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Abstract
This paper studies the interplay between the concepts of error bounds and theKurdyka–
Łojasiewicz (KL) inequality on Hadamard manifolds. To this end, we extend some
properties and existence results of a solution for differential inclusions on Hadamard
manifolds. As a second contribution, we show how the KL inequality can be used to
obtain the convergence of the gradient method for solving convex feasibility problems
on Hadamard manifolds. The convergence results of the alternating projection method
are also established for cyclic and random projections on Hadamard manifolds and,
more generally, CAT(0) spaces.
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1 Introduction

The Łojasiewicz inequality [39] is a powerful tool to analyze the convergence of some
optimization methods, in particular, gradient-like methods. It is the key to obtaining
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convergence to the critical points of all bounded trajectories of the gradient dynamical
system. However, it might fail for a C∞ function without an “adequate” geometric
structure; see, for instance, a counterexample due to Palis and De Melo [42, p. 14]
showing that the set of cluster points of a bounded trajectory generated by the above
gradient dynamical system of a C∞ function is, in general, far from being a singleton.

A generalized form of this property was introduced by Kurdyka [37] (called
Kurdyka–Łojasiewicz inequality, or shortly, KL inequality). In finite-dimensional
spaces, it has been shown in [37] that the KL inequality holds for a much larger
class of functions, namely, those that are definable in an o-minimal structure, or even
more generally, functions belonging to analytic-geometric categories.

Bolte et al. [15] extended the Łojasiewicz inequality to a broad class of non-smooth
functions by establishing an analogous inequality inwhich the gradient of the objective
function is replaced by an element of its subdifferential, providing new insights into
the convergence aspects of subgradient-type dynamical systems and leading to the
conclusion that the Łojasiewicz inequality ismore linked to the underlying geometrical
structure of the function than to its smoothness. In Bolte et al. [16], a non-smooth
extension of theKurdyka–Łojasiewicz inequality for functions definable in an arbitrary
o-minimal structure was obtained.

On the other hand, since Hoffman’s celebrated result on error bounds for systems
of linear inequalities [32], the study of error bounds has been successfully applied to
problems in convergence rate estimation and feasibility problems. Recently, Bolte et
al. [18] proved that when the objective function is convex, error bounds are equivalent
to non-smooth KL inequalities, provided the residual function in the error bound has
a moderate behavior close to 0. Here, moderate behavior means that its derivative
blows up at a reasonable rate. This result is significant in determining the complexity
of first-order methods.

Error bounds and the Kurdyka–Łojasiewicz inequality are widely used in the lit-
erature for analyzing the rate of convergence for various optimization algorithms and
for understanding the local variational geometry of the solution set of an optimization
problem.

In recent years, there has been a growing interest in optimization on Riemannian
manifolds. The study of optimization on Riemannian manifolds and corresponding
algorithms began in the 1970s with the remarkable work of Luenberger [40]. One
advantage of this study is the possibility of transforming some Euclidean non-convex
or constrained problems into Riemannian convex or unconstrained problems by intro-
ducing a suitablemetric; see, for instance, [24, 25].With the emergence of optimization
problems arising from practical applications posed in a Riemannian setting, interest
in this topic has increased significantly over the years. Even though we are not con-
cerned with practical issues at this point, we emphasize that practical applications
appear whenever the natural structure of the data is modeled as an optimization prob-
lem on a Riemannian manifold, for example, the diffusion tensor and denoising image
where the data are given on the Hadamard manifold of positive definite matrices; see,
for instance, [14] and references therein. As a result, the number of works dealing
with concepts and techniques of nonlinear programming and convex analysis in the
Riemannian scenario has also increased.
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However, extending results from the Euclidean setting to Hadamard manifolds is
natural, but it is not so simple; even a Hadamard manifold is, in some sense, “close” to
the Euclidean space. In Kristály et al. [36], it is pointed out some conceptual mistakes
within the class of Hadamard manifolds that basically reduced the geometric setting
to a Euclidean one, i.e., they proved that some concepts and results established on
Hadamard manifolds hold if and only if the sectional curvature is identically zero. It
is worth mentioning that this is not the case in our paper. In this direction, Wang et
al. [51] and Cruz Neto et al. [28] presented some counter-examples to some results
established on Hadamard manifolds and extended from the Euclidean space. This
illustrates that an extension from Euclidean space to Hadamard manifolds, in most
cases, is not simple, and the geometric aspect of the settingmust be taken into account;
otherwise, some mistakes may occur. In our paper, this fact appears very clear in the
counter-example that the square distance has no globally Lipschitz gradient as in the
Euclidean context. In the linear setting, Bolte et al. [18] applied the global Lipschitz
property of the gradient of the square distance from a point to a closed and convex set
to define a barycentric projection algorithm for solving convex feasibility problems;
see [18, Theorems 22 and 23].

Given the considerable impact on several fields of applied mathematics of the
aforementioned concepts, we hereby study the relationship between the Kurdyka–
Łojasiewicz property and error bounds on Hadamard manifolds. Additionally, we
provide an application to the very important convex feasibility problem in the Rie-
mannian context and, more generally, CAT(0) spaces.

The aim of this paper is twofold. First, we prove some properties and existence
results on differential inclusion on Hadamard manifolds. These results are used
to establish the relationship between the concept of error bounds and Kurdyka–
Łojasiewicz inequality. Under convexity and other mild assumptions, we prove that
the equivalence between error bounds and Kurdyka–Łojasiewicz inequality holds on
Hadamard manifolds. As a second contribution, we study the convergence of methods
for solving convex feasibility problems on Hadamard manifolds and, more generally,
CAT(0) spaces. We model the convex feasibility problem as a minimization prob-
lem using square distances from a point to a closed and convex set. Therefore, by
using the convexity and differentiability of the square distance and the fact that the
error bounds imply the KL inequality, we obtain convergence rates for the gradient
method for solving convex feasibility problems under the boundedly regularity of the
sets. Additionally, replacing this last assumption by the Slater condition, we study
the convergence of the alternating projection method for solving convex feasibility
problems with cyclic and random order of projection on Hadamard manifolds and,
more generally, CAT(0) spaces.

Next, we will summarize the main results of this paper:

• We extend some results on the existence of a solution of differential inclusions,
originally proposed by Brézis [19], Bruck [21] and Bolte et al. [17], to the context
of Hadamard manifolds;

• We extend the equivalence between the concept of error bounds and Kurdyka–
Łojasiewicz inequality to Hadamard manifolds. This result was previously
established by Bolte et al. [18] in Hilbert spaces;
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• Motivated by the question raised by Bento and Melo [13], partially answered
by Wang et al. [48, 49], about how to solve convex feasibility problems on
Hadamard manifolds, we use the concept of Kurdyka–Łojasiewicz inequality and
error bounds to analyze the convergence of the gradient method for solving con-
vex feasibility problems on Hadamard manifolds. In [13], a convergence result
is obtained if the intersection of the sets has a non-empty interior (Slater condi-
tion). In our analysis, we replace this assumption with the concept of boundedly
regularity;

• Bauschke [7] proved strong convergence of the alternating projection method with
random projections, provided the setsC j satisfy the innately boundedly regularity
in Hilbert spaces. Replacing this assumption with the Slater condition, we prove
the convergence of this method on Hadamard manifolds. In Hilbert spaces, the
Slater condition is a sufficient condition for innately boundedly regularity; see
Bauschke and Borwein [8]. However, the relationship between these concepts in
the Riemannian context is not established yet;

• In Bačák et al. [6], weak convergence of the alternating projection method is
obtained inCAT(0) spaces for two closed and convex setsC1 andC2.Wegeneralize
this result for n closed and convex sets. Strong convergence of the method is
obtained in [6] supposing that the sets C1 and C2 are boundedly regular. We
extend this result to n closed and convex sets, replacing the boundedly regularity
assumption by the compactness of one of the sets Ci . In a Hilbert space, the
compactness of one of the sets is a sufficient condition for innately boundedly
regularity; see [8]. The relationship between these concepts in a nonlinear setting
is not known.

This paper is organized as follows. In Sect. 2, we present some basic definitions
and results in Riemannian manifolds and CAT(0) spaces. Some results on differential
inclusion on Hadamard manifolds are presented in Sect. 3. Section4 is devoted to
studying the relation between the concept of error bounds and Kurdyka–Łojasiewicz
inequality on Hadamard manifolds. In Sect. 5, we present two algorithms for solving
convex feasibility problems on Hadamard manifolds and, more generally, on CAT(0)
spaces. Finally, some conclusions are presented in Sect. 6.

2 Notation and Basic Concepts

Next,wepresent the standard notations, results andpreliminary concepts used through-
out the paper.

2.1 HadamardManifolds

The standard notations, results and preliminary concepts of Riemannian geometry
used throughout the paper can be found, for example, in Sakai [45] and Udriste [46].
In the Hadamard setting, we follow the same notation as in [11–13].

Throughout this paper, we will always assume that M is a finite-dimensional
Hadamard manifold, unless the contrary is explicitly stated. We denote by TxM the
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tangent space of M at x , by T M = ∪x∈MTxM the tangent bundle of M and byX (M)

the space of smooth vector fields over M . The parallel transport along the geodesic γ

from x to y is denoted by Pγ
xy : TxM → TyM or, shortly, Pxy . The exponential map

expx : TxM → M is defined by expx v = γv(1, x), for each x ∈ M .
A subset C ⊂ M is said to be convex if, for any points p and q in C , the geodesic

joining p to q is contained in C , that is, if γ : [a, b] → M is a geodesic such that
γ (a) = p and γ (b) = q, then γ ((1 − t)a + tb) ∈ C , for all t ∈ [0, 1]. Let Ω ⊂ M
be an open convex set and f : M → R a continuously differentiable function on Ω .
The gradient vector field of f is said to be Lipschitz continuous with constant L > 0
on Ω if

||grad f (y) − Pxy(grad f (x))|| ≤ Ld(x, y), ∀x, y ∈ Ω.

