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Abstract
We extend the classical primal-dual interior point method from the Euclidean setting
to the Riemannian one. Our method, named the Riemannian interior point method,
is for solving Riemannian constrained optimization problems. We establish its local
superlinear and quadratic convergence under the standard assumptions. Moreover, we
show its global convergence when it is combined with a classical line search. Our
method is a generalization of the classical framework of primal-dual interior point
methods for nonlinear nonconvex programming. Numerical experiments show the
stability and efficiency of our method.

Keywords Riemannian manifolds · Riemannian optimization · Nonlinear
optimization · Interior point method
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1 Introduction

In this paper, we consider the followingRiemannian constrained optimization problem
(RCOP):

min
x∈M

f (x)

s.t. h(x) = 0, and g(x) � 0,
(RCOP)
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whereM is a connected, completed-dimensionalRiemannianmanifold and f : M →
R, h : M → R

l , and g : M → R
m are smooth functions. This problem appears in

many applications, for instance, matrix approximation with nonnegative constraints
on a fixed-rank manifold [31] and orthogonal nonnegative matrix factorization on the
Stiefel manifold [19]; for more, see [23, 27].

The body of knowledge on (RCOP) without h, g, often called simply Riemannian
optimization, has grown considerably in the last 20 years. The well-known methods
in the Euclidean setting, such as steepest descent, Newton, and trust region, have been
extended to theRiemannian setting [1, 5, 16].By contrast, research on (RCOP) is still in
its infancy. The earliest studies go back to ones on the optimality conditions. Yang et al.
[36] extended the Karush–Kuhn–Tucker (KKT) conditions to (RCOP). Bergmann and
Herzog [2] considered more constraint qualifications (CQs) on manifolds. Yamakawa
and Sato [34] proposed sequential optimality conditions in the Riemannian case. Liu
and Boumal [23] were the first to develop practical algorithms. They extended the
augmentedLagrangianmethod and exact penaltymethod to (RCOP). Schiela andOrtiz
[30] and Obara et al. [27] proposed the Riemannian sequential quadratic programming
method. However, to our knowledge, interior point methods have yet to be considered
for (RCOP).

The advent of interior point methods in the 1980s greatly advanced the field of
optimization [33, 37]. By the early 1990s, the success of these methods in linear and
quadratic programming ignited interest in using them on nonlinear nonconvex cases
[11, 35]. From the 1990s to the first decade of the twenty-first century, a large number
of interior point methods for nonlinear programming emerged. They proved to be as
successful as the linear ones. A subclass known as primal-dual interior point methods
is the most efficient and practical. As described in [24], the primal-dual approach to
linear programming was introduced in [25]: it was first developed as an algorithm in
[20] and eventually became standard for the nonlinear case as well [11, 35].

Contribution In this paper, we extend the primal-dual interior point algorithms from
the Euclidean setting, i.e., M = R

d in (RCOP), to the Riemannian setting. We call
this extension the Riemannian interior point method (RIPM). Our contributions are
summarized as follows:

1. To our knowledge, this is the first study to apply the primal-dual interior point
method to the nonconvex constrained optimization problem on Riemannian mani-
folds. One significant contribution is that we establish many essential foundational
concepts for the general interior point method in the Riemannian context, such as
the KKT vector field and its covariant derivative. In addition, we build the first
framework for the Riemannian version of the interior point method. These con-
tributions will have uses in the future, especially in developing more advanced
interior point methods.

2. We give a detailed theoretical analysis to ensure local and global convergence of
RIPM. Considering that many practical problems involveminimizing a nonconvex
function on Riemannian manifolds, the theoretical counterparts of our method
are the early interior point methods for nonlinear nonconvex programming first
proposed by El-Bakry et al. [11].
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3. Our numerical experiments1 demonstrate the great potential of RIPM. Themethod
meets the challenges presented in these experiments with better stability and
higher accuracy compared with the current Riemannian exact penalty, augmented
Lagrangian, and sequential quadratic programming methods.

Organization The rest of this paper is organized as follows: In Sect. 2, we review
the notation of Riemannian geometry and explain the Riemannian Newton method. In
Sect. 3, we give a full interpretation of our RIPM and describe a prototype algorithm
of RIPM.We also investigate the use of Krylov subspace methods to efficiently solve a
condensed form of a perturbed Newton equation. This is particularly important for the
numerical implementation of RIPM. Section4 gives the necessary preliminaries and
auxiliary results needed to prove convergence in our subsequent sections. In Sect. 5,
we give the proof of local superlinear and quadratic convergence of the prototype
algorithm of RIPM. Section6 describes a globally convergent version of RIPM with a
classical line search; then, Sect. 7 proves its global convergence. Section8 is a collec-
tion of numerical experiments. Section9 summarizes our research and presents future
work.

2 Notation

2.1 Riemannian Geometry

Let us briefly review some concepts fromRiemannian geometry, following the notation
of [5].M denotes a finite-dimensional smooth manifold. Let p ∈ M and TpM be the
tangent space at p with 0p being its zero element. We use a canonical identification
TpE ∼= E for a vector space E and p ∈ E . A vector field is a map V : M → TMwith
V (p) ∈ TpM, where TM := ⋃p∈M TpM is the tangent bundle. X(M) denotes
the set of all smooth vector fields defined on M. Furthermore, M is a Riemannian
manifold if it is equipped with a Riemannian metric, that is, a choice of inner product
〈·, ·〉p : TpM × TpM → R for each tangent space at p on M such that for all
V ,W ∈ X(M), the map

p �→ 〈V (p),W (p)〉p (1)

is a smooth function from M to R. Riemannian metric induces the norm ‖ξ‖p :=√〈ξ, ξ 〉p for ξ ∈ TpM. We often omit the subscript p if it is clear from the context.
Throughout this paper, we assume that all the manifolds involved are connected and
complete. Given a curve segment onM, c : [a, b] → M, the length of c is defined as
L(c) := ∫ ba ‖ċ(t)‖c(t)dt,where ċ(t) ∈ Tc(t)M is the velocity vector of c at t . SinceM
is connected, there exists a curve segment connecting any pair of points p, q ∈ M.
Indeed, M is a metric space under the Riemannian distance d(p, q) := infc L(c)
where the infimum is taken over all curve segments joining p to q [22, Thm. 2.55]. For

1 The code is freely available at https://doi.org/10.5281/zenodo.10612799.
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twomanifoldsM1,M2 and a smoothmap F : M1 → M2, the differential of F at p ∈
M1 is a linear operator denoted asDF(p) : TpM1 → TF(p)M2. LetF(M) be the set
of all smooth scalar fields (or say real-valued functions) f : M → R. TheRiemannian
gradient of f at p, grad f (p), is defined as the unique element of TpM that satisfies
〈ξ, grad f (p)〉p = D f (p)[ξ ] for all ξ ∈ TpM, where D f (p) : TpM → T f (p)R ∼=
R. Note that for any f ∈ F(M), the gradient vector field x �→ grad f (x) is a smooth
vector field onM, i.e., grad f ∈ X(M). A retraction R : TM → M is a smooth map
such that Rp

(
0p
) = p andDRp

(
0p
) = idTpM, i.e., the identity map on TpM, where

Rp is the restriction of R to TpM andDRp
(
0p
) : T0p (TpM) ∼= TpM → TpM is the

differential of Rp at 0p. One theoretically perfect type of retraction is the exponential
map, denoted as Exp. Since M is complete, the exponential map is well-defined on
the whole tangent bundle. Let Expp : TpM → M be the exponential map at p; then,
t �→ Expp(tξ) is the unique geodesic that passes through p with velocity ξ ∈ TpM
when t = 0.

2.2 Riemannian NewtonMethod

The Newton method is a powerful tool for finding the zeros of nonlinear functions
in the Euclidean setting. The generalized Newton method has been studied in the
Riemannian setting; it aims to find a singularity for the vector field F ∈ X(M), i.e.,
a point p ∈ M such that,

F(p) = 0p ∈ TpM. (2)

Let ∇ be the Levi–Civita connection on M, i.e., the unique symmetric connection
compatible with the Riemannian metric. The covariant derivative ∇F assigns each
point p ∈ M a linear operator ∇F(p) : TpM → TpM. In particular, the Rie-
mannian Hessian of f ∈ F(M) at p is a self-adjoint operator on TpM, defined as
Hess f (p) := ∇(grad f )(p). The Riemannian Newton method for solving (2) is
performed as Algorithm 1.

Algorithm 1: Riemannian Newton Method for (2)
Input: A vector field F ∈ X(M), an initial point p0 ∈ M and a retraction R onM.
Output: Sequence {pk } ⊂ M such that {pk } → p∗ and F(p∗) = 0p∗ .
Set k → 0;
while Stopping criterion not satisfied do

1. Obtain ξk ∈ TpkM by solving the Newton equation (a linear operator equation on tangent
space TpkM):

∇F(pk )[ξk ] = −F(pk ); (3)

2. Compute the next point as pk+1 := Rpk (ξk );
3. k → k + 1;

end
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3 Description of Riemannian Interior Point Methods (RIPM)

In this section, we will give a comprehensive interpretation of the Riemannian interior
point method. Following common usage in the interior-point literature, big letters
denote the associated diagonal matrix, e.g., Z = diag(z1, . . . , zm) with z ∈ R

m . e
denotes the all-ones vector, and 0 stands for zero vector/matrixwith proper dimensions.

3.1 KKTVector Field and Its Covariant Derivative

The Lagrangian function of (RCOP) is

L(x, y, z) := f (x) +
l∑

i=1

yi hi (x) +
m∑

i=1

zi gi (x),

where y ∈ R
l and z ∈ R

m are Lagrange multipliers corresponding to the equality
and inequality constraints, respectively. With respect to the variable x , L(·, y, z) is a
real-valued function defined on M, and its Riemannian gradient is:

gradx L(x, y, z) = grad f (x) +
l∑

i=1

yi grad hi (x) +
m∑

i=1

zi grad gi (x),

where {grad hi (x)}li=1 and {grad gi (x)}mi=1 are the gradients of the component func-
tions of h and g. The Riemannian KKT conditions (e.g., see [23, Definition 2.3] or
[36]) for (RCOP) are given by

gradx L(x, y, z) = 0x ; h(x) = 0, g(x) � 0, z � 0; Zg(x) = 0. (4)

The above conditions can be written in terms of slack variables R
m � s := −g(x), as

F(w) :=

⎛

⎜
⎜
⎝

gradx L(x, y, z)
h(x)
g(x) + s
Z Se

⎞

⎟
⎟
⎠ = 0w =

⎛

⎜
⎜
⎝

0x
0
0
0

⎞

⎟
⎟
⎠ ∈ TwN , (5)

and (z, s) � 0, where w := (x, y, z, s) ∈ N := M× R
l × R

m × R
m . Here, we have

generated a vector field F in (5) on the product manifold N , i.e., for any w ∈ N ,
F(w) ∈ TwN ∼= TxM × R

l × R
m × R

m . We will call F : N → TN in (5) above
the KKT vector field for (RCOP). Note that for ξ = (ξx , ξy, ξz, ξs

) ∈ TwN ,

R̄w(ξ) := (Rx (ξx ), y + ξy, z + ξz, s + ξs) (6)

is a well-defined retraction on the product manifold N as long as R is a retraction on
M.

123



438 Journal of Optimization Theory and Applications (2024) 201:433–469

Now, we aim to find a singularity of the KKT vector field F on N under some
nonnegative constraints (z, s) � 0. If the Riemannian Newton method is to be applied
to (5), we must formulate the covariant derivative of F at an arbitrary w ∈ N . Before
that, we need some new symbols. Fixing a point x ∈ M, we can define two linear
operators Hx : R

l → TxM and Gx : R
m → TxM by

Hx [v] :=
l∑

i=1

vi grad hi (x), Gx [u] :=
m∑

i=1

ui grad gi (x), (7)

respectively. Then, for Hx , its adjoint operator H∗
x : TxM → R

l is given by:

H∗
x [ξ ] = (〈grad h1(x), ξ 〉x , · · · , 〈grad hl(x), ξ 〉x

)T
.

