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Abstract
Thiswork presents a universal accelerated primal–dualmethod for affinely constrained
convex optimization problems. It can handle both Lipschitz and Hölder gradients but
does not need to know the smoothness level of the objective function. In line search
part, it uses dynamically decreasing parameters and produces approximate Lipschitz
constant with moderate magnitude. In addition, based on a suitable discrete Lyapunov
function and tight decay estimates of some differential/difference inequalities, a uni-
versal optimal mixed-type convergence rate is established. Some numerical tests are
provided to confirm the efficiency of the proposed method.

Keywords Convex optimization · Primal–dual method · Mixed-type estimate ·
Optimal complexity · Bregman divergence · Lyapunov function
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1 Introduction

Consider the minimization problem

min
x∈Q∩Ω

f (x) := h(x) + g(x), (1)
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where Q ⊂ R
n is a simple closed convex subset, Ω := {x ∈ R

n : Ax = b} is an
affine set with A ∈ R

m×n and b ∈ R
m , and f : R

n → R∪ {+∞} is properly closed
and convex, with smooth part h and nonsmooth (simple) part g. The model problem
(1) arises from many practical applications, such as compressed sensing [6], image
processing [8] and decentralized distributed optimization [4].

In the literature, existing algorithms for solving (1) mainly include Bregman itera-
tion [5, 29, 67], quadratic penalty method [35], augmented Lagrangianmethod (ALM)
[26–28, 33, 41, 56], and alternating direction method of multipliers [22, 36, 40, 50,
53, 57, 60, 61, 65]. Generally speaking, these methods have sublinear rateO(1/k) for
convex problems and can be further accelerated to O(1/k2) for (partially) strongly
convex objectives.We also note that primal–dualmethods [7, 20, 25, 31, 58, 59, 62] and
operator splitting schemes [13, 18, 19] can be applied to (1) with two-block structure.

However, among these works, it is rare to see the optimal mixed-type convergence
rate, i.e., the lower complexity bound [51]

O
(
min

{‖A‖
ε

,
‖A‖√

με

}
+ min

{√
L/ε,

√
L/μ · |ln ε|

})
, (2)

where μ ≥ 0 is the convexity parameter of f and L is the Lipschitz constant of ∇h.
Both Nesterov’s smoothing technique [46] and the accelerated primal–dual method in
[12] achieve the lower bound for convex case μ = 0. The inexact ALM framework
in [66] possesses the optimal complexity (2) but involves a subroutine for inexactly
solving the subproblem.

We mention that the second part of (2) corresponding to L and μ agrees with the
well-known lower complexity bound of first-order methods for unconstrained convex
problems with Lipschitz gradients, namely (the affine set Ω is the entire space R

n)

min
x∈Q

f (x) := h(x) + g(x). (3)

The intermediate non-Lipschitz case is also of interest to be considered [43, 45]. Par-
ticularly, when ∇h is Hölder continuous (cf.(11)) with exponent ν ∈ [0, 1), Nesterov
[48] presented a universal fast gradient method (FGM) for solving (3) that did not
require à priori knowledge of the smoothness parameter ν and the Hölderian constant
Mν(h). A key ingredient of FGM is that Hölderian gradients can be recast into the
standard Lipschitz case but with inexact computations [15, 54, 55], and it achieves the
optimal complexity [44]

O
(

[Mν(h)] 2
1+3ν

ε
2

1+3ν

)
. (4)

More extensions of FGM can be found in [23, 24, 32].
The dual problem of (1) reads equivalently as

min
λ∈Rm

{
d(λ) := 〈b, λ〉 + max

x∈Q

{
− f (x) −

〈
A�λ, x

〉}}
. (5)
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If f is uniformly convex of degree p ≥ 2 (see [48, Definition 1]), then ∇d is Hölder
continuous with exponent ν = 1/(p − 1) (cf. [48, Lemma 1]). The methods in [16,
37] work for (5) with strongly convex objective f , i.e., the Lipschitzian case (ν = 1).
Yurtsever et al. [68] proposed an accelerated universal primal–dual gradient method
(AccUniPDGrad) for general Hölderian case (ν < 1) and established the complexity
bound (4) for the objective residual and the feasibility violation, with Mν(h) being
replaced by Mν(d). Similarly with the spirit of FGM, the presented method utilizes
the “inexactness” property of ∇d and applies FISTA [2] to (5) with line search.

In this work, we propose a universal accelerated primal–dual method (see Algo-
rithm 1) for solving (1). Compared with existing works, the main contributions are
highlighted as follows:

• It is first-order black-box type for both Lipschitz and Hölder cases but does not
need to know the smoothness level priorly.

• It uses the Bregman divergence and can handle the non-Euclidean setting.
• In line search part, it adopts dynamically decreasing tolerance while FGM [48]
and AccUniPDGrad [68] use the desired fixed accuracy.

• By using the tool of Lyapunov function and tight decay estimates of some dif-
ferential/difference inequalities, we prove the universal mixed-type estimate that
achieves the optimal complexity (including (2),(4) as special cases).

We also provide some numerical tests to validate the practical performance. It is
confirmed that: (i) a proper choice of Bregman distance is crucial indeed; (ii) our
method outperforms FGM and AccUniPDGrad especially for non-Lipschitz problems
and smooth problems with large Lipschitz constants, as the automatically decreasing
tolerance leads to approximate Lipschitz constants with moderate magnitude.

Our method here is motivated from an implicit-explicit time discretization of a
novel accelerated Bregman primal–dual dynamics (see (24)), which is an extension of
the accelerated primal–dual flow in [39] to the non-Euclidean case. For unconstrained
problems, there are some existing continuous dynamics [34, 63, 64] with Bregman
distances. For linearly constrained case, we see an accelerated primal–dual mirror
model [69], which is inspired by the accelerated mirror descent [34] and the primal–
dual dynamical approach [21] but without time discretizations.

The rest of the paper is organized as follows. In Sect. 2, we provide some prelim-
inaries including the Bregman divergence and the Hölder continuity. Then, the main
algorithm together with its universal mixed-type estimate is presented in Sect. 3, and
rigorous proofs of two technical lemmas are summarized in Sects. 4 and 5, respectively.
Finally, some numerical results are reported in Sect. 6.

2 Preliminary

2.1 Notations

Let 〈·, ·〉 be the usual inner product of vectors and ‖·‖ be the standard Euclidean
norm (of vectors and matrices). Given a proper function g : R

n → R ∪ {+∞}, the
effective domain of g is denoted as usual by dom g, and the subdifferential of g at any
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x ∈ dom g is the set of all subgradients:

∂g(x) := {
ξ ∈ R

n : g(y) ≥ g(x) + 〈ξ, y − x〉 ∀ y ∈ R
n} .

Recall that Q ⊂ R
n is a nonempty closed convex subset. Let ιQ(·) be the indicator

function of Q and NQ(·) := ∂ιQ(·) be its normal cone.
Introduce the Lagrangian for the model problem (1):

L(x, λ) := f (x) + ιQ(x) + 〈λ, Ax − b〉 ∀ (x, λ) ∈ R
n × R

m .

We say (x∗, λ∗) ∈ Q × R
m is a saddle point of L if

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗) ∀ (x, λ) ∈ R
n × R

m, (6)

which also implies the optimality condition:

Ax∗ − b = 0, ∂ f (x∗) + NQ(x∗) + A�λ∗ � 0. (7)

2.2 Bregman Divergence

Let φ : Q → R be a smooth prox-function and define the Bregman divergence

Dφ(x, y) := φ(x) − φ(y) − 〈∇φ(y), x − y〉 ∀ x, y ∈ Q.