A function f : M → R is convex if its restriction to every geodesic inM is a convex
function, i.e., if for every geodesic segment γ : [a, b] → R and every t ∈ [0, 1],

f (γ ((1 − t)a + tb)) ≤ (1 − t) f (γ (a)) + t f (γ (b)).

Take p ∈ M , a vector v ∈ TpM is said to be a subgradient of f at p, if

f (q) ≥ f (p) + 〈v, exp−1
p (q)〉,

for any q ∈ M . The set of all subgradients of f at p, denoted by ∂ f (p), is called the
subdifferential of f at p.

2.2 CAT(0) Spaces

The standard notations, results and preliminary concepts of metric spaces with curva-
ture used throughout the paper can be found, for example, Bačák [3] and Bridson and
Haefliger [20]. In the CAT(0) setting, we follow the same notation as in [4, 6].

Let (X , d) be a metric space. We say that a path γ : [0, 1] → X is a geodesic
if d(γ (s), γ (t)) = |t − s|d(γ (0), γ (1)), for every t, s ∈ [0, 1]. If every two points
x, y ∈ X are connected by a geodesic, then we say that (X , d) is a geodesic space.
Throughout this subsection, X denotes a geodesic space. Given a geodesic triangle
�(a, b, c) in X , there exists a comparison triangle�(a′, b′, c′) inR2, that is, three line
segments [a′, b′], [a′, c′] and [b′, c′] such that d(a, b) = ‖a′−b′‖, d(a, c) = ‖a′−c′‖
and d(b, c) = ‖b′ − c′‖. We call (X , d) a CAT(0) space if for every geodesic triangle
with vertices a, b, c ∈ X and x ∈ [a, c] and y ∈ [b, c], we have d(x, y) ≤ ‖x ′ − y′‖,
where x ′ and y′ are the corresponding comparison points in the comparison triangle
�(a′, b′, c′).

There are several equivalent conditions for a geodesic metric space (X , d) to be a
CAT(0) space in the Gromov’s terminology (this concept also appears in the literature
as Hadamard space). One of them is the following inequality, which restricted to
Hadamard manifolds is equivalent to the square distance to be strongly convex (see
Cruz Neto et al. [24, Corollary 3.1]): for any x ∈ X , any geodesic γ : [a, b] → X and
any t ∈ [0, 1] the following inequality holds
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d(x, γ (t))2 ≤ (1 − t)d(x, γ (a))2 + td(x, γ (b))2 − t(1 − t)d(γ (a), γ (b))2.

This property, in particular, implies that every two points are connected by a unique
geodesic. A CAT(0) space is a geodesic metric space of non-positive curvature in
the sense of Alexandrov. It includes Hilbert spaces, R-tree, Euclidean Bruhat-Tits
buildings, Hadamard manifolds and many other important spaces not included above.
Unless stated otherwise, from now on we denote by (H , d) a complete CAT(0) space.

Given S ⊂ H , define the distance function by dist (x, S) = inf{d(x, y) : y ∈ S},
x ∈ H . The metric projection onto S is given by PS(x) = {y ∈ S : d(x, S) =
d(x, y)}, x ∈ H .

We now introduce the concepts of convergence in CAT(0) spaces. The notion of
weak convergence in CAT(0) spaces was first introduced by Jost [35, Definition
2.7]. Let H be a complete CAT(0) space. Suppose that {xk} ⊂ H is a bounded
sequence and define its asymptotic radius about a given point x ∈ H as r(xk, x) =
lim supk→∞ d(xk, x), and asymptotic radius as r(xk) = inf x∈H r(xk, x). Further, we
say that the point x ∈ H is the asymptotic center of {xk} if r(xk, x) = r(xk). Since
H is a complete CAT(0) space, we know that the asymptotic center of {xk} exists and
is unique; see [3, Lemma 3.1.1].

We shall say that {xk} ⊂ H weakly converges to a point x ∈ H if x is the
asymptotic center of each subsequence of {xk}. We use the notation xk

w→ x . If
there is a subsequence {xk j } of {xk} converging to a point z ∈ H , we say that z is a
weak cluster point of {xk}. It is well-known that every bounded sequence has a weak
cluster point; see [3, Proposition 3.1.2] and if C ⊂ H is a closed and convex set and
{xk} ⊂ C weakly converges to x ∈ H , then x ∈ C ; see [3, Lemma 3.2.1].

We denote strong convergence by “→” instead of “
w→”. Clearly, xk → x implies

xk
w→ x . These concepts of convergence are extensions to CAT(0) spaces of the

notion of the weak and strong convergence in Hilbert spaces. It is known that in
(finite-dimensional) Hadamard manifolds, a particular instance of CAT(0) spaces,
these concepts coincide.

Next, we recall a well-known and useful concept. A sequence {xk} ⊂ H is called
Fejér convergent with respect to a set S ⊂ H if, for each y ∈ S, we have

d(xk+1, y) ≤ d(xk, y), ∀k ∈ N.

3 Differential Inclusion on HadamardManifolds

Let X be a Hilbert space. Given a smooth convex function f : X → R and x0 ∈ X ,
consider the following parabolic problem

−χ ′(t) = ∇ f (χ(t));
χ(0) = x ∈ X

for an unknown curve χ : [0,+∞[→ X . In other words, one looks for a curve starting
at x which moves in the direction of the steepest descent of the function f ; see this
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problem in the Riemannian setting, for instance, in Iusem et al. [34]. We can study
a similar parabolic problem after replacing the ∇ f by the subgradient ∂ f of a non-
differentiable function f . More precisely, let f : X → R be a convex function, x ∈ X
and consider the problem

−χ ′(t) ∈ ∂ f (χ(t));
χ(0) = x .

(1)

This problem is called differential inclusion. In this work, we are interested in
studying the problem (1) onHadamardmanifolds in order to apply it to prove important
facts in the context of optimization.

Let (H , d) be a CAT(0) space and f : H →]∞,+∞] be a lower semicontinuous
(in short, lsc) and convex function. Recall that f is lsc if {x ∈ H : f (x) ≤ α} is
closed for each α ∈ R. The resolvent of f generates a semigroup of non-expansive
mappings (St )t≥0 which for a given point x ∈ dom f represents a curve χ(t) := St x
moving in the direction of the steepest descent of f . For λ > 0, the resolvent of f is
defined as

Jλ(x) := argminy∈H
[
f (y) + 1

2λ
d2(x, y)

]
,

with J0(x) := x for each x ∈ H . The resolvent mapping of f is non-expansive, that is,
d(Jλ(x), Jλ(y)) ≤ d(x, y), x, y ∈ H ; see [3, Theorem 2.2.22]. In [3], it is shown the
existence of a flow associated with the resolvent of f . In other words, if x ∈ dom f ,
then there exists the following limit

St (x) := lim
n→+∞ Jnt

n
(x), t ∈ [0,+∞[,

and it defines a non-expansive mapping St : dom f → dom f . In addition, the limit is
uniform with respect to t on bounded subintervals of [0,+∞[ and (St )t is a strongly
continuous semigroup of non-expansivemappings, that is, for every x, y ∈ dom f , one
has that lim

t→0+ St x = x , St (Ssx) = St+s x , for every t, s ∈ [0,+∞[, and d(St x, St y) ≤
d(x, y), for each t ∈ [0,+∞[.
Remark 3.1 If the codomain of the convex function is the set of real numbers R, then
the function is continuous, and hence, it is lower semicontinuous.

The propositions below present important properties on an absolutely continuous
path that will be used in our proofs.

Proposition 3.1 ([3], Theorem 5.1.11) Let (H , d) be a CAT(0) space and f : H →
]∞,+∞] be a lsc and convex function. Assume x ∈ dom f and denote χ(t) := St x
for t ∈]0,+∞[. Then t �−→ χ(t) is absolutely continuous on ]0,+∞[ and satisfies

1

2

d

dt

[
d2(y, χ(t))

]
+ f (χ(t)) ≤ f (y), (2)
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for almost every t ∈ ]0,+∞[ and every y ∈ dom f . Conversely, if an absolutely
continuous curve z : ]0,+∞[→ H with limt→0+ z(t) = x satisfies (2), then z(t) =
St x for every t ∈ ]0,+∞[.
Proposition 3.2 ([23], Proposition 3.7) Let M be a connected manifold equipped with
a Riemannian metric 〈·, ·〉. For any absolutely continuous path γ : [a, b] → M, the
derivative γ ′ exists for almost every t ∈ [a, b] and ||γ ′(t)|| is integrable. In particular,

L(γ ) =
∫ b

a
||γ ′(t)||dt .

Remark 3.2 It is important to note that a function F : [a, b] → R is absolutely
continuous if F ′ exists for almost every point in ]a, b[, F ′ is integrable and

F(x) − F(a) =
∫ x

a
F ′(t)dt, ∀a ≤ x ≤ b.

Before we prove the first result of this section, we mention that if M is a Hadamard
manifold and f : M → R is a convex function, then for every x ∈ M , ∂ f (x) is
non-empty, convex and compact (see [46, pp. 74 and 75]). In particular, we have that
dom f = M .Given any y ∈ M , in order to simplify the notation,wedenote byρy(x) =
1
2d

2(x, y). It is known that ρy(·) is continuously differentiable and grad ρy(x) =
− exp−1

x y; see for instance [46].
The next result guarantees the existence and uniqueness of subgradient curves for

differential inclusion on Hadamard manifolds. It extends to the Riemannian context
[19, Theorem 3.2]; see also [17, Theorem 13].

