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Abstract

In this paper, we deal with exact semidefinite programming (SDP) reformulations
for a class of adjustable robust quadratic optimization problems with affine decision
rules. By virtue of a special semidefinite representation of the non-negativity of sep-
arable non-convex quadratic functions on box uncertain sets, we establish an exact
SDP reformulation for this adjustable robust quadratic optimization problem on spec-
trahedral uncertain sets. Note that the spectrahedral uncertain set contains commonly
used uncertain sets, such as ellipsoids, polytopes, and boxes. As special cases, we also
establish exact SDP reformulations for this adjustable robust quadratic optimization
problems when the uncertain sets are ellipsoids, polytopes, and boxes, respectively. As
applications, we establish the corresponding results for fractionally adjustable robust
quadratic optimization problems.
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1 Introduction

As a special class of nonlinear optimization problems, quadratic optimization has
received extensive attention by many researchers and used in a wide range of fields,
such as game theory, signal processing, and portfolio optimization. In recent years,
there have been various excellent works on the investigation of quadratic optimization
problems from different perspectives, see [1, 2, 15, 16,23, 33, 34, 36] and the references
therein.

Recently, quadratic optimization problems with uncertain data have attracted exten-
sive interest of many researchers due to their applications in different fields of
mathematics, engineering, and economics. Robust optimization approach [4, 6, 17] is
a powerful methodology for dealing with quadratic optimization problems with uncer-
tain data. For example, by using the robust optimization methodology, second-order
cone programming reformulation problems for convex quadratic optimization prob-
lems on different kinds of uncertain sets are obtained in [26]. Exact second-order cone
programming relaxations are established in [19] for non-convex minimax separable
quadratic optimization problems with multiple separable quadratic constraints. In [24],
exact copositive optimization reformulations are obtained for robust quadratic opti-
mization problems with uncertain parameters containing both continuous and integer
components. In [13], a deterministic approach is given to examine robust optimality
conditions and find robust efficient solutions of convex quadratic multiobjective opti-
mization problems with uncertain data. By virtue of a new robust type characteristic
cone constraint qualification, second-order conic programming dual of robust convex
quadratic optimization problems on polytopic and norm uncertain sets is considered
in [37].

Note that all of the above papers are concentrated on the investigation of static
(single-stage) robust optimization models, containing only “here and now” decisions
variables. This means that before obtaining complete information about uncertain
parameters, we must now determine their values [9, 10, 21,27-29, 31]. However, many
dynamic decision models contain not only “here-and-now” (first-stage) decision vari-
ables, but also “wait-and-see” (second-stage) decision variables which are assigned
numerical values after some of the uncertain parameters are known. Adjustable robust
optimization, introduced in [3], is an important deterministic methodology to deal with
optimization problems involving both “here-and-now” and “wait-and-see” decision
variables. Although there are few papers in the literature devoted to adjustable robust
quadratic optimization problems, see, for example, [7, 8, 11, 12, 32, 35], adjustable
robust quadratic optimization problems have received far less attention than others.
This is a main motivation for the investigation of adjustable robust quadratic opti-
mization problems in this paper.

Motivated by the works reported in [7, 12], this paper will establish exact SDP
reformulations for a class of adjustable robust quadratic optimization problems with
affine decision rules on spectrahedral uncertain sets [25, 30]. More precisely, by using
a special semidefinite representation of the non-negativity of separable non-convex
quadratic functions on box uncertain sets, we show that this adjustable robust quadratic
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optimization problem admits an exact SDP reformulation problem in the sense that
they share the same optimal values and their optimal solutions are one-to-one corre-
spondence. The result obtained provides us with a way to investigate adjustable robust
quadratic optimization problems by considering the corresponding SDP reformulation
problems. For ellipsoidal, polytopic, and box uncertain sets, we also establish exact
SDP reformulations for adjustable robust quadratic optimization problems. We show
that our results cover as special cases of some optimization problems considered in
the recent literature [12, 32]. Furthermore, as an application, the proposed approach
is applied to investigate exact SDP reformulations for fractionally adjustable robust
quadratic optimization problems on spectrahedral uncertain sets.

The rest of the paper is organized as follows. In Section 2, we recall some
basic notions and introduce an adjustable robust quadratic optimization problem. In
Section 3, we establish exact SDP reformulations for adjustable robust quadratic
optimization problems on spectrahedral uncertain sets. In Section 4, we consider
exact SDP reformulations for fractionally adjustable robust quadratic optimization
problems.

2 Preliminaries and Auxiliary Results

Unless otherwise specified, R" signifies the n-dimensional Euclidean space equipped
with the usual Euclidean norm || - ||. The inner product in R" is defined by (x, y) :=
x Ty, for all x, y € R". The zero vector of R" is denoted by 0,. The non-negative
orthant of R” is denoted by R := {(x{,...,x,) € R" |x; >0,i =1, ...,n}. The
space of all symmetric n x n matnces is denoted by S". M € S" is said to be a positive
semidefinite matrix, denoted by M > 0, iff x"Mx > 0,Vx € R". Moreover, M € "
is said to be a positive definite matrix, denoted by M > 0, iff x"Mx >0, Vx € R" \
{0,,}. The symbol I, stands for the n x n identity matrix, and the symbol O, », € R"*"
stands for the n x n matrix of all zeros. The matrix D := diag(ry, ..., r,) € R
stands for the diagonal matrix withr; e R, i =1, ..., n.

In what follows, let Qg € §", g9 € R", § € R, Q, = diag(al, ..., a}) € R,
qi = (ql,...,ql) e R”, qk = (qk ,...,q,’(") eR" & eRand g € R, k =
I,...,p,i =1,...,1 In this paper, we consider the following uncertain quadratic
optimization problem

(UP) xlfﬁ{n fo(x)
f,-(x,u ) SO, i = 1,...,1,

where fo(x) = x| Qox + q(;rx + & and fi(x,u') == x"Qix + ql.Tx + & +

Shoup (@D x+g). i = 1. Lu =@, ... ul) e RP, i = 1,...,1,
are uncertain parameters, belonging to the following spectrahedral uncertain sets [25,
30]
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14
U = {u" = (uf,....ul) € RP A"+Zu;;A;;:0,, i=1,....0, (1)

k=1

where A’ and A;;, i =1,...,1, are symmetric matrices. Note that the spectrahedral
uncertain sets in (1) are closed convex sets covering the most commonly used uncertain
sets often encountered in robust optimization problems, such as ellipsoids, polytopes,
and boxes [14, 29].