Also, G∗
x : TxM → R

m with G∗
x [ξ ] = (〈grad g1(x), ξ 〉x , · · · , 〈grad gm(x), ξ 〉x

)T .
Now, using the solutions of Exercises 5.4 and 5.13 on covariant derivatives of

vector fields on product manifolds in monograph [5], the following results can be
easily derived. Given KKT vector field F in (5) and w ∈ N , the covariant derivative
of F at w is the operator ∇F(w) : TwN → TwN given by

∇F(w)[Δw] =

⎛

⎜
⎜
⎝

Hessx L(w)[Δx] + Hx [Δy] + Gx [Δz]
H∗

x [Δx]
G∗
x [Δx] + Δs

ZΔs + SΔz

⎞

⎟
⎟
⎠ , (8)

where Δw = (Δx,Δy,Δz,Δs) ∈ TwN and Hessx L(w) is the Riemannian Hessian
of real-valued function L(·, y, z). Indeed, Hessx L(w) : TxM → TxM satisfies

Hessx L(w) = Hess f (x) +
l∑

i=1

yi Hess hi (x) +
m∑

i=1

zi Hess gi (x), (9)

where {Hess hi (x)}li=1 and {Hess gi (x)}mi=1 are Hessians of the component functions
of h and g.

3.2 Implication of Standard Assumptions

Next, we will discuss an important result about the covariant derivative of the KKT
vector field given in (8). Let A(x) := {i | gi (x) = 0} denote the active set at x ∈ M.
A prior study on Riemannian optimality conditions [2, 36] showed that the following
assumptions are meaningful. We call them the standard Riemannian assumptions for
(RCOP). Note that the x∗ and w∗ in (A2)–(A4) all refer to those in (A1).

(A1) Existence. There exists w∗ = (x∗, y∗, z∗, s∗) satisfying the Riemannian KKT
conditions (4). Here, we introduce the slack variables s∗ := −g(x∗).
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(A2) Linear Independence Constraint Qualification (LICQ).
The set {grad hi (x∗)}li=1

⋃ {grad gi (x∗)}i∈A(x∗) is linearly independent in
Tx∗M.

(A3) Strict complementarity. (z∗)i > 0 if gi (x∗) = 0 for all i = 1, · · · ,m.
(A4) Second-order sufficiency. 〈Hessx L(w∗)[ξ ], ξ 〉 > 0 for all nonzero ξ ∈ Tx∗M

satisfying 〈ξ, grad hi (x∗)〉 = 0 for i = 1, . . . , l, and 〈ξ, grad gi (x∗)〉 = 0 for
i ∈ A(x∗).

Recall the Riemannian Newton method discussed in Sect. 2.2. It can be shown that
if p∗ is a solution of equation (2) and the covariant derivative∇F (p∗) is nonsingular,
then Algorithm 1 has the local superlinear convergence [12] and local quadratic con-
vergence [13] under certain mild conditions on the map p �→ ∇F(p). Note that the
requirement of nonsingularity for the covariant derivative at the solution point is of
primary importance. Therefore, the next theorem motivates us to use the Riemannian
Newton method to solve (5).

Theorem 3.1 If the standard Riemannian assumptions (A1)–(A4) hold at some point
w∗, then the operator ∇F(w∗) in (8) is nonsingular.

Proof This proof omits all the asterisks of the variables. Define E := {1, . . . , l} and
I := {1, . . . ,m}. Take some w = (x, y, z, s) ∈ N satisfying (A1)–(A4), then we
have si = −gi (x) and zi si = 0 for all i ∈ I. For short, let A := A(x) ⊂ I. Suppose
that ∇F(w)[Δw] = 0 for some Δw = (Δx,Δy,Δz,Δs) ∈ TwN ∼= TxM × R

l ×
R
m × R

m . Δyi denotes the components of the vector Δy, as do Δzi , Δsi . To prove its
nonsingularity, we will show thatΔw = 0. Expanding the equation∇F(w)[Δw] = 0
gives

0 = Hessx L(w)[Δx] +
∑

i∈E
Δyi grad hi (x) +

∑

i∈I
Δzi grad gi (x),

0 = 〈grad hi (x),Δx〉 , for all i ∈ E,

0 = 〈grad gi (x),Δx〉 + Δsi , for all i ∈ I,

0 = ziΔsi + siΔzi , for all i ∈ I.

(10)

Strict complementarity (A3) and the last equalities above imply that Δsi = 0 for all
i ∈ A andΔzi = 0 for i ∈ I\A. Substituting those values into the system (10) reduces
it to

0 = Hessx L(w)[Δx] +
∑

i∈E
Δyi grad hi (x) +

∑

i∈A
Δzi grad gi (x),

0 = 〈grad hi (x),Δx〉 , for all i ∈ E,

0 = 〈grad gi (x),Δx〉 , for all i ∈ A,

(11)

and Δsi = −〈grad gi (x),Δx〉 for all i ∈ I\A. It follows from system (11) that
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0 = 〈Hessx L(w)[Δx] +
∑

i∈E
Δyi grad hi (x) +

∑

i∈A
Δzi grad gi (x),Δx〉

= 〈Hessx L(w)[Δx],Δx〉 +
∑

i∈E
Δyi 〈grad hi (x),Δx〉

+
∑

i∈A
Δzi 〈grad gi (x),Δx〉

= 〈Hessx L(w)[Δx],Δx〉 .

Thus, from second-order sufficiency (A4),Δx must be zero elements. And thenΔsi =
0 for all i ∈ I\A. Next, substituting Δx = 0 into the first equation in (11) yields
0 = ∑i∈E Δyi grad hi (x) +∑i∈A Δzi grad gi (x). The LICQ (A2) implies that the
coefficients Δyi for i ∈ E and Δzi for i ∈ A must be zero. This completes the proof.


�

3.3 Prototype Algorithm of RIPM

Applying the Riemannian Newton method directly to the KKT vector field F : N →
TN results in the following Newton equation (see (3) without iteration count k) at
each iteration:

∇F(w)[Δw] + F(w) = 0. (12)

As with the usual interior point method in the Euclidean setting, once the iterates
reach the boundary of the feasible region, they are forced to stick to it [33, P6]. For the
iterates to maintain a sufficient distance from the boundary, we introduce a perturbed
complementary equation with some barrier parameter μ > 0 and define the perturbed
KKT vector field:

Fμ(w) := F(w) − μê, and ê := ê(w) := (0x , 0, 0, e) . (13)

Notice that the perturbation term ê, indeed, is a special vector field onN , not a constant,
because 0x is essentially dependent on w and/or x . In fact, the covariant derivative of
the perturbed KKT vector field is the same as that of the original. From the linearity
of the connection ∇, for any w ∈ N and any μ > 0, we have

∇Fμ(w) = ∇F(w) − μ∇ ê(w) = ∇F(w), (14)

where the last equity comes from ∇ ê(w)[Δw] = (0x , 0, 0, 0) for all Δw ∈ TwN .
Applying the RiemannianNewtonmethod to perturbedKKTvector field Fμ(w) yields
the perturbed Newton equation: ∇Fμ(w)[Δw] + Fμ(w) = 0. From (13) and (14),
this equation is equivalent to

∇F(w)[Δw] + F(w) = μê, (15)
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which reduces to the ordinary Newton equation (12) as μ → 0. At this point, we can
describe a prototype of the Riemannian interior point method (RIPM) in Algorithm 2.

Algorithm 2: Prototype Algorithm of RIPM for (RCOP)
Input: An initial point w0 = (x0, y0, z0, s0) ∈ N with (z0, s0) > 0 and a retraction R onM.

γ̂ ∈ (0, 1), μ0 > 0.
Output: Sequence {wk } ⊂ N such that {wk } → w∗ and w∗ satisfies the KKT conditions (4).
Set k → 0;
while Stopping criterion not satisfied do

1. Obtain Δwk = (Δxk ,Δyk , Δzk ,Δsk ) ∈ TwkN by solving the perturbed Newton equation on
TwkN :

∇F(wk )[Δwk ] = −F(wk ) + μk ê; (16)

2. Choose γk ∈ [γ̂ , 1] and compute the step size αk defined by

min

{

1, γk min
i

{

− (sk )i
(Δsk )i

| (Δsk )i < 0

}

, γk min
i

{

− (zk )i
(Δzk )i

| (Δzk )i < 0

}}

; (17)

3. Compute the next point as wk+1 := R̄wk (αkΔwk ), see (6);
4. Choose 0 < μk+1 < μk ;
5. k → k + 1;

end

In the step 2 of Algorithm 2, we just wish to compute a step size 0 < αk � 1 to
ensure new pointwk+1 with (zk+1, sk+1) > 0. There are many schemes to achieve this
purpose. The scheme in (17) is simple but sufficient to guarantee the local convergence,
as will be proved in Sect. 5.

3.4 Solving Perturbed Newton Equation Efficiently

The challenge of Algorithm 2 is how to solve the Newton equation (16) in an efficient
manner. In this subsection, we will do this in two steps: the first step will be to turn
the original full Newton equation, which is asymmetric and consists of four variables,
into a condensed form, which is symmetric and consists of only two variables. In
the second step, an iterative method, namely the Krylov subspace method, is used to
solve the operator equations directly, avoiding the expensive computational effort of
converting them into the usual matrix equations.

3.4.1 Condensed Form of Perturbed Newton Equation

Let us consider Algorithm 2 and omit the iteration count k. Given the current pointw ∈
N with (z, s) > 0, for the KKT vector field F(w) in (5), we denote its components by
Fx , Fy, Fz, Fs in top-to-bottom order, namely Fx := gradx L(w), Fy := h(x), Fz :=
g(x) + s, Fs := ZSe. By using these symbols and the formulation of ∇F(w) in (8),
the full (perturbed) Newton equation (16) defined on TwN ∼= TxM× R

l × R
m × R

m

is expanded as:
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⎛

⎜
⎜
⎝

Hessx L(w)[Δx] + Hx [Δy] + Gx [Δz]
H∗

x [Δx]
G∗
x [Δx] + Δs

ZΔs + SΔz

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

−Fx
−Fy

−Fz
−Fs + μe

⎞

⎟
⎟
⎠ . (18)

Not only does this equation contain four variables, but there is no symmetry on the
left side of the equation, so it would be unwise to solve it just like that. By (z, s) > 0
and the fourth line of (18), we deduce Δs = Z−1 (μe − Fs − SΔz) . Substituting this
Δs into the third line of (18), we get G∗

x [Δx] − Z−1SΔz = −Z−1μe − g(x) and
thus Δz = S−1

[
Z
(
G∗
x [Δx] + Fz

)+ μe − Fs
]
. Substituting this Δz further into the

first line of (18) and combining it with the second line of (18) yield the following
condensed Newton equation, which is defined on TxM × R

l :

T (Δx,Δy) :=
(
Aw[Δx] + Hx [Δy]
H∗

x [Δx]
)

=
(
c
q

)

. (19)

where
Aw := Hessx L(w) + Gx S

−1ZG∗
x ,

c := −Fx − Gx S
−1 (ZFz + μe − Fs) , q := −Fy .

(20)

Here, c and q are constant vectors. If we defined Θ := Gx S−1ZG∗
x , then Aw =

Hessx L(w) + Θ. Note that both Θ and Hessx L(w) are operators from and to TxM.

From the discussion above, for any w ∈ N with (z, s) > 0, the operator ∇F(w) in
(8) is nonsingular if and only if the newly defined operator T in (19) is nonsingular.
Eventually, it is sufficient for us to solve the equation (19) containing only twovariables
Δx and Δy. In fact, when we consider the case of only inequality constraints in
(RCOP), then Δy vanishes, and only a linear equation

Aw[Δx] = c (21)

on TxM needs to be solved. More importantly, the operator T in the left side of
(19) is symmetric, or say self-adjoint (although often indefinite). It is trivial to check
that operators Θ and Aw are self-adjoint on TxM; and thus T is self-adjoint on the
product vector space TxM × R

l equipped with inner product
〈
(ξx , ξy), (ηx , ηy)

〉 :=
〈ξx , ηx 〉x + ξ Ty ηy . We can also see that (19) is a saddle point problem defined on
Hilbert spaces from its special structure.