Lemma 3.1 Let M be a Hadamard manifold and f : M → R be a convex function.
For each x ∈ M, there is a unique absolutely continuous curve χ : [0,+∞[→ M
such that

−χ ′(t) ∈ ∂ f (χ(t));
χ(0) = x

(3)

for almost every t > 0.

Proof For each y ∈ M from Proposition 3.1, it follows that there is a unique absolutely
continuous curve χ : [0,+∞[→ M such that χ(0) = x and

1

2

d

dt

[
d2(y, χ(t))

]
+ f (χ(t)) ≤ f (y),

for almost every t ∈ ]0,+∞[. On the other hand, for almost every t > 0, we have

1

2

d

dt

[
d2(y, χ(t))

]
= d

dt

[
ρy(χ(t))

] = 〈χ ′(t), grad ρy(χ(t))〉 = −〈χ ′(t), exp−1
χ(t) y〉.

Hence, we conclude that 〈−χ ′(t), exp−1
χ(t) y〉 + f (χ(t)) ≤ f (y) for every y ∈ M .

Therefore, −χ ′(t) ∈ ∂ f (χ(t)). ��
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Let χ : [0,+∞[→ M be the solution to the differential inclusion (3). In the sequel,
we present some properties of such a solution which can be viewed as an extension to
the Riemannian setting of its linear version presented in [19]; see also [17, Theorem
13] and [18, Theorem 1]. These properties will be used in the next section in order to
obtain the equivalence between the KL inequality and error bounds.

Lemma 3.2 Let M be a Hadamard manifold and f : M → R be a convex function.
Let χ : [0,+∞[→ M be the solution of (3), then ( f ◦χ)′(t) = −||χ ′(t)||2, for almost
every t > 0.

Proof Since −χ ′(t) ∈ ∂ f (χ(t)) for almost every t > 0, we deduce that, for almost
every h > 0

f (χ(t + h)) − f (χ(t))

h
≥ −

〈
χ ′(t),

exp−1
χ(t)(χ(t + h))

h

〉

and

f (χ(t + h)) − f (χ(t))

h
≤

〈
χ ′(t + h),

exp−1
χ(t+h) χ(t)

h

〉
.

Given t ∈ R, where χ(t) is differentiable, consider ε > 0 sufficiently small and the
curves α : (−ε, ε) → Tχ(t)M and β : (−ε, ε) → M defined by α(h) = exp−1

χ(t) χ(t+
h) and β(h) = expχ(t) α(h) = χ(t + h). Thus, α(0) = 0 and β ′(0) = χ ′(t). Note
that

β ′(0) = D(expχ(t))α(0)(α
′(0)) = α′(0).

Thus, α′(0) = χ ′(t) and grad ρχ(t)(χ(t+h)) = − exp−1
χ(t+h) χ(t). On the other hand,

− lim
h→0+

〈
χ ′(t),

exp−1
χ(t) χ(t + h)

h

〉
= −〈χ ′(t), α′(0)〉 = −||χ ′(t)||2,

and

lim
h→0+

〈
χ ′(t + h),

exp−1
χ(t+h) χ(t)

h

〉
= 〈

χ ′(t),−Hess ρχ(t)(χ(t)) · χ ′(t)
〉

≤ −||χ ′(t)||2.

The last inequality follows from the [24,Corollary 3.1]. From the above inequalities,
we have

lim
h→0+

f (χ(t + h)) − f (χ(t))

h
= −||χ ′(t)||2.

��
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We denote by ∂0 f (x) the least-norm element of ∂ f (x), i.e.,

||∂0 f (x)|| = inf{‖v‖ : v ∈ ∂ f (x)}.

Lemma 3.3 Let M be a Hadamard manifold and f : M → R be a convex function. If
χ : [0,+∞[→ M is the solution of (3), then χ ′(t) = −∂0 f (χ(t)), for almost every
t > 0. Furthermore, the function x �−→ ||∂0 f (x)|| is lsc.

Proof For every δ > 0, it follows from Lemma 3.2 and Remark 3.2 that

f (χ(t + δ)) − f (χ(t)) = −
∫ t+δ

t
||χ ′(τ )||2dτ. (4)

Now consider v ∈ ∂ f (χ(t)). From the definition of subgradient, we have

∫ t+δ

t
||χ ′(τ )||2dτ = − [ f (χ(t + δ)) − f (χ(t))] ≤ −〈v, exp−1

χ(t) χ(t + δ)〉.

Hence, we obtain

∫ t+δ

t
||χ ′(τ )||2dτ ≤ ||v|| · || exp−1

χ(t)(χ(t + δ))|| = ||v|| · d(χ(t + δ), χ(t)).

On the other hand,

d(χ(t + δ), χ(t)) ≤
∫ t+δ

t
||χ ′(τ )||dτ.

Thus,

∫ t+δ

t ||χ ′(τ )||2dτ
δ

≤ ||v|| ·
∫ t+δ

t ||χ ′(τ )||dτ
δ

.

It follows from Lebesgue’s differentiation theorem that ||χ ′(t)||2 ≤ ||v|| · ||χ ′(t)||
for almost every t > 0. Then, ||χ ′(t)|| ≤ ||v|| andwe obtain thatχ ′(t) = −∂0 f (χ(t)).
To prove the second part, we recall that ||∂0 f (x)|| is lsc, implying that

||∂0 f (x)|| ≤ lim inf
k→+∞ ||∂0 f (xk)||

whenever xk → x . Let {xk j } be a subsequence such that

lim
j→+∞ ||∂0 f (xk j )|| = lim inf

k→+∞ ||∂0 f (xk)||.
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Using the closedness of the subdifferential, we have ∂0 f (xk j ) → v ∈ ∂ f (x); see
[13]. Thus,

||∂0 f (x)|| ≤ ||v|| = lim
j→+∞ ||∂0 f (xk j )|| = lim inf

k→+∞ ||∂0 f (xk)||

which concludes the proof. ��
Next, we define the slope of a function and present some properties; for more

details see [3]. The slope of a function will be important to show that the curve
χ : [0,+∞[→ M is everywhere differentiable from the right, and

χ ′(t+) = −∂ f 0(χ(t)), ∀ t ≥ 0.

Let (H , d) be a CAT(0) space and f : H →]∞,+∞] be a convex lsc function.
Define the slope of f at x ∈ dom f as

|∂ f |(x) := lim sup
y→x

max{ f (x) − f (y), 0}
d(x, y)

and dom |∂ f | := {x ∈ H : |∂ f |(x) < +∞}. If f (x) = +∞, we set |∂ f |(x) = +∞.
The next theorem presents some important properties of the slope of a function.

Theorem 3.1 ([3], Theorem 5.1.13) Let (H , d) be a CAT(0) space and f : H →
]∞,+∞] be a lsc and convex function. Given x0 ∈ dom f , put χ(t) := St x0. Then,

|∂ f |(χ(t)) = lim
h→0+

d(χ(t + h), χ(t))

h
,

as well as,

|∂ f |(χ(t)) = lim
h→0+

f (χ(t)) − f (χ(t + h))

d(χ(t + h), χ(t))
,

and also,

|∂ f |2(χ(t)) = lim
h→0+

f (χ(t)) − f (χ(t + h))

h
,

for every t ∈ (0,+∞).

Corollary 3.1 Let M be a Hadamard manifold and f : M → R be a convex function,
then |∂ f |(x) ≤ ||∂0 f (x)|| for all x ∈ M.

Proof Given x, y ∈ M such that f (x) − f (y) > 0 and v ∈ ∂ f (x), it follows from
the definition of subgradient that

f (y) ≥ f (x) + 〈v, exp−1
x (y)〉.
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Thus,

f (x) − f (y) ≤ −〈v, exp−1
x (y)〉 ≤ ||v|| · || exp−1

x (y)|| = ||v||d(x, y).

Therefore,

f (x) − f (y)

d(x, y)
≤ ||v||

and using [3, Lemma 5.1.2], we conclude that |∂ f |(x) ≤ ||v||. In particular, we get
|∂ f |(x) ≤ ||∂0 f (x)||. ��

The next result is an extension to the Riemannian setting of its linear version
presented in [19]; see also [17, Theorem 13] and [18, Theorem 1].

Lemma 3.4 Let M be a Hadamard manifold and f : M → R be a convex function. If
χ : [0,+∞[→ M is the solution of (3), then it is everywhere differentiable from the
right, and

χ ′(t+) = −∂ f 0(χ(t)), ∀ t ≥ 0.

Proof Given t ≥ 0, since expχ(t) : Tχ(t) → M is a diffeomorphism, in order to
show the assertion, it is sufficient to prove that the right-hand derivative of the curve
s �−→ exp−1

χ(t) χ(s) at t exists and coincides with −∂0 f (χ(t)). For h > 0, we have

exp−1
χ(t) χ(t + h) − exp−1

χ(t) χ(t)

h − 0
= exp−1

χ(t) χ(t + h)

h
,

and hence, the right-hand derivative at t is equal to −∂0 f (χ(t)) if

lim
h→0+

∥∥∥∥∥
exp−1

χ(t) χ(t + h)

h
+ ∂0 f (χ(t))

∥∥∥∥∥ = 0.

