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Abstract
This paper focuses on distributed consensus optimization problems with coupled con-
straints over time-varyingmulti-agent networks, where the global objective is the finite
sum of all agents’ private local objective functions, and decision variables of agents
are subject to coupled equality and inequality constraints and a compact convex sub-
set. Each agent exchanges information with its neighbors and processes local data.
They cooperate to agree on a consensual decision vector that is an optimal solution
to the considered optimization problems. We integrate ideas behind dynamic average
consensus and primal-dual methods to develop a distributed algorithm and establish
its sublinear convergence rate. In numerical simulations, to illustrate the effective-
ness of the proposed algorithm, we compare it with some related methods by the
Neyman–Pearson classification problem.

Keywords Distributed optimization · Coupled constraints · Time-varying networks ·
Convergence

1 Introduction

Distributed algorithms decompose an optimization problem into smaller and more
manageable subproblems that can be solved in parallel by a group of agents or proces-
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sors. Such algorithms are used for large-scale problems in machine learning, wireless
sensor networks, social networks, smart grids, etc.

Todate, a largenumber of distributed algorithmshavebeendeveloped for distributed
unconstrained optimization problems. In general, these algorithms can be classified
into two categories: dual-decomposition-based algorithms and dynamic-average-
consensus-based algorithms. The dual-decomposition-based algorithms utilize a
consensus equality constraint to reformulate unconstrained optimization problems
into constrained ones such that decision variables of agents are decoupled, then inte-
grate ideas from centralized primal-dual methods. Typical of such algorithms are
EXTRA [40], PG-EXTRA [41], NIDS [18], ABC [48], and DCPA [5], etc. On the
other hand, the dynamic-average-consensus-based algorithms introduce auxiliary vari-
ables to track the average of some quantities that need to reach a consensus among
agents, such as tracking the average gradients of all agents’ local objectives. To name a
few, Aug-DGM [49], DIGing [26], Push–Pull Gradient [35], Harnessing Smoothness
[36], and TV-AB [39], etc. Ideas behind these methods are generalized to design algo-
rithms for solving distributed constrained optimization problems arising in practical
applications.

In this paper, we consider the following constrained consensus optimization prob-
lem over a multi-agent network consisting of m agents,

min
x∈X

f (x) =
m∑

i=1

fi (x) (DCOP)

s.t. h(x) =
m∑

i=1

hi (x) ∈ K,

where K = �p
− × {0q}, implying that the constraints include inequality and equality.

fi : �n → �, hi : �n → �p+q , i = 1, 2, . . . ,m, and X is a subset of �n . For each
i = 1, 2, . . . ,m, the local objective fi and the constraint function hi are only known
by agent i , but are not available to other agents. All agents cooperate to find an optimal
solution to (DCOP) through peer-to-peer communication and local computation.

1.1 Motivations

The optimization problem (DCOP) is motivated by its applications in stochastic pro-
grams, distributed optimization, optimal control, etc. Due to space limitations, we will
present two important examples of applications.

Example 1 Consider the following stochastic programming with expectation con-
straints,

min
x∈X

f (x) = Eξ [F(x, ξ)]
s.t. g(x) = Eξ [G(x, ξ)] ≤ 0,

(1.1)
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where ξ is a random vector supported on P ⊆ �n and independent of x . F(x, ξ) :
�p ×P → � and G(x, ξ) : �p ×P → �q . The problem (1.1) has many applications
inmachine learning, finance and data analysis, and operations research, e.g., Neyman–
Pearson classification [44] and asset allocation problems [15, 38].

The sample average approximation (SAA) method is widely used for stochastic
optimization problems. Applying SAA to solve (1.1), one first generates N inde-
pendently and identically distributed (i.i.d.) random samples {ξi }Ni=1 and then uses

the averages 1
N

∑N
i=1 F(x, ξi ) and 1

N

∑N
i=1 G(x, ξi ) to approximate f (x) and g(x),

respectively. The associated approximation optimization subproblem is

min
x∈X

1

N

N∑

i=1

F(x, ξi )

s.t.
1

N

N∑

i=1

G(x, ξi ) ≤ 0.

(1.2)

It is well known that optimal solutions of (1.2) asymptotically solve (1.1) as the
sample size N tends to infinity. An immediately following question is how to solve
such subproblems.

Example 2 If the objective f (x) and constraint function h(x) of (DCOP) both have
separable structures, namely, x = (x1, x2, . . . , xm), fi (x) = f̃i (xi ), and hi (x) =
h̃i (xi ), (DCOP) reduces to the following constraint-coupled optimization problem,

min
x∈X

m∑

i=1

f̃i (xi ) (CCOP)

s.t.
m∑

i=1

h̃i (xi ) ∈ K.

The problem (CCOP) has been widely investigated in smart grids, optimal control,
machine learning, etc. For instance, in multi-micro energy grid systems [51], the
coupled constraints character that the sum of users’ power consumption is equal to
the total power generation of grids and the total carbon emissions are not more than a
given upper bound. In distributed resource allocation problems [27, 33], the relation
of allocating some given resource to agents is formulated as the coupled constraints.
Besides, (CCOP) also appears in problems such as distributedmodel predictive control
[6], network utility maximization [20], and distributed estimation [13], etc.

Theoretically, algorithms for (CCOP) can be adopted to solve (DCOP) at the cost of
addingm−1 equality constraints, namely, x1 = x2 = · · · = xm . However, in practical
computations, this causes challenges if the network sizem and the variable dimension
n are relatively large, e.g., m = 1000, n = 100. Moreover, the consensus constraints,
xi = x j , for each j ∈ Ni (the set of neighbors of agent i), play an important role in
applications such as distributed regression problems [50] and optimal control [24, 45],
which motivates us to consider the lifted consensus optimization problem (DCOP).
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1.2 RelatedWork

To accommodate the demands of practical applications, researchers aim at designing
distributed algorithms that converge faster and can apply to more general multi-agent
networks.

The earlier studies of distributed constrained consensus optimization problems
focused on the case where agents’ decisions are only subject to local constraint sets.
Thedistributedprojection (sub)gradientmethod [30] is a seminalwork in this direction.
Afterward, a large number of dual-decomposition-based [16, 52] or dynamic-average-
consensus-based [3, 21, 22] distributed algorithms with fast convergence rates have
been proposed to solve such problems.

The first attempt to focus on distributed consensus optimization with equality and
inequality constraints may be the work of [53], which presented a distributed primal-
dual algorithm with vanishing step-sizes. Afterward, the community aims to design
faster convergent distributed algorithms with a fixed step-size for such problems, e.g.,
see [12, 14, 23]. Under various assumptions such as smoothness and strong-convexity
of functions, these algorithms have sublinear or linear convergence rates, while their
considered equality and inequality constraints are shared with all agents.