The problem (UP) with adjustable decision variables can be captured by

ot :R inf o)+ 800
st fite,u)+g(y@) <0, i=1,...,1,
where g;(y(2)) = (y(z)) Biy(z) + biTy(z) +t,i = 0,1,...,1, with B; =
diag(0},...,0}) € R™™ b; == (b!,...,b") € R™ and 1; € R. Here, x :=
(x1,...,x,) € R" is the first-stage (here-and-now) decision variable and y(-) € R"
is the second-stage (wait-and-see) decision variable, which is an adjustable decision
variable that depends on the uncertain parameter z := (z1, ..., Zn) € R™ in a box

uncertain set

m
Upox = H['Bj’yj]’ Withﬂj,)/j S Randﬂj <V j=1,....m
Jj=1

In what follows, we assume that y(-) is an affinely adjustable variable in the sense that
it satisfies the affine decision rule [5] given by

y(z) = p+ Wz, (2)

where p := (p1,..., om) € R™ and W := diag(wy, ..., w,) € R™™ are non-
adjustable variables.

For (UTP) with the affine decision rule (2), it is usually associated with the robust
(worst-case) counterpart given below:

fo(X) + max go(y(2))

xe]R" 2€Upox

RTP WGRW’” . ) )
( ) skt filx,u)+g(y@) <0, Vu'eld', i=1,...,1,

y(i) =p+ Wz, Yz € Upox.

To present the exact SDP reformulation of (RTP), we recall the following results,
which play a key role in the sequel.
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Lemma2.1 [12] Letox € R, v := (v, ..., vp) € R" and W = diag(wy, ..., on),
where wj € R, j =1, ..., m. Then, the following statements are equivalent:
(i) The following implication holds

m m m
=@z € [ [ vil = e+ ) vjzj+ Y w5 =0,

j=1 j=1 j=1

where Bj,y; e RwithB; <vy;, j=1,...,m.
(ii) There existaj € R, j = 1,..., m, such that Z?:laj < o and

ajh} +vihi +wih} € 23lz1 j=1,....m,

where Ef[z i1 denotes the set consisting of all the sum of squares polynomials with
variable z ; and degree at most 4, h}(zj) = (1 +Z§)2, h?(zj) =B+ yjzﬁ)(l +z?)
and h(z;) := (Bj + v;jz3)* for zj € R.
oyl vyl
) X1 Xqp X3
(iii) There exist aj € R and X/ := X{z Xéz X£3 >0,j=1,...,m, such
Joxyd oy
X13 X23 X33
that 3 71_ «j < o and

X{] =a;+v;B; +a)j/3j2~,
J J
X1, = X33 =0,
2X1{3 + X35 =20 +vj(Bj + vj) + 20,87,

X§3 =0oj+ vy +a)jyj2.

3 Exact SDP Reformulations for (RTP)

In this section, we establish an exact SDP reformulation for (RTP) in terms of a special
semidefinite representation of the non-negativity of separable non-convex quadratic
functions on box uncertain sets. For convenience, let u := (ul, ot ) € RP! with
ul = (uil,...,uf,,) e RP,§:= (81,...,8) € R™ with §; := (8},...,8") e R™,
0:=(01,...,0m) € R X := (XU, ... xtm . x1 . xIm) e R3>3M with
XieS vy =0, ., v eR¥Mwithy/ eS3,i=1,....,01,j=1,...,m.
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Now, we propose a SDP reformulation for the problem (RTP) as follows:

inf xTQ0x+q()Tx+$o+t
xeR" TeR,seR/M yeRP! peR™,
X€R3X3lm WeRMXM 5 cRM Y€R3X3m

n : n . n L P L P
PILEE OISR BN FHED BT B R B
j=1 s=1 s=1 k=1 k=1

m . m )
+Z€;p12-+2bijpj+ti vi=1,...,1,

j=1

j=1
P
A U Al =0 i =1,
k=1
ij i i
X = i}/li}/zi}? >0, i=1,...,0, j=1
= 12 23 =~ U, =1,...,0 J=1....,m,
xih X” e

XU :8.]—(2,0]9 ‘0 + b; wj)ﬂ —G’wj 2,

(SDP) ij
xi = x¥ o,
ij ij J i J
X 4 x =26 - (2pj9’.wj+b.wj)( vj) = 2608026y,

ij 2
X =5l - (2p]9]w] + b wj)y] —6loty?

ZJ,<'{7200 Zbopj 05

. Y11Y12 Yn

Y/ o= Y12Y22Y >0, j=1,...,m,
Y{; Y3, v33

Jo_ . ) 0,252

Yii=oj— (2/’19 wj +b0“’1)/31 —0jjbj

J _ vy _

Yi, =Y =0,

J J . .09, . J . . 0,28..
2¥j3 + ¥y =20; - (2/’/9ij Jrl’ow/) (Bj +vj) —20j0iBjv),

Y3]3 =o0j— (2,()/9 w;j +h0a) )y —90a) y]

The following theorem describes an exact SDP reformulation for (RTP) in the sense
that (RTP) and (SDP) share the same optimal values and their optimal solutions are
one-to-one correspondence.

Theorem 3.1 Consider the problem (RTP) with u,i=1,...,1, given by (1) and its
reformulation problem (SDP). Then,

inf (RTP) = inf (SDP).
Moreover, (x, p, W) is an optimal solution of the problem (RTP) if and only if there

exist 1 € R, 8 e R,y e RPL, X e R 6 e R™ and Y € R¥3™ such that
(x,p,W,t,6,u, X,0,Y) is an optimal solution of the problem (SDP).
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Proof Obviously, (RTP) is equivalent to

inf xTQ()x—i—qOTx—l-éo—f—r
xeR" reR,uck?,
PER™ W eRM>m

s.t. xTQl-x +ql-Tx + & + ZI[:=1 u;; <(qli)—|—x +%~]i) + (y(Z))TBiy(Z)
FbI @ 4+ <0, i=1,...,1,
Al +;,i’=1 ub Al zTo, i=1,....1,
(y(2)) ' Boy(z) + by y(z) + 10 < 7,
y(@) = p+ Wz, Yz € Uppy.

(RTP)

Note that 7 is an auxiliary variable and adding it does not cause the optimal value to
change. Therefore, it is sufficient to show that the feasible sets between (RTPp) and
(SDP) are equivalent.