First, note that

∥∥∥∥∥
exp−1

χ(t) χ(t + h)

h
+ ∂0 f (χ(t))

∥∥∥∥∥
2

= 1

h2
d2(χ(t + h), χ(t)) + ||∂0 f (χ(t))||2

+2

h
〈exp−1

χ(t) χ(t + h), ∂0 f (χ(t))〉. (5)

From the definition of subgradient, it follows

f (χ(t + h)) − f (χ(t)) ≥ 〈∂0 f (χ(t)), exp−1
χ(t) χ(t + h)〉.
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Thus, from Lemma 3.2, Remark 3.2 and using (4) in the above inequality, we have

〈∂0 f (χ(t)), exp−1
χ(t) χ(t + h)〉 ≤ −

∫ t+h

t
||χ ′(s)||2ds. (6)

Since the function x �−→ ||∂0 f (x)|| is lsc, for all ε > 0 there is δ > 0 such that if
d(y, x) < δ, then

||∂0 f (y)|| > ||∂0 f (x)|| − ε.

Thus, for h small enough, if t ≤ s ≤ t + h it follows from (6) together with the first
part of Lemma 3.3 that

〈∂0 f (χ(t)), exp−1
χ(t) χ(t + h)〉 ≤ −h(||∂0 f (χ(t))|| − ε)2.

Then, we obtain 1
h 〈∂0 f (χ(t)), exp−1

χ(t) χ(t+h)〉 ≤ −||∂0 f (χ(t))||2.Now, combining

(5), Theorem3.1 andCorollary 3.1,we have limh→0+|| exp
−1
χ(t) χ(t+h)

h +∂0 f (χ(t))||=0.
��

Corollary 3.2 Let M be a Hadamard manifold and f : M → R be a convex function,
then |∂ f |(x) = ||∂0 f (x)|| for all x ∈ M. Furthermore, ( f ◦ χ)(t) is everywhere
differentiable from the right and ( f ◦ χ)′(t+) = −||χ ′(t+)||2 for all t ≥ 0.

Proof Given x ∈ M , let χ : [0,+∞[→ M be the solution of (3). Fix t ≥ 0 and
consider the curve α : [0, ε[→ Tχ(t)M defined by α(h) = exp−1

χ(t)(χ(t + h)). Then,
α(0) = 0 and χ(t + h) = expχ(t)(α(h)). Since expχ(t) : Tχ(t)M → M is a diffeo-
morphism, it follows from Lemma 3.4 that

−∂0 f (χ(t)) = χ ′(t+) = d(expχ(t))α(0)(α
′(0+)) = α′(0+).

On the other hand, using Theorem 3.1 we obtain

||α(0+)|| = lim
h→0+

∣∣∣
∣∣∣exp−1

χ(t)(χ(t + h))

∣∣∣
∣∣∣

h
= lim

h→0+
d(χ(t + h), χ(t))

h
= |∂ f |(χ(t)).

Thus, ||∂0 f (χ(t))|| = |∂ f |(χ(t)). Hence, we conclude that ||∂0 f (x)|| = |∂ f |(x).
Again, from Theorem 3.1, we obtain that the function ( f ◦ χ)(t) is everywhere dif-
ferentiable from the right and

( f ◦ χ)′(t+) = −|∂ f |2(χ(t)) = −||∂0 f (χ(t))||2 = −||χ ′(t+)||2.

��
In the next results we assume that M∗ := argmin f = {x ∈ M : f (x) ≤

f (z), ∀z ∈ M} �= ∅. It is an extension to the Riemannian setting of its linear version
presented in [19]; see also [18, Theorem 1].
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Lemma 3.5 Let M be a Hadamard manifold and f : M → R be a convex function.
If χ : [0,+∞[→ M is the solution of (3), then for all p ∈ M∗, limt→+∞ d(χ(t), p)
exists.

Proof Note that, for each p ∈ M∗ and for almost every t ∈ ]0,+∞[,
d

dt

[
1

2
d2(χ(t), p)

]
= d

dt
[ρp(χ(t))] = −〈χ ′(t), exp−1

χ(t)(p)〉.

On the other hand, since −χ ′(t) ∈ ∂ f (χ(t)) and p ∈ M∗, we have

d

dt

[
1

2
d2(χ(t), p)

]
≤ f (p) − f (χ(t)) ≤ 0,

for almost every t ∈ ]0,+∞[. Thus, we conclude that the function d2(χ(t), p) is
non-increasing and d2(χ(t), p) ≥ 0, hence d2(χ(t), p) converges as t → +∞. ��
Remark 3.3 Given ε > 0 and p ∈ M∗ note that if χ : [0,+∞[→ M is the solution (3)
and χ(0) = x ∈ B(p, ε), since d2(χ(t), p) is non-increasing, then χ(t) ∈ B(p, ε),
for all t ≥ 0.

The next lemma was proved by Bačák [3, Proposition 5.1.12 and Theorem 5.1.16]
in the CAT(0) setting. However, we state it in the particular instance of Hadamard
manifolds. It extends to a more general setting, the result proposed by [21] in Hilbert
spaces.

Lemma 3.6 Let M be a Hadamard manifold and f : M → R be a convex function.
Then, the solution χ : [0,+∞[→ M of (3) converges to a minimizer of f as t → ∞.
Furthermore, limt→+∞ f (χ(t)) = min f .

4 KL Inequality and Error Bounds on HadamardManifolds

In this section, we study the relationship between the Kurdyka–Łojasiewicz property
and the concept of error bounds. Let f : M → R be a convex function. It is worth to
mention that the Kurdyka–Łojasiewicz property does not require f to be convex; see
for instance [12]. To simplify the notation, we write [ f < μ] = {x ∈ M : f (x) < μ}
and, for a given r > 0, K (0, r) stands for the set of continuous functions ϕ : [0, r) →
R+ such that ϕ(0) = 0 and it is continuously differentiable in (0, r) with ϕ′(x) > 0
for all x ∈ (0, r).

A function f : M → R is said to have the Kurdyka–Łojasiewicz property at a point
x̄ ∈ M if there exists η ∈ (0,+∞], a neighborhood U of x̄ and ϕ ∈ K (0, η) (called
desingularizing function) such that the Kurdyka–Łojasiewicz inequality holds

ϕ′( f (x) − f (x̄))||∂0 f (x)|| ≥ 1, ∀x ∈ U ∩ [ f (x̄) < f < f (x̄) + η]. (7)

This property basically means that a function can be made sharp by a reparam-
eterization of its values. One can check that the Kurdyka–Łojasiewicz property is
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automatically satisfied at any non-critical point x̄ ∈ dom ∂ f , where f is a lower semi-
continuous function; see [26, Lemma 3.6]. This is why some applications focus just
on the case where x̄ is a critical point. The most fundamental works on this subject
are of course due to Łojasiewicz [39] and Kurdyka [37].

Consider a non-decreasing function ω : [0,+∞) → [0,+∞) with ω(0) = 0. The
function f achieves its minimum min f so that M∗ = argmin f �= ∅ satisfies the
local error bound with residual function ω if

ω( f (x) − min f ) ≥ dist(x, M∗),

where x may belong to either the whole space or a bounded set. Equivalently, if
min f = 0, then there exists r > 0 such that

(ω ◦ f )(x) ≥ dist(x, M∗), ∀x ∈ [0 ≤ f ≤ r ].

Additionally, we say that ϕ ∈ K (0, r) has moderate behavior (near the origin) if, for
some constant c > 0, it satisfies

sϕ′(s) ≥ cϕ(s), ∀s ∈ (0, r).

Example 4.1 Let ϕ : [0, r) → R given by ϕ(t) = αt
1
p with α > 0 and p ≥ 1. One

can check that ϕ ∈ K (0, r) and it has moderate behavior with c = 1
p .

Example 4.2 Take ϕ : [0, r) → R such that ϕ ∈ K (0, r) and it is semi-algebraic or
subanalytic. Then, it has a moderate behavior; see [18, Lemma 4].

Given x ∈ dom ∂ f , from Lemma 3.1 there exists a unique absolutely continuous
curve χ : [0,+∞) → M such that χ(0) = x and, for almost every t > 0,

−χ ′(t) ∈ ∂ f (χ(t)).

The next result provides the equivalence between the KL inequality and the existence
of a uniform bound for the lengths of subgradient trajectories verifying a differential
inclusion. It generalizes Bolte et al. [17, Theorem 18] and Bolte et al. [18, Theorem
27] to the Riemannian context.

Proposition 4.1 Let M be a Hadamard manifold and f : M → R be a convex
function. Suppose that x̄ ∈ S, ρ > 0 and ϕ ∈ K (0, r). Then, the following assertions
are equivalent:

(i) For each x ∈ B(x̄, ρ) ∩ [0 < f < r ], we have

ϕ′( f (x)) ||∂0 f (x)|| ≥ 1.

(ii) For each x ∈ B(x̄, ρ) ∩ [0 < f < r ] and 0 ≤ t < s, we have

∫ s

t
||χ ′(τ )||dτ ≤ ϕ( f (χ(t))) − ϕ( f (χ(s)).
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Proof Let us prove the assertion (i) ⇒ (ii). Take x ∈ B(x̄, ρ) ∩ [0 < f < r0] and
0 ≤ t < s. One has

ϕ( f (χ(t))) − ϕ( f (χ(s))) =
∫ t

s

d

dτ
ϕ( f (χ(τ)))dτ

=
∫ t

s
ϕ′( f (χ(τ)))

d

dτ
( f (χ(t)))dτ. (8)

From Lemmas 3.2 and 3.3, we have that
d

dτ
( f (χ(τ))) = −||χ ′(τ )||2, for almost

every τ > 0, and χ ′(τ ) = −∂0 f (χ(τ)), for almost every τ > 0, respectively. Using
these facts in (8), we have

ϕ( f (χ(t))) − ϕ( f (χ(s))) =
∫ s

t
ϕ′( f (χ(τ)))||∂0 f (χ(τ))||||χ ′(τ )||dτ.