3.4.2 Krylov Subspace Methods on Tangent Space

Next, how to solve (19) efficiently becomes critical. For simplicity, we consider the
case of only inequality constraints in (RCOP), thenwewill solve operator equation (21)
with a self-adjoint operatorAw : TxM → TxM. Let d := dim TxM. Unfortunately,
in most cases of practical applications, the Riemannian situation leaves us with no
explicit matrix form available forAw. This means that we can only accessA (subscript
w omitted) by inputting a vector v to return Av.

123



Journal of Optimization Theory and Applications (2024) 201:433–469 443

A general approach is first to find the matrix representation Â for A under some
basis of TxM. In detail, the full process of this approach is as follows:

(Step 1) Obtain d random independent vectors on TxM.
(Step 2) Obtain an orthonormal basis {ui }di=1 of TxM by the modified Gram-Schmidt

algorithm.
(Step 3) Compute [Â]i j := 〈Au j , ui

〉
x for 1 � i � j � d due to symmetry, then we

obtain the matrix representation Â ∈ R
d×d .

(Step 4) Compute [ĉ]i := 〈c, ui 〉x for 1 � i � d, then we obtain the vector represen-
tation ĉ ∈ R

d .
(Step 5) Using arbitrary linear solver to get solution Δx̂ ∈ R

d from matrix equation
ÂΔx̂ = ĉ.

(Step 6) Recovery the tangent vector Δx ∈ TxM by Δx =∑d
i=1(Δx̂)i ui .

In Algorithm 2, at each iteration, x is updated, and thus, the tangent space TxM
changes. Thus, the above six steps need to be done all over again. Obviously, this
approach is so expensive that it is not feasible in practice.

An ideal approach is to use an iterativemethod, such as theKrylov subspacemethod
(e.g., conjugate gradients method [5, Chapter 6.3]), on TxM directly. Such a method
does not explicitly require a matrix representation Â forA. In general, it only needs to
call an abstract linear operator v �→ Av. SinceA in (20) is self-adjoint but indefinite,
for solving operator equation (21), we will use the Conjugate Residual (CR) method
(see [29, ALGORITHM 6.20]) as stated in Algorithm 3.

Algorithm 3: Conjugate Residual (CR) Method on Tangent Spaces for (21)
Input: Symmetric invertible linear operator A : TxM → TxM, nonzero c ∈ TxM and an initial

point v0 ∈ TxM.
Output: Sequence {vn} ⊂ TxM such that {vn} → v∗ andAv∗ = c.
Set n → 0, r0 := c − Av0, p0 := r0 and computeAr0,Ap0 ;
while stopping criterion not satisfied do

1. Update number αn := 〈rn ,Arn〉x/〈Apn ,Apn〉x ; // Step length
2. Set vn+1 := vn + αn pn ; // Iterate point
3. Update rn+1 := rn − αnApn ; // Residual
4. ComputeArn+1 ; // This is the only call to A in while loop
5. Update number βn := 〈rn+1,Arn+1〉x/〈rn ,Arn〉x ;
6. Set pn+1 := rn+1 + βn pn ; // Conjugate direction
7. ComputeApn+1 := Arn+1 + βnApn ; // No need to call A here
8. n → n + 1;

end

A significant feature is that the iterate points vk , conjugate directions pk , and resid-
ual vectors rk := Avk − c are all contained in TxM. Usually, the initial point v0 is the
zero element of TxM; the iteration terminateswhen the relative residual ‖rk‖ /‖c‖ � ε

for some threshold ε > 0, or some maximum number of iterates is reached.
The discussion of the above two approaches can be naturally extended to the case

containing equality constraints in (RCOP), where we consider T on TxM×R
l instead

of A on TxM.
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4 Preliminaries and Auxiliary Results

This section introduces the useful results that are indispensable to our subsequent
discussion.

Remark 4.1 For a retraction R on M and x ∈ M, by DRx (0x ) = idTxM and the
inverse function theorem, there exists a neighborhood V of 0x in TxM such that Rx is
a diffeomorphism on V ; thus, R−1

x (y) is well defined for all y ∈ M sufficiently close
to x . In this case, Rx (V ) ⊂ M is called a retractive neighborhood of x . Furthermore,
the existence of a totally retractive neighborhood [38, Theorem 2] shows that for any
x̄ ∈ M there is a neighborhood W of x̄ such that R−1

x (y) is well defined for all
x, y ∈ W . In what follows, we will suppose that an appropriate neighborhood has
been chosen by default for the well-definedness of R−1

x (y).

4.1 Vector Transport and Parallel Transport

Define the Whitney sum TM ⊕ TM := {(η, ξ) : η, ξ ∈ TxM, x ∈ M} . A smooth
map T : TM ⊕ TM → TM : (η, ξ) �→ Tη(ξ), is called a vector transport on M
if there exists an associated retraction R on M such that T satisfies the following
properties for all x ∈ M:

1. Associated retraction. Tη (ξ) ∈ TRx (η)M for all η, ξ ∈ TxM.
2. Consistency. T0x (ξ) = ξ for all ξ ∈ TxM.
3. Linearity. Tη (aξ + bζ ) = aTη (ξ)+bTη (ζ ) for all a, b ∈ R and η, ξ, ζ ∈ TxM.

Thus, fixing any η ∈ TxM, the map Tη : TxM → TRx (η)M : ξ �→ Tη(ξ), is a linear
operator. Additionally, T is isometric if 〈Tη(ξ),Tη(ζ )〉 = 〈ξ, ζ 〉 holds, for all x ∈ M
and all ξ, ζ, η ∈ TxM. In other words, for any η ∈ TxM, the adjoint and the inverse
of Tη coincide, i.e., T∗

η = T−1
η . There are two important classes of vector transport as

follows. Let R be a retraction onM.

(1) The differentiated retraction defined by

Tη(ξ) := DRx (η)[ξ ], η, ξ ∈ TxM, x ∈ M, (22)

is a valid vector transport [1, equation (8.6)].
(2) Given a smooth curve γ : [0, 1] → M and t0, t1 ∈ [0, 1], the parallel transport

from the tangent space at γ (t0) to the tangent space at γ (t1) along γ, is a linear
operator Pt1→t0

γ : Tγ (t0)M → Tγ (t1)M defined by Pt1→t0
γ (ξ) = Z (t1), where Z

is the unique parallel vector field such that Z (t0) = ξ . Then, for any x ∈ M, η ∈
TxM, then

Tη (ξ) := P1→0
γ (ξ) (23)

is a valid vector transport [1, equation (8.2)], where Pγ denotes the parallel trans-
port along the curve t �→ γ (t) := Rx (tη). We often omit the superscript 1→0 if
it is clear from the context. In particular, parallel transport is isometric.
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4.2 Lipschitz Continuity with respect to Vector Transports

Multiple Riemannian versions of Lipschitz continuity have been defined, e.g., [5, Sect.
10.4]. Here, we consider Lipschitz continuitywith respect to a vector transport. Inwhat
follows, let M be a Riemannian manifold endowed with a vector transport T and an
associated retraction R. We first consider the Lipschitz continuous gradient of scale
field f .

Definition 4.1 ([17, Definition 5.2.1]) A function f : M → R is Lipschitz continu-
ously differentiable with respect to T in U ⊂ M if it is differentiable and there exists
a constant κ > 0 such that, for all x, y ∈ U ,

∥
∥grad f (y) − Tη[grad f (x)]∥∥ � κ‖η‖,

where η = R−1
x y.

Going one degree higher, let us now discuss the Lipschitz continuity of Hessian
operators. Throughout this paper, for a linear operatorA : E → E ′ between two finite-
dimensional normed vector spaces E and E ′, the (operator) norm of A is defined by
‖A‖ := sup {‖Av‖E ′ : v ∈ E, ‖v‖E = 1 , or, ‖v‖E � 1} . The inverse of Tη is needed
in the following definitions, so we can assume that vector transport T is isometric, e.g.,
parallel transport in (23). In fact, there are many ways to construct isometric vector
transports; see [18, Sect. 2.3].

Definition 4.2 ([18, Assumption 3]) A function f : M → R is twice Lipschitz contin-
uously differentiable with respect to T in U ⊂ M if it is twice differentiable and there
exists a constant κ > 0 such that, for all x, y ∈ U , ‖Hess f (y)−Tη Hess f (x)T−1

η ‖ �
κd(x, y), where η = R−1

x y.

Lemma 4.1 ([18, Lemma 4]) If f : M → R is C3, then for any x̄ ∈ M and any
isometric vector transport T, there exists a neighborhood U of x̄ such that f is twice
Lipschitz continuously differentiable with respect to T in U .

If the operator, Hess f (x), above is replaced by a general covariant derivative
∇F(x), we can get the next results in a similar way. Lemma 4.2 can be proven in the
same way as Lemma 4.1.

Definition 4.3 Given a vector field F on M. The map x �→ ∇F(x) is Lipschitz
continuous with respect to T in U ⊂ M if there exists a constant κ > 0 such that, for
all x, y ∈ U , it holds that ‖∇F(y) − Tη∇F(x)T−1

η ‖ � κd(x, y), where η = R−1
x y.

Lemma 4.2 If F is a C2 vector field, then for any x̄ ∈ M and any isometric vector
transport T, there exists a neighborhood U of x̄ such that the map x �→ ∇F(x) is
Lipschitz continuous with respect to T in U .

4.3 Auxiliary Lemmas

Notice that in the previous subsection on the definitions of Lipschitz continuity, we
used ‖η‖ with η = R−1

x y or d(x, y) to denote the upper bound on the right-hand side.
The next lemma shows that the two are not essentially different. WhenM = R

n , both
reduce to ‖x − y‖.
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Lemma 4.3 ([18, Lemma 2]) Let M be a Riemannian manifold with a retraction R
and let x̄ ∈ M. Then,

(i) there exist a0, a1, δa0,a1 > 0 such that for all x in a sufficiently small neighbor-
hood of x̄ and all ξ, η ∈ TxM with ‖ξ‖, ‖η‖ � δa0,a1 , one has a0‖ξ − η‖ �
d(Rx (η),Rx (ξ)) � a1‖ξ − η‖. In particular, a0‖ξ‖ � d(x,Rx (ξ)) � a1‖ξ‖
when η = 0;

(ii) there exist a0, a1 > 0 such that for all x in a sufficiently small neighborhood of
x̄ , one has a0‖ξ‖ � d(x, x̄) � a1‖ξ‖ where ξ = R−1

x̄ (x).

The next lemma is the fundamental theorem of calculus in the Riemannian case.

Lemma 4.4 ([18, Lemma 8]) Let F be a C1 vector field and x̄ ∈ M. Then there exist
a neighborhood U of x̄ and a constant c1 � 0 such that for all x, y ∈ U ,

∥
∥
∥
∥P

0→1
γ [F(y)] − F(x) −

∫ 1

0
P0→t

γ ∇F(γ (t))Pt→0
γ [η]dt

∥
∥
∥
∥ � c1‖η‖2,

where η = R−1
x (y) and Pγ is the parallel transport along the curve γ (t) := Rx (tη).

Moreover, if R = Exp, then indeed c1 = 0 above (see [13, equation (2.4)]).

The next lemma is a Riemannian extension of some important estimates, usually
used to analyze Newton methods [8, Lemma 4.1.12].

Lemma 4.5 Let F be a C2 vector field and x̄ ∈ M. Then, there exist a neighborhood
U of x̄ and a constant c2 > 0 such that for all x ∈ U ,

∥
∥
∥P0→1

γ [F(x)] − F(x̄) − ∇F(x̄)[η]
∥
∥
∥ � c2d

2(x̄, x),

where η = R−1
x̄ x and Pγ is the parallel transport along the curve γ (t) := Rx̄ (tη).