The problem (CCOP) has attracted increasing research interest as the coupled
constraints frequently appear in many fields. Approaches directly aiming at (CCOP)
typically leverage the Lagrangian duality to deal with the coupled constraints, because
the Lagrangian has a separable structure in the primal decision variables and the dual
problem is a special case of (DCOP). Works based on the dual-decomposition method
are references [2, 10, 27, 42], to mention a few. There are also consensus-based dis-
tributed algorithms for such problems, e.g., see [1, 8, 9, 22, 43].While thesementioned
papers considered only the linearly coupled constraints, i.e., K = {0q} and each h̃i
is affine. The recent works [4, 19, 47] investigated (CCOP) with coupled equality
and inequality constraints, and proposed the distributed primal-dual gradient method
[19], the integrated primal-dual proximal method [47], and the augmented Lagrangian
tracking method [4], in which the integrated primal-dual proximal method has an
O(1/k) convergence rate in terms of optimality and feasibility, the other two algo-
rithms asymptotically solve (CCOP) with constant step-sizes but no results on rate
analysis.

In general, the dual-decomposition-based algorithms have nice convergence and
rates while lacking extensibility to directed and time-varying networks. The dynamic-
average-consensus-based algorithms are inexact gradient methods. If the objective and
constraint functions do not have good properties, such as strong-convexity or gradient
Lipschitz continuity, convergence analysis of these algorithms is difficult. Moreover,
such algorithms can be easily extended to directed and time-varying communication
networks of multi-agent, but the complex networks also bring challenges in algorithm
analysis.

It’s worth noting that the distributed algorithms mentioned so far for the problems
(CCOP) or (DCOP) are all executed over a fixed (static) multi-agent network. To
my knowledge, there is very little work that investigates (DCOP) over time-varying
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networks, except for [17]. The authors of [17] proposed a distributed proximal primal-
dual algorithm that has an O(1/

√
k) convergence rate for solving (DCOP).

In this paper, we integrate ideas from the algorithmTV-AB [39] and the primal-dual
optimizationmethod to develop a distributed algorithm for solving (DCOP) over time-
varying and directed multi-agent networks. The main contributions of the article are
threefold. First, this paper considers distributed consensus optimization problemswith
coupled affine equality and inequality (not necessarily affine) constraints. The objec-
tive and constraint functions are only convex and differentiable. Such assumptions
are fundamental settings for consensus-based algorithms. The considered problem
(DCOP) is more general and challenging than many papers in the literature, e.g., [2,
10, 27]. Second, the investigated multi-agent communication network is more gen-
eral than the undirected and static ones considered by [2, 10, 19, 27, 42]. Third, The
foundational assumptions on the objective and constraint functions, as well as the
time-varying communication network of multi-agent bring challenges to analysis of
the proposed inexact gradient algorithm,we still establish its convergence and iteration
complexity.

The rest of this paper is organized as follows. Section2 provides necessary pre-
liminaries and constructs the saddle point problem of (DCOP). Section3 develops a
consensus-based distributed primal-dual algorithm. Section4 presents themain results
about the convergence properties of the proposed algorithm. Section5 simulates the
presented algorithm using a realistic example and compares it with some related meth-
ods. Finally, Sect. 6 makes some conclusions.

2 Preliminaries

In this section, we will present some preliminaries in graph theory and assumptions
on the considered optimization problem and multi-agent network.

2.1 Notion and Notations

At each time slot k ≥ 0, a multi-agent system consisting of m agents is modeled
as a directed graph G(k) = (V, E(k)), where V = {1, 2, . . . ,m} and E(k) is the set
of directed edges. Let A(k) = [ai j (k)] and B(k) = [bi j (k)] be two matrices that
are compatible with the graph G(k), which means that (i, j) ∈ E(k) if and only if
ai j (k) > 0 and bi j (k) > 0. We write N out

i (k) = { j ∈ V : (i, j) ∈ E(k)} and
N in

i (k) = { j ∈ V : ( j, i) ∈ E(k)} as the sets of out-neighbors and in-neighbors of
agent i , respectively. The symbol |N out

i (k)| (resp. |N in
i (k)|) represents the out-degree

(resp. in-degree) of agent i .
The properties of adjacency matrices of connected (or strongly connected) graphs,

such as their eigenvalues and eigenvectors, are closely related to stochastic vectors.
Lagrangian function and its saddle points are also fundamental concepts in constrained
optimization. To clarify the presentation of the considered problem and algorithm
analysis, we introduce the following three notions.
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Definition 2.1 (Stochastic vector [29]) A vector π ∈ �m is said to be stochastic if its
components πi satisfy that

m∑

i=1

πi = 1, πi ≥ 0, ∀ i = 1, 2, . . . ,m.

Definition 2.2 (Absolute probability sequence [39]) For row-stochasticmatrices {Rk},
an absolute probability sequence is a sequence {πk} of stochastic vectors such that

π

k = π


k+1Rk, ∀ k ≥ 0.

Definition 2.3 (Saddle point [37]) Consider a functionL : X×S → �, where X and S
are non-empty subsets of�n and�p+q respectively, a pair of vectors (x∗, λ∗) ∈ X×S
is called a saddle point of function L over X × S, if for all (x, λ) ∈ X × S, it holds
that

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗).

In this paper, the gradient vector of a function f at x is denoted by ∇ f (x), ‖ · ‖
represents the Frobenius-norm of a matrix with suitable dimensions, and 〈·, ·〉 is the
inner product matched with the norm ‖ · ‖. The projection of a point x onto a subset
Ω ⊆ �n is written as PΩ(x). For a non-empty subsetΩ , we denote its relative interior
by ri(Ω). 1m represents the column vector in �m whose entries are all ones.

2.2 Assumptions and Saddle Point Problem

This paper focuses on time-varying communication networks ofmulti-agent.Wemake
the following assumptions on the network communication graphs, which are standard
for consensus-based algorithms, e.g., see [29, 30, 39].

Assumption 2.1 (Periodical strong connectivity) There exists a positive integer B such
that the directed graph (V,

⋃B−1
t=0 E(t + k)) is strongly connected, for all k ≥ 0.

Assumption 2.2 (Weights) Let A(k) = [ai j (k)]m×m and B(k) = [bi j (k)]m×m be two
matrices that are compatible with the graph G(k).

(a) Stochasticity: Matrices {A(k)} and {B(k)} are row-stochastic and column-
stochastic, respectively.