From Remark 3.3, we have that χ(t) ∈ B(x̄, ρ), for all t ≥ 0. Furthermore, since
x ∈ [0 < f < r ] and from Lemma 3.2, we have that ( f ◦ χ)(t) is non-increasing,
then χ(t) ∈ [0 < f < r ], for all t ≥ 0. Therefore, we have

χ(t) ∈ dom ∂ f ∩ B(x̄, ρ) ∩ [0 < f < r ], ∀t ≥ 0,

and hence,

ϕ′( f (χ(τ)))||∂0 f (χ(τ))|| ≥ 1,

for all τ > 0. Thus,

ϕ( f (χ(t))) − ϕ( f (χ(s))) =
∫ s

t
ϕ′( f (χ(τ)))||∂0 f (χ(τ))||||χ ′(τ )||dτ

≥
∫ s

t
||χ ′(τ )||dτ

and the first part is proved.
Now, to prove that (i i) ⇒ (i), take x ∈ dom ∂ f ∩ B(x̄, ρ) ∩ [0 < f < r ]. For

each h > 0, we have

1

h

∫ h

0
||χ ′(τ+)|| dτ = 1

h

∫ h

0
||χ ′(τ )||dτ ≤ −ϕ( f (χ(h))) − ϕ( f (χ(0)))

h
.

Since χ ′
x (t

+) = −∂0 f (χx (t)) for all t ≥ 0 and the function x �−→ ||∂0 f (x)|| is lsc,
given ε > 0 there is δ > 0 such that if d(y, x) < δ, then ||∂0 f (y)|| > ||∂0 f (x)|| − ε.
Thus, for h small enough,

||χ ′(0+)|| − ε ≤ −ϕ( f (χ(h))) − ϕ( f (χ(0)))

h
.
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Letting h → 0+, we obtain that ||χ ′(0+)|| − ε ≤ −ϕ′( f (x))( f ◦ χ)′(0+), for any
ε > 0. In particular,

||χ ′(0+)|| ≤ −ϕ′( f (x))( f ◦ χ)′(0+).

Therefore, applying Lemma 3.2, we have ||χ ′(0+)|| ≤ ϕ′( f (x))||χ ′(0+)||2. Using
Lemma 3.4, we finally obtain

1 ≤ ϕ′( f (x))||∂0 f (x)||,

and the proof is completed. ��
The next result provides the equivalence between the KL property and global error

bounds under the moderate behavior assumption for convex functions. Moreover, it
shows that the desingularizing function in the KL inequality and the residual function
in the error bounds are essentially the same, up to a multiplicative constant. This result
extends Bolte et al. [18, Theorem 5] to the Riemannian context, and it will be used in
the next section to obtain the convergence of the gradient method for solving convex
feasibility problems.

Theorem 4.1 Let M be a Hadamard manifold and f : M → R be a convex function.
Consider r > 0, c > 0, ρ > 0, ϕ ∈ K (0, r0) and x̄ ∈ M∗ = argmin f .

(i) (KL inequality implies error bounds) If ‖∂0 f (x)‖ϕ′( f (x)) ≥ 1 for all x ∈ [0 <

f < r0] ∩ B(x̄, ρ), then

dist (x, M∗) ≤ ϕ( f (x)), ∀x ∈ [0 < f < r0] ∩ B(x̄, ρ).

(ii) (Error boundswithmoderate behavior implies theKL inequality) If sϕ′(s) ≥ cϕ(s)
for all s ∈ (0, r0) and

dist (x, M∗) ≤ ϕ( f (x)), x ∈ [0 < f < r0] ∩ B(x̄, ρ),

then

ϕ′( f (x))||∂0 f (x)|| ≥ c, ∀x ∈ [0 < f < r0] ∩ B(x̄, ρ).

Proof (i) From Proposition 4.1 for every x ∈ [0 < f < r0] ∩ B(x̄, ρ) and 0 ≤ t < s,
we have

d(χ(s), χ(t)) ≤
∫ s

t
||χ ′(τ )||dτ ≤ ϕ( f (χ(t))) − ϕ( f (χ(s)), (9)

where χ : [0,∞[→ M is a subgradient curve such that χ(0) = x . From Lemma 3.6,
we have that lim

t→+∞ χ(t) = x∗ ∈ M∗ and lim
t→+∞( f ◦ χ)(t) = min f = 0. Thus,

taking t = 0 and letting s → ∞ in (9), we obtain d(x∗, x) ≤ ϕ( f (x)), and so,
dist (x, M∗) ≤ ϕ( f (x)), ∀ x ∈ [0 < f < r0] ∩ B(x̄, ρ).
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(ii) Take x ∈ [0 < f < r0] ∩ B(x̄, ρ) and let y = PM∗(x) be the projection of x
onto M∗. By convexity of f , we have 0 = f (y) ≥ f (x) + 〈∂0 f (x), exp−1

x y〉. From
Cauchy–Schwarz inequality and the moderate behavior of ϕ, we have

f (x) ≤ ‖∂0 f (x)‖ · d(x, y) = ‖∂0 f (x)‖ · d(x, M∗)
≤ ‖∂0 f (x)‖ · ϕ( f (x))

≤ 1

c
· f (x)ϕ′( f (x)) · ‖∂0 f (x)‖.

Since f (x) > 0, then the desired result follows immediately. ��

5 Application to Convex Feasibility Problem

The convex feasibility problem (CFP) is formulated by:

to find a point x ∈ C := ⋂n
i=1 Ci ,

where each Ci is a subset of a space X , for each i = 1, . . . , n with n ≥ 2.
The aim of this section is to consider two classical algorithms for solving CFP on

Hadamard manifolds. The first one is the gradient method, which is one of the oldest
methods to find a minimizer of differentiable functions in Euclidian spaces. In the
Riemannian context, it was first studied by Luenberger [40]; see also Cruz Neto et
al. [27]. In the linear setting, Bolte et al. [18] applied the gradient method and the
global Lipschitz (with L = 1) property of the gradient of the square distance from
a point to a closed and convex set to define a barycentric projection algorithm for
solving CFP. We show that this Lipschitz property does not hold in general Hadamard
manifolds. On the other hand, we use the equivalence between the KL inequality
and error bounds to prove that the gradient method can be applied to solve CFP,
obtaining some convergence rates under the boundedly linearly regularity of the sets
Ci , i = 1, . . . , n. The second method considered is the alternating projection method.
We show convergence of this method under the Slater condition for cyclic and random
projections on Hadamard manifolds and more general CAT(0) spaces.

Under the Slater condition, Bento andMelo [13] analyzed the convergence of a sub-
gradient method for solving a convex feasibility problem in Riemannian manifolds
with nonnegative sectional curvature. Their results were extended to Riemannianman-
ifolds with sectional curvature bounded from below by Wang et al. [48, 49]. Bačák
et al. [6] proved the convergence of von Neumann’s algorithm (alternating projection
method) in complete CAT(0) spaces (also known as Hadamard spaces), which include
Hadamard manifolds, among others. The key to their approach is the regularity con-
dition in the intersection of the sets Ci . We say that A, B ⊂ X are boundedly linearly
regular if, for any bounded set S ⊂ X , there exists σ > 0 such that for x ∈ S, we
have

dist(x, A ∩ B) ≤ σ max{dist(x, A), dist(x, B)}.
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We say that A, B ⊂ X are linearly regular if there exists σ > 0 such that, for x ∈ X ,
we have

dist(x, A ∩ B) ≤ σ max{dist(x, A), dist(x, B)}.

This concept is well-known in the CFP literature, and it is also known as (local) error
bounds for CFP; see Beck and Teboulle [10]. Error bounds for CFP were introduced
by Gubin et al. [30] using the residual function

T (x) = max
1≤i≤n

dist (x,Ci ).

Indeed, in this case, one obviously has T (x) = 0 if and only if x ∈ C = ∩n
i=1Ci .

Notice that while dist (x,C) is usually difficult to estimate (otherwise the original
problem is trivial), the error bound T (x) is in many cases easily calculated if the
distance from a point to each set Ci is known. Thus, error bounds state that we can
bound an unknown quantity by a computable quantity.

In the Euclidean context, Beck and Teboulle [10] studied the interplay between the
Slater condition and local error bounds. They proved that the Slater condition implies
local error bounds; see [10, Lemma 3.1] and [18, Proposition 11]. They also showed
that error bounds are central in establishing the (linear) rate of convergence of iterative
methods, and without the Slater hypothesis on CFP, projection-type algorithms could
in fact behave quite badly. On the one hand, this clarifies the important role played by
the Slater condition and, on the other, by the local error bound on CFP.

In theRiemannian context, the connection between these two concepts is not known.
Therefore, in this section, we apply two different methodologies to solve a convex
feasibility problem under the Slater condition and local error bounds (or boundedly
linearly regular).

