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Abstract
This work considers the non-convex finite-sum minimization problem. There are sev-
eral algorithms for such problems, but existing methods often work poorly when the
problem is badly scaled and/or ill-conditioned, and a primary goal of this work is
to introduce methods that alleviate this issue. Thus, here we include a preconditioner
based onHutchinson’s approach to approximating the diagonal of theHessian and cou-
ple it with several gradient-based methods to give new ‘scaled’ algorithms: Scaled
SARAH andScaled L-SVRG. Theoretical complexity guarantees under smoothness
assumptions are presented. We prove linear convergence when both smoothness and
the PL-condition are assumed. Our adaptively scaled methods use approximate partial
second-order curvature information and, therefore, can better mitigate the impact of
badly scaled problems. This improved practical performance is demonstrated in the
numerical experiments also presented in this work.
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1 Introduction

This work considers the following, possibly nonconvex, finite-sum optimization prob-
lem:

min
w∈Rd

{
P(w) = 1

n

n∑
i=1

fi (w)

}
, (1)

where w ∈ R
d is the model/weight parameter and the loss functions fi : Rd → R

∀i ∈ [n] := {1 . . . n} are smooth and twice differentiable. Throughout this work,
it is assumed that (1) has an optimal solution, with a corresponding optimal value,
denoted by w∗, and P∗ = P(w∗), respectively. Problems of the form (1) cover a
plethora of applications, including empirical risk minimization, deep learning, and
supervised learning tasks such as regularized least squares or logistic regression [28].
This minimization problem can be difficult to solve, particularly when the number of
training samples n, or problem dimension d, is large, or if the problem is nonconvex.

Stochastic gradient descent (SGD) is one of the most widely known methods for
problem (1), and its origins date back to the 1950s with the work [26]. The explosion
of interest in machine learning has led to an immediate need for reliable and efficient
algorithms for solving (1). Motivated by, and aiming to improve upon, vanilla SGD,
many novel methods have already been developed for convex and/or strongly convex
instances of (1), including SAG/SAGA [2, 16], SDCA [29], SVRG [13, 31], S2GD
[15] and SARAH [21], to name just a few. In general, these methods are simple,
have low per iteration computational costs, and are often able to find an ε-optimal
solution to (1) quickly, when ε > 0 is not too small. However, they often have several
hyper-parameters that can be difficult to tune, they can struggle when applied to ill-
conditioned problems, and many iterations may be required to find a high accuracy
solution.

Non-convex instances of the optimization problem (1) (for example, arising from
deep neural networks (DNNs)) have been diverting the attention of researchers of late,
and new algorithms are being developed to fill this gap [7, 8, 17, 19]. Of particular
relevance to this work is the PAGE algorithm presented in [18]. The algorithm is
conceptually simple, involving only one loop, and a small number of parameters,
and can be applied to non-convex problems (1). The main update involves either a
minibatch SGD direction, or the previous gradient with a small adjustment (similar
to that in SARAH [21]). The Loopless SVRG (L-SVRG) method [9, 24], is also
of particular interest here. It is a simpler ‘loopless’ variant of SVRG, which, unlike
for PAGE, involves an unbiased estimator of the gradient, and it can be applied to
non-convex instances of problem (1).

For problems that are poorly scaled and/or ill-conditioned, second-order methods
that incorporate curvature information, such as Newton or quasi-Newton methods
[4, 6, 22], can often outperform first-order methods. Unfortunately, they can also
be prohibitively expensive, in terms of both computational and storage costs. There
are several works that have tried to reduce the potentially high cost of second-order
methods by using only approximate, or partial curvature information. Some of these
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stochastic second-order and quasi-Newton [10, 11]methods have showngoodpractical
performance for some machine learning problems, although, possibly due to the noise
in theHessian approximation, sometimes they perform similarly to first-order variants.

