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Abstract
In this paper, we consider impulse control problems involving conditional McKean–
Vlasov jump diffusions, with the common noise coming from the σ -algebra generated
by the first components of a Brownian motion and an independent compensated
Poisson random measure. We first study the well-posedness of the conditional
McKean–Vlasov stochastic differential equations (SDEs) with jumps. Then, we prove
the associated Fokker–Planck stochastic partial differential equation (SPDE) with
jumps. Next, we establish a verification theorem for impulse control problems involv-
ing conditional McKean–Vlasov jump diffusions. We obtain a Markovian system by
combining the state equation with the associated Fokker–Planck SPDE for the condi-
tional law of the state. Then we derive sufficient variational inequalities for a function
to be the value function of the impulse control problem, and for an impulse control to
be the optimal control. We illustrate our results by applying them to the study of an
optimal stream of dividends under transaction costs. We obtain the solution explicitly
by finding a function and an associated impulse control, which satisfy the verification
theorem.
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1 Introduction

Consider a complete filtered probability space (Ω,F , P,F = {Ft }t≥0) on which we
are given a d-dimensional Brownian motion B = (B1, B2, . . . , Bd), a k-dimensional
compensated Poisson random measure ˜N (dt, dz) such that

˜N (dt, dz) = N (dt, dz) − ν(dz)dt,

where N (dt, dz) is a Poisson randommeasure and ν(dz) is the Lévymeasure of N , and
a random variable Z ∈ L2(P) that is independent of F. We denote by L2(P) the set
of all the d-dimensional, F-measurable random variables X such that E[X2] < ∞,

where E denotes the expectation with respect to P . We consider the state process
X(t) ∈ R

d given as the solution of the following conditional McKean–Vlasov jump
diffusion

X(t) = Z +
∫ t

0
α(s, X(s), μs)ds + β(s, X(s), μs)dB(s)

+
∫ t

0

∫

Rk
γ (s, X(s−), μs− , z)˜N (ds, dz), (1)

where we denote byμt = L(X(t)|Gt ) the conditional law of X(t) given the natural fil-
tration Gt generated by the first components (B1(t), ˜N1(t, z)) of the Brownian motion
and an independent compensated Poisson random measure, respectively, up to time
t . Loosely speaking, equation of the form (1) models a McKean–Vlasov dynamics
which is subject to what is called a "common noise" coming from (B1(t), ˜N1(t, z)),
which is observed and is influencing the dynamics of the system. This type of equation
arises naturally in the framework of a particle system in the large-scale limit where
the particles interact in the mean-field way with common noise. For instance, see Erny
[13] for the unconditional case, where thewell-posedness and the propagation of chaos
for McKean–Vlasov SDE with jumps have been studied and with locally Lipschitz
coefficients.
Conditional propagationof chaos (in continuous case) has been studied in the literature;
for example, we refer to Carmona et al [9], Coghi and Flandoli [11]. There the common
noise is represented by a common Brownian motion, which is already presented at the
finite particle system. We refer also to the recent papers by Buckdahn et al. [7] and
Lacker et al. [17], [18] for related results. However, in Erny et al. [14], the common
noise is only presented at the limiting level. It comes from the joint action of the small
jumps of the finite size particle system. They obtain a Fokker–Planck SPDE related to
the one considered in Agram and Øksendal [1]. Since we are not concern about finite
particle system in this paper, we work directly with the limit system (1). However,
conditional propagation of chaos for a common noise presented by both the Brownian
motion and the compensated Poisson random measure will be a purpose of future
research.
For application of conditional propagation of chaos in a spatial stochastic epidemic
model, we refer to Vuong et al. [22] in the continuous case.
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To the best of our knowledge, none of the papers mentioned above deal with the
common noise coming from both the Brownian and the Poissonian measure as we
consider in the current paper. Moreover, the type of Fokker–Planck SPDE with jumps
obtained, in this paper, as the equation for the conditional law of the state has not been
considered in the literature.
Precisely, in the present paper, we are going to study impulse control problems for
conditional McKean–Vlasov jump diffusions. In particular, we will define a perfor-
mance criterion and then attempt to find a policy that maximizes performance within
the admissible impulse strategies. Using a verification theorem approach, we establish
a general form of quasi-variational inequalities and identify the sufficient conditions
that lead to an optimal function. See precise formulation below. Standard impulse con-
trol problems can be solved by using the Dynkin formula. We refer to e.g. Bensoussan
and Lions [4] in the continuous case and to Øksendal and Sulem [20] in the setting of
jump diffusions.
Impulse control problems naturally arise in many concrete applications, in particular
when an agent, because of the intervention costs, decides to control the system by
intervening only at a discrete set of times with a chosen intervention size: a sequence
of stopping times (τ1, τ2, . . . , τk, . . .) is chosen to intervene and exercise the control.
At each time τk of the player’s kth intervention, the player chooses an intervention of
size ζk . The impulse control consists of the sequence {(τk, ζk)}k≥1.
Impulse control has sparked great interest in the financial field and beyond. See, for
example, Korn [15] for portfolio theory applications, Basei [2] for energymarkets, and
Cadenillas et al. [8] for insurance. All of these works are based on quasi-variational
inequalities and employ a verification approach.
Despite its adaptability to more realistic financial models, few papers have studied the
case of mean-field problems with impulse control. We refer to Basei et al. [3] for a
discussion of a more special type of impulse, where the only type of impulse is to add
something to the system. Precisely, they consider a mean-field game (MFG) where the
mean-field (only the empirical mean) appears as an approximation of a many-player
game. Moreover, they use the smooth fit principle (as used in the present work) to
solve a specific MFG explicitly.
We refer also to Christensen et al. [10] for a MFG impulse control approach. Specifi-
cally, a problem of optimal harvesting in natural resource management is addressed.
A maximum principle for regime switching control problem for mean-field jump
diffusions is studied by Li et al. [19] but in that paper the problem considered is not
really an impulse control problem because the intervention times are fixed in advance.
In our setting, we do not consider a MFG setup, as in the above-mentioned works.
Instead, we consider a decision-maker who chooses the control to optimize a certain
reward. Moreover, the mean-field appears as a conditional probability distribution,
and to overcome the lack of the Markov property, we introduce the equation of the
law, which is of stochastic Fokker–Planck type.
In Djehiche et al. [12], the authors could handle a non-Markovian dynamics. However,
the impulse control is given in a particular compact form, and only a given number
of impulses are allowed. They use a Snell envelope approach and related reflected
backward stochastic differential equations.
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The rest of the paper is organized as follows: In the next section, we study the well-
posedness of the conditional McKean–Vlasov SDE (1). Section 3 is devoted to the
Fokker–Planck SPDE with jumps. In Sect. 4, we state the optimal control problem
and prove the verification theorem. In Sect. 5, we apply the previous results to solve
an explicit problem of optimal dividend streams under transaction costs.

2 Conditional McKean–Vlasov SDEs with Jumps

Let us first study the well-posedness of the conditional McKean–Vlasov dynamics.
We mean by Xt ∈ R

d the mean-field stochastic differential equation with jumps, from
now on called a McKean–Vlasov jump diffusion, of the form

dX j (t) = α j (t, X(t), μt )dt +
m
∑

n=1

β j,n(t, X(t), μt )dBn(t)

+
k
∑


=1

∫

Rk
γ j,
(t, X(t−), μt− , z)˜N
(dt, dz); j = 1, 2, ..., d

X0 = x ∈ R
d , (2)

or, using matrix notation,

dX(t) = α(t, X(t), μt )dt + β(t, X(t), μt )dB(t) +
∫

Rk
γ (t, X(t−), μt , z)˜N (dt, dz),

where B(t) = (B1(t), B2(t), ..., Bm(t))T ∈ R
m = R

m×1, ˜N = (˜N1, ..., ˜Nk)
T ∈

R
k = R

k×1 are, respectively, anm-dimensional Brownianmotion and a k-dimensional
compensated Poisson random measure on a complete filtered probability space
(Ω,F ,F = {Ft }t≥0, P), and β = (β j,n) ∈ R

d×m, γ = (γ j,
) ∈ R
d×k .