Throughout, suppose φ is 1-strongly convex:

Dφ(x, y) ≥ 1

2
‖x − y‖2 ∀ x, y ∈ Q. (8)

Particularly, φ(x) = 1
2 ‖x‖2 leads to Dφ(x, y) = Dφ(y, x) = 1/2 ‖x − y‖2, which

boils down to the standard Euclidean setting. In addition, we have the following three-
term identity; see [9, Lemma 3.2] or [17, Lemma 3.3].

Lemma 2.1 ( [9, 17]) For any x, y, z ∈ Q, it holds that

〈∇φ(x) − ∇φ(y), y − z〉 = Dφ(z, x) − Dφ(z, y) − Dφ(y, x). (9)

If φ(x) = 1
2 ‖x‖2, then

2 〈x − y, y − z〉 = ‖x − z‖2 − ‖y − z‖2 − ‖x − y‖2 . (10)
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2.3 Hölder Continuity

Let h be a differentiable function on Q. For 0 ≤ ν ≤ 1, define

Mν(h) := sup
x, y∈Q

x �=y

‖∇h(x) − ∇h(y)‖
‖x − y‖ν .

If Mν(h) < ∞, then ∇h is Hölder continuous with exponent ν:

‖∇h(x) − ∇h(y)‖ ≤ Mν(h) ‖x − y‖ν ∀ x, y ∈ Q, (11)

and this also implies that

h(x) ≤ h(y) + 〈∇h(y), x − y〉 + Mν(h)

1 + ν
‖x − y‖1+ν ∀ x, y ∈ Q. (12)

When ν = 1, M1(h) corresponds to the Lipschitz constant of ∇h, and we also use the
conventional notation Lh = M1(h).

According to [48, Lemma 2], the estimate (12) can be transferred into the usual
gradient descent inequality, with “inexact computations”. Based on this, (accelerated)
gradient methods can be used to minimize functions with Hölder continuous gradients
[15, 54, 55].

Proposition 2.1 ([48]) Assume Mν(h) < ∞ and for δ > 0, define

M(ν, δ) := δ
ν−1
ν+1 [Mν(h)] 2

ν+1 . (13)

Then, for any M ≥ M(ν, δ), we have

h(x) ≤ h(y) + 〈∇h(y), x − y〉 + M

2
‖x − y‖2 + δ

2
∀ x, y ∈ Q.

3 Main Algorithm

Throughout, we make the following assumption on f = h + g:

Assumption 3.1 The nonsmooth part g is properly closed convex on Q. The smooth
part h satisfies inf0≤ν≤1 Mν(h) < ∞ and is μ-convex on Q with μ ≥ 0, namely,

h(x) ≥ h(y) + 〈∇h(y), x − y〉 + μDφ(x, y) ∀ x, y ∈ Q.

Remark 3.1 For some cases, h might not be smooth (in C1 globally) enough but at
least Lipschitz continuous. By Rademacher’s theorem [30, Theorem 3.1], Lipschitzian
functions are differentiable almost everywhere. Thus, the assumption Mν(h) < ∞
holds true with ν = 0. Besides, in practical computations, we expect that the proximal
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calculation (cf.(14)) of the nonsmooth part g with respect to proper Dφ(·, ·) is easy to
compute (or has closed solution); see the matrix game problem in Sect. 6.1. ��

Our main algorithm, called universal accelerated primal–dual (UAPD) method, is
summarized in Algorithm 1, where the subpart “sub-UAPD” in lines 3 and 6 has been
given by Algorithm 2. Note that we do not require priorly the exponent ν and the
smoothness constant Mν(h) but perform a line search procedure (see lines 4–7).

Algorithm 1 Universal Accelerated Primal–Dual (UAPD) Method
Require: Problem information: μ ≥ 0 and ‖A‖.

Line search parameters: ρu > 1, ρd ≥ 1.
Initial parameters: γ0, M0 > 0, β0 = 1.
Initial guesses: x0, v0 ∈ Q and λ0 ∈ R

m .
1: for k = 0, 1, · · · do
2: Set i = 0, Mk,0 = Mk and Sk = {xk , vk , λk , βk , γk }.
3: Compute {yk,i , xk,i , vk,i , αk,i , δk,i ,Δk,i } = sub-UAPD(k, Sk , Mk,i ).
4: while h(xk,i ) − Δk,i > δk,i /2 do {Line search}
5: Update i = i + 1 and Mk,i = ρi

u · Mk,0.
6: Compute {yk,i , xk,i , vk,i , αk,i , δk,i , Δk,i } = sub-UAPD(k, Sk , Mk,i ).
7: end while
8: Set ik = i, αk = αk,ik , Mk+1 = Mk,ik /ρd and δk+1 = δk,ik .
9: Update γk+1 = (γk + μαk )/(1 + αk ) and βk+1 = βk/(1 + αk ).
10: Update xk+1 = xk,ik , vk+1 = vk,ik and λk+1 = λk + αk/βk (Avk+1 − b).
11: end for

Algorithm 2 {ỹk, x̃k, ṽk, α̃k, δ̃k, Δ̃k} = sub-UAPD(k, Sk, M̃k)

Require: k ∈ N, M̃k > 0 and Sk = {xk , vk , λk , βk , γk }.
1: Choose the step size α̃k = √

βkγk/

√
βk M̃k + ‖A‖2.

2: Set β̃k = βk/(1 + α̃k ) and δ̃k = β̃k/(k + 1).
3: Set ỹk = (xk + α̃kvk )/(1 + α̃k ) and λ̃k = λk + α̃k/βk (Avk − b).
4: Update x̃k = (xk + α̃k ṽk )/(1 + α̃k ) with

ṽk = argmin
v∈Q

{
g(v) + 〈∇h(ỹk ) + A�λ̃k , v

〉 + μDφ(v, ỹk ) + γk

α̃k
Dφ(v, vk )

}
. (14)

5: Compute Δ̃k = h(ỹk ) + 〈∇h(ỹk ), x̃k − ỹk 〉 + M̃k
2 ‖x̃k − ỹk‖2.

3.1 Line Search

In Algorithm 1, the parameter ρu > 1 enlarges the approximate Lipschitz constant
Mk,i (cf. line 5) to meet the following descent condition (cf. line 4)

h(xk,i ) ≤ h(yk,i ) + 〈∇h(yk,i ), xk,i − yk,i
〉 + Mk,i

2

∥∥xk,i − yk,i
∥∥2 + δk,i

2
. (15)
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For each k ∈ N, the line search part will end up with the smallest integer ik satisfying
(15) and call the subpart sub-UAPD ik + 1 times in total. The extra parameter ρd ≥ 1
reduces the output constant Mk,ik and updates Mk+1 = Mk,ik /ρd (cf. line 8).

Remark 3.2 We introduce the pair (ρu, ρd ) in our method for generality. Practically, it
is not easy to find the optimal choice. If ρd = 1, then Mk is nondecreasing. Otherwise,
Mk can be nonmonotone. Consider two situations.

• For the standardLipschitz case (ν = 1), as analyzed in [47, Section 3], if M0 ≤ Lh ,
then the choice ρd ≥ ρu promises that Mk ≤ Lh for all k ≥ 0.