Now, let (x, p, W, 7, u) be a feasible solution of (RTPy). This means that

P
xTQix g x+&+ Y ul ((ahTx+8)
k=1
+ (@) Biy@ + bl y@) +6 <0, i =1,....1, 3)
14
AT+ U AL =0 i =1, 1,
k=1
(v(2) " Boy(2) +bg y(2) +10 < 7, “)

and

y(z) = p+ Wz, Vz € Upoy. 5)

By (3) and (5), we obtain

n n P P m m
. (Za;m)z .S (qg ; Zu;q;s> PRI ST ST TR0 o Y z,-)
s=1 s=1 k=1 k=1 j=1 j=1

m m m
- (Zzpjej.w,— + Zb{w,-) 2= Y 0@} =0, Y2 €Uy i = 1,.... 1. (6)
j=1 Jj=1 Jj=1

X9 xt x
. ) TRSIRIE
From Lemma 2.1 and (6), there exist §/ € Rand X"/ := | X, X3, X5, | =0, i =
i il i
X3 X33 X33
1,...,1, j=1,...,m, such that
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m n n P
Y6l < - (Z alx)* + Y (qf +> m;g) X5 + &
j=1 s=1 s=1 k=1

P m m
SR SAVHEED YIRS O
k=1 j=1 j=1

and
X{ =3/ = (20,600; +b]w;) B; - 050,62,

ij _ yi _
X = X3 =0,

iy iy . , . . (3)
2X7Y5 + X5, =287 — (2pj9;.w,~ + b{w,-) (Bj +vi) — 205 (@))Bjv),
XY =] = (20,600 + bl ;) v; - 61y}
Moreover, (4) and (5) amount to
m m . m m .
T — ZG?(pj)z - Zb(])pj — 19— ZijQ?wj + Zb{)wj zZj
j=1 J=1 j=1 j=1
m
— > 0%@)*25 2 0, ¥z € Upox. ©)
j=1

vl vl vl
, i1 4iz Li3
Similarly, from Lemma 2.1 and (9), there existo; € Rand Y/ := Y]’2 Yzf2 Yzf3 >
Yy Y5y Y3
0, j=1,...,m, such that

m m m
Yoo =T=) 0%()* =) byp; — o, (10)
j=1 j=1 j=1

and
vl =0 = (20,600; + bjw;) B — 0082,
Y}, =Y =0

o . (11)
2l + Yy =205 = (20,600, + by ) (B + v3) = 269(@))* B,

Y3J3 =0;— (2,0]'9.?0)]' + béay) Vi — 0?((0]-)2)/]-2.

Together with (7), (8), (10) and (11), it follows that the problems (RTP) and (SDP)
are equivalent in the sense that

inf (RTP) = inf(SDP).
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Moreover, (x, p, W) is a feasible solution of the problem (RTP) if and only if there
existt € R, 8 e R, u e R, X e R o € R" and Y € R¥3™ such that
(x,p,W,1,6,u, X,0,Y) is an optimal solution of the problem (SDP). The proof is
complete.

Remark 3.1 Note that similar results for exact SDP reformulations of adjustable robust
linear optimization problems have been investigated in [12, Theorem 3.1]. However,
Theorem 3.1 extends these results from linear optimization models to quadratic opti-
mization models.

The following example illustrates how to obtain robust optimal solutions and the
corresponding optimal value of (RTP) on spectrahedral uncertain sets by Theorem 3.1.

Exqmple 3.1 For problem (UTP). Letn = p = m := 2 and [ := 4. The uncertain sets
U,i=1,...,4,are defined by

i\2 iN2
u";::u":(u’;,ug)eRﬂ(“%Jr%gl i=1,...,4.
Obviously, by (1), we have
‘ 200 _ 001 _ 000
A'=1030],A7=1000]andA,=(001},i=1,...,4
001 100 010

Let fo(x) :=x1 +x2, 80(y(2)) := 0, fi(x,u') :=x7 = 3x1 —x2 +u}, g1(V(2)) :=
0.-D"y@) =3, falx.u?) = —2x3, ©(YR) = 2. falx.ud) = —3x,
g3(y() = 3, fa(x,u*) = x3 —x; — u3, and g4(y(2)) = (1,0)" y(2). Let the
affine decision rule y(-) be given by y(z) := p + Wz, where p := (p1, p2) € R2,
W = diag(w;, @) € R¥? and z := (z1,22) € Upox = [—1, 1] x [0, 2]. In this
setting, (RTP) becomes

inf X1 +x2
xeRz,peRz,
WeR2x2
s.t. x12—3x1 —x2+u{ —py —wrzp —3 <0,
—2x+2<0,
—3x1+3<0,
x%—xl —u%-ﬁ-m + o121 SO,'
Y(z1,22) € L{h,,x,V(ull,u’Z) ceU,i=1,...,4.

It is easy to show that the problem (RTP) admits an optimal solution (x, p, W) with
x=(1,1), p=(—151,151) and W = Oy >. Moreover, min (RTP) = 2.
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Now, we apply Theorem 3.1 to show that (x, p, W) is an optimal solution of (RTP).
Clearly, the SDP reformulation of (RTP) becomes

inf X1+ x2
x€RZ,5¢RS, uck8,
pER2, X R3X24 1y cR2X2

: 2 . 2 2 . . 2 . .
s.t. Z /< (Z aéxs2 + Z (qf + Z u;cq;cs) xs +& + Z ug kg
j s=1 k=1

J s=1 k=1

2
J
81
=1
2 2
+Y 0T+ Y o | i=1,4,
j=1 j=1
. 2 . .
AT+ Y U A =0, i=1,....4,
=1
ij ij ij
b [ o .
XV = X}JZX?,ZX‘?,?’ >0,i=1,...,4, j=1,2,
X3 X33 X33

ij _ < ol J. o \a. i 2,2
xi =gl - (2p.,9.’jw., +b) wj)ﬂ./ —6i02p2,

ij _ oyl _
Xy =X33=0,

ij ij J i J i 2
2X 3+ Xy =287 — (2/’1“9}‘“1‘ +b; ‘“j) (Bj +vj) — 2007587,

ij o _ o i Joo\.,. i 2.2
X33 =46; — (ijejwj +b; wj>yj —ijjyj.