We assume that for all 
; 1 ≤ 
 ≤ k, the Lévy measure of N
, denoted by ν
, satisfies
the condition

∫

Rk z2ν
(dz) < ∞, which means that N
 does not have many big jumps
(but N
 may still have infinite total variation near 0). This assumption allows us to
use the version of the Itô formula for jump diffusion given, e.g. in Theorem 1.16 in
Øksendal and Sulem [20].
We denote, by Gt , the sub-filtrations of Ft , generated by the first components of both
the Brownian motion B and the compensated Poisson random measure ˜N . The sub-
filtration Gt satisfies the usual conditions as Ft .
We define μX

t to be regular conditional distribution of Xt given Gt . This means that
∀t ≥ 0, μX

t is a Borel probability measure on R
d and

∫

Rn
g(x)μX

t (dx) = E[g(Xt )|Gt ](ω) (3)

for all functions g such that E[|g(Xt )|] < ∞. We refer to Theorem 9 in Protter [21].
We shall define the special weighted Sobolev norm on the space of measures.
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Definition 2.1 Let d be a given natural number. Then, letM = M
d be the pre-Hilbert

space of random measures μ on R
d equipped with the norm

‖μ‖2
M

:= E[
∫

Rd
|μ̂(y)|2e−y2dy], (4)

where y = (y1, y2, ..., yd) ∈ R
d and μ̂ is the Fourier transform of the measure μ, i.e.

μ̂(y) := ∫

Rd e−i xyμ(dx); y ∈ R
d ,

where xy = x · y = x1y1 + x2y2 + ... + xd yd is the scalar product in R
d .

If μ, η ∈ M, we define the inner product 〈μ, η〉M by

〈μ, η〉M = E[
∫

Rd
Re(μ̂(y)η̂(y))|y|2e−y2dy],

where Re(z) denotes the real part and z̄ denotes the complex conjugate of the complex
number z.

The space M equipped with the inner product 〈μ, η〉M is a pre-Hilbert space. For
not having ambiguity, we will also use the notation M for the completion of this
pre-Hilbert space.

Lemma 2.1 Let X1 and X2 be two d-dimensional random variables in L2(P). Thus,

‖L(X1|Gt ) − L(X2|Gt )‖2M ≤ π E[(X1 − X2)
2].

Proof By using the relation (4), we have

‖L(X1|Gt ) − L(X2|Gt )‖2M
= E

∫

Rd

∣

∣̂L(X1|Gt )(y) − ̂L(X2|Gt )(y)
∣

∣

2
e−y2dy

= E

∫

Rd

∣

∣

∣

∣

∫

Rd
e−i x1ydL(X1|Gt )(x1) −

∫

Rd
e−i x2 ydL(X2|Gt )(x2)

∣

∣

∣

∣

2

e−y2dy

= E

∫

Rd

∣

∣

∣

∣

∫

Rd
(e−i x1y − e−i x2 y)dL((X1, X2)|Gt )(x1, x2)

∣

∣

∣

∣

2

e−y2dy

= E

∫

Rd

∣

∣

∣E(e−i X1y − e−i X2 y)|Gt )

∣

∣

∣

2
e−y2dy.

Using the fact that conditioning is a contractive projection of L2 spaces and by standard
properties of the complex exponential function, we obtain

E

∫

Rd

∣

∣

∣E(e−i X1y − e−i X2 y)|Gt )

∣

∣

∣

2
e−y2dy ≤ E

∫

Rd
E

[ ∣

∣

∣e−i X1y − e−i X2 y
∣

∣

∣

2 ]

e−y2dy

≤
∫

Rd
y2e−y2dyE[|X1 − X2|2].
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Therefore, the desired result follows. 
�

To study the well-posedness of the conditional McKean–Vlasov SDE (2), we
impose the following set of assumptions on the coefficients α, β and γ :

Assumption I

– α(t, x, μ) : [0, T ] × R
d × M → R

d , β(t, x, μ) : [0, T ] × R
d × M → R

d×m

and γ (t, x, μ, ζ ) : [0, T ] × R
d × M × R

d → R
d×k are locally bounded and

Borel-measurable functions.
– There exists a constant C , such that for all t ∈ [0, T ], x, x ′, μ, μ′, we have

∣

∣α(t, x, μ) − α(t, x ′, μ′)
∣

∣ + ∣

∣β(t, x, μ) − β(t, x ′, μ′)
∣

∣

+
∫

Rk

∣

∣γ (t, x, μ, z) − γ (t, x ′, μ′, z)
∣

∣ ν(dz)

≤ C(
∣

∣x − x ′∣
∣ + ∣

∣

∣

∣μ − μ′∣
∣

∣

∣

M
)

and

E

∫ T

0
[|α(t, 0, δ0)|2 + |β(t, 0, δ0)|2 +

∫

Rk
|γ (t, 0, δ0, z)|2 ν(dz)]dt ≤ ∞,

where δ0 is the Dirac measure with mass at zero.

Theorem 2.1 (Existence and uniqueness) Under the above assumptions, the condi-
tional McKean–Vlasov SDE (2) has a unique strong solution.

Proof The proof is based on the Banach fixed point argument. Let S2 be the space of
cadlag, Ft -progressively measurable processes equipped with the norm

||X ||2 := E[ sup
t∈[0,T ]

|X(t)|2] < ∞.

This space equipped with this norm is a Banach space. Define the mapping Φ : S2 →
S2 by Φ(x) = X . We want prove that Φ is contracting in S2 under the norm defined
above. For two arbitrary elements (x1, x2) and (X1, X2), we denote their difference by
x̃ = x1 − x2 and ˜X = X1 − X2, respectively. In the following, C < ∞ will denote a
constant which is big enough for all the inequalities to hold. Applying the Itô formula
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to ˜X2(t), we get

˜X2(t) = 2
∫ t

0

˜X(s)(α(s, x1(s), μ1(s)) − α(s, x2(s), μ2(s)))ds

+ 2
∫ t

0

˜X(s)(β(s, x1(s), μ1(s)) − β(s, x2(s), μ2(s)))dB(s)

+ 2
∫ t

0

˜X(s)
∫

Rk

(γ (s, x1(s), μ1(s), z) − γ (s, x2(s), μ2(s), z))˜N (ds, dz)

+
∫ t

0
(β(s, x1(s), μ1(s)) − β(s, x2(s), μ2(s)))

2ds

+
∫ t

0

∫

Rk

(γ (s, x1(s), μ1(s), z) − γ (s, x2(s), μ2(s), z))2ν(dz)ds.

By the Lipschitz assumption combined with standard majorization of the square of a
sum (resp. integral) via the sum (resp. integral) of the square (up to a constant), we get

˜X2(t) ≤ C
∫ t
0 |˜X(s)|Δsds

+ |∫ t
0
˜X(s)˜β(s)dB(s)| + |∫ t

0

∫

Rk
˜X(s)γ̃ (s, z)˜N (ds, dz)| + C

∫ t
0Δ2

sds,

where

Δs : = |̃xs | + ||μ̃s ||M,

Δ2
s : = |̃xs |2 + ||μ̃s ||2M,

˜β(s) = β(s, x1(s), μ1(s)) − β(s, x2(s), μ2(s)),

γ̃ (s, z) = γ (s, x1(s), μ1(s), z) − γ (s, x2(s), μ2(s), z),

and the value of the constant C is allowed to vary from line to line.
By the Burkholder–Davis–Gundy inequality, for all t ∈ [0, T ]:

E[ sup
0≤t0≤t

|
∫ t0

0

˜X(s)˜β(s)dB(s)|] ≤ CE[(
∫ t

0

˜X2(s)˜β2(s)ds)
1
2 ] ≤ CTE[

∫ t

0
|˜Xs |Δsds],

and we need to use Kunita’s inequality for the jumps (see Corollary 2.12 in Kunita
[16]):

E[ sup
0≤t0≤t

|
∫ t0

0

˜X(s)γ̃ (s)˜N (ds, dz)|]

≤ CE[(
∫ t

0

˜X2(s)γ̃ 2(s)ν(dz)ds)
1
2 ]

≤ CTE[
∫ t

0
|˜Xs |Δsds].
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Combining the above and using that

|˜Xs |Δs ≤ C(|˜Xs |2 + Δ2
s ),

we obtain

E[ sup
0≤t0≤t

˜X2(t0)] ≤ CTE[
∫ t

0
(|˜Xs |2 + Δ2

s )ds].