• For the Hölder continuous case (ν < 1), we have Mk → ∞ as k → ∞ (since
M(ν, δ) → ∞ as δ → 0). Taking ρd > 1 may reduce Mk (locally for some k) but
will increase the burden on the line search procedure. ��
Below, let us show that ik is finite for k ∈ N. Indeed, we see Mk,i = ρi

u Mk,0
increases as i does, and the step size (cf. line 1 of Algorithm 2)

αk,i =
√

βkγk

βk Mk,i + ‖A‖2 (16)

has to be decreasing. Thus the tolerance (cf. line 2 of Algorithm 2)

δk,i = 1

k + 1
· βk

1 + αk,i
(17)

is increasing and by (13), M(ν, δk,i ) is decreasing. This together with Proposition 2.1
and Assumption 3.1 concludes that

ik = 0 if M(ν, δk,0) ≤ Mk,0,

ik ≤ �s∗� else,

where �s∗� denotes the ceiling function (the minimal integer that is no less than s∗),
and s∗ ∈ [0,∞) solves the equation Mk,s∗ = M(ν, δk,s∗); see Fig. 1. In particular, we
have

Mk,s∗ = ρs∗
u Mk,0 ≤ M(ν, δk,0) �⇒ s∗ ≤ logρu

M(ν, δk,0)

Mk,0
.

This eventually leads to

ik ≤ max

{
0,

⌈
logρu

M(ν, δk,0)

Mk,0

⌉}
< ∞.

Remark 3.3 In the line search part, our Algorithm 1 adopts dynamically decreasing
tolerance (17). However, the methods in [48] and [68, Algorithm 2] chose δk = ε/k,
where ε is the desired accuracy. Hence, by Proposition 2.1, the approximate smooth-
ness constant Mk of our method is smaller than the other two methods, especially for
the Hölderian case. This will be verified by numerical experiments in Sect. 6. ��
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Fig. 1 The illustration of Mk,s
and M(ν, δk,s ) as functions of
s ∈ [0, ∞). Here
δk,∞ = lim

s→∞ δk,s = βk/(k + 1)

since αk,s → 0 as s → ∞

Below, we give an upper bound of Mk and the total number of line search steps.
By Theorem 3.1, βk corresponds to the convergence rate of Algorithm 1 and admits
explicit decay estimate (see Lemma 3.3). If the desired accuracy βk+1 = O(ε) is
given, then the term

∣∣logρu
βk+1

∣∣ in (19) can be replaced by
∣∣logρu

ε
∣∣.

Lemma 3.1 For any k ∈ N, we have

Mk+1 ≤ 1

ρd

max

{
M0

ρk
d

,
√

ρuρu · M(ν, δk+1)

}
, (18)

and consequently, it holds that

k∑
j=0

i j ≤ 3

2
+ k

ln ρd

ln ρu
+ 2

1 + ν

∣∣∣∣logρu

Mν(h)

M0

∣∣∣∣ + 1 − ν

1 + ν

[
logρu (k + 1) +

∣∣∣logρu βk+1

∣∣∣
]
. (19)

Proof See Sect.Appendix A. ��

3.2 Time Discretization Interpretation

Below, we provide a time discretization interpretation of Algorithm 1. Given the k-
th iterations (xk, vk, λk) and the parameters (γk, βk, Mk), the line search procedure
returns (yk, xk+1, vk+1, λk+1) that satisfy

yk − xk

αk
= vk − yk, (20a)

γk
∇φ(vk+1) − ∇φ(vk)

αk
∈ μ

[∇φ(yk) − ∇φ(vk+1)
] − G(yk, vk+1, λk), (20b)

xk+1 − xk

αk
= vk+1 − xk+1, (20c)

βk
λk+1 − λk

αk
= Avk+1 − b, (20d)
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where G(yk, vk+1, λk) := ∇h(yk) + ∂g(vk+1) + NQ(vk+1) + A�λ̃k with λ̃k = λk +
αk/βk(Avk − b), and the step size αk solves (cf.(16))

α2
k (ρd βk Mk+1 + ‖A‖2) = γkβk, (21)

where we used the relation Mk,ik = ρd Mk+1. Besides, yk and xk+1 fulfill (cf. (15))

h(xk+1) ≤ h(yk) + 〈∇h(yk), xk+1 − yk〉 + ρd Mk+1

2
‖xk+1 − yk‖2 + δk+1

2
, (22)

and the parameters (γk+1, βk+1) are governed by (cf. line 9 of Algorithm 1)

γk+1 − γk

αk
= μ − γk+1,

βk+1 − βk

αk
= −βk+1, (23)

with β0 = 1 and γ0 > 0. For clarity, in Sect. Appendix B, we give a detailed derivation
of the reformulation (20a) from Algorithms 1 and 2.

As one can see, yk in (20a) is an intermediate which provides a “prediction”, and
then the “correction” step (20c) is used to update xk+1. From (20a), (20b), and (20c),
it is not hard to find that yk, vk+1, xk+1 ∈ Q, as long as xk, vk ∈ Q. Therefore, with
x0, v0 ∈ Q, it holds that {xk, yk, vk}k∈N ⊂ Q.

Furthermore, we mention that the reformulation (20a) itself admits an implicit-
explicit time discretization for the following primal–dual dynamics:

x ′ = v − x,

γ
d

dt
∇φ(v) ∈ μ

[∇φ(x) − ∇φ(v)
] − ∂ f (x) − NQ(x) − A�λ,

βλ′ = Av − b,

(24)

where γ and β are governed by continuous analogues to (23):

γ ′ = μ − γ, β ′ = −β. (25)

We call (24) the Accelerated Bregman Primal–Dual (ABPD) flow. For φ(x) =
1/2 ‖x‖2, it amounts to the accelerated primal–dual flow in [39].

3.3 A Universal Estimate

Let {(xk, vk, λk, γk, βk)}k∈N be the sequence generated from Algorithm 1. We intro-
duce the discrete Lyapunov function

Ek := L
(
xk, λ

∗) − L
(
x∗, λk

) + γk Dφ(x∗, vk) + βk

2

∥∥λk − λ∗∥∥2 . (26)

A one-step estimate is presented below.
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Lemma 3.2 Under Assumption 3.1, we have

Ek+1 − Ek ≤ −αkEk+1 + δk+1

2
(1 + αk) ∀ k ∈ N. (27)

Proof See Sect. 4. ��
Using this lemma, we obtain the following theorem, which says the final rate is

given by the sharp decay estimate of the sequence {βk}k∈N; see Lemma 3.3.

Theorem 3.1 Under Assumption 3.1, we have {xk, vk}k∈N ⊂ Q and

‖Axk − b‖ ≤ βkTk, (28)∣∣ f (xk) − f (x∗)
∣∣ ≤ βkWk, (29)

L
(
xk, λ

∗) − L
(
x∗, λk

) ≤ βkRk, (30)

for all k ∈ N, where Rk := E0 + ln(k + 1), Tk := ‖Ax0 − b‖ + 2
√
2Rk and

Wk := Rk + ‖λ∗‖ Tk . Moreover, we have

γmin
∥∥vk − x∗∥∥2 + μ

∥∥xk − x∗∥∥2 ≤ 4βkRk, (31)

where γmin := min{γ0, μ} ≥ 0.

Proof From (23) and the contraction estimate (27) follows immediately that

Ek+1 ≤ 1

1 + αk
Ek + δk+1

2
�⇒ Ek ≤ βkE0 + βk

2

k−1∑
i=0

δi+1

βi+1
.

By (17,23), we have

δk+1 = 1

k + 1
· βk

1 + αk
= βk+1

k + 1
,

which further implies

Ek ≤ βkE0 + βk

2

k−1∑
i=0

1

i + 1
≤ βk [E0 + ln(k + 1)] = βkRk, (32)

which proves (30). In view of (23), it holds that γk+1 = (γk + μαk)/(1+ αk) ≥ γmin.
This together with (32) gives

γminDφ(x∗, vk) ≤ γk Dφ(x∗, vk) ≤ Ek ≤ βkRk .