5.1 Gradient Method on HadamardManifolds

Let M be a Hadamard manifold, and consider f : M → R given by

f (x) = 1

2

n∑
i=1

αidist
2(x,Ci ), (10)

where αi > 0, for all i = 1, 2, . . . , n,
∑n

i=1 αi = 1 and Ci ⊂ M , i = 1, . . . , n. If
C := ⋂n

i=1 Ci is non-empty, then finding a point in C is equivalent to minimizing the
function f over M . In this case, it is clear thatC = argmin f = {x ∈ M : f (x) = 0}.
This approachwas considered in the linear setting (with convex sets) byBolte et al. [18]
and (with non-convex sets) by Luke et al. [41]. In the next results of this subsection,
f is given as in (10). We will prove that the gradient method can be used to solve a
convex feasibility problem on Hadamard manifolds. In Ferreira et al. [29, Sect. 4],
one can find the expression of the gradient of a differentiable function in terms of
the Euclidean gradient, for some Hadamard manifolds, as well as in [18, p. 496] is
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presented theEuclideangradient of f given as in (10). In a generalHadamardmanifold,
it follows from Poly and Raby [43] that dist2(·,Ci ) is continuously differentiable and
grad dist2(x,Ci ) = − exp−1

x pi , where pi is the metric projection of x onto Ci , for
each i = 1, . . . , n; see also Barani and Hosseini [5, Example 3.1].

Alternatively, even when the objective function is non-differentiable at some iter-
ations, it remains possible to apply a gradient (sampling) method for minimizing a
locally Lipschitz (and hence, almost everywhere differentiable) function. As shown
by Hosseini and Uschmajew [33, Theorem 4.4], under mild assumptions, this method
finds a solution onRiemannianmanifolds.Actually, in a general Riemannianmanifold,
the scenario of almost everywhere differentiability is natural since, according to [52,
Theorem 2], for a complete n-dimensional Riemannian manifold M where d2(·, p)
(with p ∈ M fixed) is directional-differentiable on all M , then M is diffeomorphic
to Rn .

Gradient method
Initialization: Choose x0 ∈ M ;
Stopping rule: Given xk , if xk is a critical point of f , then set xk+p = xk for all p ∈ N.
Otherwise, compute the iterative step;
Iterative step: Take as the next iterate any xk+1 ∈ M such that

xk+1 = expxk (−tkgrad f (x
k)), (11)

where {tk} is a positive and bounded sequence satisfying

f (xk+1) ≤ f (xk) − αtk ‖grad f (xk)‖2, (12)

with α ∈ (0, 1).
Throughout this subsection, we suppose that {xk} is the sequence generated by the

gradient method (11) with a stepsize satisfying (12). Note that the above algorithm
presents a conceptual stopping rule. From (11), we have

tk ||grad f (xk)|| = d(xk+1, xk). (13)

Thus, if lim inf tk > 0 (this is the case for the stepsizes defined in the sequel) and
xk+1 = xk , then from (13) we have that xk is a critical point of f . Numerically, for a
given tolerance ε > 0 due to (13) a natural stopping rule is d(xk+1, xk) < ε which is
equivalent to ||grad f (xk)|| < ε. Now, let us describe some concrete possibilities for
the choice of the stepsize sequence{tk}.

Example 5.1 Let {tk} be the sequence defined as follows: given δ1, δ2 > 0 such that
Lδ1 + δ2 < 1, where L is the Lipschitz constant associated to the gradient map of f .
Take {tk} such that

tk ∈
(

δ1,
2

L
(1 − δ2)

)
, ∀k ≥ 0. (14)
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The sequence {tk} as in (14) is called the fixed stepsize rule. Since (14) holds and
Lδ1 + δ2 < 1, from [27, Theorem 5.1], we have

f (xk+1) + βk t
2
k ||grad f (xk)||2 ≤ f (xk), ∀k ≥ 0, (15)

where βk :=
(
1

tk
− L

2

)
> 0. Note that, from (14), we have βk > β := Lδ2

2(1−δ2)
>

0, ∀k ≥ 0.

Example 5.2 Fix α ∈ (0, 1). Let {tk} be a sequence obtained by tk := max{2− j : j ∈
N} such that

f
(
expxk (−2− jgrad f (xk)

)
≤ f (xk) − α2− j ‖grad f (xk)‖2}. (16)

This stepsize rule is the so-called Armijo search. Note that, in this case, zero can be a
cluster point of the sequence {tk}. However, if the gradient map of f , x �→ grad f (x),
is a Lipschitz function, then zero is not a cluster point of {tk}.
Remark 5.1 In [46, Theorem 4.2], Udriste established the convergence of the gradient
method using the stepsizes defined as above; see also Cruz Neto et al [27]. Clearly, in
the linear setting, this result can be applied to obtain a solution to the convex feasibility
problem through the function given in (10) whose gradient is Lipschitz with constant
L = 1. However, this is not necessarily true in general Hadamard manifolds. To
overcome this drawback, we provide a different approach to obtain the convergence
of the method and its convergence rate using the concept of Kurdyka–Łojasiewicz
inequality.

Next, we provide a counterexample showing that the gradient of the square distance
is not globally Lipschitz mapping in a general Hadamard manifold.

Example 5.3 Let us consider the hyperbolic space as the model of the upper half-
plane H

2 = {(x, y) ∈ R
2 : y > 0}, i.e., the upper half-plane furnished with the

metric 〈u, v〉p = 〈u, v〉
y2

, where u, v ∈ R
2, p = (x, y) with y > 0 and 〈 ·, · 〉 is the

usual inner product in R
2. Consider the point p = (0, 1), d : H2 × H

2 → R the
distance function and denote by d(x) = d(x, p). Thus, ρp : H2 → R is given by
ρp(x) = 1

2d
2(x). We will show that grad ρp is not global Lipschitz. Given α ∈ (0, π

2 ),
let us consider the geodesic passing through the point P3 = p making an angle α with
the y-axis. It is not difficult to verify that this geodesic is part of the circle with center
in

( cosα
sin α

, 0
)
and radius 1

sin α
.

Now, let us consider the geodesic triangle whose vertices are the points P1 =
(0, 1

sin α
), P2 = ( cosα

sin α
, 1
sin α

) and P3 = p; see Fig. 1. Denote by A the area of this
geodesic triangle and note that A = A1 + A2, where A1 and A2 are the areas below
and above the straight line connecting P1 and P2, respectively. Consider the global
parametrization ϕ : S → H

2, where ϕ(x, y) = (x, y) and S = {(x, y) ∈ R
2 : y > 0}.

The area A1 is given by
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Fig. 1 Square distance is not globally Lipschitz in general Hadamard manifolds

∫∫
ϕ−1(B1)

1

y2
dx dy,

where B1 is the geodesic triangle whose vertices are the points P1, P2 and P3. Observe
that

B1 =
{
(x, y) : 0 ≤ x ≤ cosα

sin α
,

√
1 − (sin αx − cosα)2

sin α
≤ y ≤ 1

sin α

}
.

Straightforward calculations yield A1(α) = − cosα + arcsin(cosα). To calculate
A2 it is necessary to know the geodesic joining P1 to P2. Again, it is not difficult
to verify that such geodesic is part of the circle with center in

( cosα
2 sin α

, 0
)
and radius√

4+cos2 α
2 sin α

. Thus, similar to A1, we obtain that A2(α) = cosα − 2 arcsin( cosα√
4+cos2 α

).

Then, we conclude A(α) = arcsin(cosα) − 2 arcsin( cosα√
4+cos2 α

) and hence,

lim
α→0

A(α) = π

2
− 2 arcsin

(
1√
5

)
. (17)

On the other hand, if we denote by β(α) and θ(α) the internal angles of the geodesic
triangle in the vertices P1 and P2, respectively, it follows from the Gauss–Bonnet
Theorem that

A(α) = π − (α + β(α) + θ(α)). (18)
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Since 0 < arcsin
(

1√
5

)
< π

6 , for α sufficiently close to 0, we have that π
2 − π

3 <

π − (β(α) + θ(α)) < π
2 . Hence, π

2 < β(α) + θ(α) < 5π
6 . Letting d1 = d(P3, P1),

d2 = d(P1, P2) and d3 = d(P3, P2), one has

d1(α) = − ln(sin α), d2(α) = ln

(√
4 + cos2 α + cosα√
4 + cos2 α − cosα

)
and

d3(α) = 1

2
ln

(
1 + cosα

1 − cosα

)
.

Consider the vectors v1(α) := grad ρP3(P1(α)), v2(α) := − exp−1
P2(α)(P1(α))

and v3(α) := grad ρP3(P2(α)), thereby d1 = ||v1|| and d3 = ||v3||. Now consider
Pv1(α) = PP1(α)P2(α)(v1(α)) the parallel transport of v1(α) along the geodesic joining
P1 to P2, then d1 = ||v1|| = ||Pv1|| and

�(Pv1, v2) = π − β(α), �(v3, v2) = θ(α), �(Pv1, v3) = π − β(α) − θ(α).

Therefore, we obtain ||v3 − Pv1||2 = (d3 − d1)2 + 2d1d3(1 + cos(β(α) + θ(α))).
From (17) and (18), when α → 0 we have that cos(β(α) + θ(α))) converges to − 4

5 .
Thus,

lim
α→0

||grad ρP3(P2(α)) − PP1(α)P2(α)(grad ρP3(P1(α)))|| = lim
α→0

||v3 − Pv1||2(α)

= +∞.

On the other hand, limα→0 d(P1(α), P2(α)) = limα→0 d2(α) = ln
(√

5+1√
5−1

)
. There-

fore, there is no constant L > 0 such that

||grad ρp(P2(α)) − PP1(α)P2(α)(grad ρp(P1(α)))|| ≤ L · d(P1(α), P2(α)).

This shows that the square distance is not globally Lipschitz in general Hadamard
manifolds.