By definition of the norms, we have

Δ2
t ≤ C |̃xt |2.

Iterating the above inequality, we get, for any integer k > 1:

E[ sup
0≤t≤T

˜X2(t)] ≤ (CT )k
∫ T

0

(T − s)k−1

(k − 1)! E[|̃xs |2]ds ≤ (CT )k T k

k! ||̃x ||2.

Hence, for k large enough Φ is a contraction on S2. Therefore, the equation has a
unique solution up to T for any T < ∞. 
�

3 Fokker–Planck SPDE with Jumps

In this part of the paper, we will formulate the associated Fokker–Planck SPDE with
jumps for McKean–Vlasov SDE driven by jumps.

Equation (1) is not in itself Markovian, so to be able to use the Dynkin formula, we
extend the system to the process Y defined by

Y (t) = (s + t, X(t), μt ); t ≥ 0; Y (0) = (s, Z , μ0) =: y,

for some arbitrary starting time s ≥ 0, with state dynamics given by X(t), conditional
law of the state given by μt and with X(0) = Z , μ0 = L(X(0)). This system is
Markovian, in virtue of the following Fokker–Planck equation for the conditional law
μt .
For fixed t, μ, ζ and 
 = 1, 2, ...k, we write for simplicity γ (
) = γ (
)(t, x, μ, ζ ) for
column number 
 of the d × k-matrix γ . Then ν
 represents the Lévy measure of N


for all 
.
Define the operator μ(γ (
)) on C0(R

d) by

〈μ(γ (
)), g〉 :=
∫

Rd
g(x)μ(γ (
))(dx) =

∫

Rd
g(x + γ (
))μ(dx), for all g ∈ C0(R

d),
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where 〈μ(γ (
)), g〉 denotes the action of the measure μ(γ (
)) on g. Then, we see that
the Fourier transform of μ(γ (
)) is

F[μ(γ (
))](y) =
∫

Rd
e−i xyμ(γ (
))(dx) =

∫

Rd
e−i(x+γ (
))yμ(dx) = e−iγ (
) yμ̂(y).

Therefore, μ(γ (
)) ∈ M if μ is. We call μ(γ (
)) the γ (
)-shift of μ.
Assumption II The coefficients α, β and γ are C1 with respect to x with bounded
derivatives.
Let a test function ψ ∈ C2

b

(

R
d
)

, and with values in the complex plane C.

Theorem 3.1 (Stochastic Fokker–Planck equation with jumps) Let X(t) be as in (1)
and let μt = μX

t be the regular conditional distribution of X(t) given the sub-filtration
Gt which is described by relation (3). Then, μt satisfies the following SPIDE (in the
sense of distributions):

dμt = A∗
0μt dt + A∗

1μt dB1(t) +
∫

Rk
A∗
2μt ˜N1(dt, dz); μ0 = L(X(0)), (5)

where A∗
0 is the integro-differential operator

A∗
0μ = −

d
∑

j=1

D j [α jμ] + 1

2

d
∑

n, j=1

Dn, j [(ββ(T ))n, jμ]

+
k
∑


=1

∫

R

{

μ(γ (
)) − μ +
d
∑

j=1

D j [γ (
)
j (s, ·, z)μ]

}

ν
 (dz) ,

and

A∗
1μ = −

d
∑

j=1

D j [β1, jμ], A∗
2μ = μ(γ (1)) − μ,

where β(T ) denotes the transposed of the d ×m - matrix β = [

β j,k
]

1≤ j≤d,1≤k≤m, γ (
)

is column number 
 of the matrix γ and ν
 (·) is the Lévy measure of N
 (·, ·) .

For notational simplicity, we use D j , Dn, j to denote ∂
∂x j

and ∂2

∂xn∂x j
in the sense of

distributions.

Proof We get by the Itô formula for jump diffusions (see, e.g. Theorem 1.16 in [20]):

ψ (Xt ) − ψ(x) =
∫ t

0
A0ψ (Xs) ds +

m
∑

n=1

∫ t

0
A1,nψ(Xs)dBn(s)

+
k
∑


=1

∫ t

0

∫

Rk
A2,
ψ(Xs)˜N
(ds, dz),
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where

A0ψ (Xs) =
d
∑

j=1

α j (s, Xs, μs)
∂ψ

∂x j
(Xs)

+ 1

2

d
∑

n, j=1

(ββT )n, j (s, Xs, μs)
∂2ψ

∂xn∂x j
(Xs)

+
k
∑


=1

∫

R

{

ψ
(

Xs− + γ (
) (s, Xs− , μs− , z)
)

− ψ (Xs)

−
d
∑

j=1

∂ψ

∂x j
(Xs) γ

(
)
j (s, Xs− , μs− , z)

}

ν
 (dz) ,

and

A1,nψ(Xs) =
d
∑

j=1

∂ψ

∂x j
(Xs)β j,n(s, Xs, μs),

A2,
ψ(Xs) = ψ(Xs− + γ (
)(s, Xs− , μs− , z)) − ψ (Xs−) ,

where β j is the row number j of the d × m matrix β and γ (
) is column number 
 of
the d ×k matrix γ . Since (Br , ˜Nr )r>1 are independent of Gt , we get after conditioning

E[ψ (Xt ) |Gt ] − ψ(x) = E[
∫ t

0
A0ψ (Xs) ds

+
∫ t

0
A1,1ψ(Xs)dB1(s) +

∫ t

0

∫

Rk
A2,1ψ(Xs)˜N1(ds, dz)|Gt ]

= E[
∫ t

0
E[A0ψ (Xs) |Gs]ds +

∫ t

0
E[A1,1ψ(Xs)|Gs]dB1(s)

+
∫ t

0

∫

Rk
E[A2,1ψ(Xs)|Gs]˜N1(ds, dz)|Gt ]

=
∫ t

0
E[A0ψ (Xs) |Gs]ds +

∫ t

0
E[A1,1ψ(Xs)|Gs]dB1(s)

+
∫ t

0

∫

Rk
E[A2,1ψ(Xs)|Gs]˜N1(ds, dz), (6)

the last equality follows from the tower property of conditional expectation.
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By the above, we see that

A1,1ψ =
d
∑

j=1

∂ψ

∂x j
(Xs)β j,1(s, Xs, μs),

A2,1ψ =
{

ψ(Xs− + γ (1)(s, Xs− , μs− , z)) − ψ (Xs−)
}

.

In particular, choosing, with i = √−1, ψ (x) = ψy (x) = e−iyx ; y, x ∈ R
d , we get

A0ψ (Xs )

=
⎛

⎝−i
d
∑

i=1

yi αi (s, Xs , μs ) − 1

2

d
∑

n, j=1

yn y j (ββ(T ))n. j (s, Xs , μs )

+
k
∑


=1

∫

R

⎧

⎨

⎩

exp
(

−iyγ (
)
(

s, Xs− , μs− , z
)

)

− 1 + i
d
∑

j=1

yi γ
(
)
j

(

s, Xs− , μs− , z
)

⎫

⎬

⎭

ν
 (dz)

⎞

⎠ e−iy Xs .

(7)

and

A1,1ψ(Xs) = −i
d
∑

j=1

y jβ j,1(s, Xs, μs)e
−iy Xs ,

A2,1ψ(Xs) = e−iy(Xs−+γ (1)(s,Xs− ),μs− ,z) − e−iy Xs− .

In general, we have (see (3))

E

[

g (Xs) e−iy Xs |Gs

]

=
∫

Rd
g (x) e−iyxμs (dx) = F [g (·) μs(·)] (y) .