It is clear that L(·, λ) is convex and by (7,30,3.1),

μDφ(xk, x∗) ≤ L
(
xk, λ

∗) − L
(
x∗, λ∗) ≤ βkRk .
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Hence, combining the above two estimates with (8) leads to (31).
Following [39, Theorem 3.1], we can establish (28,29). For the sake of complete-

ness, we provide the details as below. Thanks to (20c) and (20d), we have

λk+1 − λk = αk

βk
(Avk+1 − b) = αk

βk

[
A

(
xk+1 + xk+1 − xk

αk

)
− b

]

= αk

βk

[
1 + αk

αk
(Axk+1 − b) − 1

αk
(Axk − b)

]

= 1

βk+1
(Axk+1 − b) − 1

βk
(Axk − b),

which yields that

λk − λ0 = 1

βk
(Axk − b) − (Ax0 − b).

By (32), we obtain ‖λk − λ∗‖2 ≤ 2Rk and

‖Axk − b‖ = βk ‖λk − λ0 + Ax0 − b‖
≤ βk

∥∥λk − λ∗∥∥ + βk
∥∥λ0 − λ∗∥∥ + βk ‖Ax0 − b‖

≤ βk

√
2Rk + βk

∥∥λ0 − λ∗∥∥ + βk ‖Ax0 − b‖ .

In view ofRk = E0+ ln(k +1) and β0 = 1, we find that ‖λ0 − λ∗‖2 ≤ 2Rk . Plugging
this into the above estimate gives (28). Observing (30), it follows that

− 〈
λ∗, Axk − b

〉 ≤ f (xk) − f (x∗) ≤ βkRk − 〈
λ∗, Axk − b

〉
,

which promises

∣∣ f (xk) − f (x∗)
∣∣ ≤ βkRk + ∥∥λ∗∥∥ ‖Axk − b‖ ≤ βkWk .

Consequently, this proves (29) and concludes the proof of this theorem. ��
Remark 3.4 Note that the choice (17) can be replaced with

δk,i = δ

k + 1
· βk

1 + αk,i
, δ > 0.

Then the quantityRk = E0+ln(k+1) in Theorem 3.1 becomesRk = E0+δ ln(k+1).
Taking δ = 1/ ln(K + 1) cancels the logarithm factor, where K ∈ N is the maximal
number of iterations chosen in advance. ��

It remains to investigate the decay rate of {βk}k∈N. From (21,23), we obtain

βk+1 − βk = −
√

γkβkβk+1√
ρd βk Mk+1 + ‖A‖2

. (33)
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A careful investigation into this difference equation gives the desired result, which
involves the following quantity

Δ := max
{

M0,
√

ρuρu [Mν(h)]
2

1+ν

}
. (34)

Lemma 3.3 Assume that max{γ0, μ} ≤ ‖A‖2, then

βk ≤ 4 ‖A‖√
γ0k

+ (16
√
2)1+νΔ

1+ν
2

γ
1+ν
2

0 k
1+3ν
2

∀ k ≥ 1, (35)

and moreover, we have

βk ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

64 ‖A‖2
γmink2 + ‖A‖2 + exp

(
−k

8

√
γmin

Δ

)
if ν = 1,

64 ‖A‖2
γmink2 + ‖A‖2 +

(
1 + 1 − ν

32

√
γmin

2
1−ν
1+ν Δ

k
1+3ν
2+2ν

)− 2+2ν
1−ν

if ν < 1,

(36)

where γmin = min{γ0, μ} ≥ 0.

Proof Since M(ν, δk+1) = δ
ν−1
ν+1
k+1[Mν(h)] 2

ν+1 and δk+1 = βk+1/(k+1) ≤ 1, byLemma
3.1, we have

ρd Mk+1 ≤ max

{
M0

ρk
d

,
√

ρuρu M(ν, δk+1)

}

= max

{
M0

ρk
d

,
√

ρuρu[Mν(h)] 2
ν+1 δ

ν−1
ν+1
k+1

}
≤ Δ · δ

ν−1
ν+1
k+1.

Plugging this into (33) gives

βk+1 − βk ≤ −
√

γkβkβk+1√
Δ · βkδ

ν−1
ν+1
k+1 + ‖A‖2

. (37)

From this we obtain (35,36). Missing proofs are provided in Sect. 5. ��
Remark 3.5 Both two estimates (35,36) hold for μ ≥ 0. In addition, for the limiting
case ν → 1−, we have

lim
ν→1−

(
1 + 1 − ν

32

√
γmin

2
1−ν
1+ν Δ

k
1+3ν
2+2ν

)− 2+2ν
1−ν = exp

(
−k

8

√
γmin

Δ

)
,

which matches the case ν = 1. ��
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By the universal mixed-type estimate in Lemma 3.3, our Algorithm 1 achieves the
lower complexity bound for both the affinely constrained case (i.e., A �= 0m×n) and the
unconstrained caseΩ = R

n (i.e., A = 0m×n and b = 0m), withHölderian smoothness
exponent ν ∈ [0, 1]. Detailed comparisons with existing results are summarized in
order.

Remark 3.6 Consider the unconstrained case Ω = R
n (i.e.,A = 0m×n and b = 0m).

• The Lipschitzian case ν = 1: From (29), it follows that (neglecting the logarithm
factor ln(k + 1))

f (xk) − f ∗ ≤ βkE0,

where by Lemma 3.3, we have (taking γ0 > μ)

βk ≤ min

{
2 · 162Δ

γ0k2
, exp

(
−k

8

√
μ

Δ

)}
.

Hence, to achieve the accuracy f (xk) − f ∗ ≤ ε, the iteration complexity is no
more than (recalling (34) and assuming Δ ∼ Lh)

O
(
min

{√
Lh

ε
,

√
Lh

μ
· |ln ε|

})
.

This is the well-known lower bound (cf. [45, 49]) of first-ordermethods for smooth
convex functions with Lipschitzian gradients; see [10, 11, 38, 42, 47].

• The Hölderian case 0 ≤ ν < 1: Similarly with the above analysis, the iteration
complexity for f (xk) − f ∗ ≤ ε is bounded by

O
(
min

{(
Mν(h)

ε

) 2
1+3ν

,

(
Mν(h)

μ

) 2
1+3ν ·

(μ

ε

) 1−ν
1+3ν

})
. (38)

This matches the lower bound in [43, 44]. The convex case μ = 0 has been
obtained by the methods in [32, 43, 48], and the restarted schemes in [32, 52]
attained the complexity bound for μ > 0. Besides, Guminov et al. [24] obtained
(38) for nonconvex problems, with an extra one-dimensional line search step. ��

Remark 3.7 Then, let us focus on the affine constraint case (i.e., A �= 0m×n).

• The Lipschitzian case ν = 1: By (28,29), to achieve | f (xk) − f ∗| ≤ ε and
‖Axk − b‖ ≤ ε, the iteration complexity (neglecting the logarithm factor ln(k+1))
is

O
(
min

{
‖A‖
ε

+
√

Lh

ε
,

‖A‖√
με

+
√

Lh

μ
· |ln ε|

})
. (39)

This coincides with the lower complexity bound in [51]. The methods in [12, 46,
66] achieved the bound for convex caseμ = 0, and the strongly convex caseμ > 0
can be found in [66].
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• The Hölderian case 0 ≤ ν < 1:

O
(
min

{
‖A‖
ε

+
(

Mν(h)

ε

) 2
1+3ν

,
‖A‖√

με
+

(
Mν(h)

μ

) 2
1+3ν ·

(μ

ε

) 1−ν
1+3ν

})
.

Similarly with (39), this universal mixed-type estimate has optimal dependence on
‖A‖ (corresponding to the affine constraint), and the remainder agrees with (38),
which is optimal with respect to μ and Mν(h) (related to the objective). ��

4 Proof of Lemma 3.2

Start from the difference Ek+1 − Ek = I1 + I2 + I3, where

I1 := L
(
xk+1, λ

∗) − L
(
xk, λ

∗) ,

I2 := γk+1Dφ(x∗, vk+1) − γk Dφ(x∗, vk),

I3 := βk+1

2

∥∥λk+1 − λ∗∥∥2 − βk

2

∥∥λk − λ∗∥∥2 .