Proof Let LHS := ‖P0→1
γ [F(x)] − F(x̄) − ∇F(x̄)[η]‖. It follows that

LHS

�
∥
∥
∥
∥P

0→1
γ [F(x)] − F(x̄) −

∫ 1

0
P0→t

γ ∇F(γ (t))Pt→0
γ [η]dt

∥
∥
∥
∥

+
∥
∥
∥
∥

∫ 1

0
P0→t

γ ∇F(γ (t))Pt→0
γ [η]dt − ∇F(x̄)[η]

∥
∥
∥
∥

� c1‖η‖2 +
∥
∥
∥

∫ 1

0

(
P0→t

γ ∇F(γ (t))Pt→0
γ − ∇F(x̄)

)
[η]dt

∥
∥
∥. (by Lemma 4.4)
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Let θ :=
∥
∥
∥
∫ 1
0

(
P0→t

γ ∇F(γ (t))Pt→0
γ − ∇F(x̄)

)
[η]dt

∥
∥
∥. Note that

θ �
∫ 1

0

∥
∥
∥P0→t

γ ∇F(γ (t))Pt→0
γ − ∇F(x̄)

∥
∥
∥ ‖η‖ dt

�
∫ 1

0
c0d(x̄,Rx̄ (tη)) ‖η‖ dt (by Lemma 4.2)

�
∫ 1

0
c0a1t‖η‖ ‖η‖ dt = 1

2
c0a1‖η‖2. (by (i) of Lemma 4.3)

Combining the above results yields

LHS � (c1 + 1

2
c0a1)‖η‖2 � (c1 + 1

2
c0a1)/a

2
0d

2(x̄, x),

where the last inequality comes from (ii) of Lemma 4.3. Letting c2 := (c1+ 1
2c0a1)/a

2
0

completes the proof. 
�
We end this section with the following useful lemmas.

Lemma 4.6 ([12, Lemma 3.2]) Given a vector field F onM. If the map p �→ ∇F(p)
is continuous at p∗ and ∇F(p∗) is nonsingular, then there exist a neighborhood U
of p∗ and a constant Ξ > 0 such that, for all p ∈ U , ∇F(p) is nonsingular and∥
∥∇F(p)−1

∥
∥ � Ξ .

Lemma 4.7 ([14, Lemma 14.5]) Let F be a C2 vector field on M and p∗ ∈ M. If
F(p∗) = 0 and ∇F(p∗) is nonsingular, then there exist a neighborhood U of p∗ and
constants c3, c4 > 0 such that, for all p ∈ U , c3d(p, p∗) � ‖F(p)‖ � c4d(p, p∗).

Lemma 4.8 ([7, Lemma 3.5]) Let u ∈ TpM such that Expp(u) exists and v ∈
TpM ∼= Tp

(
TpM

)
. Then, 〈D Expp(u)[u],D Expp(u)[v]〉 = 〈u, v〉. In particular,

∥
∥D Expp(λu)[u]∥∥ = ‖u‖ holds all λ � 0.

5 Local Convergence

Here, for any two nonnegative sequences {uk} and {vk}, we write uk = O(vk) if there
is a constant M > 0 such that uk � Mvk for all sufficiently large k, and we write
uk = o(vk) if vk > 0 and the sequence of ratios {uk/vk} approaches zero. In this
section, we will establish local convergence of our prototype Algorithm 2 of RIPM.

5.1 Perturbed Damped Riemannian NewtonMethod

Wewill rely on an application of the so-called perturbed damped Riemannian Newton
method for solving the singularity problem (2), which can be stated as Algorithm 4.

In contrast to the standard Riemannian Newton method described in Algorithm 1,
the term “perturbed” means that we solve a Newton equation with a perturbed term
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Algorithm 4: Perturbed Damped Riemannian Newton Method for (2)
Input: A vector field F ∈ X(M), an initial point p0 ∈ M and a retraction R onM. Set μ0 > 0.
Output: Sequence {pk } ⊂ M such that {pk } → p∗ and F(p∗) = 0p∗ .
Set k → 0;
while Stopping criterion not satisfied do

1. Obtain ξk ∈ TpkM by solving the perturbed Newton equation:

∇F(pk )[ξk ] = −F(pk ) + μk ê; (24)

2. Choose a (damped) step size 0 < αk � 1;
3. Compute the next point as pk+1 := Rpk (αkξk );
4. Choose 0 < μk+1 < μk ;
5. k → k + 1;

end

μk ê, while “damped” means using αk instead of unit steps. It is well known that
Algorithm 1 is locally superlinearly [12] and quadratically [13] convergent under the
following Riemannian Newton assumptions:

(B1) There exists p∗ ∈ M such that F(p∗) = 0p∗ ;
(B2) The covariant derivative ∇F(p∗) is nonsingular;
(B3) The vector field F is C2.

As Proposition 5.1 shows, Algorithm 4 also has the same convergence properties
as Algorithm 1 if we control μk and αk according to the two schemes that Proposition
5.1 gives. We can see that either scheme will have μk → 0 and αk → 1, which makes
Algorithm 4 eventually reduce to Algorithm 1 when k is sufficiently large.

Proposition 5.1 (Local convergence of Algorithm 4) Consider the perturbed damped
Riemannian Newton method described in Algorithm 4 for the singularity problem (2).
Let (B1)–(B3) hold. Choose parametersμk, αk as follows; then there exists a constant
δ > 0 such that for all p0 ∈ Mwith d(p0, p∗) < δ, the sequence {pk} is well defined.
Furthermore,

(1) if we choose μk = o(‖F(pk)‖) and αk → 1, then pk → p∗ superlinearly;
(2) if we choose μk = O(‖F(pk)‖2) and 1 − αk = O(‖F(pk)‖), then pk → p∗

quadratically.

Proof By (B2)–(B3), Lemmas 4.2 and 4.6, we can let pk be sufficiently close to p∗
such that ∇F(pk) is nonsingular, and

∥
∥∇F(pk)−1

∥
∥ � Ξ for some constant Ξ . Then,

the next iterate point,

pk+1 := Rpk [αk∇F(pk)
−1(−F(pk) + μk ê)],

is well defined in Algorithm 4, and it follows from p∗ = Rpk (η) with η := R−1
pk p

∗
and (i) of Lemma 4.3 that

d(pk+1, p
∗) � a1‖η − αk∇F(pk)

−1(−F(pk) + μk ê)‖
= a1‖η + αk∇F(pk)

−1(F(pk) − μk ê)‖. (25)
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Let rk := η + αk∇F(pk)−1(F(pk) − μk ê). Algebraic manipulations show that

rk = (1 − αk)η + αk∇F(pk)
−1[∇F(pk)η + F(pk) − P0→1

γ F(p∗) − μk ê],

where Pγ is the parallel transport along the curve γ (t) = Rpk (tη) and F(p∗) = 0.
Thus, using ‖η‖ � d(pk, p∗)/a0 from (ii) of Lemmas 4.3 and 4.5, we have

‖rk‖ � (1 − αk)‖η‖ + αk‖∇F(pk)
−1‖‖P0→1

γ F(p∗) − F(pk) − ∇F(pk)η‖
+ αk‖∇F(pk)

−1‖‖ê‖μk

� (1 − αk)d(pk, p
∗)/a0 + αk‖∇F(pk)

−1‖c2d2(pk, p∗)
+ αk‖∇F(pk)

−1‖‖ê‖μk

� (1 − αk)d(pk, p
∗)/a0 + Ξc2d

2(pk, p
∗) + Ξ‖ê‖μk .

Combining the above with (25), we conclude that

d(pk+1, p
∗) � κ1(1 − αk)d(pk, p

∗) + κ2d
2(pk, p

∗) + κ3μk (26)

for some positive constants κ1, κ2, κ3. On the other hand, by Lemma 4.7, we have

‖F(pk)‖ = O(d(pk, p
∗)). (27)

In what follows, we prove assertions (1) and (2).
(1) Suppose that αk → 1 and μk = o(‖F(pk)‖), which together with (27) imply

μk = o(d(pk, p∗)). By (26), we have

d(pk+1, p∗)
d(pk, p∗)

� κ1(1 − αk) + κ2d(pk, p
∗) + κ3

μk

d(pk, p∗)
. (28)

We can take δ sufficiently small and k sufficiently large, if necessary, to conclude that
d(pk+1, p∗) < 1

2d(pk, p∗) < δ. Thus, pk+1 ∈ Bδ(p∗), the open ball of radius δ

centered at p∗ on M. By induction, it is easy to show that the sequence {pk} is well
defined and converges to p∗. Taking the limit of both sides of (28) proves superlinear
convergence.

(2) Again, we start from (26) and rewrite it as:

d(pk+1, p
∗) = (1 − αk)O(d(pk, p

∗)) + O(d2(pk, p
∗)) + O(μk). (29)

Suppose that 1 − αk = O(‖F(pk)‖) and μk = O(‖F(pk)‖2). Using (27), the above
reduces to d(pk+1, p∗) = O(d2(pk, p∗)). This implies that there exists a constant
ν such that d(pk+1, p∗) � νd2(pk, p∗), and hence, d(pk+1, p∗) � νd2(pk, p∗) �
νδ2 < δ, if δ is sufficiently small. Again, by induction, {pk} converges to p∗ quadrat-
ically. 
�
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5.2 Local Convergence of Algorithm 2

Next, lemma shows the relationship between the parameter γk and step size αk in
Algorithm 2.

Lemma 5.1 Consider the Algorithm 2 for solving the problem (RCOP). Let (A1) and
(A3) hold at some w∗ = (x∗, y∗, z∗, s∗) and αk be as in (17). Define a constant,

Π := 2max

{

max
i

{
1/(s∗)i | (s∗)i > 0

}
,max

i

{
1/(z∗)i | (z∗)i > 0

}
}

.

For γk ∈ (0, 1), if Π ‖Δwk‖ � γk, then 0 � 1 − αk � (1 − γk) + Π ‖Δwk‖ .

Proof Notice that the fourth line of (18) yields

S−1
k Δsk + Z−1

k Δzk = μk(Sk Zk)
−1e − e,

which is exactly the same as in the usual interior point method in the Euclidean setting.
Thus, the proof entails directly applying [35, Lemma 3 and 4] for the Euclidean case
to the Riemannian case. 
�

Now, let us establish the local convergence of our Algorithm 2 in a way that repli-
cates Proposition 5.1 except for taking account of parameter γk .

Theorem 5.1 (Local convergence of prototype Algorithm 2)Consider the Algorithm 2
for solving the problem (RCOP). Let (A1)–(A4) hold at some w∗. Choose parameters
μk, γk as follows; then there exists a constant δ > 0 such that, for all w0 ∈ N with
d(w0, w

∗) < δ, the sequence {wk} is well defined. Furthermore,
(1) if we choose μk = o(‖F(wk)‖) and γk → 1, then wk → w∗ superlinearly;
(2) if we choose μk = O(‖F(wk)‖2) and 1 − γk = O(‖F(wk)‖), then wk → w∗

quadratically.

Proof We only prove (2) because (1) can be proven in the same way. Let wk be such
that d(wk, w

∗) < δ for sufficiently small δ. From Proposition 3.1, (A1)–(A4) shows
that the KKT vector field F satisfies (B1)–(B3); thus, the discussion in the proof of
Proposition 5.1 applies to KKT vector field F as well, simply by replacing the symbol
p with w. Since we choose μk = O(‖F(wk)‖2), and ‖F(wk)‖ = O(d(wk, w

∗)) by
(27), we obtain μk = O(d2(wk, w

∗)). Thus,

‖Δwk‖ =
∥
∥
∥∇F(wk)

−1(−F(wk) + μk ê)
∥
∥
∥ (by (16))

� Ξ(‖F(wk)‖ + μk‖ê‖) (by Lemma 4.6)

� O(‖F(wk)‖) + O(μk)

= O(d(wk, w
∗)) + O(d2(wk, w

∗)) = O(d(wk, w
∗)).