The next result was proved by Attouch et al. [2, Theorem 3.2] in the Euclidean
setting. Assuming that the objective function is bounded from below and continuously
differentiable with Lipschitz gradient, in particular, they obtained convergence of the
gradient method to a critical point of KL functions as long as the sequence generated
by the method is bounded. In Remark 3.3, they have pointed out that the conclusion
of the theorem remains unchanged if the assumptions that ∇ f is Lipschitz continuous
on Rn and f is a KL function are replaced by a locally version of these assumptions,
i.e., there exists a closed subset S of Rn such that ∇ f is Lipschitz continuous on co S
and f satisfies the KL inequality at each point of S, where co S denotes the convex
envelope of S.

As an application of the equivalence between the KL property and global error
bounds (under the moderate behavior assumption) in Hadamard manifolds, we obtain
the convergence of the gradient method for solving a convex feasibility problem as
well as its convergence rate. To this end, we denote by L > 0 the Lipchitz constant
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of the gradient of f in a compact set which contains C = ⋂n
i=1 Ci and t∗ the lower

bound of the sequence {tk} given in Examples 5.1 and 5.2. Recall that from (10) if
x∗ ∈ C , then f (x∗) = 0.

Theorem 5.1 Assume that C = ⋂n
i=1 Ci is non-empty and compact, and the sets Ci

are boundedly linearly regular. Then, the following assertions hold:

(i) {xk} converges to a point x∗ ∈ C;
(ii) There exists a constant 0 < q < 1 such that f (xk) ≤ f (x0)qk−1;
(iii) There exist constants c > 0 and 0 < μ < 1 such that d(xk,C) ≤ cμk−1.

Proof (i): Let r > 0 be fixed. Since the setsCi are boundedly linearly regular, we have

dist(x,C) ≤ σ max{dist(x,Ci ), i = 1, . . . , n}, ∀x ∈ [0 < f < r ].

Thus, for every x ∈ [0 < f < r ], we have
dist(x,C) ≤ σ max{dist(x,Ci ), i = 1, . . . , n}

≤ σ

√
dist2(x,C1) + · · · + dist2(x,Cn)

≤ σ

α

√
f (x), (19)

where α =
(
mini=1,...,n{αi }

2

) 1
2

. From (19), we have that d(xk, PC (xk)) =
dist(xk,C) ≤ σ

α

√
f (xk), and hence {d(xk, PC (xk))} is bounded because { f (xk)}

is non-increasing and f is bounded from below. Let x̄ ∈ C be fixed. Since C is
compact, then {d(PC (xk), x̄)} is also bounded. Thus, using the triangular inequality,
we obtain that {d(xk, x̄)} is bounded, which means that {xk} is bounded. Let x∗ be a
cluster point of {xk}. Therefore, the first assertion follows from [50, Theorem 3.6 (i)]
combined with [50, Remark 3.2 (b)].

Now, we will prove the rates of convergence of the sequences { f (xk)} and {xk}.
(ii): From (19), we have that f satisfies the local error bound with residual function

ω(s) = σ

α

√
swhich hasmoderate behavior. Then, Theorem4.1 ensures that f satisfies

the Kurdyka–Łojasiewicz at every point x ∈ [0 < f < r ] with desingularizing

function ϕ(s) = 2σ

α

√
s. Let us denote by Δk = f (xk) − f (x∗) ≥ 0. Assume that

Δk > 0, for all k ∈ N, otherwise the method stops in a finite number of iterations.
Since xk converges to x∗, there exist k0 ∈ N and a neighborhood N (x∗) such that
xk ∈ N (x∗) ∩ [ f (x∗) < f < f (x∗) + η] = N (x∗) ∩ [0 < f < η], for all
k ≥ k0, where the Kurdyka–Łojasiewicz property holds with desingularizing function

ϕ(s) = 2σ

α

√
s. Thus, from (7), we have

1 ≤ (ϕ′)2(Δk+1)||grad f (xk+1)||2 ≤ (ϕ′)2(Δk+1)
L

tk
d2(xk+1, xk)

≤ L

t∗
(ϕ′)2(Δk+1)(Δk − Δk+1) = Lσ 2

t∗α2

(Δk − Δk+1)

Δk+1
,
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where the second inequality comes from the Lipchitz property of grad f together with
tk ||grad f (xk)|| = d(xk+1, xk) and the third inequality follows from (12) combined
with the fact that {tk} is lower bounded by t∗ > 0. Therefore, we obtain Δk+1 ≤ qΔk ,
for all k ∈ N, where 0 < q = Lσ 2

Lσ 2+t∗α2 < 1. Applying last inequality k − 1 times, we
prove item (ii).

(iii): The proof of this assertion follows from (19) combined with the estimated rate
of the item (ii) having in mind that f (x∗) = 0. ��
Remark 5.1 Amore general version of the previous result can be obtained by Wang et
al. [50, Theorem 3.6] applied to the function (10). Therefore, we obtain convergence of
the gradientmethod for solving a convex feasibility problem in aRiemannianmanifold
without any assumption on its sectional curvature. On the other hand, to obtain the
linear rate of convergence by using [50, Theorem 3.6 (ii)], we have to prove that f
given by (10) satisfies the Kurdyka–Łojasiewicz property in a Riemannian manifold
without any assumption on its sectional curvature. In Hadamard manifolds, this fact
is easily obtained as an application of Theorem 4.1.

5.2 Alternating Projections on Hadamard Spaces

The alternating projection method goes back to von Neumann who considered the
case of two closed subspaces. Recall that the projection onto a non-empty set C sends
any point x to its nearest point in C denoted by PC (x). While developing modern
operator theory, von Neumann proved that, for n = 2 and X a Hilbert space, given
starting point b0 = x ∈ X , both sequences {ak} and {bk} defined by ak = PC1(b

k−1)

and bk = PC2(a
k) converge to PC1∩C2(x) in norm; see [47, Theorem 13.7]. The key

idea is that often it is easy to project onto the individual Ci and this fact should be
helpful in finding the solution to the more complicated problem of projecting onto
C = C1 ∩ C2. In 1962, Halperin [31] extended von Neumann’s algorithm to more
than two subspaces by projecting cyclically (or periodicly).

In 1965, Amemiya and Ando [1] proved that the periodicity assumptions could
be dropped, showing the convergence of the method for an arbitrary sequence of
indexes, which they called a random selection. However, the convergence obtained by
Amemiya and Ando is weak and not in the norm as in von Neumann and Halperin’s
works. In 1995, Sakai [44] generalizedHalperin’s results for quasi-periodic sequences.
In particular, he obtains the strong convergence of Amemiya and Ando’s result when
the sequence is quasi-periodic. In 1982, Bruck [22] proved the strong convergence
in Hilbert space of the alternating projection method with random projections when
one of the sets Ci is compact, provided the projection in the compact set is used
infinitely often in the iteration. Bauschke [7] proved strong convergence of the method
with random projections provided the sets C j satisfy an assumption called innately
boundedly regularity, more precisely, if every closed and convex set C j satisfies
max{d(xk,C j ) : j ∈ {1, . . . , n}} → 0 implies d(xk,C1 ∩ . . . ∩ Cn) → 0, where
{xk} is the sequence generated by the alternating projection method.

In 2008, Lewis and Malick [38] considered the alternating projection method for
two smooth submanifolds C1 and C2 of Rn which intersect transversally at a point
x∗ ∈ C1 ∩ C2, i.e., TxC1 + TxC2 = R

n , where TxC stands to the tangent space to C
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at x . They proved that if the initial point x0 is sufficiently close to x∗, then the method
converges to a point in C1 ∩ C2 linearly. In particular, if C1 and C2 are closed and
convex sets ofRn such that their boundaries bdC1 and bdC2 are smoothmanifolds and
are transversal at x∗ ∈ C1 ∩ C2, then linear convergence of the alternating projection
method is obtained. In 2012, Bačák et al. [6] proved that the underlying linear structure
of the space is dispensable and von Neumann’s algorithm converges in CAT(0) spaces.
Under the boundedly regular assumption, they obtained strong convergence of the
method.

In this section, we obtain some results on the alternating projection method in
CAT(0) spaces and, in particular, Hadamard manifolds, extending some existing ones.
We will denote by Pj the projection onto C j . Let { jk} be a sequence taking values
in {1, 2, . . . , n} and x0 a starting point. Consider the sequence {xk} generated by the
alternating projection method, i.e.,

xk = Pjk (x
k−1), (20)

for all k ∈ N. Note that { jk} is the sequence that establishes the order of projection
onto the sets C j , j = 1, . . . , n. Such an order can be chosen cyclically or randomly.
We say that the sequence { jk} is cyclic if jk = (kmod n)+1, for all k ∈ N. From now
on, we denote by {xk} the sequence generated by the alternating projection method.

In the next results, we show that the alternating projectionmethod converges for any
order of projection (i.e., with a random choice of the sequence of projections { jk}) on
Hadamard manifolds under the Slater condition. We also obtain weak convergence of
the method in CAT(0) spaces, replacing the Slater condition by the cyclic projection.
Strong convergence is also proved, additionally assuming that at least one of the sets
is compact. In particular, we show that the alternating projection method converges to
a solution of the CFP on Hadamard manifolds, just assuming cyclic projection.

Theorem 5.2 Let M be a Hadamard manifold and assume that the intersection C1 ∩
· · · ∩ Cn has an interior point. Then,

(i) The sequence {xk} is convergent for any sequence { jk};
(ii) It converges to a point x∗ ∈ ∩C j , where j ∈ {1, 2, . . . , n} is infinitely often in

{ jk}.
Proof (i): Let a be an arbitrary point belonging to C1 ∩ · · · ∩ Cm . Then,

d(a, xk+1) = d(a, Pjk+1 ◦ · · · ◦ Pj1(x
0))

= d(Pjk+1(a), Pjk+1 ◦ · · · ◦ Pj1(x
0)), ∀k ∈ N.