Notice that xk, xk+1 ∈ Q and the first term is easy to handle:

I1 = f (xk+1) − f (xk) + 〈λ∗, A(xk+1 − xk)〉. (40)

We give the estimate of I2 in Sect. 4.1 and finish the proof of (27) in Sect. 4.2.

4.1 Estimate of I2

Invoking the three-term identity (9) and the difference equation of {γk}k∈N in (23), we
split the second term I2 as follows

I2 = (γk+1 − γk)Dφ(x∗, vk+1) + γk
[
Dφ(x∗, vk+1) − Dφ(x∗, vk)

]
= αk(μ − γk+1)Dφ(x∗, vk+1) − γk Dφ(vk+1, vk)

+ γk
〈∇φ(vk+1) − ∇φ(vk), vk+1 − x∗〉 .

(41)

Let us prove

μαk Dφ(x∗, vk+1) + γk
〈∇φ(vk+1) − ∇φ(vk), vk+1 − x∗〉

≤ h(xk) − h(yk) − αk
[
h(yk) − h(x∗) + 〈̃

λk, Avk+1 − b
〉]

− αk
[
g(vk+1) − g(x∗) + 〈∇h(yk), vk+1 − vk〉

]
,

(42)
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which leads to the desired estimate of I2:

I2 ≤ − αkγk+1Dφ(x∗, vk+1) − γk Dφ(vk+1, vk) − αk
〈̃
λk, Avk+1 − b

〉
− αk

[
g(vk+1) − g(x∗) + h(yk) − h(x∗)

]
+ h(xk) − h(yk) − αk 〈∇h(yk), vk+1 − vk〉 .

(43)

To do this, define ζk+1 by that

γk
[∇φ(vk+1) − ∇φ(vk)

]
= μαk

[∇φ(yk) − ∇φ(vk+1)
] − αk

[∇h(yk) + ζk+1 + A�λ̃k
]
.

(44)

Observing (20b), it follows that ζk+1 ∈ ∂g(vk+1) + NQ(vk+1) and

− αk
〈
ζk+1, vk+1 − x∗〉 ≤ −αk

[
g(vk+1) − g(x∗)

]
.

Thanks to (9), we have the decomposition

μαk
〈∇φ(yk) − ∇φ(vk+1), vk+1 − x∗〉

= μαk
[
Dφ(x∗, yk) − Dφ(x∗, vk+1) − Dφ(vk+1, yk)

]
,

and invoking (20a) leads to

− αk
〈∇h(yk), vk+1 − x∗〉

= − αk 〈∇h(yk), vk+1 − vk〉 − 〈∇h(yk), yk − xk〉 − αk
〈∇h(yk), yk − x∗〉 .

Since xk, yk ∈ Q, by Assumption 3.1 we obtain

− 〈∇h(yk), yk − xk〉 − αk
〈∇h(yk), yk − x∗〉

≤ h(xk) − h(yk) − αk
[
h(yk) − h(x∗) + μDφ(x∗, yk)

]
.

Hence, combining the above estimates with (44) proves (42).

4.2 Estimate of I3

Similarly with (41), by (9), (20d) and (23), the third term I3 is rearranged by that

I3 = − αkβk+1

2

∥∥λk+1 − λ∗∥∥2 − βk

2

∥∥λk+1 − λk
∥∥2

+ αk
〈
Avk+1 − b, λk+1 − λ∗〉.

To match the cross term −αk
〈̃
λk, Avk+1 −b

〉
in the estimate of I2 (cf.(43)), we rewrite

the last term as follows:

αk
〈
Avk+1 − b, λk+1 − λ∗〉

= αk
〈
Avk+1 − b, λk+1 − λ̃k

〉 + αk
〈
Avk+1 − b, λ̃k − λ∗〉.
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In view of (10) and (20d), we get

αk
〈
Avk+1 − b, λk+1 − λ̃k

〉 = βk
〈
λk+1 − λk, λk+1 − λ̃k

〉
= βk

2

∥∥λk+1 − λk‖2 + βk

2

∥∥λk+1 − λ̃k
∥∥2 − βk

2

∥∥λk − λ̃k
∥∥2,

which gives

I3 ≤ −αkβk+1

2

∥∥λk+1 − λ∗∥∥2 + βk

2

∥∥λk+1 − λ̃k
∥∥2 + αk

〈
Avk+1 − b, λ̃k − λ∗〉.

4.3 Proof of (27)

Combining (43) and the estimate of I3, we obtain

I2 + I3 ≤ − αkβk+1

2

∥∥λk+1 − λ∗∥∥2 + βk

2

∥∥λk+1 − λ̃k
∥∥2 − αk

〈
λ∗, Avk+1 − b

〉
− αkγk+1Dφ(x∗, vk+1) − γk Dφ(vk+1, vk)

− αk
[
g(vk+1) − g(x∗) + h(yk) − h(x∗)

]
+ h(xk) − h(yk) − αk 〈∇h(yk), vk+1 − vk〉 .

Inserting the identity (40) into the above inequality and observing that

− αk
〈
λ∗, Avk+1 − b

〉 + 〈λ∗, A(xk+1 − xk)〉
= −αk

〈
λ∗, A

(
xk+1 + xk+1 − xk

αk

)
− b

〉
+ 〈λ∗, A(xk+1 − xk)〉 (by (20c))

= −αk〈λ∗, Axk+1 − b〉

and

− αk
[
g(vk+1) − g(x∗) + h(yk) − h(x∗)

]
= −αk

[
g(xk+1) − g(x∗) + h(xk+1) − h(x∗)

]
− αk

[
g(xk) − g(xk+1) + h(xk) − h(xk+1)

]
− αk

[
g(vk+1) − g(xk) + h(yk) − h(xk)

]
= −αk

[
f (xk+1) − f (x∗)

] − αk
[

f (xk) − f (xk+1)
]

− αk
[
g(vk+1) − g(xk) + h(yk) − h(xk)

]
,
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we arrive at

Ek+1 − Ek ≤ − αk
[

f (xk+1) − f (x∗)
] − αk〈λ∗, Axk+1 − b〉

− αkγk+1Dφ(x∗, vk+1) − αkβk+1

2

∥∥λk+1 − λ∗∥∥2

+ (1 + αk)
[

f (xk+1) − f (xk)
] + βk

2

∥∥λk+1 − λ̃k
∥∥2

− αk
[
g(vk+1) − g(xk) + h(yk) − h(xk)

] − γk Dφ(vk+1, vk)

+ h(xk) − h(yk) − αk 〈∇h(yk), vk+1 − vk〉 .

The first two lines equal to −αkEk+1 and a careful collection of the rest terms gives

Ek+1 − Ek ≤ − αkEk+1 + βk

2

∥∥λk+1 − λ̃k
∥∥2 − γk Dφ(vk+1, vk)

+ (1 + αk)
[
h(xk+1) − h(yk)

] − αk 〈∇h(yk), vk+1 − vk〉
+ (1 + αk)g(xk+1) − g(xk) − αk g(vk+1).

(45)

From (20c), we see xk+1 is a convex combination of xk and vk+1, which implies

(1 + αk)g(xk+1) ≤ g(xk) + αk g(vk+1).

Thanks to (22) and the relation αk(vk+1 − vk) = (1 + αk)(xk+1 − yk) (cf.(20a) and
(20c)), we obtain the estimate

(1 + αk)
[
h(xk+1) − h(yk)

] − αk 〈∇h(yk), vk+1 − vk〉

≤ α2
k Mk+1

2 + 2αk
‖vk+1 − vk‖2 + δk+1

2
(1 + αk).