Therefore, we get

E[e−iyγ (s,Xs− ,μs− ,ζ )e−iy Xs |Gs] =
∫

Rd
e−iyγ (s,x,μs− ,ζ )e−i xyμs(dx)

=
∫

Rd
e−iy(x+γ (s,x,μs− ,ζ ))μs(dx)

=
∫

Rd
e−iyxμ

(γ )
s (dx) = F[μ(γ )

s (·)](y), (8)

where μ
(γ )
s (·) is the γ -shift of μs . Recall that if w ∈ S′ = S′(Rd) (the space of

tempered distributions), using the notation ∂
dx j

w (t, x) =: D jw (t, x) , and similarly
with higher order derivatives, we have, in the sense of distributions,

F
[

D jw (t, ·)] (y) = iy j F [w (t, ·)] (y) .

123



Journal of Optimization Theory and Applications (2024) 200:1100–1130 1111

Thus,

iy j F[α(s, ·)μs](y) = F[D j (α(s, ·)μs)](y)

− yn y j F[ββT (s, ·)μs](y) = F[Dn, j (ββT (s, ·)μs)](y).

Applying this and (8) to (7), we get

E[A0ψ (Xs) |Gs] =
∫

Rd

(

− i
d
∑

j=1

y jα j (s, x, μs) − 1

2

d
∑

n, j=1

yn y j (ββ(T ))n, j (s, x, μs)

+
k
∑


=1

∫

R

{

exp
(

−iyγ (
)(s, x, μs− , z)
)

− 1

+ i
d
∑

j=1

y jγ
(
)
j (s, x, μs− , z)}ν
 (dz)

)

e−iyxμs(dx) = −i
d
∑

j=1

y j F[α jμs](y)

− 1

2

d
∑

n, j=1

yn y j F[(ββ(T ))n, jμs](y) +
k
∑


=1

F
[

∫

R

{

exp
(

−iyγ (
) (s, x, μs− , z)
)

− 1 + i
d
∑

j=1

y jγ
(
)
j (s, x, μs− , z)

}

ν
 (dz) μs

]

(y) = F
[

−
d
∑

j=1

D j (α jμs)

+ 1

2

d
∑

n, j=1

Dn, j ((ββ(T ))n, jμs) +
k
∑


=1

∫

R

{

μ
(γ (
))
s − μs

+
d
∑

j=1

D j [γ (
)
j (s, ·, z)μs]

}

ν
 (dz)
]

(y) = F[A∗
0μs](y),

where A∗
0 is the integro-differential operator

A∗
0μ = −

d
∑

j=1

D j [α jμ] + 1

2

d
∑

n, j=1

Dn, j [(ββ(T ))n, jμ] +
k
∑


=1

∫

R

{μ(γ (
)) − μ

+
d
∑

j=1

D j [γ (
)
j (s, ·, ζ )μ]}ν
 (dz) .

Note that A∗
0μs exists in S ′.
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Similarly, we get

E[A1,1ψ(Xs)|Gs] =
∫

Rd
−i

d
∑

j=1

y jβ j,1(s, x, μs)e
−iyxμs(dx)

= F[−i
d
∑

j=1

y jβ j,1(s, x, μs)μs]

= F[−
d
∑

j=1

D j (β j,1μs)](y) = F[A∗
1μs](y),

where A∗
1 is the operator

A∗
1μs = −

d
∑

j=1

D j [β j,1μs].

and

E[A2,1ψ(Xs)|Gs] = E[e−iy(Xs−+γ (1)(s,Xs− ,μs− ,ζ )) − e−iy Xs− |Gs]
=
∫

Rd

(

exp(−iyγ (1)(s, x, μs− , ζ )) − 1
)

e−iyxμs(dx)

= F[μ(γ (1))
s − μs](y) = F[A∗

2μs](y),

S where A∗
2 is the operator given by

A∗
2μs = μ

(γ (1))
s − μs .

Substituting what we have obtained above into (6), leads

E

[

ψ (Xt ) |Gt

]

= ψ(x) +
∫ t

0
E[A0ψ (Xs) |Gs]ds +

∫ t

0
E[A1,1ψ(Xs)|Gs]dB1(s)

+
∫ t

0

∫

Rk
E[A2,1ψ(Xs)|Gs]˜N1(ds, dz)

= ψ(x) +
∫ t

0
F[A∗

0μs](y)ds +
∫ t

0
F[A∗

1μs](y)dB1(s)

+
∫ t

0

∫

Rk
F[A∗

2μs](y)˜N1(ds, dz). (9)

On the other hand,

E[ψ (Xt ) |Gt ] − ψ(x) = E[e−iy Xt − e−iy X0 |Gt ] = μ̂t (y) − μ̂0(y). (10)
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Combining (9) and (10), we get

μ̂t (y) − μ̂0(y) =
∫ t

0
F[A∗

0μs](y)ds +
∫ t

0
F[A∗

1μs](y)dB1(s)

+
∫ t

0

∫

Rk
F[A∗

2μs](y)˜N1(ds, dz).

Since the Fourier transform of a distribution determines the distribution uniquely, we
deduce that

μt − μ0 =
∫ t

0
A∗
0μsds +

∫ t

0
A∗
1μsdB1(s) +

∫ t

0

∫

Rk
A∗
2μs ˜N1(ds, dz),

or, in differential form,

dμt = A∗
0μtdt + A∗

1μtdB1(t) +
∫

Rk
A∗
2μt ˜N1(dt, dz); μ0 = L(X(0)),

as claimed. That completes the proof. 
�

Remark 3.1 If the common noise is coming from the Lévy noise, then the correspond-
ing Fokker–Planck equation is an SPDE driven by this noise. Similarly, if the common
noise is coming only from the Brownianmotion, we get the Fokker–Planck SPDE as in
Agram and Øksendal [1]. When the conditioning is with respect to the trivial filtration
F0, meaning that there is no common noise available, we get the Fokker–Planck PDE
studied, for example, in Bogachev et al. [6].

4 A General Formulation and a Verification Theorem

Since Eq. (1) is not Markovian, in the sense that it does not have the flow-property,
we construct the following process Y :

dY (t) = F(Y (t))dt + G(Y (t))dB(t) +
∫

Rk
H(Y (t−), z)˜N (dt, dz)

:=
⎡

⎣

dt
dX(t)
dμt

⎤

⎦ =
⎡

⎣

1
α(Y (t))

A∗
0μt

⎤

⎦ dt +
⎡

⎣

01×m

β(Y (t))
A∗
1μt , 0, 0..., 0

⎤

⎦ dB(t)

+
∫

Rk

⎡

⎣

01×k

γ (Y (t−), z)
A∗
2μt , 0, 0, ..., 0

⎤

⎦ ˜N (dt, dz), s ≤ t ≤ T , (11)
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where X(t) and μt satisfy Eqs. (1) and (5), respectively. Moreover, we have used the
shorthand notation

α(Y (t)) = α(s + t, X(t), μ(t)),

β(Y (t)) = β(s + t, X(t), μ(t)),

γ (Y (t−), z) = γ (s + t, X(t−), μ(t−), z).

The process Y (t) starts at y = (s, Z , μ). We shall use the following notation:

Notation 4.1 We use

– x to denote a generic value of the point X(t, ω) ∈ R
d , and

– X to denote a generic value of the random variable X(t) ∈ L2(P).

– When the meaning is clear from the context we use x in both situations.
– μ for either the initial probability distribution L(X(0)) or the generic value of the

conditional law μt := L(X(t)|Gt ), when there is no ambiguity.

The concept of impulse control is simple and intuitive: At any time, the agent
can make an intervention ζ into the system. Due to the cost of each intervention,
the agent can intervene only at discrete times τ1, τ2, . . .. The impulse problem is to
find out at what times it is optimal to intervene and what is the corresponding optimal
intervention sizes.We nowproceed to formulate precisely our impulse control problem
for conditional McKean–Vlasov jump diffusions.

