

2ρ(1 − γ )2
‖x(s) − x(t)‖2 + dC(t)(x(s))

≤ 1

2ρ(1 − γ )2
‖x(s) − x(t)‖2 + LC |t − s|.

Dividing by t − s for s ∈]t − δ, t[ and taking the limit s ↗ t , we obtain that

〈 Rx (t)

‖Rx (t)‖ ,−ẋ(t)

〉
≤ LC �⇒ ‖Rx (t)‖ ≤ ‖ f (t, x(t))‖ + LC .

When ẋ(t) = f (t, x(t)), the above inequality always holds. Hence, for a.e. t ∈ [0, T ].
Now, take two solutions x1, x2 of (4) with x1(0) = x2(0) = x0, then using the

hypomonotonicity given in Proposition 1, we have
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〈Rx1(t) − Rx2(t), x1(t) − x2(t)〉 ≥ −1

2ρ
(‖Rx1(t)‖ + ‖Rx2(t)‖)‖x1(t) − x2(t)‖2.

Defining r = max{‖xi‖∞ : i = 1, 2}, there is kr ∈ L1([0, T ]; R+) satisfying (12) on
rB. Hence, by using growth condition (13), we have a.e.

d

dt
(‖x1(t) − x2(t)‖2) ≤ ‖x1(t) − x2(t)‖2[2kr (t) + 1

ρ
(‖Rx1(t)‖ + ‖Rx2(t)‖)]

≤ ‖x1(t) − x2(t)‖2[2kr (t) + 2LC

ρ
+ 2c(t)

(
1

ρ
+ c

)
],

which, by virtue of Gronwall’s inequality, implies that x1 ≡ x2. The result is proven.
��

Remark 1 The property required for F in (12) is a classicalmonotonicity assumption in
the theory of existence of solutions for differential inclusions (see, e.g., [15, Theorem
10.5]).

Remark 2 [Rate of convergence] In the precedent proof, we have established the fol-
lowing estimation:

‖xn(t) − xm(t)‖2 ≤ Am,n exp

(
16�

ρ
T + 4

∫ T

0
k(s)ds

)

for m, n such that μn + μm <
ρ

2LC
. Hence, by letting m → ∞, we obtain that

‖xn(t) − x(t)‖2 ≤ An exp

(
16�

ρ
T + 4

∫ T

0
k(s)ds

)
for all n >

2LC T

ρ
,

where

An := lim
m→∞ Am,n ≤ D

(√
εn + μn +

√
εn

μn

)
,

where D is a non-negative constant. Hence, the above estimation provides a rate of
convergence for our scheme.

5 Subsmooth Case

In this section, we study sweeping process (4) for the class of subsmooth sets, which
strictly includes the class of uniformly prox-regular sets.We now assume (C(t))t∈[0,T ]
is a equi-uniformly subsmooth family. The classical catching-up algorithmwas studied
in [20] under this framework. In this case, we assume the ball compactness of the
moving sets, required in the infinite-dimensional setting.Wewill see that our algorithm
allows us to prove the existence of a solution, but we only ensure that a subsequence
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converges to this solution, which is expected due to the lack of uniqueness of solutions
in this case.

Theorem 3 Suppose, in addition to assumptions of theorem 1, that the family
(C(t))t∈[0,T ] is equi-uniformly subsmooth and the set C(t) are ball-compact for all
t ∈ [0, T ]. Then, the sequence of continuous functions (xn) generated by algorithm
(5) and (6) converges uniformly (up to a subsequence) to an absolutely continuous
function x, which is a solution of (4).

Proof From Theorem 1 we have for all n ∈ N and k ∈ {0, . . . , n − 1}, there is
vn

k+1 ∈ C(tn
k+1) such that ‖vn

k+1 − xn
k+1‖ < 2

√
εn and for all t ∈]tn

k , tn
k+1]:

ẋn(t) ∈ −λn(t)

μn
∂P dC(θn(t))(v

n
k+1) + f (t, xn(δn(t))) + 3

√
εn

μn
B,

where λn(t) = 4
√

εn + (LC + h(x(δn(t))) + √
γ )μn . As h is Lh-Lipschitz it follows

that

λn(t) ≤ (4c + LC + h(x0) + √
γ + Lh K1)μn .