Consequently, plugging these two estimates into (45) and using (8) leads to

Ek+1 − Ek ≤ − αkEk+1 + δk+1

2
(1 + αk) + βk

2

∥∥λk+1 − λ̃k
∥∥2

+ α2
k Mk+1 − γk(1 + αk)

1 + αk
Dφ(vk+1, vk).

Recall that λ̃k = λk + αk/βk(Avk − b), which together with (20d) gives λk+1 − λ̃k =
αk/βk A(vk+1 − vk) and

Ek+1 − Ek ≤ − αkEk+1 + δk+1

2
(1 + αk)

+ 1

βk

[
α2

k (βk+1Mk+1 + ‖A‖2) − γkβk

]
Dφ(vk+1, vk).

Since βk+1 ≤ βk (cf.(23)), the desired estimate (27) follows immediately from (21).
This finishes the proof of Lemma 3.2.
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5 Proof of Lemma 3.3

The key to complete the proof of Lemma 3.3 is the difference inequality (37). In
Sect. 5.1, we shall introduce an auxiliary differential inequality (cf.(46)) that can be
viewed as a continuous analogue to (37). Later in Sects. 5.2 and 5.3, we finish the
proofs of (35),(36) by using the asymptotic estimate of (46).

5.1 A Differential Inequality

In the sequel, we need some functional spaces in one dimension; see [14, Definitions
1.87 and 2.1]. Denote by C1(I ) the space of (real-valued) continuous functions on the
interval I ⊂ R with continuous derivatives. Let L∞(I ) be the space of essentially
bounded measurable functions, which means any σ ∈ L∞(I ) is bounded almost
everywhere. The space L1(I ) consists of measurable functions that are absolutely
summable (integrable). As usual, we denote by W 1,∞(I ) the set of all real-valued
functions which, together with their generalized derivatives, belong to L∞(I ).

Letη, R ≥ 0 and θ > 1be constants such thatη ≤ θ−1. Suppose y ∈ W 1,∞(0,∞)

is positive and satisfies the differential inequality

y′(t) ≤ − σ(t)yθ (t)√
ϕ(t)y2η(t) + R2

, y(0) = 1, (46)

where σ ∈ L1(0,∞) is nonnegative, and ϕ ∈ C1[0,∞) is positive and nondecreasing.
The decay rate of y(t) is given below.

Lemma 5.1 Assume y ∈ W 1,∞(0,∞) is positive and satisfies (46). Then, for all t > 0,
we have

y(t) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

(
− Σ(t)

2
√

ϕ(t)

)
+

(
1 + θ − 1

2R
Σ(t)

) 1
1−θ

if η = θ − 1,

(
1 + θ − 1

2R
Σ(t)

) 1
1−θ +

(
1 + θ − η − 1

2
√

ϕ(t)
Σ(t)

) 1
η+1−θ

if η < θ − 1,

where Σ(t) := ∫ t
0 σ(s) ds.

Proof Write (46) as follows

y′(t) ≤ − σ(t)√
ϕ(t)y2η−2θ (t) + R2y−2θ (t)

.

Shifting the denominator from the right to the left and using the trivial estimate

√
ϕ(t)y2η−2θ (t) + R2y−2θ (t) ≤ √

ϕ(t)yη−θ (t) + Ry−θ (t),
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we obtain that ( √
ϕ(t)

yθ−η(t)
+ R

yθ (t)

)
y′(t) ≤ −σ(t). (47)

To the end, we shall discuss in two cases: η = θ − 1 and η < θ − 1. Detailed proofs
can be found in Sect.Appendix C. ��

5.2 Proof of (35)

By (23), we have

γk+1 − γ0βk+1 = μαk + γk

1 + αk
− γ0βk

1 + αk
≥ γk − γ0βk

1 + αk
.

Since γ0 = γ0β0, it follows that γk ≥ γ0βk and (37) becomes

βk+1 − βk ≤ −
√

γ0βkβk+1√
Δ · βkδ

ν−1
ν+1
k+1 + ‖A‖2

, (48)

where δk+1 = βk+1/(k + 1).
Define a piecewise continuous linear interpolation

y(t) := βk(k + 1 − t) + βk+1(t − k) ∀ t ∈ [k, k + 1), k ∈ N. (49)

Clearly, y ∈ W 1,∞(0,∞) is positive and 0 < y(t) ≤ y(0) = 1. In particular, we
have βk = y(k) for all k ∈ N, and the decay estimate of βk is transferred into the
asymptotic behavior of y(t), which satisfies (the proof is given below)

y′(t) ≤ −
√

γ0y2(t)/2√
ϕ(t)[y(t)] 2ν

1+ν + ‖A‖2
, (50)

where ϕ(t) := 4Δ(t + 1)
1−ν
1+ν . Thus, utilizing Lemma 5.1 gives

βk = y(k) ≤ 4 ‖A‖√
γ0k

+ (16
√
2)1+νΔ

1+ν
2

γ
1+ν
2

0 k
1+3ν
2

∀ k ≥ 1,

which establishes (35).
Below, let us verify (50). Since γk ≤ max{γ0, μ} ≤ ‖A‖2, from (21) we find that

αk ≤ √
γkβk/ ‖A‖ ≤ 1. For any t ∈ (k, k + 1), it is clear that

1 ≥ βk+1

y(t)
≥ βk+1

βk
= 1

1 + αk
≥ 1

2
, and 1 ≤ βk

y(t)
≤ βk

βk+1
≤ 2,
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which implies

Δ · βkδ
ν−1
ν+1
k+1 = ϕ(k)βkβ

ν−1
ν+1

k+1

4
≤ ϕ(t)[y(t)] 2ν

1+ν .

Since y′(t) = βk+1 − βk , plugging the above estimate into (48) proves (50).

5.3 Proof of (36)

Again, by (23), we have γk ≥ γmin = min{γ0, μ}, and (37) becomes

βk+1 − βk ≤ −
√

γminβkβk+1√
Δ · βkδ

ν−1
ν+1
k+1 + ‖A‖2

.

Recall the interpolation y(t) defined by (49). Similarly with (50), we claim that

y′(t) ≤ −
√

γminy3/2(t)/2√
ϕ(t)[y(t)] 2ν

1+ν + ‖A‖2
,

and invoking Lemma 5.1 again gives

βk ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

64 ‖A‖2
γmink2 + ‖A‖2 + exp

(
−k

8

√
γmin

Δ

)
if ν = 1,

64 ‖A‖2
γmink2 + ‖A‖2 +

(
1 + 1 − ν

32

√
γmin

2
1−ν
1+ν Δ

k
1+3ν
2+2ν

)− 2+2ν
1−ν

if ν < 1.

This proves (36) and completes the proof of Lemma 3.3.

6 Numerical Examples

In this part, we provide several experiments to validate the performance of our Algo-
rithm 1 (denoted by UAPD). It is compared with Nesterov’s FGM [48] and the
AccUniPDGradmethod [68], for solving unconstrained and affinely constrained prob-
lems.