Since δ is sufficiently small, from the above inequalities, the condition of Lemma
5.1 is satisfied, i.e., ‖Δwk‖ � γ̂ /Π � γk/Π for a constant γ̂ ∈ (0, 1). Hence, by
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1 − γk = O(‖F (wk)‖), one has 1 − αk � (1 − γk) + Π ‖Δwk‖ = (1 − γk) +
O(d(wk, w

∗)) = O(d(wk, w
∗)). Finally, from (29), we have d(wk+1, w

∗) = (1 −
αk)O(d(wk, w

∗))+ O(d2(wk, w
∗))+ O(μk) = O(d2(wk, w

∗)). This completes the
proof. 
�

Algorithm 2 guaranteed the local convergence, but we are more interested in its
globally convergent version (described in the next section). We still provide a simple
example of Algorithm 2 online.2 where from (2) of Theorem 5.1, in practice we set
parameters μk+1 = min{μk/1.5, 0.5 ‖F(wk)‖2}; and γk+1 = max{γ̂ , 1 − ‖F(wk)‖}
with γ̂ = 0.5.

6 Global Algorithm

The globally convergent version of our RIPM uses the classical line search described
in [11]. The following considerations and definitions are needed in order to describe
it compactly. For simplicity, we often omit the subscript of iteration count k.

Given the current point w = (x, y, z, s) and Δw = (Δx,Δy,Δz,Δs), the
next iterate is obtained along a curve on product manifold N , i.e., α �→ w(α) :=
R̄w(αΔw) with some step size α > 0, see (6) for R̄w. By introducing w(α) =
(x(α), y(α), z(α), s(α)), we have x(α) = Rx (αΔx), y(α) = y + αΔy, z(α) =
z + αΔz, and s(α) = s + αΔs. For a given starting point w0 ∈ N with (z0, s0) > 0,
let us set two constants

τ1 := min(Z0S0e)/(z
T
0 s0/m), τ2 := zT0 s0/ ‖F(w0)‖ .

As well, define two functions f I (α) := min(Z(α)S(α)e) − γ τ1z(α)T s(α)/m, and
f I I (α) := z(α)T s(α)−γ τ2‖F(w(α))‖,where γ ∈ (0, 1) is a constant. For i = I , I I ,
define

αi := max
α∈(0,1]

{
α : f i (t) � 0, for all t ∈ (0, α]

}
, (30)

i.e., αi are either one or the smallest positive root for the functions f i (α) in (0, 1].
Moreover, we define the merit function ϕ : N → R by ϕ(w) := ‖F(w)‖2;

accordingly, we have grad ϕ(w) = 2∇F(w)∗[F(w)], where symbol ∗ means its
adjoint operator. Let ‖ · ‖1, ‖ · ‖2 be l1, l2 vector norms. Note that ‖F(w)‖2w =
∥
∥gradx L(w)

∥
∥2
x + ‖h(x)‖22 + ‖g(x) + s‖22 + ‖ZSe‖22 by (5). Moreover, for any non-

negative z, s ∈ R
m , one has ‖ZSe‖2 � zT s = ‖ZSe‖1 � √

m ‖ZSe‖2 . Hence,

‖ZSe‖2 /
√
m � zT s/

√
m � ‖ZSe‖2 � ‖F(w)‖. (31)

Now, using the above definitions, the globally convergent RIPM can be stated as
Algorithm 5.

Compared to the prototype Algorithm 2, the global Algorithm 5 involves a more
elaborate choice of step size. Regarding the centrality condition (3a), it does not differ

2 See .../LocalRIPM/PrototypeRIPM.m in https://doi.org/10.5281/zenodo.10612799.
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Algorithm 5: Global Convergent Algorithm of RIPM for (RCOP)
Input: An initial point w0 = (x0, y0, z0, s0) ∈ N with (z0, s0) > 0 and a retraction R onM.

θ ∈ (0, 1), β ∈ (0, 0.5], γ−1 ∈ (0.5, 1).
Output: Sequence {wk } ⊂ N such that {wk } → w∗ and w∗ satisfies the KKT conditions (4).
Set k → 0;
while Stopping criterion not satisfied do

1. Set σk ∈ (0, 1), ρk ∈ [zTk sk/m, ‖F(wk )‖ /
√
m];

2. Obtain Δwk = (Δxk , Δyk , Δzk ,Δsk ) ∈ TwkN by solving the following linear equation:

∇F(wk )[Δwk ] = −F(wk ) + σkρk ê; (32)

3. Step size selection:
(3a) Centrality condition: Set γk ∈ (0.5, γk−1) and ᾱk = min{α I

k , α I I
k } from (30);

(3b) Sufficient decrease condition: Let αk := ᾱk ;
while αk does not satisfy the condition ϕ(R̄wk (αkΔwk )) − ϕ(wk ) � αkβ 〈grad ϕk , Δwk 〉 do

αk := θαk ;
end
4. Compute the next point as wk+1 := R̄wk (αkΔwk );
5. k → k + 1;

end

in any way from the Euclidean setting; thus, references [3, 9, 11] show that ᾱk is
well-defined, thereby ensuring that zk , sk are positive. In the following, we focus on
the sufficient decrease (Armijo) condition (3b):

ϕ(R̄wk (αkΔwk)) − ϕ(wk) � αkβ 〈grad ϕk,Δwk〉 , (33)

where grad ϕk ≡ grad ϕ (wk) for short. With a slight abuse of notation ϕ, at the
current point w and direction Δw, we define a real-to-real function α �→ ϕ(α) :=
ϕ
(
R̄w(αΔw)

)
; then, it follows from the definition of a retraction and the chain rule

that

ϕ′(0) = Dϕ(R̄w(0))
[
DR̄w(0)[Δw]] = Dϕ(w)[Δw] = 〈grad ϕ(w),Δw〉.

Hence, ϕ′
k(0) = 〈grad ϕk,Δwk〉 at the k-th iterate wk , and then, the Armijo condition

(33) reads ϕk(αk) − ϕk(0) � αkβϕ′
k(0) as usual. If ϕ′

k(0) < 0, the backtracking loop
in (3b) of Algorithm 5 will eventually stop [26, Lemma 3.1]. The next lemma shows
the condition under which the Newton direction Δwk generated by (32) ensures the
descent of the merit function.

Lemma 6.1 If the direction Δwk is the solution of equation (32), then

〈grad ϕ(wk),Δwk〉 = 2(−‖F(wk)‖2 + σkρk z
T
k sk).

In this case, Δwk is a descent direction for ϕ(w) at wk if and only if ρk <

‖F(wk)‖2/σk zTk sk .
Proof The iteration count k is omitted. Let Δw be given by (32). Then, we
have 〈grad ϕ(w),Δw〉 = 〈2∇F(w)∗[F(w)],Δw〉 = 2〈F(w),∇F(w)[Δw]〉 =
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2〈F(w),−F(w) + σρê〉 = 2(−〈F(w), F(w)〉 + σρ〈F(w), ê〉). Then, by definition
of ê in (13), 〈F(w), ê〉 = 〈ZSe, e〉 = zT s completes the proof. 
�

The next proposition shows that Algorithm 5 can generate the monotonically non-
increasing sequence {ϕk}. Note that ϕk+1 ≡ ϕk (αk) and ϕk ≡ ϕk(0) ≡ ϕ (wk).

Proposition 6.1 If ‖F(wk)‖ �= 0, then the direction Δwk generated by Algorithm 5 is
a descent direction for ϕ(w) at wk . Moreover, if the Armijo condition (33) is satisfied,
then

ϕk(αk) � [1 − 2αkβ(1 − σk)]ϕk(0).

Thus, the sequence {ϕk} is monotonically nonincreasing.
Proof The iteration count k is omitted. Suppose that ρ � ‖F(w)‖ /

√
m and Δw is

given by (32), we have

ϕ′(0) = 〈grad ϕ(w),Δw〉 = 2(−ϕ(w) + σρzT s) (by Lemma 6.1)

� 2(−ϕ(w) + σ ‖F(w)‖ zT s/√m)

� 2(−ϕ(w) + σ ‖F(w)‖2) (by (31))

= −2(1 − σ)ϕ(w) < 0. (34)

Thus, in Algorithm 5, Δw is a descent direction for the merit function ϕ at w. Alter-
natively, by Lemma 6.1, it is sufficient to show that ‖F(w)‖/√m < ‖F(w)‖2/σ zT s.
By σ zT s < zT s � √

m‖F(w)‖; then, 1/√m < ‖F(w)‖/σ zT s. Multiplying both
sides by ‖F(w)‖ yields the result.

Moreover, if condition (33) is satisfied, then by (34), we have ϕ(α) � ϕ(0) +
αβ〈grad ϕ(w),Δw〉 � ϕ(0) + αβ(−2(1 − σ)ϕ(0)) = [1 − 2αβ(1 − σ)]ϕ(0). Note
that in Algorithm 5, we set β ∈ (0, 1/2], σ ∈ (0, 1), and α ∈ (0, 1], which imply that
the sequence {ϕk} is monotonically nonincreasing. 
�

Finally, we need to make the following assumptions. For ε � 0, let Ω(ε) :={
w ∈ N | ε � ϕ(w) � ϕ0,min(ZSe)/(zT s/m) � τ1/2, zT s/‖F(w)‖ � τ2/2

}
.

(C1) In the set Ω(0), f , h, and g are smooth functions; {grad hi (x)}li=1 is linearly
independent for all x ; and the map w �→ ∇F(w) is Lipschitz continuous (with
respect to parallel transport);

(C2) The sequences {xk} and {zk} are bounded [3, 10];
(C3) In any compact subset of Ω(0), ∇F(w) is nonsingular.

Given the above assumptions, we can now prove the following statement.

Theorem 6.1 (Global Convergence of RIPM) Let {wk} be generated by Algorithm 5
with R = Exp and {σk} ⊂ (0, 1) be bounded away from zero and one. Let ϕ be
Lipschitz continuous on Ω(0). If (C1)–(C3) hold, then {‖F(wk)‖} converges to zero.
Moreover, if w∗ is a limit point of sequence {wk}, then w∗ satisfies Riemannian KKT
conditions (4).

The proof of the above theoremwill be given in the next section. Note that although
the exponentialmap is used in the proof, the numerical experiments indicate that global
convergence may hold for a general retraction R.
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7 Proof of Global Convergence

In this section, our goal is to prove the global convergence Theorem6.1.Wewill follow
the proof procedure in [11], which discussed Algorithm 5 whenM = R

n in (RCOP),
and we call the algorithm in [11] the Euclidean Interior Point Method (EIPM). In what
follows, we will omit similar content because of space limitations and focus on the
difficulties encountered when adapting the proof of EIPM to RIPM. In particular, we
will make these difficulties as tractable as in EIPM by proving a series of propositions
in Sect. 7.1.

7.1 Continuity of Some Special Scalar Fields

To show the boundedness of the sequences generated by Algorithm 5, we need the
continuity of some special scalar fields on manifoldM. The claims of this subsection
are trivial ifM = R

n , but they need to be treated carefully for general M.
If we assign a linear operator Ax : TxM → TxM to each x ∈ M, then the map

x �→ ‖Ax‖ := sup
{‖Axv‖x | v ∈ TxM, ‖v‖x = 1, or, ‖v‖x � 1

}
is a scalar field

on M; but notice that the operator norm ‖ · ‖ depends on x . Let Sym (d) denote the
set of symmetric matrices of order d, and ‖ · ‖F, ‖ · ‖2 denote the Frobenius norm and
the spectral norm, respectively, applied to a given matrix.

Lemma 7.1 Let M be an n-dimensional Riemannian manifold. Let x ∈ M and Ax

be a linear operator on TxM. Choose an orthonormal basis of TxM with respect to
〈·, ·〉x , and let Âx ∈ R

n×n denote the matrix representation of Ax under the basis.
Then, ‖Âx‖2, ‖Âx‖F are invariant under a change of orthonormal basis; moreover,
‖Ax‖ = ‖Âx‖2 � ‖Âx‖F.
Proof Suppose that there are two orthonormal bases {Ei }ni=1, {E ′

i }ni=1 on TxM. With
respect to them, let P ∈ R

n×n denote the change-of-basis matrix, i.e., [P]k j :=
〈E ′

j , Ek〉x , for 1 � k, j � n; then, P is orthogonal. Let Âx , Â′
x ∈ R

n×n denote the
matrix representations of Ax under the two bases, respectively.