Defining vn(t) := vn
k+1 on ]tn

k , tn
k+1], then for all n ∈ N and almost all t ∈ [0, T ]

ẋn(t) ∈ −M∂P dC(θn(t))(vn(t)) + f (t, xn(δn(t))) + 3
√

εn

μn
B

∈ −M∂dC(θn(t))(vn(t)) + MB ∩ F(t, xn(δn(t))) + 3
√

εn

μn
B,

(17)

where M := 4c + LC + h(x0) + Lh K1 + √
γ . Moreover, by Theorem 1, we have

dC(t)(xn(t)) ≤ dC(θn(t))(xn(t)) + LCμn ≤ (K5 + 2LC )μn + 2
√

εn . (18)

for all t ∈ [0, T ].
Next, fix t ∈ [0, T ] and define K (t) := {xn(t) : n ∈ N}. We claim that K (t) is

relatively compact. Indeed, let xm(t) ∈ K (t) and take ym(t) ∈ ProjC(t)(xm(t)) (the
projection exists due to the ball compactness of C(t) and the boundedness of K (t)).
Moreover, according to (18) and Theorem 1,

‖yn(t)‖ ≤ dC(t)(xn(t)) + ‖xn(t)‖ ≤ (K5 + 2LC )μn + 2
√

εn + K2.

This entails that yn(t) ∈ C(t) ∩ R B for all n ∈ N for some R > 0. Thus, by the ball
compactness of C(t), there exists a subsequence (ymk (t)) of (ym(t)) converging to
some y(t) as k → +∞. Then,
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‖xmk (t) − y(t)‖ ≤ dC(t)(xmk (t)) + ‖ymk (t) − y(t)‖
≤ (K5 + 2LC )μmk + 2

√
εmk + ‖ymk (t) − y(t)‖,

which implies that K (t) is relatively compact. Moreover, it is not difficult to see by
Theorem 1 that K := (xn) is equicontinuous. Therefore, by virtue of Theorem 1,
Arzela-Ascoli’s and Lemma 4, we obtain the existence of a Lipschitz function x and
a subsequence (x j ) of (xn) such that

(i) (x j ) converges uniformly to x on [0, T ].
(ii) ẋ j⇀ẋ in L1 ([0, T ];H).
(iii) x j (θ j (t)) → x(t) for all t ∈ [0, T ].
(iv) x j (δ j (t)) → x(t) for all t ∈ [0, T ].
(v) v j (t) → x(t) for all t ∈ [0, T ].

From (18) it is clear that x(t) ∈ C(t) for all t ∈ [0, T ]. By Mazur’s lemma, there is a
sequence (y j ) such that for all j , y j ∈ co(ẋk : k ≥ j) and (y j ) converges strongly to
ẋ in L1([0, T ];H). That is to say

y j (t) ∈ co

(
−M∂dC(θn(t))(vn(t)) + MB ∩ F(t, xn(δn(t))) + 3

√
εn

μn
B : n ≥ j

)
.

On the other hand, there exists (yn j )which converges to ẋ almost everywhere in [0, T ].
Then, using Lemma 2, Lemma 3, and (HF

1 ), we have

ẋ(t) ∈ −M∂dC(t)(x(t)) + MB ∩ F(t, x(t)) a.e.

Finally, since ∂dC(t)(x(t)) ⊂ N (C(t); x(t)) for all t ∈ [0, T ], it follows that x is the
solution of (4). ��

6 Fixed Set

In this section, we consider a closed and nonempty set C ⊂ H, and we look for a
solution of the particular case of (4) given by

ẋ(t) ∈ −N (C; x(t)) + F(t, x(t)) a.e. t ∈ [0, T ],
x(0) = x0 ∈ C,

(19)

where F : [0, T ] × H ⇒ H is a set-valued map defined as above. The existence of a
solution using classical catching up was done in [34]. Now, we use similar ideas to get
the existence of a solution using our proposed algorithm. We emphasize that in this
case, no regularity of the set C is required.