Since the projection mapping is non-expansive (see [20, Proposition 2.4]), we have

d(a, xk+1) ≤ d(a, Pjk ◦ · · · ◦ Pj1(x
0)) = d(a, xk),

which means that {xk} is Fejér convergent to C1 ∩ · · · ∩ Cn . Therefore, the sequence
{d(a, xk)} converges. Denote by 0 ≤ ε = limn→+∞ d(a, xk). If ε = 0, then the
assertion is proved. Now, suppose that ε > 0. Since {xk} is Fejér convergent to
C1 ∩ · · · ∩Cn , then it is bounded (see [3, Proposition 3.2.6]) and hence it has a cluster
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point. Let y1 and y2 be cluster points of {xk}. Note that {d(a, xk)} is convergent, so
d(a, y1) = d(a, y2) for every a ∈ C1 ∩· · ·∩Cn and hence, without loss of generality,
we may assume that a is an interior point of C1 ∩ · · · ∩ Cn .

Let γ be the unique geodesic such that γ (0) = y1 and γ (ε) = a and take 0 < δ < ε

such that γ (ε + δ) belongs to the interior of C1 ∩ · · · ∩ Cn . Thus, d(y2, γ (ε + δ)) =
d(y1, γ (ε + δ)). On the other hand,

d(y1, γ (ε + δ)) = d(y1, a) + d(a, γ (ε + δ)) = d(y2, a) + d(a, γ (ε + δ)).

This implies that d(y2, γ (ε + δ)) = d(y2, a) + d(a, γ (ε + δ)) which means that
the triangular inequality holds with an equality and hence y2 belongs to the geodesic
γ . Therefore, either y1 = y2 or y2 = γ (2ε). Suppose that y2 = γ (2ε) and let
z = γ (ε + δ

2 ) be a point in C1 ∩· · ·∩Cn . Using the fact that d(y2, a) = d(y1, a) = ε,
we have d(y1, z) = ε + δ

2 and d(z, y2) = d(z, γ (2ε)) = ε − δ
2 , which implies that

δ = 0. This is a contradiction, and hence, we conclude that y1 = y2. In other words,
{xk} has a unique cluster point, so it converges.
(ii): For any j ∈ {1, 2, . . . , n} which appears infinitely in the alternating projection
method,we have a subsequence {xk} belonging toC j . Let us denote by limk→+∞ xk =
limk→+∞ Pjk ◦ · · · ◦ Pj1(x

0) = x∗. Since C j is closed, we have that x∗ ∈ C j , for
each j ∈ {1, 2, . . . , n} which is infinitely often, and hence x∗ ∈ ∩C j . ��
Remark 5.1 Actually, the above result remains valid for a countable collectionof closed
convex sets in a Hadamard manifold. The interplay between the Slater condition and
the concept of regularity was studied in the linear setting by Beck and Teboulle [10,
Lemma 3.1] for 2 sets and Bolte et al. [18, Proposition 11] for n sets. However, the
relation between these concepts in the Riemannian setting is not known.

In order to study the convergence of themethodwithout the Slater condition,wewill
consider other assumptions, such as cyclic projections or compactness. We mention
that Bačák [4, Theorems 3.4 and 3.7] proved the strong convergence of the proximal
point method for a function that is written as the sum of convex functions and is
Lipschitz continuous throughout the sequence generated by the method in CAT(0)
spaces. If this function is taken as the sum of the indicator functions of each Ci ,
i = 1, . . . , n, thenwe have strong convergence of the alternating projectionmethod for
solving convex feasibility problems. Next, we prove the weak and strong convergence
of the alternating projection method for solving convex feasibility problems. Recall
that for a given bounded sequence {xk} and a point x ∈ H , the asymptotic radius
of {xk} at x is given by r(xk, x) = lim supk→∞ d(xk, x) and the asymptotic radius
of {xk} as r(xk) = inf x∈H r(xk, x). Moreover, we say that a point x ∈ H is the
asymptotic center of {xk} if r(xk, x) = r(xk).

Theorem 5.3 Let X be a complete C AT (0) space and C1, . . . ,Cn ⊂ X closed convex
sets of X whose intersection is non-empty. Assume that the sequence { jk} is cyclic.
Then,

(i) The sequence {xk} weakly converges to a point in C1 ∩ · · · ∩ Cn;
(ii) Moreover, if there exists j ∈ {1, 2, . . . , n} such that C j is compact, then {xk}

strongly converges.
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Proof (i) Take a ∈ C1 ∩ · · · ∩ Cn . From [3, Theorem 2.1.12], one has

d2(xk+1, a) + d2(xk, xk+1) ≤ d2(xk, a), ∀k ∈ N.

In particular, for all k ∈ N, we have

d(xk+1, a) ≤ d(xk, a) and d2(xk, xk+1) ≤ d2(xk, a) − d2(xk+1, a) (21)

and hence, the sequence {xk} is Fejér convergent to the set C1 ∩ · · · ∩ Cn and

lim
k→+∞ d(xk, xk+1) = 0. (22)

Thus, from [3, Proposition 3.2.6], we have that {xk} is bounded, and hence, it has a
weak cluster point x∗; see [3, Proposition 3.1.2]. Now consider a subsequence {xkm }
such that xkm

w→ x∗ and without loss of generality we may assume that xkm ∈ C1 for
every m ∈ N, otherwise we can take another subsequence having in mind that { jk} is
cyclic. Thus, we obtain x∗ ∈ C1.

Let p be the period of the sequence { jk}. Given 1 < j ≤ n by definition of { jk},
for each m ∈ N, there exists rm ∈ N with 1 ≤ rm ≤ p such that xkm+rm ∈ C j . We

claim that xkm+rm w→ x∗ ∈ C j , for each 1 < j ≤ n. In fact, to simplify the notation,
consider ym = xkm and zm = xkm+rm for every m ∈ N. Given a subsequence {zms }
and x ∈ X , since rm ≤ p for every m ∈ N, we have

d(yms , x) −
kms+rms−1∑

j=kms

d(x j , x j+1)

≤ d(zms , x)

≤
kms+rms−1∑

j=kms

d(x j , x j+1) + d(yms , x).

From (22), we obtain r(zms , x) = lim supms→∞ d(zms , x) = lim sup
ms→∞

d(yms , x) =
r(yms , x). Therefore, r(zms ) = inf

x∈X r(z
ms , x) = inf

x∈X r(y
ms , x) = r(yms , z) =

r(zms , z). This proves that xkm+rm w→ x∗. Since xkm+rm ∈ C j for every m ∈ N

and C j is closed, it follows that x∗ ∈ C j . This means that x∗ ∈ C1 ∩ · · · ∩ Cn and

from [3, Proposition 3.2.6], we obtain that xk
w→ x∗. This proves the first assertion.

(ii) From item (i), we have that {xk} has a unique asymptotic center x∗ ∈ C1∩· · ·∩
Cn which is the weak limit of {xk}. From (21), we have that {d(xk, x∗)} converges.
Without loss of generality, we may assume that Cn is compact. Since { jk} is cyclic
with period p, take 1 ≤ rn ≤ p such that {xnk+rn } is a subsequence of {xk} which by
definition of the projection method belongs toCn . SinceCn is compact, then {xnk} has
a subsequence strongly converging to a point x̄ . By the uniqueness of the asymptotic
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center, we have that x̄ = x∗. Since {d(xk, x∗)} converges, we obtain that {xk} strongly
converges to x∗. ��
Remark 5.2 Note that item (i) of Theorem 5.3 is an extension from 2 to n closed and
convex sets of Bačák et al. [6, Theorem 4.1 (i)]. It follows from the definition that com-
pactness of one set implies boundedly regularity. Thus, we also can see Theorem 5.3
item (ii) as an extension from 2 to n closed and convex sets of [6, Theorem 4.1 (ii)].
On the other hand, compactness does not imply boundedly linearly regularity even
in the linear setting; see Bauschke and Borwein [9, Example 3.16]. The boundedly
linearly regularity was used in [6, Theorem 4.1 (iii) and (iv)] in order to obtain the
rate of convergence of the method.

In a finite-dimensional Hadamard manifold, the compactness hypothesis is unnec-
essary due to the equivalence between the concepts of weak and strong convergence
in this setting. Therefore, we have the following result.

Corollary 5.1 Let M be a Hadamard manifold. If the intersection C1 ∩ · · · ∩ Cn is
non-empty, then the sequence {xk} converges for any cyclic sequence { jk}.

6 Conclusion

In this paper, we have studied the relationship between Kurdyka–Łojasiewicz prop-
erty and the concept of error bounds on Hadamard manifolds. To this end, we have
extended to the Riemannian context some existence results and properties of the dif-
ferential inclusion problem. As an application, we have applied the gradient method
for solving convex feasibility problems on Hadamard manifolds using an approach
based on the square distance from a point to a set. We have shown that this function
satisfies the local error bound, which implies the Kurdyka–Łojasiewicz inequality to
obtain convergence rates of the gradient method under the boundedly linearly regular
assumptions of the sets. In the linear setting, the Slater condition is a sufficient condi-
tion to obtain linearly regularity. However, in the Riemannian setting, this relationship
is not known. Therefore, we have shown the convergence of the alternating projection
method for solving convex feasibility problems on Hadamard manifolds, and more
generally, CAT(0) spaces, under the Slate condition for finitely many sets with cyclic
and random order of projection. While the computational efficiency of the methods
and comparisons with other methods have not been discussed, this work provides a
solid theoretical foundation for further progress on this topic in the near future.
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