(b) The graph G(k) has self-loops, i.e., aii (k) > 0, bii (k) > 0,∀ i ∈ V , k ≥ 0.
(c) Uniform positivity: There is a scalar η ∈ (0, 1) such that ai j (k) ≥ η and bi j (k) ≥

η,∀ (i, j) ∈ E(k), k ≥ 0.

The matrices A(k) and B(k) are singly stochastic. Agents can use their out-degrees
and in-degrees to construct these two matrices easily, which avoids the difficulty
of generating symmetric doubly stochastic adjacency matrices over directed and
time-varying networks. Assumption 2.2 (b) implies that each agent performs local
computation using information held by itself and received from its in-neighbors. Item
(c) indicates that the influence of each agent on the network is not vanishing.
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Smooth convex optimization problems are within the range of our consideration,
so we make the following standard assumption on (DCOP).

Assumption 2.3 (Convexity and smoothness)

(a) The local function fi of agent i is convex and continuous differentiable over the
subset X , ∀ i = 1, 2, . . . ,m.

(b) The function h j
i (the j-th coordinate component of hi ) corresponding to the

inequality constraints is convex and continuous differentiable, j = 1, . . . , p, and
hli corresponding to the equality constraints is affine, l = p+1, . . . , p+q,∀ i =
1, . . . ,m.

(c) The non-empty subset X of �n is compact and convex.

To construct a primal-dual method, a fundamental assumption is that the strong duality
holds, which is guaranteed by the following Slater’s condition.

Assumption 2.4 (Slater’s condition) Suppose that there exists a point x̄ ∈ ri(X ), such
that

∑m
i=1 hi (x̄) ∈ ri(K).

LetK◦ represent the polar ofK, namely,K◦ = �p
+ ×�q . The saddle point problem

of (DCOP) can be formulated as

max
λ∈K◦ min

x∈X
L(x, λ) =

m∑

i=1

Li (x, λ), (2.1)

where Li (x, λ) = fi (x) + λ
hi (x), λI and λE are the multiplies respectively corre-
sponding to the inequality and equality constraints, and λ = (λI, λE) ∈ K◦.

Under Slater’s condition, there does not exist a duality gap between the primal
problem (DCOP) and its dual. We then attempt to develop a distributed algorithm to
solve the max-min problem (2.1) and find an optimal solution to (DCOP).

For any λ̄ ∈ K◦, denote

q(λ) = inf
x∈X

L(x, λ),

Q(λ̄) =
{
λ = (λI, λE) ∈ K◦ : q(λ) ≥ q(λ̄)

}
.

The boundness of multiplier λI corresponding to the inequality constraints is indis-
pensable in the design and analysis of our algorithm, which is guaranteed by the
following lemma.

Lemma 2.1 ([28], Lemma1) For any λ̄ ∈ K◦ and α ∈ �, it holds that

max
λ∈Q(λ̄)

‖λI‖ ≤ 1

γ (x̄)

(
f (x̄) − q(λ̄)

)
, (2.2)

where γ (x̄) = min1≤ j≤p{−∑m
i=1 h

j
i (x̄)} and x̄ satisfies Assumption 2.4.
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Let q∗ denote the dual-optimal value and Q∗ denote the dual optimal solutions set,
namely

Q∗ =
{
λ = (λI, λE) ∈ K◦ : q(λ) ≥ q∗} ⊆ Q(λ̄).

According to Lemma 2.1, the optimal multiplier λI is bounded. Select an arbitrary
vector λ̄ ∈ K◦, define

QI (α) =
{
λI ∈ �p

+ : ‖λI‖ ≤ α
}

, ∀α ≥ 1

γ (x̄)

(
f (x̄) − q(λ̄)

)
,

Q = QI (α) × �q .

It follows that Q∗ ⊆ Q(λ̄) ⊆ Q. The set Q will be used in designing a distributed
algorithm in Sect. 3. Note that Q is the Cartesian product of a ball in �p and �q , and
the projection onto Q has a simple closed-form solution.

3 Design of Distributed Algorithm

3.1 Primal-Dual Projected Gradient Method

Consider the following centralized optimization problem with equality and inequality
constraints,

min
x∈X

f̃ (x) s.t. h̃(x) ∈ K, (3.1)

where K = �p
− × {0q}. The saddle point problem associated with (3.1) is

max
λ∈K◦ min

x∈X
L̃(x, λ), (3.2)

where L̃(x, λ) = f̃ (x)+λ
h̃(x). Given a pair (xk, λk), the primal-dual projected gra-
dient method [7] for solving (3.2) obeys the following rules to generate the successive
primal-dual pair (xk+1, λk+1),

xk+1 = PX
(
xk − αk∇x L̃

(
xk, λk

))
, (3.3a)

λk+1 = PK◦
(
λk + αk∇λ L̃

(
xk, λk

))
, (3.3b)

where αk > 0 is a given step-size. Review the first-order optimality conditions [37,
Theorem 36.6] for (3.1), it holds that x ∈ X is an optimal solution to (3.1) if and only
if there is a primal-dual pair (x, λ) such that

x =PX
(
x − α∇x L̃(x, λ)

)
,

λ =PK◦
(
λ + α∇λ L̃(x, λ)

)
,
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for any scalar α > 0. Therefore, the primal-dual projected gradient method also can
be viewed as the fixed point method.

3.2 TV-AB Algorithm

Over directed time-varying multi-agent networks consisting of m agents, consider an
unconstrained distributed optimization problem:

min
x∈�n

f (x) =
m∑

i=1

fi (x),

where fi is the local objective function of agent i . The authors of [39] proposed a
distributed algorithm referred to as the time-varying AB (TV-AB) gradient method
for this problem. In specific, the updating rules of variables are

xk+1
i =

m∑

j=1

A(k)i j x
k
j − αyki ,

yk+1
i =

m∑

j=1

B(k)i j y
k
j + ∇ fi

(
xk+1
i

)− ∇ fi
(
xki
)
,

where A(k) and B(k) are row-stochastic and column-stochastic matrices, respectively.
The auxiliary variables {yki }mi=1 are used to track the averageof {∇ fi (xki )}mi=1, precisely,
it holds that 1

m

∑m
i=1 y

k
i = 1

m

∑m
i=1 ∇ fi (xki ) for all k ≥ 0. Each agent i then performs

an inexact gradient descent step along the direction −yki . Obeying such distributed
strategies, all agents adjust their decision vectors {xki }mi=1 to be consensual (i.e., ‖xki −
xkj ‖ → 0 as k → ∞) and optimal (i.e., ‖xki − x∗‖ → 0 as k → ∞ for some optimal
solution x∗).