An alternative approach to enhancing search directions is to use a preconditioner.
There are several methods for problems of the form (1), which use what we call a ‘first-
order preconditioner’—a preconditioner built using gradient information—including
Adagrad [5], RMSProp [30], and Adam [14]. Adagrad [5] incorporates a diagonal
preconditioner that is built using accumulated gradient information from the previ-
ous iterates. The preconditioner allows every component of the current gradient to be
scaled adaptively, but it has the disadvantage that the elements of the preconditioner
tend to grow rapidly as iterations progress, leading to a quickly decaying learning rate.
A method that maintains the ability to adaptively scale elements of the gradient, but
overcomes the drawback of a rapidly decreasing learning rate, is RMSProp. It does this
by including a momentum parameter, β2 in the update for the diagonal preconditioner.
In particular, at each iteration the updated diagonal preconditioner is taken to be a
convex combination (using a momentum parameter β2) of the (square) of the previous
preconditioner and the Hadamard product of the current gradient with itself. So, gra-
dient information from all the previous iterates is included in the preconditioner, but
there is a preference for more recent information. Adam [14] combines the positive
features of Adagrad and RMSProp, but it also uses a first moment estimate of the
gradient, providing a kind of additional momentum. Adam preforms well in practice
and is among the most popular algorithms for DNN.

Recently, second-order preconditioners that use approximate and/or partial curva-
ture information have been developed and studied. The approach in AdaHessian
[32] was to use a diagonal preconditioner that was motivated by Hutchinson’s approx-
imation to the diagonal of the Hessian [1], but that also stayed close to some of
the approximations used in existing methods such as Adam [14] and Adagrad [5].
Because of this, the approximation often differed markedly from the true diagonal of
theHessian, and therefore, it did not always capture goodenoughcurvature information
to be helpful. The work OASIS [12] proposed a preconditioner that was closely based
upon Hutchinson’s approach, provided a more accurate estimation of the diagonal of
the Hessian, and correspondingly led to improved numerical behavior in practice. The
preconditioner presented in [12] is adopted here.

1.1 Notation and Assumptions

Given a positive definite (PD) matrix D ∈ R
d×d , the weighted Euclidean norm is

defined to be ‖x‖2D = xT Dx , where x ∈ R
d . The symbol � denotes the Hadamard

product, and diag(x) denotes the d × d diagonal matrix whose diagonal entries are
the components of the vector x ∈ R

d .
Recall that problem (1) is assumed to have an optimal (probably not a unique)

solution w∗, with corresponding optimal value P∗ = P(w∗). As is standard for
stochastic algorithms, the convergence guarantees presented in this work will develop
a bound on the number of iterations T , required to push the expected squared norm of
the gradient below some error tolerance ε > 0, i.e., to find a ŵT satisfying
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Table 1 Comparison of scaled methods for non-convex problems

Method References Convergence Tuning of β2

Adagrad [3, 5, 33] ε−4 +

RMSProp [30] No theory

Adam [3, 14] ε−4 -

AdaHessian [32] No theory

OASIS [12] ε−4 +

Scaled SARAH This work ε−2 +

Scaled L-SVRG This work ε−2 +

ε denotes solution accuracy (2). The ‘Tuning of β2’ column shows whether it is easy (‘+’), or difficult (‘ -’)
to tune β2. Our preconditioner (6) works with any β2. Adam only supports certain large β ≈ 1 [3, 25]

E[‖∇P(ŵT )‖22] ≤ ε2. (2)

A point ŵT satisfying (2) is referred to as an ε-optimal solution. Importantly, ŵT is
some iterate generated in the first T iterations of each algorithm, but it is not necessarily
the T th iterate.
Throughout this work, we assume that each fi : Rd → R and P : Rd → R are twice
differentiable and also L-smooth. This is formalized in the following assumption.

Assumption 1.1 (L-smoothness) For all i ∈ [n] fi and P are assumed to be twice
differentiable and L-smooth, i.e., ∀i ∈ [n],∀w,w′ ∈ dom( fi ) we have ‖∇ fi (w) −
∇ fi (w′)‖ ≤ L‖w − w′‖, and ∀w,w′ ∈ dom(P) we have ‖∇P(w) − ∇P(w′)‖ ≤
L‖w − w′‖.
For some of the results in this work, it will also be assumed that the function P satisfies
the PL-condition. Note that the PL-condition does not imply convexity (see Footnote 1
in [18]).