Using the Matlab toolbox CVX [18], we solve (SDP). The solver returns min (RTP) =
2 and an optimal solution of (SDP) as (x, p, W, §, u, X), where x = (1.0000, 1.0000),
p = (—151.0951, 151.4487), W = (8(1)(1)33 i)oo?(l)gg)’ § = (50.1210, 50.0255,
4.9909 x 10719, 1.4983 x 1072, 2.2255 x 1079, 2.2255 x 107, 49.9106, 50.1210),
u= (', u? ud, u*) withu' = (-=1.9376 x 10720, —2.7868 x 10720),i =1, ..., 4,
and X = (}(117 X12’ X21, X22, X3l, X32, X41, X42) with Xll

50.1210 0.000  10.0608 50.0255 0.000  9.9271
= | 0.0000 80.1204 0.0000 |, X'2 = | 0.0000 79.9670 0.0000 |,
10.0608 0.0000 50.1210 9.9271 0.0000 49.7958

0.4991  0.000 — 0.4993
X2 = | 0.0000 0.0004 0.0000 x 1079,
—0.4993 0.0000 0.4991
0.1498  0.000 — 0.0500
X22 = 0.0000 0.3997 0.0000 x 1078,
—0.0500 0.0000 0.1498
0.2225 0.000 — 0.0757
x31 = | 0.0000 0.5965 0.0000 x 1078,
—0.0757 0.0000 0.2225
0.2225 0.000 —0.0757
X32 =1 0.0000 0.5965 0.0000 x 1078,
—0.0757 0.0000 0.2225
50.0255 0.000  9.9271 50.1210 0.000  10.0608
X4 = 0.0000 79.9670 0.0000 |, Xx*? = 0.0000 80.1204 0.0000 |.
9.9271 0.0000 49.7958 10.0608 0.0000 50.1210
Thus, by Theorem 3.1, (x, p, W) is an optimal solution of (RTP).
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Now, let us consider special cases of (RTP). In the special case when By = Oy, 5,
bo = 0y, and 7o = 0, (RTP) collapses to
inf xT Qox + qu + &

xeR", peR™,
WERme
(RTP}) st xTQix+qlx+ &+ Y0 ul ((q,g)Tx + s,@) + @) " Biy()
+b[y@+1 <0, Y, ubyeU i=1,...1,

(@) =p+ Wz, Yz € Upoy,

and its SDP reformulation becomes

inf Xl Qox + qOTx +&o
x€R" SR yeRP! peR™,
X€R3x3lm WeRMm>xm

m . n . n r . . P P
se. Y 8 <— (Z ajxg + ) (qg +y u;q,gx) Xs+E+ Y U
j=1 s=1 s=1 k=1 k=1

3

m
+29}";2‘+Zb;’pj+n), i=1,...1,
izl

J=1

P
AT+ Y up A =0, i =1,
k=1
TRy
N Xy X X3
ij . 1 i viJ
X4 X}}X?}X?f >
X3 X33 X33

ij _ g/ D blw:) B — 0lw2B2
X{ =] = (20650, +b]w;) B; — iw2p2,

(SDPy)

ij _ oyl _
X =X53=0,

ij ij _ Asl 0l Joo. . . P
2X13+ X5 =28 - (2919}‘0/ +b; w./) (Bj +vj) — 205085

ij _ J ol . J . . i 0212
X33 =36 — (2/’1‘9}“’1 +b; ‘”J) Vi =057

By virtue of Theorem 3.1, we can easily obtain the following result.

Corollary 3.1 Consider the problem (RTPy) with u,i=1,...,1, given by (1) and
its reformulation problem (SDPy). Then,

inf (RTP;) = inf(SDP).

Moreover, (x, p, W) is an optimal solution of (RTPy) if and only if there exist § € RI™
u € RP and X € R33™ sych that (x, p, W, 8, u, X) is an optimal solution of the
problem (SDPy).
In the special case when (RTP) with#g = Oand Q; = B; = Oy, i =0,1,...,1,
(RTP) collapses to the following adjustable robust linear optimization
e, 0%+ 0 max by (D)
W eR™ < o .
(RTP,) st gl x+ &5+ 20w (@) Tx + &)+ b y@)
+14 <0, V(u’l,...,u’p) eU,i=1,...,1,
y(@) = p+ Wz, Yz € Upox,
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and its SDP reformulation becomes

inf qux +é+7
xeR" TR, s€R/M yeRP! peR™,
XeRIX3m W eRMXM o eRM y R3X3m

n

st Yosl<— (20 q§+2u;<q,?)x.s+si+2uzs;i
j=1 k=1

s=1 k=1

m
+Y blpj+t | =11
j=1

P
AT+ Y up A =0, i =1,
k=1

i ij wij
v o .
XV = X}jZX,Z/ZX,Zf >0, i=1,...,1, j=1,...,m,
Xp3 X33 X33

ijo_ o J o a.
(SDP3) Xn= ai,._bi @i
1y _ vyl _
X =X33=0,

ij ij _ ngld J o (n. .
2X 5+ X3, =28 —blwj (B +v)).

ijo_ o Joo.
X33 =38 —bjwjy).

m m )
S0 < o= S
=l =
J vl v
, Y1j1 Yljz Yljs
J — J L
Y= vy vl | =0 j=1...m
J J J
Yi3 Yy Y33
Jo_ . J. g,
Yy =o0j —byo;Bj.

Jo_yi _
Yi, = Y33 =0,

j J _ J
2Yi3 + Yy, = 20; — byo; (Bj +v;).

Jo_ i,
Y33 =0; —byojy;.

Corollary 3.2 Consider the problem (RTP,) with u,i=1,...,1, given by (1) and
its reformulation problem (SDP3). Then,

inf (RTP,) = inf (SDP5).

Moreover, (x, p, W) is an optimal solution of the problem (RTP;) if and only if there
existt e R, § e RIM yu e R, X e R3>3m 5 ¢ R" and Y € R33™ such that
(x,p,W,1,6,u, X,0,Y) is an optimal solution of the problem (SDP,).

Remark 3.2 Corollary 3.2 improves upon the results obtained in [32, Theorem 2.3],
where no adjustable variables are involved in the objective function of the adjustable

robust linear optimization problem.