In a multi-agent system, if agents adopts the primal-dual gradient method (3.3) to
solve the saddle point problem (2.1) associated with (DCOP), they must access to the
global information

∑m
i=1 ∇Li . However, in distributed settings, this information is

not available to any agent. To avoid such an obstacle, we strategically integrate the
ideas behind TV-AB and the primal-dual gradient method to propose the following
primal-dual distributed algorithm for solving (DCOP),

xk+1
i = PX

⎛

⎝
m∑

j=1

ai j (k)x
k
j − αk z

k
i

⎞

⎠ , (3.4a)

λk+1
i = PQ

⎛

⎝
m∑

j=1

ai j (k)λ
k
j + αk y

k
i

⎞

⎠ , (3.4b)

zk+1
i =

m∑

j=1

bi j (k)z
k
j + ∇xLi

(
xk+1
i , λk+1

i

)
− ∇xLi

(
xki , λ

k
i

)
, (3.4c)
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yk+1
i =

m∑

j=1

bi j (k)y
k
j + hi

(
xk+1
i

)
− hi

(
xki

)
, (3.4d)

where z0i = ∇xLi (x0i , λ
0
i ) and y0i = hi (x0i ), for each i = 1, 2, . . . ,m.

In the presented algorithm (3.3), each agent i generates a primal-dual pair (xki , λ
k
i )

to estimate the saddle point (x∗, λ∗) of the max-min problem (2.1), and employs the
sequences {zki }k≥0 and {yki }k≥0 to track the average gradients 1

m

∑m
i=1 ∇xLi (xki , λ

k
i )

and 1
m

∑m
i=1 ∇λLi (xki , λ

k
i ), respectively. After one round of communication, each

agent i mixes the information received from its in-neighbors, then uses the mixed
information and local data to output new estimate vector (xk+1

i , λk+1
i ). The local

computation of each agent is independent and can be performed by agents in parallel.

Remark 3.1 For the updating formulas of the multipliers λki , we adopt the projection
operator PQ instead of PK◦ . The reason is that we consider the saddle point problem

max
λ∈Q min

x∈X

m∑

i=1

Li (x, λ) (3.5)

instead of (2.1). One can get that the problems (2.1) and (3.5) have the same saddle
points, e.g., see [53, Lemma 3.1]. The boundness of the sequence {(λki )I} is guaranteed
by the bounded set QI (α), where λki = (

(λki )
I, (λki )

E
)
.

Algorithm 1 Distributed Primal-Dual Algorithm.

Input: Let n be the number of iterations of termination. Initialization: (x0i , λ0i ) ∈ X × K◦, y0i = hi (x
0
i ),

and z0i = ∇ fi (x
0
i ) + ∇hi (x

0
i )λ0i , for each i = 1, 2, . . . ,m. Select the sequence {αk } of step-sizes and

a sufficiently large scalar α such that Q∗ ⊂ Q. Set k = 0.
Output: xni , λni , i = 1, 2, . . . ,m.
1: while k ≤ n do
2: for i = 1, 2, . . . ,m (in parallel) do

3: xk+1
i = PX

(∑m
j=1 ai j (k)x

k
j − αk z

k
i

)
,

4: λk+1
i = PQ

(∑m
j=1 ai j (k)λ

k
j + αk y

k
i

)
,

5: yk+1
i = ∑m

j=1 bi j (k)y
k
j + hi (x

k+1
i ) − hi (x

k
i ),

6: dki = ∇ fi (x
k
i ) + ∇hi (x

k
i )λki ,

7: dk+1
i = ∇ fi (x

k+1
i ) + ∇hi (x

k+1
i )λk+1

i ,

8: zk+1
i = ∑m

j=1 bi j (k)z
k
j + dk+1

i − dki ,

9: end for

10: k ← k + 1,

11: end while
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In what follows, we assume that the step-size sequence {αk} is squared summable,
which is also considered by references [2, 10, 32], etc. The step-size conditions are
easy to satisfy, e.g., choose αk = c/kβ with β ∈ (1/2, 1] and constant c > 0.

Assumption 3.1 Suppose that the sequence {αk}∞k=0 of step-sizes satisfies that

αk ≥ 0,
∞∑

k=0

αk = ∞,

∞∑

k=0

α2
k < ∞.

Under Assumption 2.3, the subset X is compact. According to the continuity and
differentiability of fi and hi , the gradients of fi and hi are Lipschitz continuous over
X . Without loss of generality, for any x, y ∈ X and i ∈ V , assume that there exists a
constant L > 0 such that

‖ fi (x)‖ ≤ L, ‖hi (x)‖ ≤ L, ‖hi (x) − hi (y)‖ ≤ L‖x − y‖,
‖∇xLi (x, λ) − ∇xLi (y, λ)‖ ≤ L‖x − y‖. (3.6)

4 Convergence Analysis

In this section, we analyze the proposed Algorithm 1 and show the obtained theoretical
results about the convergence and rate. To ease the analysis, we place some supporting
lemmas in “Appendix C” and define the following notations,

ωk
i =

(
xki , λ

k
i

)
, ηki =

(
zki ,−yki

)
,

∇Li (ω
k
i ) =

(
∇xLi

(
xki , λ

k
i

)
,−hi (x

k
i )
)

,

ωk =
(
ωk
1, ω

k
2, · · · , ωk

m

)

, ηk =

(
ηk1, η

k
2, · · · , ηkm

)

,

∇L(ωk) =
(
∇L1

(
ωk
1

)
, · · · ,∇Lm

(
ωk
m

))

,

Ak =
(

A(k) 0m×m

0m×m A(k)

)
, Bk =

(
B(k) 0m×m

0m×m B(k)

)
,

Ω = X × Q × X × Q × · · · × X × Q︸ ︷︷ ︸
m

.

We then rewrite the iterative schemes of Algorithm 1 into the following compact form,

ωk+1 = PΩ

(
Akω

k − αkη
k
)

, (4.1)

ηk+1 = Bkη
k + ∇L

(
ωk+1)− ∇L

(
ωk), (4.2)

where the matrices {Ak} and {Bk} are also row-stochastic and column-stochastic,
respectively. Furthermore, we make a state transformation: sk = V−1

k ηk , where Vk =
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diag(vk) and vk are given by

vk+1 = Bkvk, v0 = 12m . (4.3)

Consequently, (4.1) and (4.2) can be equivalently rewritten as

ωk+1 = PΩ

(
Akω

k − αkVks
k
)

, (4.4)

sk+1 = Rks
k + V−1

k+1

(
∇L
(
ωk+1)− ∇L

(
ωk)) , (4.5)

where Rk = V−1
k+1BkVk . It can be verified that {Rk} is a sequence of row-stochastic

matrices such that { 1
2m vk} is an absolute probability sequence. For any k ≥ s ≥ 0,

define

ΦA(k, s) = Ak × Ak−1 × · · · × As,

ΦR(k, s) = Rk × Rk−1 × · · · × Rs .