Assumption 1.2 (Polyak-Łojasiewicz condition) A function P : Rd → R satisfies the
PL-condition if there exists μ > 0, such that ‖∇P(w)‖2 ≥ 2μ(P(w) − P∗), ∀w ∈
R
d .

Note that in the case of the PL assumption, we can use the following definition of
ε-optimal solution instead of (2):

E[P(ŵT ) − P∗] ≤ ε. (3)

1.2 Contributions

The main contributions of this work are stated below and are summarized in Tables 1
and 2.
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Table 2 A summary of the main
results of this work

Scaled SARAH Scaled L-SVRG

NC O
(
n + �

α

√
nL�0
ε2

)
O

(
n + �

α
n2/3L�0

ε2

)

PL O
(
max

{
n, �

α
√
n L

μ

}
log

�0
ε

)
O

(
max

{
n, �

α n2/3 L
μ

}
log

�0
ε

)

Complexities for Scaled SARAH and Scaled L-SVRG are given
for nonconvex problems (first row), and under the PL assumption (sec-
ond row)
L = smoothness constant, μ = PL constant, ε = solution accuracy (2),
�0 = P(w0)−P∗, n = data size, and�, α are upper and lower bounds
of the Hessian approximation

• Scaled SARAH We present a new algorithm called Scaled SARAH, which is
a combination of the SARAH [21] and PAGE [18] algorithms, coupled with the
diagonal preconditioner from [12]. The inclusion of the preconditioner results
in adaptive scaling of every element of the search direction (negative gradient),
which leads to improved practical performance, particularly on ill-conditioned and
poorly scaled problems. The algorithm is simple (a single loop) and is easy to tune
(Sect. 3).

• Scaled L-SVRG The Scaled L-SVRG algorithm is also presented, which is
similar to L-SVRG, but with the addition of the diagonal preconditioner [12].
Again, the preconditioner allows all elements of the gradient to be scaled adap-
tively, the algorithm uses a single loop structure, and for this algorithm an unbiased
estimate of the gradient is used. The inclusion of adaptive local curvature infor-
mation via the preconditioner leads to improvements in practical performance.

• Convergence Guarantees Theoretical guarantees show that both Scaled
SARAH and Scaled L-SVRG converge and we present an explicit bound for
the number of iterations required by each algorithm to obtain an iterate that is
ε-optimal. Convergence is guaranteed for both Scaled SARAH and Scaled
L-SVRG under a smoothness assumption on the functions fi . If both smoothness
and the PL-condition hold, then improved iteration complexity results forScaled
SARAH and Scaled L-SVRG are obtained, which show that expected function
value gap converges to zero at a linear rate (see Theorems 3.2 and 4.2). Our
scaled methods achieve the best known rates of all methods with preconditioning
for non-convex deterministic and stochastic problems, and Scaled SARAH and
Scaled L-SVRG are the first preconditioned methods that achieve a linear rate
of convergence under the PL assumption (see a detailed comparison in Sect. 5).

• Numerical Experiments Extensive numerical experiments were performed
(Sect. 6 and Appendix of the full version of the paper [27]) under various parame-
ter settings to investigate the practical behavior of our new scaled algorithms. The
inclusion of preconditioning in Scaled SARAH and Scaled L-SVRG led to
improvements in performance compared with no preconditioning in several of
the experiments, and Scaled SARAH and Scaled L-SVRGwere competitive
with, and often outperformed, Adam.
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Paper Outline This paper is organized as follows. In Sect. 2 we describe the diago-
nal preconditioner that will be used in this work. In Sect. 3, we describe a newScaled
SARAH algorithm and present theoretical convergence guarantees. In Sect. 5, we
discuss our results for the Scaled SARAH method and compare it with other state-
of-the-art methods. In Sect. 4, we introduce the Scaled L-SVRG algorithm, which
adapts theL-SVRG algorithm to include a preconditioner.Wepresent numerical exper-
iments demonstrating the practical performance of our proposed methods in Sect. 6.
Concluding remarks are given in Sect. 7. All proofs, additional numerical experiments,
and further details and discussion can be found in the appendix of the full version of
the paper [27].