Both UAPD and FGM involve the proximal mapping of the nonsmooth part g, and
FGM performs one more proximal calculation for updating vk+1. In line search part,
FGM and AccUniPDGrad use the tolerance δk = ετk with τk = O(1/k), where ε

is the desired accuracy. Clearly, this is smaller than ours δk = βk/k. As discussed in
Remark 3.3, this will lead to over-estimate issue, especially for Hölderian case (cf.
Sect. 6.1) and smooth problems with large Lipschitz constants (cf. Sect. 6.2).
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6.1 Matrix Game

The problem reads as

min
x∈Δn

max
y∈Δm

〈x, Py〉 = min
x∈Δn

{
ϕ(x) := max

1≤ j≤m

〈
p j , x

〉}
, (51)

where P = (p1, p2, · · · , pm) ∈ R
n×m is the given payoff matrix and Δ× ⊂ R

×
is the simplex with × = m or n. By von Neumann’s minimax theorem [1, Corollary
15.30], we can change the min-max order of (51) and obtain

max
y∈Δm

min
x∈Δn

〈x, Py〉 = max
y∈Δm

{
ψ(y) := min

1≤i≤n
〈qi , y〉

}
, (52)

where P� = (q1, q2, · · · , qn) with qi ∈ R
m . Moreover, there is no duality gap, i.e.,

ϕ∗ = ψ∗. According to [1, Proposition 5.12], we claim that ϕ(x#) = ψ(y#) for some
(x#, y#) ∈ Δn × Δm if and only if ϕ(x#) = ϕ∗ and ψ(y#) = ψ∗.

As we do not know the optimal value, consider the unconstrained problem

min
x∈Δn , y∈Δm

{ f (x, y) := ϕ(x) − ψ(y)} . (53)

Clearly, the minimal value is zero:

f ∗ = min
x∈Δn

ϕ(x) − max
y∈Δm

ψ(y) = ϕ∗ − ψ∗ = 0.

Moreover, (x#, y#) is an optimal solution to (53) if and only if x# and y# are optimal
solutions to (51,52), respectively.

Since ψ is concave, f is convex but nonsmooth (Lipschitz continuous). In view of
Remark 3.1, f satisfies Assumption 3.1 without the simple part g. In addition, to work
with the simplex constraint, a proper prox-function is the entropy φ(x) = 〈x, ln x〉,
which gives closed solution of the proximal calculation (14).

Numerical results are displayed in Fig. 2. We record (i) the decay behavior of the
objective residual | f (xk, yk) − f ∗|with respect to both iteration number k and running
time t (in seconds), (ii) the total number #ik of the line search step ik and its average
īk , and (iii) the approximate Lipschitz constant Mk . The pay off matrix P is generated
from the normal distribution. For FGM, the priori accuracy is ε = 1e-5. For our
method, the line search parameters are ρu = 2 and ρd = 1.

From Fig. 2, our UAPD outperforms FGM, with faster convergence, less number
of line search steps and smaller Lipschitz constants. Within the same iteration number
k = 1e5, UAPD achieves ten times smaller error (1e-2 v.s. 1e-1) but takes only about
half less time (20s v.s. 40s). It can be seen that, FGM has much more line search
steps and the average is 1, which means it performs at least one step of line search
in each iteration. Since ρd = 1, according to Remark 3.2, the Lipschitz constant
Mk of our UAPD is nondecreasing, which agrees with the numerical illustration. As
mentioned in Remark 3.3, FGM suffers from over-estimated Lipschitz parameters
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Fig. 2 Numerical results of FGMandUAPD for solving (53)withm = 100, n = 400. The desired accuracy
of FGM is ε = 1e-5

Fig. 3 Numerical performances of UAPD on the problem (53) with different prox-functions

with dramatically growth behavior since it adopts smaller tolerance ε/k (comparable
to our dynamically decreasing choice βk/k). Besides, in step 3 of FGM, it updates the
Lipschitz constant by Lk+1 = Lk,ik /2 = 2ik Lk/2 (here L agreeswith our notation M),
which corresponds to choosing ρd = 2 in our method. Hence, the Lipschitz constant
sequence of FGM is nonmonotone and changes with high oscillation. This verifies the
claim in Remark 3.2 that large ρd > 1 reduces Mk locally but increases the burden on
the line search procedure.
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Fig. 4 Numerical performances of UAPD on the problem (53) with ρu = 2 and different ρd

In Fig. 3, we check also the difference between the Euclidean distance φ(x) =
1/2 ‖x‖2 and the entropy φ(x) = 〈x, ln x〉. It is observed that these two cases are very
similar in line search part but the latter leads to better convergence rate.

Besides, we report the performance of our UAPD with different ρd . From Fig. 4,
we see little improvement on the convergence rate with respect to the iteration k,
and large ρd does not win smaller choices because it runs with more than triple time
(120.12 s v.s. 39.62 s) but has not reduced the residual by third (6.07e-3 v.s. 4.37e-3).
Moreover, the magnitude of Mk does not differ too much but large ρd call more line
search steps, which increases the computational cost. In conclusion, for matrix game
problem, ρd = 1 seems a doable choice.

6.2 RegularizedMatrix Game Problem

The objective of (51) admits an approximation (cf. [46])

ϕσ (x) := σ ln

⎛
⎝ m∑

j=1

e〈p j ,x〉/σ
⎞
⎠ , (54)

where σ > 0 denotes the smoothing parameter. This regularized objective is smoother
than the original one. According to [46, Eq.(4.8)], we choose σ = ε/(2 lnm), and the
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Fig. 5 Numerical performances of FGM and UAPD on minimizing the regularized objective (54) with
m = 100, n = 400. The desired accuracy of FGM is ε = 1e-6

Lipschitz constant of ∇ϕσ is Lσ = maxi, j |Pi, j |2/(4σ). To avoid the overflow issue,
we adopt the shifting technique [3].

We then apply UAPD and FGM (with ε = 1e-6) to the smooth objective (54) and
report the numerical outputs in Fig. 5. The optimal value ϕ∗

σ is obtained by running
UAPD with enough iterations. Similarly as before, our UAPD is superior to FGM in
convergence, line search cost and approximate Lipschitz constant. Also, we plot the
results of the original matrix game problem (see the top row in Fig. 5) and find that
with smoothing technique both two methods perform better than before.

6.3 Continuous Steiner Problem

Let us consider one more unconstrained problem

min
x∈R

n+
f (x) =

m∑
j=1

∥∥x − a j
∥∥ , (55)

where a j ∈ R
n denotes the given location. Note that the objective is actually quite

smooth far away from each a j . We generate a j from the uniform distribution and run
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Fig. 6 Numerical results of FGMandUAPD for solving (55)withm = 800, n = 400. The desired accuracy
of FGM is ε = 1e-8

UAPD with enough times to obtain an approximated optimal value f ∗. Numerical
results in Fig. 6 show that both FGM (with ε = 1e-8) and UAPD work well and
possess similar convergence behaviors. Moreover, as ∇ f is almost Lipschitz continu-
ous and the magnitude of the Lipschitz constant is not large, the over-estimated issue
of FGM is negligible, and the approximated constant Mk is the same as that of our
UAPD.

6.4 Basis Pursuit Problem

In the last example, we look at the basis pursuit problem

min
x∈Rn

‖x‖1 s.t. Ax = b,

where A ∈ R
m×n and b ∈ R

m . To be compatible with the problem setting of AccU-
niPDGrad [68], consider an equivalent formulation
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Fig. 7 Numerical performances of AccUniPDGrad and UAPD on the basis pursuit problem (56) with
m = 100, n = 400. The desired accuracy for AccUniPDGrad is ε = 1e-3

min
x∈Rn

f (x) = 1

2
‖x‖21 s.t. Ax = b. (56)

The dual problem reads as

min
λ∈Rm

{
ϕ(λ) := 〈b, λ〉 + 1

2

∥∥A�λ
∥∥2∞

}
.

Note that existing accelerated methods in [29, 39, 65] can be applied to solving (56)
with theoretical rateO(1/k). But we only focus on the comparison betweenUAPDand
AccUniPDGrad, as black-box type methods with line search procedure. We mention
that AccUniPDGrad also uses smaller tolerance ε/k as that in FGM, where ε > 0
denotes the desired accuracy, and it takes Mk+1 = Mk,ik = 2ik Mk , which coincides
with our choice ρd = 1.