Suppose that—if there are no interventions—the process Y (t) = (s + t, X(t), μt )

is the conditional McKean–Vlasov jump diffusion given by (11).
Suppose that at any time t and any state y = (s, X , μ) we are free to intervene and

give the state X an impulse ζ ∈ Z ⊂ R
d , whereZ is a given set (the set of admissible

impulse values). Suppose the result of giving the state X the impulse ζ is that the
state jumps immediately from X to Γ (X , ζ ), where Γ (X , ζ ) : L2(P) ×Z → L2(P)

is a given function. In many applications, the process shifts as a result of a simple
translation, i.e. Γ (y, ζ ) = y + ζ .
Simultaneously, the conditional law jumps from μt = L(X(t)|Gt ) to

μ
Γ (X ,ζ )
t := L(Γ (X(t), ζ )|Gt ). (12)

An impulse control for this system is a double (possibly finite) sequence

v = (τ1, τ2, . . . , τ j , . . . ; ζ1, ζ2, . . . , ζ j , . . .) j≤M , M ≤ ∞,

where 0 ≤ τ1 ≤ τ2 ≤ · · · are Gt -stopping times (the intervention times) and ζ1, ζ2, . . .

are the corresponding impulses at these times. Mathematically, we assume that τ j is
a stopping time with respect to the filtration {Gt }t≥0, with τ j+1 > τ j and ζ j is Gτ j -
measurable for all j . We let V denote the set of all impulse controls.
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If v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) ∈ V , the corresponding state process Y (v)(t) is defined
by

Y (v)(0−) = y and Y (v)(t) = Y (t); 0 < t ≤ τ1, (13)

Y (v)(τ j ) =
(

τ j , Γ [X̌ (v)(τ−
j ), ζ j ],L(Γ [X̌ (v)(τ−

j ), ζ j ]|Gt )
)

, j = 1, 2, . . . (14)

dY (v)(t) = F(Y (v)(t))dt + G(Y (v)(t))dB(t)

+
∫

Rk
H(Y (v)(t−), z)˜N (dt, dz) for τ j < t < τ j+1 ∧ τ ∗, (15)

where we have used the notation

X̌ (v)(τ−
j ) = X (v)(τ−

j ) + ΔN X(τ j ),

ΔN X (v)(t) being the jump of X (v) stemming from the jump of the random measure
N (t, ·). Note that we distinguish between the (possible) jump of X (v)(τ j ) stemming
from the random measure N , denoted by ΔN X (v)(τ j ) and the jump caused by the
intervention v, given by

Δv X (v)(τ j ) := Γ (X̌ (v)(τ−
j ), ζ ) − X̌ (v)(τ−

j ).

Accordingly, at the time t = τ j , X (v)(t) jumps from X̌ (v)(τ−
j ) to Γ [X̌ (v)(τ−

j ), ζ j ]
and μτ−

j
jumps to

μτ j = L(Γ [X̌ (v)(τ−
j ), ζ j ]|Gτ j ).

Consider a fixed open set (called the solvency region) S ⊂ [0,∞) × R
d × M. It

represents the set in which the game takes place since it will end once the controlled
process leaves S. In portfolio optimization problems, for instance, the game ends in
case of bankruptcy, whichmay bemodelled by choosing S to be the set of states where
the capital is above a certain threshold. Define

τS = inf{t ∈ (0,∞); Y (v)(t) /∈ S},

and

T = {τ stopping time, 0 ≤ τ ≤ τS} .

Suppose we are given a continuous profit function f : S → R and a continuous
bequest function g : S → R. Moreover, suppose the profit/utility of making an
interventionwith impulse ζ ∈ Z when the state is y is K (y, ζ ), where K : S×Z → R

is a given continuous function.
We assume we are given a set V of admissible impulse controls which is included

in the set of v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) such that a unique solution Y (v) of (13)–(15)
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exist, for all v ∈ V , and the following additional properties hold, assuring that the
performance functional below is well-defined:

E
y
[

∫ τS

0
f −(Y (v)(s))ds

]

< ∞, for all y ∈ S, v ∈ V,

E
y
[

g−(Y (v)(τS))1[τS<∞]
]

< ∞, for all y ∈ S, v ∈ V,

and

E
y

⎡

⎣

∑

τ j ≤τS
K −(Y̌ (v)(τ−

j ), ζ j )

⎤

⎦ < ∞, for all y ∈ S, v ∈ V,

where E
y denotes expectation, given that Y (0) = y, and we mean by a− =

−min{a, 0} for a = f , g, K .
We now define the performance criterion, which consists of three parts: A continuous
time running profit in [0, τS ], a terminal bequest value if the game ends, and a discrete-
time intervention profit, namely

J (v)(y) = E
y
[ ∫ τS

0
f (Y (v)(t))dt + g(Y (v)(τS))1[τS<∞] +

∑

τ j ≤τS
K (Y̌ (v)(τ−

j ), ζ j )

]

.

We consider the following impulse control problem:

Problem 4.1 Find Φ(y) and v∗ ∈ V such that

Φ(y) = sup{J (v)(y); v ∈ V} = J (v∗)(y), y ∈ S.

The function Φ(y) is called the value function and v∗ is called an optimal control.

The following concept is crucial for the solution to this problem.

Definition 4.1 Let H be the space of all measurable functions h : S → R. The
intervention operator M : H → H is defined by

Mh(s, X , μ) = sup
ζ∈Z

{h(s, Γ (X , ζ ), μΓ (X ,ζ )) + K (y, ζ ); (s, Γ (X , ζ ), μΓ (X ,ζ )) ∈ S},
(16)

where μΓ (X ,ζ ) is given by (12).

Let C (1,2,2)(S) denote the family of functions ϕ(s, x, μ) : S → R which are
continuously differentiable w.r.t. s and twice continuously Fréchet differentiable with
respect to x ∈ R

d and μ ∈ M. We let ∇μϕ ∈ L(M,R) (the set of bounded linear
functionals onM) denote the Fréchet derivative (gradient) of ϕ with respect toμ ∈ M.
Similarly, D2

μϕ denotes the double derivative of ϕ with respect to μ and it belongs to
L(M × M,R) (see Appendix for further details).
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The infinitesimal generator L of the Markov jump-diffusion process Y (t) is defined
on functions ϕ ∈ C (1,2,2)(S) by

Lϕ = ∂ϕ

∂s
+

d
∑

j=1

α j
∂ϕ

∂x j
+ 〈∇μϕ, A∗

0μ〉 + 1
2

d
∑

j,n=1

(ββT ) j,n
∂2ϕ

∂x j∂xn

+ 1
2

d
∑

j=1

β j,1
∂

∂x j
〈∇μϕ, A∗

1μ〉 + 1
2 〈A∗

1μ, 〈D2
μϕ, A∗

1μ〉〉

+
∫

Rk

{

ϕ(s, x + γ (1), μ + A∗
2μ) − ϕ(s, x, μ)

−
d
∑

j=1

γ
(1)
j

∂
∂x j

ϕ(s, x, μ) − 〈A∗
2μ, Dμϕ〉

}

ν1(dz)

+
k
∑


=2

∫

Rk

{

ϕ(s, x + γ (
), μ)) − ϕ(s, x, μ) −
d
∑

j=1

γ
(
)
j

∂
∂x j

ϕ(s, x, μ)
}

ν
(dz),

where, as before, A∗
0 is the integro-differential operator

A∗
0μ = −

d
∑

j=1

D j [α jμ] + 1

2

d
∑

n, j=1

Dn, j [(ββ(T ))n, jμ]

+
k
∑


=1

∫

Rk

{

μ(γ (
)) − μ +
d
∑

j=1

D j [γ (
)
j (s, ·, z)μ]

}

ν
 (dz) ,

and

A∗
1μ = −

d
∑

j=1

D j [β1, jμ].

and

A∗
2μ = μ(γ (1)) − μ.

We can now state a verification theorem for conditional McKean–Vlasov impulse
control problems, providing sufficient conditions that a given function is the value
function and a given impulse control is optimal. The verification theorem links the
impulse control problem to a suitable system of quasi-variational inequalities.
Since the process Y (t) is Markovian, we can, with appropriate modifications, use the
approach in Chapter 9 in [20].
For simplicity of notation, we will in the following write

Γ (y, ζ ) = (s, Γ (x, ζ ), μΓ (x,ζ )), when y = (s, x, μ) ∈ [0,∞) × L2(P) × M.
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Theorem 4.2 Variational inequalities for conditional McKean–Vlasov impulse control

(a) Suppose we can find φ : S̄ → R such that

(i) φ ∈ C1(S) ∩ C(S̄).
(ii) φ ≥ Mφ on S. Define

D = {y ∈ S;φ(y) > Mφ(y)} (the continuation region).