2 Diagonal Preconditioner

In this section, we describe the diagonal preconditioner that is used in this work. The
paper [1] described Hutchinson’s approximation to the diagonal of the Hessian, and
this provided motivation for the diagonal preconditioner proposed in [12], which is
adopted here. In particular, given an initial approximation D0, (to be described soon),
andHessian approximationmomentum parameter β ∈ (0, 1) (equivalent to the second
moment hyperparameter, β2 in Adam [14]), for all t ≥ 1,

Dt = βDt−1 + (1 − β)diag
(
zt � ∇2PJt (wt )zt

)
, (4)

where zt is a randomvectorwithRademacher distribution,1 Jt is an index set randomly
sampled from [n], and

∇2PJt (wt ) = 1

|Jt |
∑
j∈Jt

∇2 f j (wt ). (5)

Finally, for α > 0 (where the parameter α > 0 is equivalent to the parameter ε in
Adam [14] and AdaHessian [32]), the diagonal preconditioner is:

(
D̂t

)
i,i

= max{α, |Dt |i,i }. (6)

The expression (6) ensures that the preconditioner D̂t is always PD, so it is well-
defined and results in a descent direction. The absolute values are necessary because
the objective function is potentially nonconvex, so the batch Hessian approximation
could be indefinite. In fact, even if the Hessian is PD, Dt in (4) may still contain
negative elements due to the sampling strategy used.

The preconditioner (6) is a good estimate of the diagonal of the (batch) Hessian
because Hutchinson’s updating formula (4) is used. Hence, it captures accurate cur-
vature information, which is helpful for poorly scaled and ill-conditioned problems.

1 i.e., the components of the zt are ±1 with equal probability.
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Because the preconditioner is diagonal it is easy and inexpensive to apply it’s inverse,
and the associated storage costs are low.

The preconditioner (4)+(6) depends on the parameter β: if β = 1 then the precon-
ditioner is fixed for all iterations, whereas if β = 0 then the preconditioner is simply
a kind of sketched batch Hessian. Taking 0 < β < 1 gives a convex combination
of the previous approximation and the current approximation, thereby ensuring that
the entire history is included in the preconditioner, but is damped by β, and the most
recent information is also present.

The main computational cost of the approximation in (4) is the (batch) Hessian
vector product ∇2PJt (wt )zt . Fortunately, this can be efficiently calculated using two
rounds of back propagation. Moreover, the preconditioner is matrix-free, simply need-
ing an oracle to return the Hessian vector product, but it does not need explicit access
to the batch Hessian itself; see Appendix B in [12]. Therefore, the costs (both compu-
tational and storage) for this preconditioner are not burdensome.

As previously mentioned, the approximation (4) requires an initial estimate D0 of
the diagonal of the Hessian, and this is critical to the success of the preconditioner. In
particular, one must take

D0 = 1

m

m∑
j=1

diag
(
z j � ∇2PJ j (w0)z j

)
, (7)

whereJ j denotes sampled batches and the vectors z j are generated fromaRademacher
distribution. This ensures that D̂t does indeed approximate the diagonal of theHessian;
see Section 3.3 in [12].

The following remark confirms that the diagonal preconditioner is both PD and
bounded.

Lemma 2.1 (See Remark 4.10 in [12]) For any t ≥ 1, we have α I � D̂t � � I , where
0 < α ≤ � = √

dL.

Note that Remark 4.10 is proved incorrectly in [12]. The proof is given in Appendix
of the full version of the paper. [27]

3 Scaled SARAH

Here we propose a new algorithm, Scaled SARAH, for finite-sum optimization (1).
Our algorithm is similar to the SARAH algorithm [21] and the PAGE algorithm [18],
but a key difference is that Scaled SARAH includes the option of a preconditioner,
D̂t for all t ≥ 0, with a preconditioned approximate gradient step. Scaled SARAH
is presented now as Algorithm 1.