At the end of this section, we examine the category of uncertain sets such that (RTP)
enjoys the SDP reformulation. We first consider the case when U*,i =1, ...,[, are
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ellipsoidal uncertain sets, that is, U’ is given by

U = {ui = (uil,...,ui,) e R?P

W) E' < 1}, i=1,....1. (12

Here, E' e SPand E! = 0,i =1,...,1.
In this case, its SDP reformulation becomes

inf xTQox-i-qu—i-So—i-r
x€R", reR,8€R™ yeRPL peR™,
X€R3><3lm WeRMXM 5 cRM yeR3><3m

m n n 14 P

. i 5 o o

s.t. g 51.1 < - g aix; + g q) + g upq | xs +& + g uy €
s=1 s=1 k=1 k=1

j=1

m m
+Y O+ blpj+n ] i=1 0

j=1 j=1
(EH=1 4 .
((ui)T L) zoi=1
ij ij ij
- Xjy X5 X73
X .= Xlljz )(’2J2 )(’2J3 >0,i=1,....0, j=1,...,m,

X{s X3y X3y
Xt =] = (20680 +b]w;) p; - 0l
K=l =o
2xP + X5 = 28] — (20600; + bl ) (8) + 7)) — 260281,
ng3 = zSi.j — (2,0,-9;@,- +bifwj> Vi — G;-a)?yjz,

m

m m
. 0,2 J .
oS- Srins o
j=1 j=1 j=1
Jovi vyi
, Y Yin Yis
FR I Sy
v/ = ylj2 Yzj2 Yzf’ >
Yi3 Yy3 Y33
Jo_ . 90 J \g. 0,252
Yj=o0j— (2/’./9j“)/ +b0”’./)ﬁ/ =007,
J _ vyl _
Yi, =Y =0,

J J . a0 Jo . . . 0 25,
2Yj3 + Y5, =20; - (2/’.19j“’./ +bow./) (Bj +vj) —26jwB,v;.

Jo_ . .00 Jo. X 0 2.2
Y33_aj—(2pj9jwj+b0wj)yj—G_iwjyj.

Corollary 3.3 Consider the problem (RTP) with ', i = 1,...,1, given by (12) and
its reformulation problem (SDP). Then,

inf (RTP) = inf(SDP).
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Moreover, (x, p, W) is an optimal solution of the problem (RTP) if and only if there
existt €eR, § e R™ y e RPL, X e R¥IM 5 ¢ R gqnd Y € R33™ such that
(x,p,W,t,6,u, X,0,Y) is an optimal solution of the problem (SDP).

Proof Following similar arguments to those used in [14, Corollary 2.1], we can show
that

LA iy=1 i ‘ o
AI+ZM;(A§CEO(:)(EMEi))T If)30<=>1—(u')TE’u’ZO,i=1,...,l.
k=1
(13)

Then, the desired result is obtained.

Remark 3.3 Note that related results for SDP reformulations of static robust quadratic
optimization problems on ellipsoidal uncertain sets have been investigated in [26,
Lemma 2]. However, Corollary 3.3 extends these results from static to the adjustable
setting.

We now consider the case where ', i =1, ..., 1, are cross-polytopes defined by
U = :u =l uh) €RP DY up gx,-}, i=1,...,1, (14)
k=1

where A; >0,i=1,...,1[.
In this case, the SDP reformulation of (RTP) becomes
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xeR" TR, 6eR/M yeRP! peR™,
X eR3x3Im WeRM*M 5ecRM Y cR3%3m

s=1

i sz

O

x’f x’f x’f

ij . z] z]

X=X X5, X5,

X’f X” X”
- (2/0]9’60]—0—17 ;]

i _ vl _
X12_X23_0

Joyi oy

, Y11Y12Y13

Joe | v

Y/ = Y2Y2 3 =
Y Yy vy

J _ vyl _
Yi, =Y =0,

Y

Corollary 3.4 Consider the problem (RTP) with U, i =

its reformulation problem (SDP). Then,

inf(RTP) = inf (SDP).

inf xTQox-i-q(;rx-i-So-i-r

m m
i 2 J ;
+29}pj+zbipj+ti , 1

Xl313 = Bj (ije’:wj +b4a)j) V) —O}a)?yjz,

ZJJ<T_ZQO Zbopj

viy =aj = (20;600) + 6w, ) B; — 690262,

313 =o0j— (2/)]9 w;j +b0wj>

m .
>osl<— Za’x2+2 q,+2uqu xﬁ&*Z“ﬁk
j=1

ij J i J L2
2XP 4+ X5 = 28] — (20,600 +b]w)) (8) + 7)) - 200028,7,.

J J_ 9., 00 Joo. ) . 0,.25..,.
i3+ Yy =20 — (2/’1‘9]'“’/ +bo‘”/) (/3/ +V/) —20;03Bjvj

, 1, given by (14) and

Moreover, (x, p, W) is an optimal solution of the problem (RTP) if and only if there
existt e R, § e RIM, y e RV, X e R3>3m 5 ¢ R" and Y € R33™ such that
(x,p,W,t,6,u, X,0,Y) is an optimal solution of the problem (SDP).

Proof Following similar arguments to those used in [14, Corollary 2.2], we can show

that

P p p
A+ U A = 0= 1+ Y uf = 0andi; — Y ul >0

k=1 k=1

P
=Y upl < hi=1...

k=1

k=1 (15)

, 1.
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Then, the desired result is obtained.

Remark 3.4 Note that related results for SDP reformulations of robust optimization
problems on polytopic uncertain sets have been investigated in [26, Lemma 1] and [7,
Theorem 1]. However, Corollary 3.4 extends the results obtained in [26, Lemma 1]
from static to the adjustable setting. Furthermore, Corollary 3.4 also extends the results
obtained in [7, Theorem 1] from linear optimization models to quadratic optimization
models.

Let us now consider the case when U?, i = 1, ..., 1, are boxes defined by
U = {ui =y uh) €RP | up] < 4, k= 1,...,p}, i=1,...,1,(16)

where A; >0,i=1,...,[.
In this setting, the SDP reformulation of (RTP) becomes

inf xTQ0x+q0Tx+So+r
xeR" TR, seR/M yeRP! peR™,
X€R3x3lm WeRmXxm UG]R'".YER3X3’"

m ) n . n p . . p . .
s.t. Z 6;.’ < - Zaéxsz + Z q; + Z upqy’ | xs +& + Z up kg
=1 s=1 s=1 k=1 k=1

m m
+Y o+ Y blpj | i=1
j=1 j=1
)\i+u220, )\i—u};ZO, k=1,....,p,i=1,...,1,
ij yij il
e Xlljl Xlljz Xllj3
J = le,z Xlzl2 )(12,3 >
Xi3 X33 X33
b= i b Y8 — 0ln2a2
X = 8] = (20100, +b]o;) j ~ Oji].
ij _ yij
Xip =X53=0,
i ) J i J i 2
227 + X5 = 2] = (20,60, +b]w; ) (8] + v;) 26538,

ij _ sj i bl Y. gin2,2
Xj3=8 - (2/’./9/“”./ +b; ‘”J) vj = 055y

m m m X
0 2 J
Do ST =) 007 =) bgpj—1o.
=1 j=1 j=1
Joyi oy
, Yljl Ylj2 Ylj3
J = P—
Y/ = Y1'2Y242Y23 >0, j=1,...,m,