As shown in Lemma C.1, for any index s ≥ 0, the row-stochastic matrix sequence
{ΦA(k, s)} linearly converges to a matrix ΦA(s) whose columns are stochastic vec-
tors, as k → ∞. The asymptotic properties of the matrix sequences {ΦA(k, s)} and
{ΦR(k, s)} are used to estimate consensus errors of the the sequence {ωk}.

From (4.2), it holds that

1

2mηk+1 = 1


2mBkηk + 1

2m

(
∇L
(
ωk+1)− ∇L

(
ωk))

= 1

2mηk + 1


2m

(
∇L
(
ωk+1)− ∇L

(
ωk)) ,

which is equivalent to

1

2mηk+1 − 1


2m∇L
(
ωk+1) = 1


2mηk − 1

2m∇L

(
ωk), ∀ k ≥ 0.

Noticing that the initialization η0 = ∇L(ω0), the following tracking equations hold,

1

2mηk = 1


2m∇L
(
ωk), ∀ k ≥ 0.

Define

ω̄k =
(
x̄ k, λ̄k

)
= φ


k ωk, s̄k = 1

2m
v

k s

k, (4.6)

where the sequence {φk} is given by Lemma C.2. Therefore,

s̄k = 1

2m
v

k V

−1
k ηk = 1

2m
1

2mηk = 1

2m
1

2m∇L

(
ωk),

which means that s̄k tracks the average gradient of the Lagrange function L(x, λ).
Since the subset X is compact and convex, ∇xL(x, λ) and ∇λL(x, λ) are bounded
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over X , which implies the sequence {s̄k} is bounded. Furthermore, the following
lemma claims that the sequence {sk} is also bounded.
Lemma 4.1 There is a constant M > 0 such that

‖sk‖ ≤ M, ∀ k ≥ 0.

Proof See “Appendix A”. ��
According to Algorithm 1, each agent i generates the local estimate ωk

i = (xki , λ
k
i )

to the saddle point ω∗ = (x∗, λ∗). It’s necessary to evaluate the error between any two
vectors ωk

i and ωk
j , or equivalently, the consensus error ‖ωk − 12mω̄k‖, which is the

constraint violation of xi = x j and λi = λ j for all (i, j) ∈ Ek, k ≥ 0. The following
lemma characterizes the consensus errors of the sequences {ωk} and {sk}.
Lemma 4.2 Under Assumptions 2.1–2.4 and 3.1, for the sequences generated by Algo-
rithm 1, it meets that

lim
k→∞ ‖ωk − 12mω̄k‖ = 0,

∞∑

k=0

αk‖ωk − 12mω̄k‖ < ∞,

lim
k→∞ ‖sk − 12ms̄

k‖ = 0,
∞∑

k=0

αk‖sk − 12ms̄
k‖ < ∞.

Proof See “Appendix B”. ��
The rest of the convergence analysis is to evaluate the optimality error ‖ω̄k − ω∗‖,

which requires strategically applying the results of Lemmas 4.1 and 4.2, and the
supporting lemmas in “Appendix C”.

Theorem 4.1 Under Assumptions 2.1–2.4 and 3.1, for any i ∈ V , the sequence
{(xki , λki )} generated by Algorithm 1 converges to some saddle point (x∗, λ∗) of the
Lagrange function L(x, λ), i.e.,

lim
k→∞

∥∥∥
(
xki , λ

k
i

)
− (x∗, λ∗)

∥∥∥ = 0, ∀ i = 1, 2, . . . ,m. (4.7)

Proof For any ω∗ = (x∗, λ∗) ∈ X × K◦, define

I k1 = 2αk

〈
12m(∇L(ωk) − ∇L(12mω̄k)), ω̄k − ω∗〉 ,

I k2 = 2αk

〈
Vks

k − 12ms̄
k,Akω

k − 12mω∗〉 ,

I k3 = 2αk

〈
12m(ω̄k − ω∗),Akω

k − 12mω̄k
〉
.

We then split the proof into the following three steps.
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Step 1: Verify the following inequality,

‖ωk+1 − 12mω∗‖2
≤ ‖ωk − 12mω∗‖2 + I k1 + I k2 + I k3 + 4m2M2α2

k

− 2αk

(
L(x∗, λ∗) − L(x∗, λ̄k)

)
− 2αk

(
L(x̄ k, λ∗) − L(x∗, λ∗)

)
.

(4.8)

From (4.4) and noticing the non-expansive projection operator PΩ , one has

‖ωk+1 − 12mω∗‖2 ≤ ‖Akω
k − αkVks

k − 12mω∗‖2

= ‖Akω
k − 12mω∗‖2 + α2

k‖Vksk‖2 − 2αk

〈
Vks

k,Akω
k − 12mω∗〉 .

Since { 1
2m vk} is a stochastic vector sequence and Vk = diag(vk), it follows that

‖Vksk‖ ≤ ‖Vk‖‖sk‖ ≤ 2m‖sk‖ ≤ 2mM,

where the last inequality derives from the boundedness of {sk} (Lemma 4.1). Given
that the matrix Ak is row-stochastic, it holds that

‖Akω
k − 12mω∗‖2 ≤ ‖ωk − 12mω∗‖2.

As to the term 2αk
〈
Vksk,Akω

k − 12mω∗〉, one has

2αk

〈
Vks

k,Akω
k − 12mω∗〉

= 2αk

〈
12ms̄

k, 12mω̄k − 12mω∗〉+ 2αk

〈
Vks

k − 12ms̄
k,Akω

k − 12mω∗〉

+
〈
12mω̄k − ω∗,Akω

k − 12mω̄k
〉

=
〈
1

2m∇L(12mω̄k), ω̄k − ω∗〉+ I k1 + I k2 + I k3 .

Note that the Lagrange function L(x, λ) is convex-concave with respect to x and λ,
applying the subdifferential inequality of convex function yields

〈
1

2m∇L(12mω̄k), ω̄k − ω∗〉 ≥

(
L(x̄ k, λ∗)− L(x∗, λ̄k)

)
.

Combining the above relations to yield (4.8).
Step 2: Verify that

∞∑

k=0

|I k1 | < ∞,

∞∑

k=0

|I k2 | < ∞,

∞∑

k=0

|I k3 | < ∞.
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According to the Cauchy inequality and the Lipschitz continuity of ∇L, there exist
positive constants L1, L2 and L3 such that

|I k1 | ≤ 2L1αk‖ωk − 12mω̄k‖,
|I k2 | ≤ 2L2αk‖sk − 12ms̄

k‖,
|I k3 | ≤ 2L3αk‖ωk − 12mω̄k‖.