In each iteration of Algorithm 1, an update is computed in Step 4. The point wt

is adjusted by taking a step in the direction D̂−1
t vt , of fixed step-size η. The vec-

tor vt approximates the gradient, and the preconditioner scales that direction. A key
difference between Scaled SARAH and PAGE/SARAH is the inclusion of the pre-
conditioner D̂−1

t in this step.
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Algorithm 1 Scaled SARAH

1: Input: initial point w0, learning rate η, preconditioner D̂0, probability p
2: v0 = ∇P(w0)

3: for t = 0, 1, 2, . . . do
4: wt+1 = wt − ηD̂−1

t vt

5: Generate independently batches it+1 for vt+1 and Jt for D̂t+1

6: vt+1 =
{

∇P(wt+1), with probability p

vt + ∇ fit+1 (wt+1) − ∇ fit+1 (wt ), with probability 1 − p

7: Update the preconditioner D̂t+1
8: end for
9: Output: ŵT chosen uniformly from {wt }Tt=0

Step 6 defines the next gradient estimator vt+1, for which there are two options.
With probability p the full gradient is used. Alternately, with probability 1− p, the new
gradient estimate is the previous gradient approximation vt , with an adjustment term
that involves the difference between the gradient of fi evaluated atwt+1 and atwt . The
search direction computed in Scaled SARAH contains gradient information, while
the preconditioner described in Sect. 2 contains approximate second-order informa-
tion. When this preconditioner is applied to the gradient estimate, each dimension is
scaled adaptively depending on the corresponding curvature. Intuitively, this ampli-
fies dimensions with low curvature (shallow loss surfaces), while damping directions
with high curvature (sharper loss surfaces). The aim is for D̂−1

t vt to point in a better,
adjusted direction, compared with vt .

Scaled SARAH is a single loop algorithm so it is conceptually simple. If p = 1,
then the algorithm always picks the first option in Step 6, so that Scaled SARAH
reduces to a preconditioned GD method. On the other hand, if p = 0, then only the
second option in Step 6 is used.

Notice that Scaled SARAH is a combination of both the PAGE and SARAH algo-
rithms, coupled with a preconditioner. SARAH [21] is a double loop algorithm, where
the inner loop is defined in the same way as update in Step 6. PAGE [18] is based upon
SARAH, but PAGE uses a single loop structure, and allows for minibatches to be used
in the gradient approximation vt+1 (rather than the single component as in Step 6).2

Scaled SARAH shares the same single loop structure as PAGE, but also shares the
same single component update for the gradient estimator as SARAH (no minibatches).
However, different from both PAGE and SARAH, Scaled SARAH uses a precondi-
tioner in Step 4.

In the remainder of thiswork,we focus on aparticular instance ofScaled SARAH,
which uses a fixed probability pt = p, and uses the diagonal preconditioner pre-
sented in Sect. 2. These choices have been made because a central goal of this work
is to understand the impact that a well-chosen preconditioner has on poorly scaled
problems. Convergence guarantees and the results of numerical experiments will be
presented using this set up.

2 Note that, while PAGE allows minibatches for either option in the update Step 6, most of the theoretical
results presented in [18] require the full gradient to be computed as the first option in Step 6.

123



Journal of Optimization Theory and Applications (2024) 201:471–489 479

Theoretical results for Scaled SARAH are presented now. In particular, we
present complexity bounds on the number of iterations required by Scaled SARAH
to obtain an ε-optimal solution for the non-convex problem (1) (recall Sect. 1.1with (2)
and (3)). The first result holds under Assumption 1.1, while the second theorem holds
under both smoothness and PL assumptions. First, we define the following step-size
bound:

η̄ = α

L
(
1 +

√
1−p
p

) . (8)

Theorem 3.1 Suppose that Assumption 1.1 holds, let ε > 0, let p denote the proba-
bility, and let the step-size satisfy η ≤ η̄ (8). Then, the number of iterations performed
by Scaled SARAH, starting from an initial point w0 ∈ R

d with �0 = P(w0)− P∗,
required to obtain an ε-approximate solution of the non-convex finite-sum problem (1)
can be bounded by

T = O
(

�

α

�0L

ε2

(
1 +

√
1 − p

p

))
.