EREERER
Ylj1 =o0j — <2pj9;)wj +béwj) Bj — 9_;)w?ﬂ2»,
Yljz = Y2j3 =0,
2vly 4+ ¥dy =205 — (20,6%; + B, ) (B + v)) — 260026,

Jo_ . 00 Jo o\, _p0 2 2
Y33—0]—(2pJ0jw]+b0wj)y] ijjyj.
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Corollary 3.5 Consider the problem (RTP) with u,i=1,...,1, given by (16) and
its reformulation problem (SDP). Then,

inf (RTP) = inf(SDP).

Moreover, (x, p, W) is an optimal solution of the problem (RTP) if and only if there
existt €eR, § e R™ y e RPL, X e R3FUM 5 ¢ R gqnd Y € R33™ such that
(x,p,W,t,6,u, X,0,Y) is an optimal solution of the problem (SDP).

Proof Using similar arguments to those used in [14, Corollary 2.2], we can show that

14
T U AL = 0= hiFul = 0and A —uf > 0= fu| <A i=1.. L
k=1
a7

Then, we obtain the desired result.

4 Applications

In this section, we apply the results obtained in the previous sections to fractionally
adjustable robust optimization problems.

In What follows, suppose that go, fi,  8i» y(), U' and Uy, are considered as before.
Let Qo, Qo e S", qo0,q0 € R", and &, 50 € R. We consider the following fractionally
adjustable robust quadratic optimization

max 80(y(z))

ll’lf xT Q0x+4(;rx+50 Upox
xeR?, peR™, xTQoer%TerEo _g/l{ln 200(@)
(FTP) W eRmxm Hbox

st file,uh) +gi(y(2) <0, Vul eUd!, i=1,...,1,
y(@) = p+ Wz, Yz € Upox,

where go(y(2)) := (y(z))TBoy(z) + bo y(z) + fo with By := diag(®?, . .. ,Jl) €
R’"X’” bo (bo, .. b’”) € R™ and 7y € R. Moreover, we assume that x " Qox +
‘10 x4+ éo > (0 and go(y(z)) > (0 are in the feasible set of (FTP).
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The SDP reformulation of (FTP) is given as follows:

. x T Qox +qq x + &
inf

xR 1R SR ueRP! peR™,  x1 Qox + g x + &
XER3X31'" WeRMXM 5 cRM Y€R3x3m

m . n n p p
VR SN D3l ES I RS Tt RTESD L
j=1 s=1 s=1 k=1 k=1

m

m
+Y 00Ty o | i=10
j=1 j=1

p
AT U AL =0, i =1,
k=1

i il i

PO s e
X=X X5 X
oyt ytJ
Xl3 X23 X33

i _ s Y R R e
Xt =48] = (20j6%0) +blw;) B; - 05028,

=0, i=1,....1j=1..m,

ij ij
(FSDP) X12 = X23 = 0,
ij ij _nel I . . L2 By
2XY 4+ XY, =287 - (2p,9;w, + b wj)(ﬁ, +y5) — 205028,y
i _ gl Bl bl )y i 2.2
Xiy =8 — (2p19.liw1 +b; a)‘/>yj 76}0)]-)/]-,
m

m mn . o -
Doy = e =3 (0 =) = 30 () <B6) o~ (0= <),
j=1 /

ioyi yi
P
Y/ = yijz Y%Zyzjs >

Vi3 Y33 Y33
Jo_ . 0_ .30\ .. o (n 5N Na. _ (g0 _ -50), 2452
1y =0y = (200 = 289) ojooj + (b — 7)) ;) ) — (6 — 287) w367,
Jo_ i _
Yj, =Y =0,
iy 0 50 i
2vfy+v)y =205 — (2(69 = 280 pjoo; + (b — 2B ;) (B, + v))

0 270 2
—z(ej —zej)wj/sjyj,

Yég =0 — (2 (65) — 1’5})) pjwj+ (bé — tl?é) wj) Vi — (05) — ‘L'é?) w?yjz.

Now, we give the following theorem which describes an exact SDP reformulation
for (FTP).

Theorem 4.1 Consider the problem (FTP) with u,i=1,...,1, given by (1) and its
reformulation problem (FSDP). Then,

inf (FTP) = inf (FSDP).
Moreover, (x, p, W) is an optimal solution of the problem (FTP) if and only if there

exist 1 € R, 8 e R, y e RPL, X e R 6 e R™ and Y € R¥3™ such that
(x,p,W,t,6,u, X,0,Y) is an optimal solution of the problem (FSDP).
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Proof Obviously, (FTP) is equivalent to

inf xTQ0x+q(-,rx+So
xeR", 7R, XTQO’H‘%TX"'SO
pER™ W eRM>M
skt fite,u)+gi(v@) <0, VUl el i=1,...,1, (18)

max go(y(z))
2&€Uppx

——— =<
min go(y(z)) —
2€Uppx

¥(2) = p+ Wz, Yz € Uppy.

r’

The problem (18) is equivalent to

inf XTQ0x+q(;rx+§:0
xeR" reR, X' Qox+qy x+&
pER™ WeR™>M ) . .
sk, filx,u')+gi(y(@) <0, Vu' e, i=1,...,1,
20(y(2)) — t80(y(2)) <0,
y(@) = p+ Wz, Vz € Upox,

+ 7

which can be written as:

inf xT Qox+qd x+&
TR reR.ucRP!, ¥ Qox+dq x-+o
peRM W eRM>m o |
st ox ! Oix + ql.Tx + & + ZII::I u;{ ((q,’{)Tx + Elﬁ) + ()’(Z))TBiy(Z)
+b y@) 46 <0, i=1,...,1,
Ai+;,f:1u;AziTo,i=1,...,z, - _ .
(y(2)) "Boy(z) + by y(2) + 10 — T ((y(2)) T Boy(z) + by y(2) + 1) <0,
y(z) = p + Wz, Yz € Upox.