We have Â′
x = P−1Âx P. Then, ‖Â′

x‖ = ‖P−1Âx P‖ = ‖Âx‖ holds for the
Frobenius norm or the spectral norm. Therefore, the values ‖Âx‖2 and ‖Âx‖F are
invariant under a change of orthonormal basis. Now, consider an orthonormal basis
{Ei }ni=1 on TxM. For any y ∈ TxM, its vector representation ŷ ∈ R

n is defined by

y = ∑n
i=1 ŷi Ei . Accordingly, we have Âx y = Âx ŷ, i.e., Ax y = ∑n

i=1(Âx ŷ)i Ei ,
and from the orthonormal property of the basis, we have

‖Ax y‖2x =
∥
∥
∥
∥
∥

n∑

i=1

(Âx ŷ)i Ei

∥
∥
∥
∥
∥

2

x

=
n∑

i=1

(Âx ŷ)
2
i = ‖Âx ŷ‖22.

Thus, ‖Ax y‖x = ‖Âx ŷ‖2 for any y ∈ TxM. Finally, we have

‖Ax‖ = sup
y∈TxM,‖y‖x=1

‖Ax y‖x = sup
ŷ∈Rn ,‖ŷ‖2=1

‖Âx ŷ‖2 = ‖Âx‖2.
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It is clear that ‖X‖2 � ‖X‖F for any matrix X . 
�
Yet, we have not clarified the continuity about x �→ ‖Ax‖. The following proposi-

tion proves the continuity of an important case of Ax that appears in (RCOP).

Proposition 7.1 Consider f in (RCOP). Let ˆHess f (x) ∈ Sym (d) denote the matrix
representation of Hess f (x) under an arbitrary orthonormal basis of TxM. Then,
x �→ ‖ ˆHess f (x)‖ is a continuous scalar field on M for ‖ · ‖F or ‖ · ‖2. Moreover,
x �→ ‖Hess f (x)‖ is a continuous scalar field on M.

Proof Lemma 7.1 shows that x �→ ‖ ˆHess f (x)‖ is well defined, so it suffices to prove
its continuity. FromCorollary 13.8 in [21], for each x̄ ∈ M there is a smooth, orthonor-
mal local frame {Ei }di=1 on a neighborhoodU of x̄ ; namely, {E1(x), . . . , Ed(x)} forms
an orthonormal basis on TxM for all x ∈ U . Choose such a local frame {Ei }di=1

around x̄ ; then, the matrix representation of Hess f (x) is given by [ ˆHess f (x)]k j :=〈
Hess f (x)[E j (x)], Ek(x)

〉
x = 〈(∇E j grad f )(x), Ek(x)〉x for 1 � k, j � d. From

the smoothness of the Riemannian metric (1), it follows that x �→ ˆHess f (x) is a
continuous function from U ⊂ M to Sym (d). Since matrix norms are continuous,
‖ ˆHess f (x)‖ is continuous on U � x̄ . This argument holds for any x̄ ∈ M. From
Lemma 7.1, ‖ ˆHess f (x)‖2 = ‖Hess f (x)‖ for any x ∈ M, which completes the
proof. 
�

The above result can be applied verbatim to the Hessian of constraint functions
{hi }li=1, {gi }mi=1 in (RCOP). The next proposition can be proved similarly, as in Lemma
7.1 and Proposition 7.1.

Proposition 7.2 Consider h, g in (RCOP) and the linear operatorsHx , Gx defined in
(7). Then, x �→ ‖Hx‖ and x �→ ‖Gx‖ are continuous scalar fields on M.

Proposition 7.3 Given w = (x, y, z, s) ∈ N , consider the operator ∇F(w) in (8).
Let {Ei }di=1 be an orthonormal basis of TxM and {ei }li=1, {ėi }mi=1 be the standard
bases of R

l , R
m, respectively. If we choose an orthonormal basis of TwN as follows:

{(Ei , 0, 0, 0)}di=1∪{(0x , ei , 0, 0)}li=1∪{(0x , 0, ėi , 0)}mi=1∪{(0x , 0, 0, ėi )}mi=1 , (35)

then, the matrix representation of ∇F(w) is given by

∇̂F(w) =

⎛

⎜
⎜
⎝

Q B C 0
BT 0 0 0
CT 0 0 I
0 0 S Z

⎞

⎟
⎟
⎠ ,

i.e., a matrix of order (d + l + 2m) and, where
Q := Q(w) ∈ Sym (d) is given by [Q]k j := 〈Hessx L(w)[E j ], Ek

〉
x for 1 �

k, j � d;
B := B(x) = [ ˆgrad h1(x), · · · , ˆgrad hl(x)] ∈ R

d×l;
C := C(x) = [ ˆgrad g1(x), · · · , ˆgrad gm(x)] ∈ R

d×m and the “hat” symbol above
means the corresponding vector representation under the basis {Ei }di=1.
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In this case, there is a continuous scalar field T : N → R such that for any w,
‖Q(w)‖F � T (w). Moreover, x �→ ‖B(x)‖F and x �→ ‖C(x)‖F are continuous
scalar fields on M.

Proof The matrix ∇̂F(w) under the basis (35) is obtained through a trivial process,
so we will omit its description. From relation (9), we have Q(w) := ˆHessxL(w) =

ˆHess f (x) +∑l
i=1 yi ˆHess hi (x) +∑m

i=1 zi ˆHess gi (x), under the same basis. Thus,

‖Q(w)‖F � ‖ ˆHess f (x)‖F +
l∑

i=1

|yi |‖ ˆHess hi (x)‖F +
m∑

i=1

|zi |‖ ˆHess gi (x)‖F =: T (w).

From Proposition 7.1, ‖ ˆHess f (x)‖F, ‖ ˆHess hi (x)‖F, and ‖ ˆHess gi (x)‖F are all con-
tinuous with respect to x , thus, T is continuous. As for x �→ ‖B(x)‖F, since the basis
{Ei }di=1 is orthonormal,

‖B(x)‖2F =
l∑

i=1

‖ ˆgrad hi (x)‖22 =
l∑

i=1

‖grad hi (x)‖2x ,

which implies continuity by (1). The claim for x �→ ‖C(x)‖F can be proven similarly.

�

7.2 Global Convergence Theorem

Now, we are ready to prove the global convergence Theorem 6.1 by following the
procedure in [11]. In what follows, we will omit similar content in [11] and focus on
the difficulties encountered when adapting the proof of EIPM to RIPM.

Proposition 7.4 (Boundedness of the sequences) Let {wk} be a sequence generated by
Algorithm 5 and suppose that (C1)– (C3) hold. If ε > 0 andwk ∈ Ω(ε) for all k, then

(a) {zTk sk}, {(zk)i (sk)i } , i = 1, . . . ,m, are all bounded above and below away from
zero;

(b) {zk} and {sk} are bounded above and component-wise bounded away from zero;
(c) {wk} is bounded;
(d) {‖∇F(wk)

−1‖} is bounded;
(e) {Δwk} is bounded.
Proof The proofs in [11, Lemma6.1] and/or [3, Theorem2 (a)] can be applied verbatim
to (a), (b) and (e).

(c) By (b), it suffices to prove that {yk} is bounded. The iteration count k is omitted
in what follows. By using the notation Hx and Gx as defined in (7), we have Hx y =
gradx L(w) − grad f (x) − Gx z =: b. By (C1), Hx is an injection; then, there exists
a unique solution y toHx y = b. Indeed, we have

y = [(H∗
xHx
)−1H∗

x ]
(
gradx L(w) − grad f (x) − Gx z

)
. (36)
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Define Cx : TxM → R
l as Cx := (H∗

xHx
)−1H∗

x . Under an arbitrary orthonormal

basis of TxM and standard basis of R
l , if Ĥx is the matrix corresponding toHx , then

Ĉx = (ĤT
x Ĥx )

−1ĤT
x . It is easy to show that ‖Cx‖ = ‖Ĉx‖2 for any x . We can see that

for each x̄ ∈ M there is a neighborhood U of x̄ such that x �→ Ĥx is continuous over
U . Then, by function composition, x �→ Ĉx is also continuous overU . This implies that
x �→ ‖Cx‖ = ‖Ĉx‖2 is continuous at each x̄ , and hence, onM. Finally, by Proposition
7.2, ‖Cx‖ , ‖grad f (x)‖ , and ‖Gx‖ are all continuous onM. Because {xk} is bounded,
by (36) we have ‖yk‖ �

∥
∥Cxk
∥
∥
(∥
∥gradx L(wk)

∥
∥+ ‖grad f (xk)‖ + ∥∥Gxk

∥
∥ ‖zk‖

)
�

c1
(√

ϕ0 + c2 + c3 ‖zk‖
)
, for somepositive constants c1, c2, c3.Then, {yk} is bounded

because {zk} is bounded.
(d) For each wk , choose an arbitrary orthonormal basis of TwkN . If the matrix

representation ∇̂F(wk) corresponds to ∇F(wk), then [∇̂F(wk)]−1 corresponds to
∇F(wk)

−1. By Lemma 7.1, we have
∥
∥∇F(wk)

−1
∥
∥ � ‖[∇̂F(wk)]−1‖F; thus, it is

sufficient to show that {‖[∇̂F(wk)]−1‖F} is bounded. For convenience, we will choose
the basis of TwkN given in (35). Then, we have

∇̂F(wk) =

⎛

⎜
⎜
⎝

Qk Bk Ck 0
BT
k 0 0 0

CT
k 0 0 I
0 0 Sk Zk

⎞

⎟
⎟
⎠ .

ByProposition 7.3, there is a continuous scalar field T : N → R such that ‖Q(w)‖F �
T (w) for all w ∈ N ; and ‖B(x)‖F, ‖C(x)‖F are continuous on M. It follows from
the boundedness of {xk} and {wk} that for all k, ‖Qk‖F ≡ ‖Q(wk)‖F � T (wk) � c4,
‖Bk‖F ≡ ‖B(xk)‖F � c5, and ‖Ck‖F ≡ ‖C(xk)‖F � c6, for some positive constants
c4, c5, and c6.

On the other hand, whichever basis is used in the form of (35), the structure of
∇̂F(wk) and the properties of its block submatrices remain unchanged, e.g., symmetry
of Qk ; full rank of Bk ; identity matrix I in the third row; all zero matrices; diagonal
matrices Sk, Zk ; etc. This ensures that we can obtain the desired result by performing
an appropriate decomposition of ∇̂F(wk). Up to this point, we have created all the
conditions needed in the proof of the Euclidean version, namely EIPM. We can make
the claim that {‖[∇̂F(wk)]−1‖F} is bounded by applying the proofs in [11, Lemma
6.2] and/or [3, Theorem 2 (c)] directly. 
�
Lemma 7.2 ({ᾱk} bounded away from zero) Let {wk} be generated by Algorithm 5
with R = Exp and let (C1)–(C3) hold. If ε > 0 and wk ∈ Ω(ε) for all k, {σk} is
bounded away from zero; then, {ᾱk} is bounded away from zero.

Proof Since ᾱk = min{α I
k , α

I I
k }, it is sufficient to show that {α I

k } and {α I I
k } are

bounded away from zero. For α I
k , see [11, Lemma 6.3] and/or [9, Theorem 3.1].

The proofs in those references apply verbatim to the Riemannian case. On the other
hand, for α I I

k , we need to adapt the proofs in [9, 11], since Lipschitz continuity on
manifolds is more complicated, see Subsection 4.2.