Theorem 3.2 Suppose that Assumptions 1.1 and 1.2 hold, let ε > 0, and let the step-
size satisfy η ≤ η̄ (8). Then the number of iterations performed by Scaled SARAH
sufficient for finding an ε-approximate solution of non-convex finite-sum problem (1)
can be bounded by

T = O
(
max

{
1

p
,
L

μ

�

α

(
1 +

√
1 − p

p

)}
log

�0

ε

)
.

Note that this last theorem shows that Scaled SARAH exhibits a linear rate of
convergence under both the smoothness assumption and the PL-condition.

We know that Algorithm 1 calls the full gradient at the beginning (Step 2) and then
(in expectation) uses pn + (1 − p) stochastic gradients for each iteration (Step 6).
Thus, the number of stochastic gradient computations (i.e., gradient complexity) is
n+ T [pn+ (1− p)] and the following corollaries of Theorems 3.1 and 3.2 are valid.

Corollary 3.1 Suppose that Assumption 1.1 holds, let ε > 0, let p = 1
n+1 , and let

the step-size satisfy η ≤ η̄ (8). Then, the stochastic gradient complexity performed by
Scaled SARAH, starting from an initial point w0 ∈ R

d with �0 = P(w0) − P∗,
required to obtain an ε-approximate solution of the non-convex finite-sum problem (1)

can be bounded by O
(
n + �

α
�0L
ε2

√
n
)

.

Corollary 3.2 Suppose that Assumptions 1.1 and 1.2 hold, let ε > 0, and let the
step-size satisfy η ≤ η̄ (8). Then the stochastic gradient complexity performed by
Scaled SARAH sufficient for finding an ε-approximate solution of non-convex finite-

sum problem (1) can be bounded by O
({

n + L
μ

�
α

√
n
}
log �0

ε

)
.
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4 Scaled L-SVRG

SVRG [13, 31] is a variance reduced stochastic gradient method that is very popular for
finite-sum optimization problems. However, the algorithm has a double loop structure,
and careful tuning of hyper-parameters is required for good practical performance.

Recently, in [9], it was proposed a Loopless SVRG (L-SVRG) variant, that has
a simpler, single loop structure, which can be applied to problem (1) in the convex
and smooth case. This was extended in [24] to cover the composite case with an
arbitrary sampling scheme. With its single loop structure, and consequently fewer
hyperparameters to tune, coupled with the fact that, unlike for PAGE (recall Sect. 1),
L-SVRG uses an unbiased estimate of the gradient, and L-SVRG is a versatile and
competitive algorithm for problems of the form (1).

However, as for the other previously mentioned gradient-based methods, L-SVRG
can perform poorly when the problem is badly scaled and/or ill-conditioned. This pro-
vides the motivation for the Scaled L-SVRGmethod that we propose in this work.
Our Scaled L-SVRG algorithm combines the positive features of L-SVRG, with
a preconditioner, to give a method that is loopless, has few hyperparameters to tune,
uses an unbiased estimate of the gradient, and adaptively scales the search direction
depending upon the local curvature. The Scaled L-SVRGmethod is presented now
as Algorithm 2.