By Lemma 4.2, the three scalar sequences {|I k1 |}, {|I k2 |}, and {|I k3 |} are summable.
Step 3: Prove the convergence. In the inequality (4.8), choose ω∗ = (x∗, λ∗) as

an arbitrary saddle point of the Lagrange function L(x, λ). The definition of saddle
points indicates that

L(x̄ k, λ∗) − L(x∗, λ∗) ≥ 0,

L(x∗, λ∗) − L(x∗, λ̄k) ≥ 0.

Consequently, it follows from Lemma C.3 that the limit limk→∞ ‖ωk −12mω∗‖ exists
and

∞∑

k=0

αk

(
L(x̄ k, λ∗) − L(x∗, λ∗)

)
< ∞,

∞∑

k=0

αk

(
L(x∗, λ∗) − L(x∗, λ̄k)

)
< ∞.

In view of
∑∞

k=0 αk = ∞, it must hold that

lim inf
k→∞ L(x̄ k, λ∗) = L(x∗, λ∗),

lim sup
k→∞

L(x∗, λ̄k) = L(x∗, λ∗).

Furthermore, the Lagrange function L(x, λ) is continuous differentiable and convex-
concave, hence,

lim
k→∞ ‖x̄ k − x∗‖ = 0, lim

k→∞ ‖λ̄k − λ∗‖ = 0,

or equivalently, limk→∞ ‖ω̄k − ω∗‖ = 0. From Lemma 4.2, it’s clear that

lim
k→∞ ‖ωk − 12mω∗‖ = 0.

The proof is completed. ��
The convergence results of Theorem 4.1 show that for each agent i ∈ {1, 2, . . . ,m},

its decision variable sequence {xki }∞k=0 converges to an optimal solution x∗ of (DCOP),
and the Lagrange multiplier estimate sequence {λki }∞k=0 converges to an dual-optimal
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solution λ∗. In other words, by communicating with neighbors and computing locally,
all agents cooperatively solve (DCOP).

Topresent results about the convergence rate ofAlgorithm1,wedefine the following
weighted sequences:

x̃ns =
∑n

k=s αk x̄k∑n
k=s αk

, λ̃ns =
∑n

k=s αk λ̄
k

∑n
k=s αk

, ∀ 0 ≤ s ≤ n. (4.9)

where x̄ k and λ̄k are given by (4.6). The following theorem characters a sublinear
convergence rate of Algorithm 1 in terms of the primal-dual gap.

Theorem 4.2 Let (x∗, λ∗) be an arbitrary saddle point ofL(x, λ). Under Assumptions
2.1–2.4 and 3.1, there exists a constant M1 > 0 such that

0 ≤ L (x̃ns , λ∗)− L
(
x∗, λ̃ns

)
≤ M1∑n

k=s αk
, ∀ 0 ≤ s ≤ n. (4.10)

Furthermore, if one chooses the step-size sequence as αk = c
k1/2+β with β ∈ (0, 1/2)

and constant c > 0, the primal-dual gap satisfies that

0 ≤ L
(
x̃n�n/2�, λ∗)− L

(
x∗, λ̃n�n/2�

)
≤ 2M1

c(n + 1)1/2−β
, (4.11)

where �n� is the integer part of a positive real number n.

Proof By the definition of saddle points, it’s clear that

L (x̃ns , λ∗)− L
(
x∗, λ̃ns

)
= L (x̃ns , λ∗)− L(x∗, λ∗) + L(x∗, λ∗) − L(x∗, λ̃ns

) ≥ 0.

For any fixed x ∈ �n and λ ∈ �p+q , in view of the convexity of the functions L(·, λ)

and −L(x, ·), one has

L (x̃ns , λ∗)− L
(
x∗, λ̃ns

)

≤
(

n∑

k=s

αk

)−1 n∑

k=s

αk

[
L(x̄ k, λ∗) − L(x∗, λ̄k)

]

=
(

n∑

k=s

αk

)−1 n∑

k=s

αk

[
L(x̄ k, λ∗) − L(x∗, λ∗) + L(x∗, λ∗) − L(x∗, λ̄k)

]
.

From the proof of Theorem 4.1, it holds that

0 <

∞∑

k=0

αk

(
L(x̄ k, λ∗) − L(x∗, λ∗)

)
= M ′ < ∞,
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0 <

∞∑

k=0

αk

(
L(x∗, λ∗) − L(x∗, λ̄k)

)
= M ′′ < ∞.

Let M1 := M ′ + M ′′, it’s clear that (4.10) holds. Take αk = c
k1/2+β , one can get the

following estimate,

n∑

k=�n/2�

1

k1/2+β
≥
∫ n+1

�n/2�
dt

t1/2+β
= 2

1 − 2β

(
(n + 1)

1
2−β − �n/2� 1

2−β
)

.

Let φ(x) = x1/2−β with β ∈ (0, 1/2), it’s easy to verify that φ(x) is a concave
function, hence,

φ(n + 1) − φ(�n/2�) ≥∇φ(n + 1)(n + 1 − �n/2�)
≥
(
1

2
− β

)
(n + 1) − (n + 1)/2

(n + 1)1/2+β

=
(
1

4
− β

2

)
(n + 1)

1
2−β.

Choose s = �n/2� in (4.10), it follows that

L
(
x̃n�n/2�, λ∗)− L

(
x∗, λ̃n�n/2�

)
≤ M1∑n

k=�n/2� c
k1/2+β

≤ 2M1

c(n + 1)1/2−β
.

The proof is completed. ��

Theorem 4.2 shows that the primal-dual gap L(x̃n�n/2�, λ∗) − L(x∗, λ̃n�n/2�) decays
to zeros at a rate of O( 1

n1/2−β ). If one chooses the value of β to be small enough, the
rate is near O(1/

√
n), where n represents the number of iterations.

5 Numerical Simulations

In this section, we test the proposed algorithm using two examples. The first one is
motivated by applications in wireless networks and is used to justify the theoretical
results in the paper. Another one is an empirical risk optimization problem to be
solved in the Neyman–Pearson (NP) classification [44], which is used to compare the
performance of Algorithm 1 with the distributed proximal primal-dual algorithm [17].
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Fig. 1 Network topology of 100 agents

5.1 Example inWireless Networks

Consider the following distributed optimization problem with nonlinear constraints,

min
x∈[0,1]

100∑

i=1

ci x

s.t.
100∑

i=1

−di log(1 + x) ≤ b,

(5.1)

where the constraints with this form arise, for instance, in wireless networks to ensure
quality of service. This problem is also considered by [17, 25]. Set b = 5, ci = i/m,
di = i/(m+1) for each i = 1, 2, . . . , 100, where the network size (number of agents)
m = 100. The optimal value f ∗ is computed by the convex optimization toolbox [11]
(CVX) under the best precision. We then use f ∗ as a benchmark for our algorithm.