To obtain a reasonable approximate minimal value f ∗, we run the accelerated
primal–dual method proposed in [39] with enough iterations. Numerical results are
shown in Fig. 7, which indicate that (i) our UAPD has smaller objective residual and
feasibility violation, (ii) the line search steps are very close and the Lipschitz constant
sequences are nondecreasing (since ρd = 1), and (iii) AccUniPDGrad generates over-
estimated Mk because of its small tolerance ε/k.

Acknowledgements The author would like to thank the Editor and two anonymous referees, for their
careful readings and valuable comments that improve significantly the early version of the paper.
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Appendix A Proof of Lemma 3.1

Let us first prove (18). Recall that ik is the smallest nonnegative integer such that (cf.
(15))

h(xk,ik ) − Δk,ik ≤ δk,ik

2
.

If ik = 0, then Mk+1 = Mk,0/ρd = Mk/ρd . Otherwise (i.e., ik ≥ 1), we claim that

Mk,ik ≤ ρu · M(ν, δk,ik−1). (57)

If this is violated, then Mk,ik−1 = Mk,ik /ρu > M(ν, δk,ik−1). According to Proposition
2.1, this implies immediately that

h(xk,ik−1) − Δk,ik−1 ≤ δk,ik−1

2
,

which yields a contradiction and thus verifies (57). Additionally, by (16), we have
αk,ik−1 ≤ √

ρuαk,ik . Therefore, collecting (13,17,57) leads to

Mk+1 = Mk,ik /ρd ≤
√

ρuρu

ρd

· M(ν, δk,ik ) =
√

ρuρu

ρd

· M(ν, δk+1). (58)

This means that for all k ∈ N, we have

Mk+1 ≤ 1

ρd

max
{

Mk,
√

ρuρu · M(ν, δk+1)
}
. (59)

Since δk+1 = βk+1/(k + 1) with {βk}k∈N being decreasing (cf.(17)), it follows that
δk+1 ≤ δ�+1 and M(ν, δ�+1) ≤ M(ν, δk+1) for all 0 ≤ � ≤ k, which together with
(59) indicates the estimate

Mk+1 ≤ 1

ρd

max

{
1

ρd

max
{

Mk−1,
√

ρuρu · M(ν, δk)
}
,
√

ρuρu · M(ν, δk+1)

}

≤ 1

ρd

max

{
Mk−1

ρd

,
√

ρuρu · M(ν, δk+1)

}

≤ · · · ≤ 1

ρd

max

{
M0

ρk
d

,
√

ρuρu · M(ν, δk+1)

}
.

This proves the desired result (18).
Then, let us verify (19). Observing that Mk+1 = Mk,ik /ρd = ρ

ik
u Mk/ρd , we have

ik = logρu

ρd Mk+1

Mk
�⇒

k∑
j=0

i j = logρu

ρk+1
d

Mk+1

M0
.
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Invoking the estimate of Mk+1 gives

k∑
j=0

i j ≤ max

{
0,

3

2
+ k logρu

ρd + logρu

M(ν, δk+1)

M0

}

≤ 3

2
+ k logρu

ρd +
∣∣∣∣logρu

M(ν, δk+1)

M0

∣∣∣∣ .

Since M(ν, δk+1) = δ
ν−1
ν+1
k+1[Mν(h)] 2

ν+1 , we obtain (19) and complete the proof of
Lemma 3.1.

Appendix B Derivation of the Reformulation (20a)

Observing line 10 of Algorithm 1, we obtain (20d). Given (xk, vk, λk) and
(γk, βk, Mk), (yk, xk+1, vk+1) are nothing but the output of Algorithm 2 with the
input (k, Sk, Mk,ik ), where Sk = {xk, vk, λk, βk, γk}. Hence, from lines 3 and 4, we
obtain

yk − xk

αk
= vk − yk,

xk+1 − xk

αk
= vk+1 − xk+1,

which gives (20a) and (20c). Besides, we have

vk+1 = argmin
v∈Q

{
g(v) + 〈∇h(yk) + A�λ̃k, v

〉 + μDφ(v, yk) + γk

αk
Dφ(v, vk)

}
,

with λ̃k = λk + αk/βk(Avk − b). The optimality condition reads as

0 ∈ ∇h(yk) + ∂g(vk+1) + NQ(vk+1) + A�λ̃k

+ μ
[∇φ(vk+1) − ∇φ(yk)

] + γk

αk

[∇φ(vk+1) − ∇φ(vk)
]
.

After rearranging, we get (20b).

Appendix C Proof of Lemma 5.1

Appendix C.1 The Case� = � − 1

The estimate (47) becomes

√
ϕ(t)

y′(t)
y(t)

+ R
y′(t)
yθ (t)

≤ −σ(t). (60)
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Since y(0) = 1 and y′(t) ≤ 0, it holds that 0 < y(t) ≤ 1 for all t ≥ 0. As ϕ(t) is
positive and nondecreasing, we obtain

(√
ϕ ln y

)′ = ϕ′

2
√

ϕ
ln y + √

ϕ
y′

y
≤ √

ϕ
y′

y
.

Combining this with (60) gives

(√
ϕ(t) ln y(t) + R

1 − θ
y1−θ (t)

)′
≤ −σ(t),

and integrating over (0, t) leads to

√
ϕ(t) ln

1

y(t)
+ R

θ − 1

(
y1−θ (t) − 1

)
≥

∫ t

0
σ(s) ds = Σ(t). (61)

Define

Y1(t) := exp

(
− Σ(t)

2
√

ϕ(t)

)
and Y2(t) :=

(
1 + θ − 1

2R
Σ(t)

) 1
1−θ

. (62)

Then one finds that

√
ϕ(t) ln

1

Y1(t)
= 1

2
Σ(t), Y1(0) = 1,

R

θ − 1

(
Y 1−θ
2 (t) − 1

)
= 1

2
Σ(t), Y2(0) = 1.

This also implies

√
ϕ(t) ln

1

Y (t)
+ R

θ − 1

(
Y 1−θ (t) − 1

)
≤ Σ(t), (63)

where Y (t) := Y1(t) + Y2(t). For fixed t > 0, the function

v �−→ √
ϕ(t) ln

1

v
+ R

θ − 1

(
v1−θ − 1

)

is monotonously decreasing in terms of v ∈ (0,∞). Collecting (61,63) yields that

y(t) ≤ Y (t) = exp

(
− Σ(t)

2
√

ϕ(t)

)
+

(
1 + θ − 1

2R
Σ(t)

) 1
1−θ

.

This completes the proof of Lemma 5.1 with η = θ − 1.
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Appendix C.2 The Case� < � − 1

The proof is in line with the previous case. With some elementary calculus computa-
tions, the estimate (61) now becomes

G(ϕ(t), y(t)) ≥ Σ(t),

where G : (0,∞) × (0,∞) → R is defined by

G(w, v) :=
√

w

θ − η − 1
(vη+1−θ − 1) + R

θ − 1
(v1−θ − 1),

for all w, v > 0. In addition to Y2(t) defined in (62), we need

Y3(t) :=
(
1 + θ − η − 1

2
√

ϕ(t)
Σ(t)

) 1
η+1−θ

.

Since G(w, ·) is monotonously decreasing and

G(ϕ(t), Y2(t) + Y3(t)) ≤ Σ(t) ≤ G(ϕ(t), y(t)),

we obtain

y(t) ≤
(
1 + θ − 1

2R
Σ(t)

) 1
1−θ +

(
1 + θ − η − 1

2
√

ϕ(t)
Σ(t)

) 1
η+1−θ

.

This concludes the proof of Lemma 5.1 with η < θ − 1.
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