Let us suppress the subscript k. Recall that w(α) = ¯Expw(αΔw). Fix αΔw and let
Pγ be the parallel transport along the geodesic γ (t) = ¯Expw (tαΔw). By Lemma 4.4
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where c1 = 0, we obtain

P0→1
γ [F(w(α))]

= F(w) + α∇F(w)[Δw] − α∇F(w)[Δw] +
∫ 1

0
P0→t

γ ∇F(γ (t))Pt→0
γ [αΔw]dt

= F(w) + α
(
σρê − F(w)

)+ α

∫ 1

0

(
P0→t

γ ∇F(γ (t))Pt→0
γ − ∇F(w)

)
[Δw]dt

= (1 − α)F(w) + ασρê + α

∫ 1

0

(
P0→t

γ ∇F(γ (t))Pt→0
γ − ∇F(w)

)
[Δw]dt .

Taking the norm on both sides above gives

‖F(w(α))‖
=
∥
∥
∥P0→1

γ [F(w(α))]
∥
∥
∥ (since parallel transport (23) is isometric)

� (1 − α) ‖F(w)‖ + ασρ
∥
∥ê
∥
∥+ α

∫ 1

0

∥
∥
∥P0→t

γ ∇F(γ (t))Pt→0
γ − ∇F(w)

∥
∥
∥ ‖Δw‖ dt

� (1 − α) ‖F(w)‖ + ασρ
√
m + α

∫ 1

0
κ2‖tαΔw‖ ‖Δw‖ dt

= (1 − α) ‖F(w)‖ + ασρ
√
m + α2‖Δw‖2κ/2.

The rest of the proof is the same as [11, Lemma 6.3] and/or [9, Theorem 3.1], so we
omit it. 
�

Proof of Theorem 6.1 By Proposition 6.1, we know that {‖F(wk)‖} is monotonically
nonincreasing, hence convergent. Assume that {‖F(wk)‖} does not converge to zero.
Then, there exists ε > 0 such that {wk} ⊂ Ω(ε) for infinitely many k. We will show
that the following two cases both lead to contradictions, and thus, the hypothesis
‖F(wk)‖ � 0 is not valid.

Case 1. For infinitely many k, if step (3b) in Algorithm 5 is executed with αk ≡ ᾱk ,
it follows from Proposition 6.1 that ϕ(wk+1)/ϕ(wk) � λk := [1 − 2ᾱkβ (1 − σk)] .
Since {ᾱk} is bounded away from zero by Lemma 7.2 and {σk} is bounded away
from one, then {λk} is bounded away from one, and hence, ϕ(wk) → 0; this is a
contradiction.

Case 2.On the other hand, for infinitelymany k, if αk < ᾱk , we have that αk � θᾱk .
Then, condition (33) fails to hold for an α̃k with αk < α̃k � αk/θ = θ t−1ᾱk . Notice
that αk/θ is the value corresponding to the last failure. Recall that the derivative of
the real-valued function α �→ ϕ(α) := ϕ

( ¯Expwk
(αΔwk)

)
is

ϕ′(α) = Dϕ( ¯Expwk
(αΔwk))[D ¯Expwk

(αΔwk) [Δwk]]. (37)
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Applying the mean value theorem to ϕ(α) on the interval [0, α̃k] yields a number
ξ ∈ (0, 1) such that α̃kϕ

′(ξ α̃k) = ϕ(α̃k) − ϕ(0). For short, let u := ξ α̃kΔwk . Hence,

α̃kβ 〈grad ϕk,Δwk〉
< ϕ(α̃k) − ϕ(0) (as condition (33) fails for α̃k)

= α̃kϕ
′(ξ α̃k)

= α̃kDϕ( ¯Expwk
(u))
[
D ¯Expwk

(u) [Δwk]
]
(by equation (37))

= α̃k〈grad ϕ( ¯Expwk
(u)),D ¯Expwk

(u) [Δwk]〉.

(38)

On the other hand, note that

〈grad ϕk,Δwk〉
= 〈grad ϕk, u〉/ξ α̃k

= 〈D ¯Expwk
(u)
[
grad ϕk

]
,D ¯Expwk

(u) [u]〉/ξ α̃k (by Lemma 4.8)

= 〈D ¯Expwk
(u)
[
grad ϕk

]
,D ¯Expwk

(u) [Δwk]〉.

(39)

Subtracting α̃k 〈grad ϕk,Δwk〉 from both sides of (38) and using equalities (39) gives

α̃k(β − 1) 〈grad ϕk,Δwk〉
< α̃k

[〈grad ϕ( ¯Expwk
(u)),D ¯Expwk

(u) [Δwk]〉 − 〈grad ϕk,Δwk〉
]

= α̃k〈grad ϕ( ¯Expwk
(u)) − D ¯Expwk

(u)
[
grad ϕk

]
,D ¯Expwk

(u) [Δwk]〉
� α̃k

∥
∥grad ϕ( ¯Expwk

(u)) − D ¯Expwk
(u)
[
grad ϕk

]∥
∥
∥
∥D ¯Expwk

(u) [Δwk]
∥
∥

= α̃k
∥
∥grad ϕ(y) − D ¯Expwk

(u)
[
grad ϕ(wk)

]∥
∥
∥
∥D ¯Expwk

(u) [Δwk]
∥
∥

(by letting y := ¯Expwk
(u))

� α̃kκ ‖u‖ ‖Δwk‖ (by (22), Definition 4.1 and Lemma 4.8)

= κξα̃2
k ‖Δwk‖2 .

Finally, we obtain (β − 1) 〈grad ϕk,Δwk〉 /(κξ ‖Δwk‖2) < α̃k .

Because 〈grad ϕk,Δwk〉 < 0 and αk satisfies (33), we have

ϕk(0) − ϕk(αk) � −αkβ 〈grad ϕk,Δwk〉
� −θβα̃k 〈grad ϕk,Δwk〉
� −θβ 〈grad ϕk,Δwk〉 (β − 1) 〈grad ϕk,Δwk〉 /(κξ ‖Δwk‖2)
� [θβ(1 − β)/κξ ] (〈grad ϕk,Δwk〉 / ‖Δwk‖)2
= ω (〈grad ϕk,Δwk〉 / ‖Δwk‖) ,

where ω(·) is an F-function (see [28, Definition 14.2.1 & 14.2.2 in P479]). Since
{ϕk} is bounded below and ϕk � ϕk+1, it follows that limk→∞(ϕk − ϕk+1) = 0.
By the definition of F-functions, we obtain 〈grad ϕk,Δwk〉 / ‖Δwk‖ → 0. Since
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{‖Δwk‖} is bounded (Proposition 7.4), we have 〈grad ϕk,Δwk〉 → 0. Choosing ρk
with zTk sk/m � ρk � ‖F(wk)‖ /

√
m in Algorithm 5 implies that

〈grad ϕk,Δwk〉 /(−2) = ϕk − σkρk z
T
k sk � ϕk − σk ‖F(wk)‖ zTk sk/

√
m

� ϕk − σk ‖F(wk)‖2 � (1 − σk)ϕk .

This shows that ϕ(wk) → 0, because {σk} is bounded away from one; this is a
contradiction. 
�

8 Numerical Experiments

The numerical experiments compared the performance of the globally convergent
RIPM (Algorithm5)with those of other Riemannianmethods in solving two problems.
They were conducted in Matlab R2022a on a computer with an Intel Core i7-10700
(2.90GHz) and 16GB RAM. Algorithm 5 utilized Manopt 7.0 [6], a Riemannian
optimization toolbox for MATLAB. The problems involve three manifolds:

– fixed-rank manifold, Mr = {X ∈ R
m×n : rank (X) = r

}
;

– Stiefel manifold, St (n, k) = {X ∈ R
n×k : XT X = Ik

}
;

– oblique manifold, Ob(n, k) = {X ∈ R
n×k : (XT X

)
i i = 1,∀i = 1, . . . , k}.

We only consider their embedded geometry and we apply the default retractions in
Manopt, e.g., the retraction based on QR decomposition for the Stiefel manifold.

Problem I. Recently, [31] proposed the nonnegative low-rank matrix (NLRM)
approximation. Formally, NLRM aims to solve

min
X∈Mr

‖A − X‖2F s.t. X � 0. (NLRM)

Input. We tested three cases of integer triples (m, n, r): (20, 16, 2), (30, 24, 3), and
(40, 32, 4). For each (m, n, r), we generated nonnegative L ∈ R

m×r , R ∈ R
r×n whose

entries follow a uniform distribution in [0,1]. Then, we added the Gaussian noise with
zero mean and different standard deviation (σ = 0, 0.001, 0.01) to A = LR. When
there is no noise (i.e., σ = 0), the input data matrix A itself is exactly a solution.

Problem II. Given C ∈ R
n×k , [19] computed its projection onto the nonnegative

part of the Stiefel manifold. If the distance is measured in terms of ‖C − X‖2F, we can
express it equivalently as

min
X∈St (n,k)

−2 trace (XTC) s.t. X � 0. (Model_St)

In [19], it is shown that (Model_St) can be equivalently reformulated into

min
X∈Ob (n,k)

−2 trace (XTC) s.t. X � 0, ‖XV ‖F = 1, (Model_Ob)

where the positive integer p and V ∈ R
k×p can be arbitrary as long as

‖V ‖F = 1 and VV T is entry-wise positive. We examined both models. Input.
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We considered four cases of integer pairs (n, k): (40, 8), (50, 10), (60, 16), and
(70, 14). For a general C , it is always difficult to seek nonnegative projections
globally. Fortunately, Proposition 1 in [19] showed a way to construct C such
that Model_St has a unique, known solution X∗. In our experiments, we gen-
erated a feasible point B of Model_St; then, we obtained C by using codes:
X1=(B>0).*(1+rand(n,k));Xstar=X1./sqrt(sum(X1.*X1));L
=rand(k,k);L=L+k*eye(k);C=Xstar*L’. The initial point was computed
by projecting C onto the Stiefel manifold. In addition, for Model_Ob we set
p=1;V=ones(k,p);V=V/norm(V,"fro").

8.1 Implementation Details

The experimental implementation of Algorithm 5 (i.e.,RIPM) initialized z0 and s0
from a uniform distribution in [0,1] and set y0 = 0 if equality constraints exist.
We used ρk = zTk sk/m, σk = min{0.5, ‖F(wk)‖1/2} and Algorithm 3 to solve the
condensed form of Newton equation (19). Algorithm 3 stopped when the relative
residual went below 10−9, or it reached 1000 iterations. We used a backtracking line
search simultaneously for the central conditions and sufficient decreasing conditions.
We set γ−1 = 0.9, γk+1 = (γk + 0.5)/2; and β = 10−4, θ = 0.5. We compared
RIPM with the following Riemannian methods:

– RALM: Riemannian augmented Lagrangian method [23].
– REPMlqh: Riemannian exact penalty method with smoothing functions of linear-
quadratic and pseudo-Huber [23].

– REPMlse: Riemannian exact penalty method with smoothing functions of log-
sum-exp [23].

– RSQP: Riemannian sequential quadratic programming [27].

Let [t]+ := max(0, t) and [t]− := min(0, t) for any t ∈ R. The experimental settings
followed those of [27], where they used the KKT residual defined as

√
√
√
√∥∥gradx L(w)

∥
∥2 +

m∑

i=1

{[zi ]2− + [gi (x)]2+ + |zi gi (x)|2} +
l∑

i=1

|hi (x)|2

to measure the deviation of an iterate from the KKT conditions. For the parameters
of RALM, REPMs, and RSQP, we utilized the experimental setting and Matlab codes
provided by [27].

We conducted 20 random trials of each problem and model. All the algorithms ran
with the same initial point. The experiment is considered successfully terminated if
it finds a solution with a KKT residual lower than εkkt before triggering any of the
stopping conditions. For the first-order algorithms (includingRALMand theREPMs),
the stopping conditions are: elapsed time exceeding tmax seconds, number of outer
iterations exceeding 1,000, or failure of the algorithm to update any parameters. For
the second-order algorithms (including RSQP and RIPM), the stopping conditions are
elapsed time exceeding tmax seconds or a number of outer iterations exceeding 10,000.
Here, considering that some problems might not have converged easily, the maximum
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number of iterations was chosen to be 1,000 (10,000), which was a sufficiently large
value. The selection of tmax is related to the actual time it took to run all the codes
on the computer. Setting tmax too large resulted in excessive time spent on poorly
performing algorithms. On the other hand, εkkt was chosen to better demonstrate that
second-order algorithms could achieve more accurate solutions. Therefore, we chose
the appropriate values for tmax and εkkt according to the problem that was to be solved.