Assume

(iii) E
y
[∫ τS

0
Y (v)(t)1∂ Ddt

]

= 0 for all y ∈ S, v ∈ V , i.e. the amount of time

Y (t) spends on ∂ D has Lebesgue measure zero.
(iv) ∂ D is a Lipschitz surface.
(v) φ ∈ C (1,2,2)(S \ ∂ D) with locally bounded derivatives near ∂ D. ((iv)-(v) are

needed for the approximation argument in the proof).
(vi) Lφ + f ≤ 0 on S \ ∂ D.
(vii) φ(y) = g(y) for all y /∈ S.
(viii) {φ−(Y (v)(τ )); τ ∈ T } is uniformly integrable, for all y ∈ S, v ∈ V .

(ix) E
y
[

|φ(Y (v)(τ ))| +
∫ τS

0
|Lφ(Y (v)(t))|dt

]

< ∞ for all τ ∈ T , v ∈ V, y ∈ S.

Then,

φ(y) ≥ Φ(y) for all y ∈ S.

(b) Suppose in addition that

(x) Lφ + f = 0 in D.
(xi) ζ̂ (y) ∈ Argmax{φ(Γ (y, ·)) + K (y, ·)} ∈ Z exists for all y ∈ S and ζ̂ (·) is a

Borel measurable selection.
Put τ̂0 = 0 and define v̂ = (τ̂1, τ̂2, . . . ; ζ̂1, ζ̂2, . . .) inductively by
τ̂ j+1 = inf{t > τ̂ j ; Y (v̂ j )(t) /∈ D} ∧ τS and ζ̂ j+1 = ζ̂ (Y (v̂ j )(τ̂−

j+1)) if τ̂ j+1 <

τS , where Y (v̂ j ) is the result of applying v̂ j := (τ̂1, . . . , τ̂ j ; ζ̂1, . . . , ζ̂ j ) to Y .
Suppose

(xii) τ̂ j+1 > τ̂ j for all j , v̂ ∈ V and {φ(Y (v̂)(τ )); τ ∈ T } is uniformly integrable.
Then,

φ(y) = Φ(y) and v̂ is an optimal impulse control .

Remark 4.1 We give the intuitive idea behind intervention operator as in (16):

MΦ(y) = sup
ζ∈Z

{Φ(Γ (y, ζ )) + K (y, ζ ), ζ ∈ Z and Γ (y, ζ ) ∈ S}.

Assume that the value function Φ is known. If y = (s, x, μ) is the current state of
the process, and the agent intervenes with impulse of size ζ , the resulting value can
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be represented as Φ(Γ (y, ζ )) + K (y, ζ ), consisting of the sum of the value of Φ in
the new state Γ (y, ζ ) and the intervention profit K . Therefore,MΦ(y) represents the
optimal new value if the agent decides to make an intervention at y.
Note that by (i i), Φ ≥ MΦ on S, so it is always not optimal to intervene. At the time
τ̂ j , the operator should intervene with impulse ζ̂ j when the controlled process leaves
the continuation region, that is when Φ(Y v̂ j ) ≤ MΦ(Y v̂ j ).

Proof (a) By an approximation argument (see, e.g. Theorem 3.1 in [20]) and (iii)–(v),
we may assume that φ∈C2(S) ∩ C(S̄).
Choose v=(τ1, τ2, . . . ; ζ1, ζ2, . . .)∈V and set τ0 = 0.By approximating the stopping
times τ j by stopping times with finite expectation, we may assume that we can apply
the Dynkin formula to the stopping times τ j . Then for j = 0, 1, 2, . . ., with Y = Y (v)

E
y[φ(Y (τ j ))] − E

y[φ(Y̌ (τ−
j+1))] = −E

y

[

∫ τ j+1

τ j

Lφ(Y (t))dt

]

,

where Y̌ (τ−
j+1) = Y (τ−

j+1) + ΔN Y (τ j+1), as before. Summing this from j = 0 to
j = m, we get

φ(y) +
m
∑

j=1

E
y[φ(Y (τ j )) − φ(Y̌ (τ−

j ))] − E
y[φ(Y̌ (τ−

m+1))]

= −E
y
[∫ τm+1

0
Lφ(Y (t))dt

]

≥ E
y
[∫ τm+1

0
f (Y (t))dt

]

. (17)

Now

φ(Y (τ j )) = φ(Γ (Y̌ (τ−
j ), ζ j ))

≤ Mφ(Y̌ (τ−
j )) − K (Y̌ (τ−

j ), ζ j ); if τ j < τS by (16),

and

φ(Y (τ j )) = φ(Y̌ (τ−
j )); if τ j = τS by (vi i).

Therefore,

Mφ(Y̌ (τ−
j )) − φ(Y̌ (τ−

j )) ≥ φ(Y (τ j )) − φ(Y̌ (τ−
j )) + K (Y̌ (τ−

j ), ζ j ),

and

φ(y) +
m
∑

j=1

E
y[{Mφ(Y̌ (τ−

j )) − φ(Y̌ (τ−
j ))}1[τ j <τS ]]

≥ E
y

⎡

⎣

∫ τm+1

0
f (Y (t))dt + φ(Y̌ (τ−

m+1)) +
m
∑

j=1

K (Y̌ (τ−
j ), ζ j )

⎤

⎦ .
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Letting m → M and using quasi-left continuity, i.e. left continuity along increasing
sequences of stopping times, of Y (·), we get

φ(y) ≥ E
y

⎡

⎣

∫ τS

0
f (Y (t))dt + g(Y (τS))1[τS<∞] +

M
∑

j=1

K (Y̌ (τ−
j ), ζ j )

⎤

⎦= J (v)(y).

(18)

Hence, φ(y) ≥ Φ(y).
(b) Next assume (x)–(xii) also hold.
Apply the above argument to v̂ = (τ̂1, τ̂2, . . . ; ζ̂1, ζ̂2, . . .). Then by (x), we get equality
in (17) and by our choice of ζ j = ζ̂ j , we have equality in (18). Hence

φ(y) = J (v̂)(y),

which combined with (a) completes the proof. 
�

5 Example: Optimal Stream of Dividends Under Transaction Costs

One of the motivations for studying conditional McKean–Vlasov equations is that
they represent natural models for stochastic systems where there is an underlying
common noise, observable by all. This common noise could come from various types
of uncertainty, e.g. uncertainty in the information available or unpredictable mechan-
ical disturbances, e.g. market volatility, interest rate fluctuations, etc. Conditional
McKean–Vlasov equations may therefore be regarded as a special class of systems
subject to noisy observations, and they represent an alternative to filtering theory
approaches.
In particular, such equations may be relevant the modelling of systems with noise in
economics and finance.

Consider a company that wants to find the best way to distribute dividends to its
shareholders while taking into account transaction costs. In this section, we illus-
trate our general results above by solving explicitly a financial problem, consisting
of optimizing the overall anticipated dividend sum while considering the impact of
transaction costs.
To this end, for v = (τ1, τ2, . . . ; ζ1, ζ2, . . .) with ζi ∈ R+, we define

Y (v)(t) = (s + t, X (v)(t), μ(v)
t )

where X(t) = X (v)(t) denotes the value at time t of a company. We assume that
between the intervention (dividend payout) times τi , τi+1 the growth of the value is
proportional to the conditional current value E[X(t)|Gt ] given the common informa-

123



Journal of Optimization Theory and Applications (2024) 200:1100–1130 1121

tion Gt , and satisfies the following conditional McKean–Vlasov equation:

dX(t) = E [X(t) | Gt ]
(

α0dt + σ1dB1(t)

+ σ2dB2(t) +
∫

R

κ1(z)˜N1(dt, dz) +
∫

R

κ2(z)˜N2(dt, dz)
)

,

μ
(v)
t = L(X (v)(t)|Gt ); τi < t < τi+1,

X (v)(τi+1) = X̌ (v)(τ−
i+1) − (1 + λ)ζi+1 − c,

μ(v)
τi+1

= L(X (v)(τi+1)|Gτi+1); i = 0, 1, 2, . . . ,

X (v)(0−) = x > 0; a.s.