Theorem 4 Let C ⊂ H be a ball-compact set and F : [0, T ] × H ⇒ H be a set-
valued map satisfying (HF

1 ), (HF
2 ) and (HF

3 ). Then, for any x0 ∈ S, the sequence of
functions (xn) generated by algorithm (6) converges uniformly (up to a subsequence)
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to a Lipschitz solution x of sweeping process (19) such that

‖ẋ(t)‖ ≤ 2(h(x(t)) + √
γ ) a.e. t ∈ [0, T ]. (20)

Proof We are going to use the properties of Theorem 1, where now we have LC = 0.
First of all, from Theorem 1 we have for all n ∈ N and k ∈ {0, 1, . . . , n − 1}, there is
vn

k+1 ∈ C such that ‖vn
k+1 − xn

k+1‖ < 2
√

εn and for all t ∈]tn
k , tn

k+1]:

ẋn(t) ∈ −λn(t)

μn
∂P dC (vn

k+1) + f (t, xn(δn(t))) + 3
√

εn

μn
B,

where λn(t) = 4
√

εn + (h(x(δn(t))) + √
γ )μn . Defining vn(t) := vn

k+1 on ]tn
k , tn

k+1],
we get that for all n ∈ N and a.e. t ∈ [0, T ]

ẋn(t) ∈ −λn(t)

μn
∂P dC (vn(t)) + f (t, xn(δn(t))) + 3

√
εn

μn
B

∈ −λn(t)

μn
∂dC (vn(t)) + (h(t, xn(δn(t))) + √

γ )B ∩ F(t, xn(δn(t))) + 3
√

εn

μn
B.

Moreover, by Theorem 1, we have

dC (xn(t)) ≤ K5μn + 2
√

εn for all t ∈ [0, T ].

Next, fix t ∈ [0, T ] and define K (t) := {xn(t) : n ∈ N}. We claim that K (t) is
relatively compact. Indeed, let xm(t) ∈ K (t) and take ym(t) ∈ ProjC (xm(t)) (the
projection exists due to the ball compactness of C and the boundedness of K (t)).
Moreover, according to the above inequality and Theorem 1,

‖yn(t)‖ ≤ dC (xn(t)) + ‖xn(t)‖ ≤ K5μn + 2
√

εn + K2,

which entails that yn(t) ∈ C ∩ R B for all n ∈ N for some R > 0. Thus, by the
ball-compactness of C , there exists a subsequence (ymk (t)) of (ym(t)) converging to
some y(t) as k → +∞. Then,

‖xmk (t) − y(t)‖ ≤ dC (xmk (t)) + ‖ymk (t) − y(t)‖
≤ K5μmk + 2

√
εmk + ‖ymk (t) − y(t)‖,

which implies that K (t) is relatively compact. Moreover, it is not difficult to see by
Theorem 1 that the set K := (xn) is equicontinuous. Therefore, by virtue of Theorem
1, Arzela-Ascoli’s and Lemma 4, we obtain the existence of a Lipschitz function x
and a subsequence (x j ) of (xn) such that

(i) (x j ) converges uniformly to x on [0, T ].
(ii) ẋ j⇀ẋ in L1 ([0, T ];H).
(iii) x j (θ j (t)) → x(t) for all t ∈ [0, T ].
(iv) x j (δ j (t)) → x(t) for all t ∈ [0, T ].
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(v) v j (t) → x(t) for all t ∈ [0, T ].
(vi) x(t) ∈ C for all t ∈ [0, T ].
By Mazur’s lemma, there is a sequence (y j ) such that for all j , y j ∈ co(ẋk : k ≥ j)
and (y j ) converges strongly to ẋ in L1([0, T ];H). i.e.,

y j (t) ∈ co

(
−αn∂dC (vn(t)) + βnB ∩ F(t, xn(δn(t))) + 3

√
εn

μn
B : n ≥ j

)
,

where αn := 4
√

εn
μn

+ h(t, xn(δn(t))) + √
γ and βn := 4

√
εn

μn
+ h(t, xn(δn(t))). On

the other hand, there exists (yn j ) which converges to ẋ almost everywhere in [0, T ].
Then, using Lemma 2, Lemma 3, and (HF

1 ), we have

ẋ(t) ∈ −(h(x(t)) + √
γ )∂dC (x(t)) + (h(x(t)) + √

γ )B ∩ F(t, x(t)) for a.e. t ∈ [0, T ].