As shown in Fig. 1, the network topology of 100 agents is selected in turn among the
line, star, circle, and Erdős–Rényi random graphs with period 4. The corresponding
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Fig. 2 Evolution of agents’ decision vectors xki , i = 1, 2, . . . , 100, where the red dashed line represents
the value of the optimal solution x∗

adjacency matrices A(k) and B(k) are constructed by

ai j (k) =
{

1
|N in

i (k)| , if (i, j) ∈ E(k),

0, otherwise,

bi j (k) =
{ 1

|N out
j (k)| , if (i, j) ∈ E(k),

0, otherwise,

where |N in
i (k)| and |N out

j (k)| are the in-degree of agent i and the out-degree of agent
j at time k, respectively.
We execute the proposed Algorithm 1 with step-size αk = 1/k0.51 to solve (5.1)

on a laptop computer. The procedure stops if the maximum of objective error and
constraint violation decays to smaller than the given tolerance error 10−4, where
the objective error is | f (x̄ k) − f ∗|/| f ∗|, the constraint violation is the sum of

max
(∑100

i=1 −di log(1 + x̄ k) − b, 0
)
(feasibility error) and 1

100

∑100
i=1 ‖xki − x̄ k‖ (con-

sistency error). Here, x̄ k = 1
100

∑100
i=1 x

k
i .

At the beginning of the procedure, each agent i individually chooses the local
decision vector x0i . As Algorithm 1 runs, Fig. 2 shows that all agents reach a consensus
decision by local computations and exchanging information with their neighbors.
Furthermore, Fig. 3 shows that this consensus decision vector is an optimal solution
with precision of 10−4 to the problem (5.1), which verifies the theoretical result of
Algorithm 1. In summary, Algorithm 1 guides all agents to adjust their decision vectors
to be feasible, consistent, and optimal.
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Fig. 3 Convergence of algorithm 1

5.2 Neyman–Pearson Classification Problem

Suppose that h is a classifier to predict 1 and−1. The type I error (misclassifying class
−1 as 1) and type II error (misclassifying class 1 as −1) are, respectively, defined by

type I error := E[ψ(−bh(a))|b = −1], type II error := E[ψ(−bh(a))|b = 1],

where ψ is some merit function. Different from the conventional binary classification
in machine learning, the NP classification paradigm is developed to learn a classifier
by minimizing type II error subject to that type I error is below a user-specified level
τ > 0, see [44] and references therein. Specifically, letH be a given class of classifiers.
The NP classification is to solve the following problem,

min
h∈H

E[ψ(−bh(a))|b = 1]
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s.t. E[ψ(−bh(a))|b = −1] ≤ τ.

In what follows, we consider its empirical risk minimization counterpart. Given a
labeled training dataset {ai }Ni=1 consists of the positive set {a+

i }N+
i=1 and the negative

set {a−
j }N−

j=1, The associated empirical NP classification problem is

min
x

f (x) = 1

N+

N+∑

i=1

�
(
x
a+

i

)

s.t. g(x) := 1

N−

N−∑

i=1

�
(
x
a−

i

)
− τ ≤ 0,

(5.2)

where �(·) is a loss function, and τ is a user-specified level, usually a small value. In this
numerical test, we choose �(·) as the �2-norm regularized logistic loss function, i.e.,
�(x
a) := log

(
1 + exp(−x
a)

)+θ‖x‖22, θ = 10−2, τ = 5%.Thedataa+
i ’s anda

−
i ’s

are randomly sampled from the dataset CINA [46]. The sample size N+ = N− = 1000
and the variable x ∈ �132.

We run Algorithm 1 and the distributed proximal primal-dual (DPPD) method of
[17] to solve (5.2). The step-size sequences of Algorithm 1 and DPPD are chosen
as 0.1/k0.505 and 4/k0.5, respectively. The subproblems of DPPD are computed by
Nesterov’s accelerated gradient method [31] with a tolerance error of 10−6. We start
these two algorithms from the same initial point and plot the evolution of their objective
errors and constraint violations during 1000 iterations, where the objective error is
| f (x̄ k)− f ∗|/| f ∗| and the constraint violation is the sum of max(g(x̄ k), 0) (feasibility
error) and 1

1000

∑1000
i=1 ‖xki − x̄ k‖ (consistency error). Here, x̄ k = 1

1000

∑1000
i=1 xki .

In Fig. 4a, the objective error of DPPD decays to a level of 10−3 after about 220
iterations, then suddenly climbs to near 10−1 and stays there. While the objective
error of Algorithm 1 keeps decreasing except for the first few iterations and reaches
10−4 after 1000 iterations. As shown in Fig. 4b, the constraint violation of Algorithm 1
descends faster than that of DPPD, which indicates that the decision variable sequence
generated by Algorithm 1moves to be feasible at a faster speed. Moreover, the ratio of
CPU time between Algorithm 1 and DPPD is 1 : 1.25. In summary, Fig. 4 illustrates
that Algorithm 1 is efficient and has an advantage in convergence speed over DPPD.

6 Conclusions

This article focusedondistributed convexoptimization problemswith coupled equality
and inequality constraints over directed and time-varying multi-agent networks. We
proposed a distributed primal-dual algorithm for such problems and established its
convergence and iteration complexity. In numerical simulations, we showed that our
algorithm is effective for the problem considered in this paper. However, there are
still some respects that need to improve. One is that the presented algorithm adopts
diminishing step-sizes, which leads to a slow convergence speed. Therefore, we expect
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Fig. 4 Comparison of algorithm 1 and the distributed proximal primal-dual (DPPD) method [17]

to modify the diminishing step-sizes of Algorithm 1 to a fixed step-size in future
studies.

Data Availability Statements The authors declare that all data supporting the findings of this study are
available within the article and its supplementary information files.

A Proof of Lemma 4.1

For simplicity, denote δk = V−1
k+1

(∇L(ωk+1) − ∇L(ωk)
)
, (4.5) can be equivalently

written as sk+1 = Rksk + δk . Furthermore, sk+1 = ΦR(k, 1)s1 +∑k−1
l=1 ΦR(k, l +

1)δl + δk . Since { 1
2m vk} is an absolute probability sequence for the matrix sequence

{Rk}, it follows that

12ms̄
k+1 = 1

2m
12mv


k+1s
k+1
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= 1

2m
12mv


k+1

(
ΦR(k, 1)s1 + δk

)
+ 1

2m
12mv


k+1

k−1∑

l=1

ΦR(k, l + 1)δl

= 1

2m
12mv


1 s
1 + 1

2m

k−1∑

l=1

12mv

l δl + 1

2m
12mv


k+1δk .