Here α0, σ1 �= 0, σ2 �= 0 are given constants, and we assume that the functions κi

satisfy −1 < κi (z) a.s. νi (dz) and
∫

R
|κi (z)|2νi (dz) < ∞; i = 1, 2.

Note that at any time τi , i = 0, 1, 2, . . . , the system jumps from X̌ (v)(τ−
i ) to

X (v)(τi ) = Γ [X̌ (v)(τ−
i ), ζi ] = X̌ (v)(τ−

i ) − (1 + λ)ζi − c,

where λ ≥ 0, and c > 0 and the quantity c + λζi represents the transaction cost with
a fixed part c and a proportional part λζi , while ζi is the amount we decide to take out
at time τi .
At the same time μτ−

i
jumps to

μτi = L(X̌ (v)(τ−
i )|Gτi ).

Problem 5.1 We want to find Φ and v∗ ∈ V , such that

Φ(s, x, μ) = sup
v

J (v)(s, x, μ) = J (v∗)(s, x, μ),

where

J (v)(s, x, μ) = J (v)(y) = E
y

[

∑

τk<τS
e−ρ(s+τk )ζk

]

(ρ > 0 constant)

is the expected discounted total dividend up to time τS , where

τS = τS(ω) = inf{t > 0; P y[Ey[X (v)(t)|Gt ] ≤ 0] > 0}

is the time of bankruptcy.
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To put this problem into the context above, we define

Y (v)(t) =
⎡

⎣

s + t
X (v)(t)

μ
(v)
t

⎤

⎦ , Y (v)(0−) =
⎡

⎣

s
x
μ

⎤

⎦ = y,

Γ (y, ζ ) = Γ (s, x, μ) = (s, x − c − (1 + λ)ζ,L(x − c − (1 + λ)ζ )|G), x ∈ L2(P),

K (y, ζ ) = e−ρsζ,

f ≡ g ≡ 0,

S =
{

y = (s, x, μ);Ey[X (v)(s)|Gs] > 0 a.s.
}

.

Comparing with our theorem, we see that in this case we have d = 1, m = 2, k = 1
and

α1 = α0 〈μ, q〉 , β1 = σ1 〈μ, q〉 ,

β2 = σ2 〈μ, q〉 , γ1(s, x, μ, z) = κ1(z)〈μ, q〉, γ2(s, x, μ, z)

= κ2(z)〈μ, q〉,

where we have put q(x) = x so that 〈μt , q〉 = E [X(t) | Gt ] .
Therefore, the operator L takes the form

Lϕ(s, x, μ) = ∂ϕ

∂s
+ α0 〈μ, q〉 ∂ϕ

∂x
+ 〈∇μϕ, A∗

0μ
〉

+ 1
2 (σ

2
1 + σ 2

2 ) 〈μ, q〉2 ∂2ϕ

∂x2
+ 1

2
σ1 〈μ, q〉 ∂

∂x

〈∇μϕ, A∗
1μ

〉

+ 1
2

〈

A∗
1μ,

〈

D2
μϕ, A∗

1μ
〉〉

+
∫

R

{

ϕ(s, x + κ1(z)〈μ, q〉, μ + A∗
2μ) − ϕ(s, x, μ)

−κ1(z) 〈μ, q〉 ∂

∂x
ϕ(s, x, μ)

−〈A∗
2μ, Dμϕ〉} ν1(dz) +

∫

R

{

ϕ(s, x + κ2(z)〈μ, q〉, μ) − ϕ(s, x, μ)

− κ2(z)〈μ, q〉 ∂
∂x ϕ(s, x, μ)

}

ν2(dz),

where

A∗
0μ = −D[α0 〈μ, q〉 μ] + 1

2 D2[(σ 2
1 + σ 2

2 ) 〈μ, q〉2 μ],
A∗
1μ = −D[σ1 〈μ, q〉 μ]

and

A∗
2μ = μ(κ1〈μ,q〉) − μ.
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The adjoints of the first two operators are

A0μ = α0 〈μ, q〉 Dμ + 1
2 (σ

2
1 + σ 2

2 ) 〈μ, q〉2 D2μ,

and

A1μ = σ1 〈μ, q〉 Dμ.

In this case, the intervention operator becomes

Mh(s, x, μ) = sup
ζ

{

h(s, x − c − (1 + λ)ζ, μx−c−(1+λ)ζ ) + e−ρtζ ; 0 ≤ ζ ≤ x − c

1 + λ

}

.

Note that the condition on ζ is due to the fact that the impulse must be positive and
x − c − (1 + λ)ζ must belong to S. We distinguish between two cases:
Case 1. α0 > ρ.
In this case, suppose we wait until some time t1 and then take out

ζ1 = X(t1) − c

1 + λ
.

Noting that Ey[X(t)] = x exp(α0t) for t < t1, we see that the corresponding perfor-
mance is:

J (v1)(s, x, μ) = E
y
[

e−ρ(t1+s)

1 + λ
(X(t1) − c)

]

= E
x
[

1

1 + λ

(

xe−ρse(α0−ρ)t1 − c e−ρ(s+t1)
)

]

→ ∞ as t1 → ∞.

Therefore, we obtain Φ(s, x, μ) = +∞ in this case.
Case 2. α0 < ρ.
We look for a solution by using the results of Theorem 4.2.
We guess that the continuation region is of the form

D = {(s, x, μ) : 0 < 〈μ, q〉 < x̄}

for some x̄ > 0 (to be determined), and in D we try a value function of the form

ϕ(s, x, μ) = e−ρsψ(〈μ, q〉).

This gives
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Lϕ(s, x, μ) = e−ρs L0ψ(〈μ, q〉), where

L0ψ(〈μ, q〉) = −ρψ(〈μ, q〉) + 〈∇μψ, A∗
0μ

〉 + 1

2
σ1 〈μ, q〉 ∂

∂x

〈∇μψ, A∗
1μ

〉

+ 1

2

〈

A∗
1μ,

〈

D2
μψ, A∗

1μ
〉〉

+
∫

R

{

ψ(〈μ(κ1〈μ,q〉), q〉) − ψ(〈μ, q〉) − 〈μ(κ1〈μ,q〉) − μ, Dμψ〉
}

ν1(dζ ).

By the chain rule for Fréchet derivatives (see Appendix), we have

∇μψ(h) = ψ ′(〈μ, q〉)〈h, q〉 and D2
μψ(h, k) = ψ ′′(〈μ, q〉)〈h, q〉〈k, q〉.

Therefore,

〈∇μψ, A∗
0μ〉 = ψ ′(〈μ, q〉)〈A∗

0μ, q〉 = ψ ′(〈μ, q〉)〈μ, A0q〉 = ψ ′(〈μ, q〉)α0〈μ, q〉,
and similarly

1
2 〈A∗

1μ, 〈D2
μψ, A∗

1μ〉〉 = 1
2ψ ′′(〈μ, q〉〈A∗

1μ, q〉〈A∗
1μ, q〉 = 1

2ψ ′′(〈μ, q〉)〈μ, A1q〉〈μ, A1q〉
= 1

2ψ ′′(〈μ, q〉)σ 2
1 〈μ, q〉2.

Moreover, since ψ does not depend on x we see that

∫

R

{

ϕ(s, x + γ0 〈μ, q〉 , μ) − ϕ(s, x, μ) − γ0 〈μ, q〉 ∂ϕ

∂x
(s, x, μ)

}

ν1(dz) = 0.