It is clear that x satisfies bound (20). Finally, since ∂dC (x(t)) ⊂ N (C; x(t)) for all
t ∈ [0, T ], we obtain that x is the solution of (19). ��

7 Numerical Methods for Approximate Projections

As stated before, in most cases, finding an explicit formula for the projection onto
a closed set is not possible. Therefore, one must resort to numerical algorithms to
obtain approximate projections. Several papers discuss this issue for different notions
of approximate projections (see, e.g., [32]). These algorithms are called projection
oracles and provide an approximate solution z̄ ∈ H to the following optimization
problem:

min
z∈C

‖x − z‖2, (Px )

where C is a given closed set and x ∈ H. Whether the approximate solution z̄ belongs
to the set C or not depends on the notion of approximate projection. In our case, to
implement our algorithm, we need that z̄ ∈ C . In this line, a well-known projection
oracle fulfilling this property can be obtained via the celebratedFrank–Wolfe algorithm
(see, e.g., [18, 22]), where a linear sub-problem of (Px ) is solved in each iteration.
For several types of convex sets, this method has been successfully developed (see
[5, 13, 22]). Besides, in [16], it was shown that an approximate solution of the linear
sub-problem is enough to obtain a projection oracle.

Another important approach to obtaining approximate projections is the use of
the Frank–Wolfe algorithm with separation oracles (see [14]). Roughly speaking, a
separation oracle determines whether a given point belongs to a set and, in the negative
case, provides a hyperplane separating the point from the set (see [19] formore details).
For particular sets, it is easy to get an explicit separation oracle (see [19, p. 49]). An
important example is the case of a sublevel set: let g : H → R be a continuous convex
function and λ ∈ R. Then [g ≤ λ] := {x ∈ H : g(x) ≤ λ} has a separation oracle
described as follows: to verify that any point belongs to [g ≤ λ] is straightforward.
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When a point x ∈ H does not belong to [g ≤ λ], we can consider any x∗ ∈ ∂g(x).
Then, for all y ∈ [g ≤ λ],

〈x∗, x〉 ≥ g(x) − g(y) + 〈x∗, y〉 > 〈x∗, y〉,

where we have used that g(x) > λ ≥ g(y). Hence, the above inequality shows the
existence of the desired hyperplane, which provides a separation oracle for [g ≤ λ].
Therefore, if C is the sublevel set of some convex function, we can use the algorithm
proposed in [14] to get an approximate solution z̄ ∈ projεS(x). Moreover, the sublevel
set enables us to consider the case

C(t, x) :=
m⋂

i=1

{x ∈ H : gi (t, x) ≤ 0} =
{

x ∈ H : g(t, x) := max
i=1,...,m

gi (t, x) ≤ 0

}
,

where for all t ∈ [0, T ], gi (t, ·) : H → R, i = 1, . . . , m are convex functions. We
refer to [2, Proposition 5.1] for the proper assumptions on these functions to ensure
the Lipschitz property of the map t ⇒ C(t) holds (7).

8 Concluding Remarks

In this paper, we have developed an enhanced version of the catching-up algorithm
for sweeping processes through an appropriate concept of approximate projections.
We provide the proposed algorithm’s convergence for three frameworks: prox-regular,
subsmooth, and merely closed sets. Some insights into numerical procedures to obtain
approximate projections were given mainly in the convex case. Finally, the conver-
gence of our algorithm for other notions of approximate solutions will be explored in
forthcoming works.
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