Now, using similar arguments as in the proof of Theorem 3.1, it is easy to show that
Theorem 4.1 holds.

Remark 4.1 Note that related results for SDP reformulations of fractional optimization
problems have been investigated in [22, Theorem 3.2] and [20, Theorem 3.5]. However,
Theorem 4.1 extends [22, Theorem 3.2] from deterministic models to the uncertain
setting. Theorem 4.1 also extends the results obtained in [20, Theorem 3.5] from static
to the adjustable setting.

In the special case that By = Oy, 5, bo = 0y, and 19 = 0, (FTP) collapses to

inf £ Qox+ag x+Eo
xeR", peR™, XTQOX+5()TX+50
WERINXIN
(FTPo) st xTQix+q x+&+Y0_ ub ((q,’{)Tx + fi) + (@) " Biy(2)
+b y@) +14 <0, Y. . ub) eU =1, 1,
y(@) =p+ Wz, Vz € Uppy,
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and (FSDP) becomes

. xTQ0x+q()Tx+€0
inf

xeR" SeR™ yeRP,  xT Qox + 670Tx +&
pERm,X€R3X31m,W€Rmxm

m n n V4 P

. - . .

s.t. Z (Sl.J < — Za"vxs + Z q; + Z upqy’ | xs + & + Zu}(é}c
=1 s=1 s=1 k=1 k=1

m m
+Y 0+ blpjtn| =1,
= Z

p
i i o
(FSDPy) AT S U AL =0, i =1,
k=1
ij ij ij
y X1 X1 X3
XTo=| x4 x4 x4 | =0, i=1,....1, j=1,....m,

By
Xi3 X33 X33

ij _ oJ L i \g. i 202

X{h =6! - (20,610 +blw;) ;- 61?2,

ij _ yij _

X =X53=0,

ij ij _ ns) PRI B ) ) i (2B
2X7 + x5 =28 — (20600 +b]w; ) (B +v)) — 265028;v;,

ij _ o i J.oN\.,. i 2.2
X33 =38/ — (2,0/93-0)] + b; a)/) Yj —Q}a)jyj.

By virtue of Theorem 4.1, we can easily obtain the following result.

Corollary 4.1 Consider the problem (FTPy) withUd', i = 1,...,1, given by (1) and
its reformulation problem (FSDPy). Then,

inf (FTPy) = inf (FSDPy).

Moreover, (x, p, W) is an optimal solution of the problem (FTPy) if and only if there
exist § € R™ y € RP! and X € R33™ sych that (x, p, W, 8, u, X) is an optimal
solution of the problem (FSDPy).

In the special case when (FTP) with 7y = 7o = 0and Q; = éo = B; = Eo =
Omxm,i =0,1,...,1, (FTP) collapses to the following fractionally adjustable robust

linear optimization

max bJ y()

Q(;rx+$0 2€Upox
n m Gl x+& min b} y(z)
xeR" peR™, 9o 0 el o Yz
W eRm*m “Hhox

FTP i i i
FIPD N b g+ &+ 20 ul () Tx +&) + 573

+4 <0, Vi, ... u)y el i=1,...,1,
y(@) =p+ Wz, ¥z € Upox,
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and (FSDP) becomes

X+
inf —qo 50

x€R" 7eR 3R ueR? peR™,  §g X + &
XERSXSlm WeR™XM & cRM YeRSXSm

mo n P P
Z&J <- <Z (qf + Zuiq,’f) xs+ &+ Zufﬁ;ﬁ
=1

s=1 k=1 k=1

+

m
+Y blpj+u ) i=1...1

p
AT U A =0, i =1,

k=1
ij ij
- XnX Xl%
XY = X’lfzx Xlzg >0,i=1,...,1, j=1,...,m,

ij ij
XY X3, X3
ij J j
Xy =8 —bjwjpj,
ij ij
X1 =X533=0,
ij ij J J
2X 15 + X5y = 28] —blw; (Bj +v)),
33—5] b!wﬂ’ja
Za,ft—Z(bé—rEé)pj,
j=1
J vl vi
, ETRETREF
Jo_ J vl v C_
vi=|vLhvh v, | =0, j=1...m
J v vl
Yi3 Yy3 Y35
vh =0 — (b = 7B ) @8,
J J
Y12=Y23=0,
2¥{y + ¥}y =205 = (b — <bg ) w; (8 + )

Y=o - (bé - T%) ;Y-

(FSDP))

Corollary 4.2 Consider the problem (FTPy) with u,i=1,...,1, given by (1) and
its reformulation problem (FSDPy). Then,

inf (FTP;) = inf (FSDPy).
Moreover, (x, p, W) is an optimal solution of the problem (FTP}) if and only if there
existt €eR, § e R™ y e R, X e R3¥FUM 5 ¢ R gqnd Y € R33™ such that

(x,p,W,t,6,u, X,0,Y) is an optimal solution of the problem (FSDPy).
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At the end of this section, we examine the category of uncertain sets such that (FTP)
has the exact SDP reformulation. We first consider the case when /', i = 1,...,1,
are ellipsoids in (12). In this case, its SDP reformulation becomes

. x T Qox + g4 x + &
inf

x€R”, 7R SR ueRM peR™,  x T Qox + Gy x + &
X€R3x3lm WeRM*Mm 5 cRM Y€R3X3m

m n n 14 P
J i 2 s i i i g0
s.t. E & <— E alxi + E q; + E upqy’ | xs +& + E ug €
i=1 s=1 k=1

s=1 =1
m . m )
+Y 0T+ Y blpj+ti ]| i=1,0
— L

in—1 i
((E) “ )zo, i=1,....1,

@H’ 1
ij ij ij
N X1 X2 X713
XY = x’lfzx’zflezf3 >0,i=1,....0, j=1,...,m,

1] Ly 1]
X3 X553 X33

ij _ o i IR, i,2g2
Xy =94 —<2p]9jw] —I—biw])ﬂ] —Hja)~ I
ij _ ylj _
X12_X23_0’

ij ij _ sl i Jo. . . i 20,
2X |3+ X5, = 28; — (2/)./9;"‘)/ +b; “)./) (Bj +vj) —20507Bjv;.

ij _sJ i bl Yy — 022
X33 =38/ — <2pj9;a)] + b; a)j)y] —G}a)jyj,

m m m . o
Yoy <=2 (60— 18)) pj = 3 (66— Bp) pj — (10~ 770).

j=1 Jj=1 j=1
oyl oy
, LTREPRST
Y‘]:: Y] Y] YJ >0,j:1,..-,m,

12 722 723 | —
Y3 Y3y Yy
Yljl=(7j—(2(9?—T§?)pja)j+<bé—Tgé)wj)ﬁj—(9?—1‘5?)(0?/32,
viy =v§ =0,
2Y1j3 + Y2j2 =20 — (2 9? - rgy) pjwj+ (b(J) - rz(])) a)j) (ﬁj + J/j)
_2(9.?_759)w3ﬁj7/j’

Jo_ . 0 70 . J =i . . 0 70\ 2.2
Y33_0]—<2(9j —7:9j pja)]—}—(bo—rbo)w])y]—(@j —10j>a)jyj.