Algorithm 2 Scaled L-SVRG

1: Input: initial point w0, learning rate η, preconditioner D̂0, probability p
2: z0 = w0, v0 = ∇P(w0)

3: for t = 0, 1, 2, . . . do
4: wt+1 = wt − ηD̂−1

t vt

5: zt+1 =
{
zt , with probability p

wt , with probability 1 − p

6: Generate independently batches it+1 for vt+1 and Jt for D̂t+1
7: vt+1 = ∇ fit+1 (wt+1) − ∇ fit+1 (zt+1) + ∇P(zt+1)

8: Update the preconditioner D̂t+1
9: end for
10: Output: ŵT chosen uniformly from {wt }Tt=0

Scaled L-SVRG can be described, in words, as follows. The algorithm is initial-
ized with an initial main pointw0 and an initial reference point z0, a learning rate η, an
initial direction v0 = ∇P(w0), an initial preconditioner D̂0, and probability p. At each
iteration t ≥ 0 of Scaled L-SVRG (Algorithm 2), the new pointwt+1 is taken to be
a step fromwt in the scaled direction D̂−1

t vt , of size η. The new point zt+1 is either the
(unchanged) previous point zt with probability p, or the scaled approximate gradient
step wt+1 with probability 1− p. Next, we generate the new search direction vt . This
is made up of the full gradient plus a small adjustment. Finally, the preconditioner is
updated and the next iterate begins. The output denoted by ŵT is chosen uniformly
from the pointswt , for t = 0, . . . , T , generated by Scaled L-SVRG (Algorithm 2).
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Note that a key difference betweenL-SVRG [9, 24] and our newScaled L-SVRG
is the inclusion of the preconditioner in Step 4; recall that a competitive preconditioner
is described in Sect. 2.

The following theorem presents a complexity bound on the number of iterations
required by Scaled L-SVRG to obtain an ε-optimal solution for the non-convex
problem (1).

Theorem 4.1 Suppose that Assumption 1.1 holds, let ε > 0, let p denote the prob-

ability, and let the step-size satisfy η ≤ min
{

α
4 L ,

√
pα√
24L

,
p2/3

1442/3
α
L

}
. Given an initial

point w0 ∈ R
d , let �0 = P(w0) − P∗. Then the number of iterations performed by

Scaled L-SVRG, starting from w0, required to obtain an ε-approximate solution
of non-convex finite-sum problem (1) can be bounded by

T = O
(

�

α

L�0

p2/3ε2

)
.

While the previous theorem held under a smoothness assumption, here we prove a
complexity result for Scaled SARAH under both smoothness and PL assumptions.

Theorem 4.2 Suppose that Assumptions 1.1 and 1.2 hold, let ε > 0, let p denote

the probability, and let the step-size satisfy η ≤ min
{
p�
6μ , 1

4
α
L ,

( p
6

)1/2 α
L ,

( p
6

)2/3 α
L

}
.

Then the number of iterations performed by Scaled L-SVRG sufficient for finding
an ε-approximate solution of non-convex finite-sum problem (1) can be bounded by

T = O
(
max

{
1

p
,
�

α

L

p2/3μ

}
log

�0

ε

)
.

Below we provide corollaries on the complexities of stochastic gradient.

Corollary 4.1 Suppose that Assumption 1.1 holds, let ε > 0, let p = 1
n+1 , and let the

step-size satisfy η ≤ min
{

α
4 L ,

√
pα√
24L

,
p2/3

1442/3
α
L

}
. Given an initial point w0 ∈ R

d , let

�0 = P(w0) − P∗. Then the stochastic gradient complexity performed by Scaled
L-SVRG, starting fromw0, required to obtain an ε-approximate solutionof non-convex

finite-sum problem (1) can be bounded by O
(
n + �

α
L�0
ε2

n2/3
)

.

Corollary 4.2 Suppose that Assumptions 1.1 and 1.2 hold, let ε > 0, let p = 1
n+1 , and

let the step-size satisfy η ≤ min
{
p�
6μ , 1

4
α
L ,

( p
6

)1/2 α
L ,

( p
6

)2/3 α
L

}
. Then the stochas-

tic gradient complexity performed by Scaled L-SVRG sufficient for finding an
ε-approximate solution of non-convex finite-sum problem (1) can be bounded by

O
({

n + �
α

L
μ
n2/3

}
log �0

ε

)
.

5 Discussion

In this section, we discuss the theoretical results obtained for Scaled SARAH,
Scaled L-SVRG and compare themwith other scaled methods, as well as for meth-
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ods without preconditioning. For convenience, we give Table 3 summarizing all the
results.