Applying the subadditivity of ‖ · ‖ yields

‖sk+1 − 12ms̄
k+1‖ ≤

∥∥∥∥

(
ΦR(k, 1) − 1

2m
12mv


1

)
s1
∥∥∥∥+

∥∥∥∥

(
I2m − 1

2m
12mv


k+1

)
δk

∥∥∥∥

+
k−1∑

l=1

∥∥∥∥

(
ΦR(k, l + 1) − 1

2m
12mv


l

)
δl

∥∥∥∥ .

(A.1)
For the matrix sequence {ΦR(k, s)}, it holds the similar results in Lemma C.3, i.e.,

∥∥∥∥ΦR(k, s) − 1

2m
12mv


s

∥∥∥∥ ≤ C1ρ
k−s, ∀ k ≥ s,

where ρ ∈ (0, 1) and C1 is some positive constant. Due to the compactness of the
subsetX , it is clear that δk is bounded.Denote the upper bound of ‖δk‖ by C̃ . Therefore,

‖sk+1 − 12ms̄
k+1‖ ≤ ρk−1‖s1‖ + C̃

k−1∑

l=1

ρk−1−l + C̃

≤ ‖s1‖ + C̃

1 − ρ
+ C̃ = M, ∀ k ≥ 1.

B Proof of Lemma 4.2

Firstly, we need to verify the following inequality,

∥∥∥ωk+1 − 12mω̄k+1
∥∥∥ ≤ C2β

k−1 + C3

k−1∑

l=1

βk−1−lαl + C4αk .

Then, combining the conditions on the step-size sequence {αk} in Assumption 3.1 and
the results of Lemma C.4, it is easy to demonstrate the claimed results.
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(a): From (4.4), there exist ek such that ωk+1 = Akω
k − αkVksk + ek . Similar to the

inequality (A.1), it holds that

∥∥∥ωk+1 − 12mω̄k+1
∥∥∥

≤
∥∥∥
(
ΦA(k, 1) − 12mφ


1

)
ω1
∥∥∥+

∥∥∥
(
I2m − 12mφ


k

) (
ek − αkVks

k
)∥∥∥

+
k−1∑

l=1

∥∥∥
(
ΦA(k, l + 1) − 12mφ


l

) (
el − αl Vls

l
)∥∥∥ .

(B.1)

Since ωk+1 is the projection of Akω
k − αkVksk onto Ω , for any ω ∈ Ω , one has

〈
Akω

k − αkVks
k − ωk+1, ω − ωk+1

〉
≤ 0,

which implies that

‖ωk+1 − Akω
k‖2 = ‖ek − αkVks

k‖2

= ‖ek‖2 − 2
〈
αkVks

k, ek
〉
+ ‖αkVks

k‖2

= ‖ek‖2 + 2
〈
ωk+1 − Akω

k − ek, ek
〉
+ ‖αkVks

k‖2

≤ α2
k‖Vksk‖2 − ‖ek‖2.

From Lemma 4.1, it follows that

‖ek‖ ≤ αk‖Vksk‖ ≤ αk‖sk‖ ≤ Mαk, ∀ k ≥ 0.

In view of the results in Lemmas C.3 and C.4, one can get a modified version of the
inequality (B.1) as follows,

‖ωk+1 − 12mω̄k+1‖ ≤ C‖ω1‖βk−1 + 2Mαk + 2M
k−1∑

l=1

βk−1−lαl . (B.2)

Under Assumption 3.1 and Lemma C.4 (a), it’s clear that

lim
k→∞ ‖ωk − 12mω̄k‖ = 0.

(b): Multiplying the inequality (B.2) by αk+1 at the both sides yields

αk+1‖ωk+1 − 12mω̄k+1‖

≤ C2β
k−1αk+1 + 2C3

k−1∑

l=1

βk−1−lαlαk+1 + C4αkαk+1
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≤ C2

(
β2(k−1) + α2

k+1

)
+ C3

k−1∑

l=1

βk−1−l
(
α2
l + α2

k+1

)
+ C4

(
α2
k + α2

k+1

)

≤ C1β
2(k−1) + C2

k−1∑

l=1

βk−1−lα2
l + C4α

2
k + C5α

2
k+1,

where C2,C3,C4,C5 are some positive constants. Once again, under Assumption 3.1
and Lemma C.4 (b), it is concluded that

∞∑

k=0

αk‖ωk − 12mω̄k‖ < ∞.

In Lemma 4.2, the claimed results about the sequence {sk} is parallel with {ωk} and
its proof is omitted here.

C Supporting Lemmas

Lemma C.1 ([29], Lemma 4) Under Assumptions 2.1 and 2.2, it holds that

(a) limk→∞ ΦA(k, s) = 12mμ

s , where μs ∈ R

2m is a stochastic vector for each s.
(b) For any i , the entriesΦA(k, s)i j , j = 1, . . . , 2m, converge to the same limit (μs)i

as k → ∞ with a geometric rate, i.e., for each i and s ≥ 0,

∣∣ΦA(k, s)i j − (μs)i
∣∣ ≤ Cβk−s, ∀ k ≥ s,

where C = 21+2η−B0

1−2ηB0
(1 − η)1/B0 , β = (1 − ηB0) ∈ (0, 1), η is the lower bound

of Assumption 2.2, B0 = (m − 1)B, ingeter B is defined by Assumption 2.1.

Lemma C.2 ([39], Corollary 1) Under the assumptions of Lemma C.1, the sequence
{φk} is an absolute probability sequence for the matrix sequence {Ak}, where

φ

k = μ


s , k = sB,

φ

k = μ


s+1A(s+1)B−1 · · ·Ak, k ∈ (sB, (s + 1)B) ,

for s = 0, 1, 2, · · · .

(C.1)

Lemma C.3 ([34], Lemma 11, Chapter 2.2) Let {bk}, {ck}, {dk} be non-negative
sequences. Suppose that

∑∞
k=0 ck < ∞ and

bk+1 ≤ bk − dk + ck, ∀ k ≥ 1,

then the sequence {bk} converges and∑∞
k=0 dk < ∞.
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Lemma C.4 ([30], Lemma 7) Let β ∈ (0, 1), and {γk} be a positive scalar sequence.
(a) If limk→∞ γk = 0, then limk→∞

∑k
l=0 βk−lγl = 0.

(b) Furthermore, if
∑∞

k=0 γk < ∞, then
∑∞

k=0
∑k

l=0 βk−lγl < ∞.
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