Corollary 4.3 Consider the problem (FTP) withU', i = 1,...,1, given by (12) and
its reformulation problem (FSDP). Then,

inf(FTP) = inf (FSDP).
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Moreover, (x, p, W) is an optimal solution of the problem (FTP) if and only if there
existt €eR, 8§ e R™ y e RPL, X ¢ R3IM 5 ¢ R and Y € R33™ such that
(x,p,W,t,6,u, X,0,Y) is an optimal solution of the problem (FSDP).

Proof Together with (13) and Theorem 4.1, we can easily get the desired result.

We now consider the case where U, i = 1, ..., 1, are cross-polytopes in (14). In
this case, the SDP reformulation of (FTP) becomes

. xTQox-i—quvaEo
inf

xeR", teR,8€R™ ueRP peR”, x| Qox + ZjOTx + &
XeR3x3lm WeRMXM & cRM y€R3><3m

D SUIEE § S T=ES 3] VIS P 0) PR PP
j=1 s=1 k=1

s=1 k=1

1

ij . 1yl yll - P
XV = X12X22X23 =0,i=1,...,1, j=1,...,m,

1yl yl]
Xl3 X23 X33

ij _ sl Vo +blw) g — 002
X{h =6! = (20,610 +blw;) j - 61?2,

k=
ij ij ij
Xi1 X2 X13)

ij _ xi _
Xy = X33 =0,

2Xh + X5 =25 — (20600) +bw; ) (B; + 7)) = 265028,

ij _ oJ i J o \.,. i 2.2
X33 =9; —<2p10ja)j —l—bia)j)yj —Gja)jyj,

m m m . o -
> 5f—Z(Q?—T@)Pf—Z(%—W@W — (1o — 7o),
j=1 j=1

J oyl yi
T B
Vos | Y Yy Yo [ 207 =1....m,

Yiy Y3y Y3
Jo_ . 0_ 30\, . o (1) — 57N, Na. _ (p0 _ 50\, 252
Y{,=o0; - <2 (Gj —rGj)pjw] + (bo —rbo) a)])ﬂj - (9.,' —rej)wjﬁj,
J _ vl _
Yi, =Y53=0,
J J _ 0 30 J =
2Y{3 + Y5, =20; —(2 '9j —‘[Gj)pja)j—f—(bo —rbo)wj) (ﬁj-i-yj)

0_ _30) 2
—2(9j—r9j)a)jﬁjyj,

Jo_ . 0 30\ ... (1) _ 5N N (00 _30), 2. 2
vy =0j = (2(6 = B) pje + (8§ ~ 7)) v = (¢ = #0)) i}
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Corollary 4.4 Consider the problem (FTP) with u,i=1,...,1, given by (14) and
its reformulation problem (FSDP). Then,

inf (FTP) = inf (ESDP).

Moreover, (x, p, W) is an optimal solution of the problem (FTP) if and only if there
existt eR, § e R™ y e RPL, X e R 5 ¢ R" gand Y € R33™ such that
(x,p,W,t,6,u, X,0,Y) is an optimal solution of the problem (FSDP).

Proof From (15) and Theorem 4.1, it is easy to show the validity of the corollary.

Let us now consider the case when U?, i = 1,...,[, are boxes in (16). In this
setting, the SDP reformulation of (FSDP) becomes

. TQO)C +40x+$0
inf

XeR" TR SR ueR? peR™, X Qox + qo X+ 50
X€R3X3lm WeRmxm GGRI”AYEIR}X:;”’
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Jj=1 s=1 s=1 k=1 =

m m .
+Y i+ blpjtu ], i=1,.1

j=1

j=1
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ij ij
- X11X X13
XYV = x” X” X” >0, i=1,....,1, j=1,....,m,
lj lj
X13X X33
Xlljl :8,] — <2p]91a)j —‘,—bl{a)j) ﬂj —9;(1)3/3]2,
ij
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METREVRET
Jo— i v _
Y= v, v s [ =0, j=1....m,

Ylj1 =0 — (2 (65’ — rgy) pjwj + (bé — ‘L’Eé) a)j) Bj — (9;) — t@?) a)?,BJzu
Yi/z = Yz/% =0,
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Corollary 4.5 Consider the problem (FTP) with u,i=1,...,1, given by (16) and
its reformulation problem (FSDP). Then,

inf (FTP) = inf (FSDP).

Moreover, (x, p, W) is an optimal solution of the problem (FTP) if and only if there
existt € R, 8§ e R™ y e RPL, X e R3>3IM 6 ¢ R" gqnd Y € R¥3™ such that
(x,p,W,1,6,u, X,0,Y) is an optimal solution of the problem (FSDP).

Proof By (17) and Theorem 4.1, it is easy to obtain the desired result.

5 Conclusions

In this paper, under the framework of adjustable robust optimization approach, a
class of adjustable robust quadratic optimization problems, where both objective and
constraint functions involve uncertain data, is considered. We first obtain exact SDP
reformulations for adjustable robust quadratic optimization problems with an affine
decision rule on spectrahedral uncertain sets. For applications, we also establish exact
SDP reformulations for fractionally adjustable robust quadratic optimization problems
on spectrahedral uncertain sets.

In the future, further studies on SDP problems and optimality conditions for
adjustable robust quadratic optimization problems are still needed. For example, sim-
ilar to [11], can we obtain some SDP dual results for adjustable robust quadratic
optimization problems with an affine decision rule. On the other hand, it is important
to consider how the proposed approach can be extended to handle adjustable robust
nonlinear optimization problems.

Funding This research is supported by the Science and Technology Research Program of Chongqing
Municipal Education Commission (KJZDK202100803), the Team Building Project for Graduate Tutors in
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