Substituting this into the expression for L0ψ we get, with u = 〈μ, q〉,

L0ψ(u) = −ρψ(u) + α0uψ ′(u) + 1
2σ

2
1 u2ψ ′′(u)

+
∫

R

{

ψ(〈μ(κ1〈μ,q〉), q〉) − ψ(〈μ, q〉) − ψ ′(u)〈μ(κ1〈μ,q〉) − μ, q〉
}

ν1(dz)

= −ρψ(u) + α0uψ ′(u) + 1
2σ

2
1 u2ψ ′′(u)

+
∫

R

{

ψ((1 + κ1)u) − ψ(u) − κ1uψ ′(u)
}

ν1(dz), (19)

where we have used that

〈μ(κ1〈μ,q〉), q〉 =
∫

R

q(x + κ1〈μ, q〉)μ(dx)

=
∫

R

xμ(dx) + κ1〈μ, q〉 = 〈μ, q〉 + κ1〈μ, q〉 = (1 + κ1)〈μ, q〉,

so that

〈μ(κ1〈μ,q〉) − μ, q〉 = κ1〈μ, q〉.
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By condition (x), we are required to have L0ψ(u) = 0 for all u ∈ (0, x̄). Note that by
(19) we get that if we try the function ψ(u) = ua for some a ∈ R, then

L0ψ(u) =
[

− ρ + aα0 + 1
2a(a − 1)σ 2

1 +
∫

R

{(1 + κ1(z))
a − 1 − aκ1(z)}ν1(dz)

]

ua .

Therefore, if we choose a = â such that

−ρ + âα0 + 1
2 â(â − 1)σ 2

1 +
∫

R

{(1 + κ1(z))
â − 1 − âκ1(z)}ν1(dz) = 0 (20)

then for all constants C the function

ψ(u) = Cuâ (21)

is a solution of the equation

L0ψ(u) = 0.

Define

F(a) = −ρ + aα0 + 1
2a(a − 1)σ 2

1 +
∫

R

{(1 + κ1(z))
a − 1 − aκ1(z)}ν1(dz); a ∈ R.

Then we see that F(1) = α0 − ρ < 0, F ′(a) > 0 for a ≥ 1 and F(a) → ∞ when
a → ∞. Therefore, there exists a unique a = â > 1 such that F(â) = 0. Since we
expect ψ to be bounded near 0, we choose this exponent â in the Definition (21) of ψ .
It remains to determine C .
We guess that it is optimal to wait till u = 〈μt , q〉 = E

y[X(t)|Gt ] reaches or exceeds
a value u = ū > c and then take out as much as possible, i.e. reduce Ey[X(t)|Gt ] to
0. Taking the transaction costs into account, this means that we should take out

ζ̂ (u) = u − c

1 + λ
for u ≥ ū.

We therefore propose that ψ(u) has the form

ψ(u) =
⎧

⎨

⎩

Cuâfor 0 < u < ū,
u − c

1 + λ
for u ≥ ū.

(22)

Continuity and differentiability of ψ(u) at u = ū give the equations

Cūâ = ū − c

1 + λ
and Câūâ−1 = 1

1 + λ
.
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Combining these, we get

ū = âc

â − 1
and C = ū − c

1 + λ
ū−â .

With these values of ū and C , we have to verify that

ϕ(s, x, μ) = e−ρsψ(〈μ, q〉)

with ψ given by (22) satisfies all the requirements of Theorem 4.2. We check some of
them:
(ii) ϕ ≥ Mϕ on S:
In our case, we have

Γ (s, X , μ) = (s, X − c − (1 + λ)ζ, μX−c−(1+λ)ζ ),

and hence we get

Mϕ(s, X , μ) = sup
ζ

{

ϕ(s, X − c − (1 + λ)ζ ), μX−c−(1+λ)ζ ) + e−ρsζ ; 0 ≤ ζ ≤ ū − c

1 + λ

}

= e−ρs sup
ζ

{

C〈μX−c−(1+λ)ζ , q〉â + ζ ; 0 ≤ ζ ≤ ū − c

1 + λ

}

= e−ρs sup
ζ

{

C(〈μ, q(x) − c − (1 + λ)ζ 〉â + ζ ; 0 ≤ ζ ≤ ū − c

1 + λ

}

= e−ρs sup
ζ

{

C(〈μ, q〉 − c − (1 + λ)ζ )â + ζ ; 0 ≤ ζ ≤ ū − c

1 + λ

}

.

If u − c − (1 + λ)ζ ≥ ū, then

ψ(u − c − (1 + λ)ζ ) + ζ = u − 2c

1 + λ
<

u − c

1 + λ
= ψ(u),

and if u − c − (1 + λ)ζ < ū then

h(ζ ) := ψ(u − c − (1 + λ)ζ ) + ζ = C(u − c − (1 + λ)ζ )â + ζ.

Since

h′
(

u − c

1 + λ

)

= 1 and h′′(ζ ) > 0,

we see that the maximum value of h(ζ ); 0 ≤ ζ ≤ u − c

1 + λ
, is attained at ζ = ζ̂ (u) =

u − c

1 + λ
.
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Therefore,

Mψ(u) = max

(

x − 2c

1 + λ
,

u − c

1 + λ

)

= u − c

1 + λ
for all u > c.

Hence, Mψ(u) = ψ(u) for u ≥ ū.
For 0 < u < ū, consider

k(u) := Cuâ − u − c

1 + λ
.

Since

k(ū) = k′(ū) = 0 and k′′(u) > 0 for all u,

we conclude that

k(u) > 0 for 0 < u < ū.

Hence,

ψ(u) > Mψ(u) for 0 < u < ū.

(vi) L0ψ(u) ≤ 0 for u ∈ S\D̄, i.e. for u > ū:
For u > ū, we have ψ(u) = u−c

1+λ
, and therefore, since α0 < ρ,

L0ψ(u) = −ρ
u − c

1 + λ
+ α0u

1

1 + λ
= (α0 − ρ)u + ρc

1 + λ
≤ (α0 − ρ)ū + ρc

1 + λ

=
(α0 − ρ) âc

(â−1 + ρc

1 + λ
= (α0â − ρ)c

(1 + λ)(â − 1)
< 0,

since 1 < â <
ρ
α0

.

Therefore, we have proved the following:

Theorem 5.1 The value function for Problem 5.1 is

Φ(s, x, μ) =
⎧

⎨

⎩

e−ρsCuâ for 0 < u < ū,

e−ρs u − c

1 + λ
for u ≥ ū,

where u = 〈μ, q〉 = E[X(t)|Gt ] and

ū = âc

â − 1
and C = ū − c

1 + λ
ū−â,
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â being the positive solution of Eq. (20). The optimal impulse control is to do nothing
while u = E[X(t)|Gt ] < ū and take out immediately

ζ̂ (u) = u − c

1 + λ
when u ≥ ū.

This brings E[X(t)|Gt ] down to 0, and the system stops. Hence, the optimal impulse
consists of at most one intervention.
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Appendix: Double Fréchet Derivatives

In this section, we recall some basic facts we are using about the Fréchet derivatives
of a function f : V �→ W , where V , W are given Banach spaces.

Definition 1 We say that f has a Fréchet derivative ∇x f = D f (x) at x ∈ V if there
exists a bounded linear map A : V �→ W such that

lim
h→0

|| f (x + h) − f (x) − A(h)||W
||h||V = 0.

Then we call A the Fréchet derivative of f at x and we put D f (x) = A.

Note that D f (x) ∈ L(V , W ) (the space of bounded linear functions from V to W ),
for each x .

Definition 2 We say that f has a double Fréchet derivative D2 f (x) at x if there exists
a bounded bilinear map A(h, k) : V × V �→ W such that

lim
k→0

||D f (x + k)(h) − D f (x)(h) − A(h, k)||W
||h||V = 0.

Example 1 – Suppose f : M �→ R is given by

f (μ) = 〈μ, q〉2, where q(x) = x .
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Then

f (μ + h) − f (μ) = 〈μ + h, q〉2 − 〈μ, q〉2
= 2〈μ, q〉〈h, q〉 + 〈h, q〉2,

so we see that

D f (μ)(h) = 2〈μ, q〉〈h, q〉.

To find the double derivative, we consider

D f (μ + k)(h) − D f (μ)(h)

= 2〈μ + k, q〉〈h, q〉 − 2〈μ, q〉〈h, q〉
= 2〈k, q〉〈h, q〉,

and we conclude that

D2 f (μ)(h, k) = 2〈k, q〉〈h, q〉.

– Next assume that g : M �→ R is given by g(μ) = 〈μ, q〉. Then, proceeding as
above we find that

Dg(μ)(h) = 〈h, q〉 (independent of μ)

and

D2g(μ) = 0.
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