8.2 Results and Analysis

The tables in this subsection report the success rate (Success), the average time (Time),
and the average iteration number (Iter.) among the successful trials. In order to capture
the combination of stability and speed, the algorithms with 0.9 or higher are first
highlighted in bold in the “Success” column, and then, of those algorithms, the fastest
result is highlighted in bold in the “Time” column. Here, “successful convergence in
numerical experiments” means that the algorithm can generate a relatively accurate
solution in a relatively reasonable amount of time. It is not exactly the same as the
“theoretical convergence in any global convergence theorem”. Numerical experiments
reflect the actual performance of the algorithm in the application. For example, the
first-order algorithms (RALM, REPMs) also have theoretical global convergence, but
under our high criterion, it is difficult for them to generate a high-precision solution
within a certain period of time. The second-order algorithm (RIPM, RSQP), on the
other hand, is excellent in terms of accuracy, although it takes quite a bit of time.

Problem I.Here, we set tmax = 180, εkkt = 10−8. The numerical results in Table 1
show that RIPM had the best performance, except for cases (30, 40, 3) and (40, 32, 4)
without noise. The time spent byRALMand the REPMs grew slowlywith the problem
size m and n, but their success rates dropped sharply as the noise level (standard
deviation σ ) intensified, eventually leading to non-convergence. In contrast, RSQP
and RIPM were more stable and robust, while RIPM was much faster than RSQP.
The cost of RSQP increased drastically with the problem size because a quadratic
programming subproblem (definedover tangent space of current point) had to be solved
in each iteration. Unlike RIPM, which uses Krylov subspace methods introduced in
Sect. 3.4.2 to avoid expensive computations, RSQP had to transform the subproblem
into a matrix representation (similar to Steps 1–6 in Sect. 3.4.2). As can be seen from
Table 1, RIPM took about the same amount of time as RALM and the REPMs did.

Problem II. Here, we set tmax = 600, εkkt = 10−6 for both (Model_St) and
(Model_Ob). Since the true solution X∗ is known, we added a column showing the
average error ‖X̃ − X∗‖F, where X̃ denotes the final iterate. The numerical results are
listed in Tables 2 and 3. The error columns show that if the KKT residual is sufficiently
small, then X̃ does approximate the true solution. In particular, RSQP and RIPM yield
a more accurate solution. (The error is less than 10−7.) From Table 2, we can see that
RALM is stable and fast for (Model_St). However, from Table 3, the success rate of
RALM for (Model_Ob) decreases as the problem size becomes larger. The REPMs do
not work at all on either model. RSQP also does not perform well on either model. In
contrast, RIPM successfully solved all instances of both models and was only slightly
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slower than RALM in some cases. Overall, our RIPM was relatively fast and most
stable.

9 Conclusions

In this paper, we proposed a Riemannian version of the classical interior point method
and established its local and global convergence. To our knowledge, this is the first
study to apply the primal-dual interior point method to the nonconvex constrained
optimization problem on a Riemannian manifold. Numerical experiments showed the
stability and efficiency of our method.

Recently, Hirai et al. [15] extended the self-concordance-based interior point meth-
ods to Riemannian manifolds. They aimed to minimize a geodesically convex (i.e.,
convex on manifolds) objective f : D → R defined on a geodesically convex sub-
set D ⊂ M. In contrast, in (RCOP), we do not require any convexity. In practice,
many convex functions (in the Euclidean sense) are not geodesically convex on some
interested manifolds. For example, for any geodesically convex function defined on a
connected, compact Riemannian manifold (e.g., Stiefel manifold), it must be constant
[5, Corollary 11.10], which is not of interest in the field of optimization. Thus, (RCOP)
has a wider applicability.

In closing, let us make a comparison with the Euclidean interior point method
(EIPM) to illustrate the theoretical advantages of our RIPM and discuss two future
directions of research on more advanced RIPM methods.
Comparison: Riemannian IPM (RIPM) v.s. Euclidean IPM (EIPM).

1. RIPM generalizes EIPM from Euclidean space to general Riemannian manifolds.
EIPM is a special case of RIPM when M = R

n or R
m×n in (RCOP).

2. RIPM inherits all the advantages of Riemannian optimization. For example, we
can exploit the geometric structure of M, which is usually regarded as a set of
constraints from the Euclidean viewpoint.

3. Note that in both RIPM and EIPM, we have to solve the condensed Newton equa-
tion (19) at each iteration. However, if the equality constraints can be considered
to be a manifold, RIPM can solve (19) with a smaller order on TxM × R

l . For
example, the problem II (Model_St) can be rewritten as:

min
X∈Rn×k

−2 trace (XTC) s.t. XT X = Ik, X � 0.

Here, Stiefel manifold is replaced by the equality constraints, i.e., we define
h : R

n×k → Sym (k) : X �→ h(X) := XT X − Ik ; and M = R
n×k ,

l = dim Sym (k) = k(k + 1)/2 in (RCOP). Then, when we apply EIPM, it
requires us to solve (19) of order nk + k(k + 1)/2. On the other hand, if we
apply RIPM to (Model_St), then (19) reduces to (21) since there are only inequal-
ity constraints on M = St(n, k). In this case, we solve the equation of order
nk − k(k + 1)/2, i.e., the dimension of St(n, k). Compared to EIPM, using RIPM
reduces our dimensionality by k(k + 1).

123



Journal of Optimization Theory and Applications (2024) 201:433–469 465

Ta
bl
e
2

Pe
rf
or
m
an
ce

of
va
ri
ou

s
R
ie
m
an
ni
an

m
et
ho

ds
on

pr
ob

le
m

II
(M

od
el
_S

t)

(n
,
k)

(4
0,
8)

(5
0,
10

)

Su
cc
es
s

T
im

e
(s
)

It
er

E
rr
or

Su
cc
es
s

T
im

e
(s
)

It
er

E
rr
or

R
A
L
M

1
2.
34

7
45

5.
41

×1
0−

7
1

4.
34

4
54

5.
21

×1
0−

7

R
E
PM

lq
h

0
–

–
–

0
–

–
–

R
E
PM

ls
e

0
–

–
–

0
–

–
–

R
SQ

P
0.
9

1.
35

2×
10

7
2.
05

×1
0−

9
0.
7

3.
09

7×
10

6
2.
47

×1
0−

9

R
IP
M

1
2.
22

5
31

3.
72

×1
0−

8
1

3.
78

5
32

3.
38

×1
0−

8

(n
,
k)

(6
0,
12

)
(7
0,
14

)

Su
cc
es
s

T
im

e
(s
)

It
er

E
rr
or

Su
cc
es
s

T
im

e
(s
)

It
er

E
rr
or

R
A
L
M

1
4.
09

7
34

4.
93

×1
0−

7
1

6.
23

4
37

5.
34

×1
0−

7

R
E
PM

lq
h

0
–

–
–

0
–

–
–

R
E
PM

ls
e

0
–

–
–

0
–

–
–

R
SQ

P
0.
65

7.
80

2×
10

7
6.
48

×1
0−

9
0.
85

1.
66

1×
10

2
7

2.
64

×1
0−

9

R
IP
M

1
5.
55

5
32

2.
81

×1
0−

8
1

7.
57

4
33

2.
45

×1
0−

8

A
lg
or
ith

m
s
w
ith

va
lu
es

gr
ea
te
r
th
an

or
eq
ua
lt
o
0.
9
in

th
e
“S
uc
ce
ss
”
co
lu
m
n
ar
e
bo
ld
ed
.A

m
on
g
th
es
e,
th
e
on
e
w
ith

th
e
fa
st
es
tr
es
ul
ti
n
th
e
“T

im
e”

co
lu
m
n
is
al
so

hi
gh
lig

ht
ed

in
bo

ld

123



466 Journal of Optimization Theory and Applications (2024) 201:433–469

Ta
bl
e
3

Pe
rf
or
m
an
ce

of
va
ri
ou

s
R
ie
m
an
ni
an

m
et
ho

ds
on

pr
ob

le
m

II
(M

od
el
_O

b)

(n
,
k)

(4
0,
8)

(5
0,
10

)

Su
cc
es
s

T
im

e
(s
)

It
er

E
rr
or

Su
cc
es
s

T
im

e
(s
)

It
er

E
rr
or

R
A
L
M

1
2.
51

0
51

5.
04

×1
0−

7
0.
95

4.
72

7
64

4.
94

×1
0−

7

R
E
PM

lq
h

0
–

–
–

0
–

–
–

R
E
PM

ls
e

0
–

–
–

0
–

–
–

R
SQ

P
0.
65

8.
61

8
5

2.
30

×1
0−

10
0.
7

2.
78

2×
10

6
1.
12

×1
0−

10

R
IP
M

1
3.
79

1
22

5.
62

×1
0−

9
1

5.
88

0
23

7.
93

×1
0−

9

(n
,
k)

(6
0,
12

)
(7
0,
14

)

Su
cc
es
s

T
im

e
(s
)

It
er

E
rr
or

Su
cc
es
s

T
im

e
(s
)

It
er

E
rr
or

R
A
L
M

0.
6

5.
72

5
49

3.
82

×1
0−

7
0.
6

8.
22

3
52

3.
85

×1
0−

7

R
E
PM

lq
h

0
–

–
–

0
–

–
–

R
E
PM

ls
e

0
–

–
–

0
–

–
–

R
SQ

P
0.
7

4.
44
6×

10
5

1.
17

×1
0−

9
0.
5

9.
13

8×
10

5
1.
82

×1
0−

9

R
IP
M

1
7.
13

4
23

9.
69

×1
0−

9
1

9.
26

8
24

1.
06

×1
0−

8

A
lg
or
ith

m
s
w
ith

va
lu
es

gr
ea
te
r
th
an

or
eq
ua
lt
o
0.
9
in

th
e
“S
uc
ce
ss
”
co
lu
m
n
ar
e
bo
ld
ed
.A

m
on
g
th
es
e,
th
e
on
e
w
ith

th
e
fa
st
es
tr
es
ul
ti
n
th
e
“T

im
e”

co
lu
m
n
is
al
so

hi
gh
lig

ht
ed

in
bo

ld

123



Journal of Optimization Theory and Applications (2024) 201:433–469 467

4. RIPM can solve some problems that EIPM cannot. For example, the problem I
(NLRM) can be rewritten as:

min
X∈Rm×n

‖A − X‖2F s.t. rank (X) = r , X � 0.

Since the rank function, X �→ rank (X), is not even continuous, we cannot apply
EIPM.

Future Work I: Preconditioner for linear operator equation.
With regard to the complementary condition, S−1

k Zk values display a huge difference
in magnitude as k → ∞. The operator Θ := Gx S−1ZG∗

x causes the system (19)
to be ill-conditioned, risking failure of the iterative method without preconditioning.
Matrix-decomposition-based preconditioner methods cannot be applied to a problem
that does not have a matrix form. A possible alternative is to find a nonsingularP such
that the condition number of P−1T is smaller.
Future Work II: Treatment of more state-of-the-art interior point methods.
While we have considered interior point methods on a manifold for the first time, our
Euclidean theoretic counterpart is an early nonlinear interior point method algorithm
[11]; however, the counterpart now appears to be obsolete compared with more recent
interior point methods. For example, our method does not drive the iteration toward
minimizers but only toward stationary points; globalization is done by monitoring
only the KKT residuals; moreover, the boundedness assumption (C2) of {zk} is too
strong to hold in some simple cases (see Wächter–Biegler effect [32]). It remains an
important issue to adapt more modern interior point methods to manifolds, although
we may encounter various difficulties in Riemannian geometry.
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