• In Sect. 2 we consider scaling based on Hutchinson’s approximation, but our anal-
ysis can be used to obtain similar estimates for Scaled SARAH and Scaled
L-SVRG with Adam preconditioning. In particular, we can prove an analog of
Lemma 2.1 (see Appendix of the full version of the paper [27]) by additionally
assuming boundedness of the stochastic gradient for all w: ‖∇ fi (w)‖ ≤ M (a
similar assumption is made in [3] for Adam). We present these results in Table 3
for comparison with the current best results for Adam.

• In the deterministic case, our results are significantly superior to those from [3],
in particular, in terms of the accuracy of the solution our estimates give O(ε−2)

dependence, at the same time the guarantees from [3] are O(ε−4). Compared to
OASIS in the deterministic case, we have the same results in terms of ε, but our
bounds are much better in terms of d, L , α. It is also an interesting detail that
our estimates for Scaled SARAH and Scaled L-SVRGwith Adam precondi-
tioner are independent of d and with Hutchinson’s preconditioner depend on

√
d,

which is important for high-dimensional problems.
• In the stochastic case, our convergence guarantees are also the best among other
scaled methods, primarily in terms of ε. This is mainly due to the fact that we use
the stochastic finite-sum setting typical for machine learning.

• Unfortunately, our estimates are inferior to the bounds of the unscaled methods:
SARAH andL-SVRG (the basemethods for ourmethods) andSGD (the best known
method for minimization problems). As one can see in Table 3, all results for
methods with preconditioning have the same problem. This is the level of theory
development in this field at the moment. It seems that our results are able, in some
sense, to reduce this gap between scaled and unscaled methods by decreasing the
additional multiplier.

SummaryOur theoretical results exceed the estimates already in the literature for scaled
methods. If we consider that algorithms with preconditioning are desirable from the
point of view of real-world learning problems, it turns out that we prove the best
results for the practical class of methods at present. Meanwhile, our estimates are still
worse than those for unscaled methods. In Appendix of the full version of the paper
[27], one can find a possible explanation for why these estimates cannot be improved.
In Sect. 6 we present experiments in which it becomes clear that real problems are
not necessarily “the worst”. On the contrary, practical problems are those where our
method from Sects. 2 and 3 shows its dominance.

6 Numerical Experiments

The purpose of these numerical experiments is to study the practical performance of
our new Scaled SARAH and Scaled L-SVRG algorithms, and hence, to under-
stand the advantages of using the proposed diagonal preconditioner on SARAH and
L-SVRG. These results will also be compared with SGD, both with and without the
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preconditioner described in Sect. 2, as well as the state-of-the-art (first-order) precon-
ditioned optimizer Adam.

We test these algorithms on problem (1) with two loss functions: (1) logistic regres-
sion loss function,which is convex, and (2)nonlinear least squares loss function,which
is nonconvex. The loss functions are described in details below. For further details and
experimental results that support the findings of this section, please see Appendix of
the full version of the paper [27]. Note that all the experiments were initialized at the
point w0 = 0, and each experiment was run for 10 different random seeds.

6.1 Loss Functions

Let P(w) be the empirical risk on a dataset {(xi , yi )}ni=1 where xi ∈ R
d and yi ∈

{−1,+1}. Then, the logistic regression loss is

Plogistic(w) = 1
n

∑n
i=1 log(1 + e−yi xTi w), (9)

whereas for yi ∈ {0, 1} the nonlinear least squares loss (NLLSQ) is

Pnllsq(w) = 1
n

∑n
i=1(yi − 1/(1 + e−xTi w))2 (10)

We consider two different loss functions to test our algorithms on both convex and
nonconvex settings.

6.2 Binary Classification on LibSVMDatasets

We train the optimizers on three binary classification LibSVM datasets,3 namely w8a,
rcv1, and real-sim. We also consider feature-scaled versions of these datasets,
where the scaling is done as follows: we choose a minimum exponent kmin and a
maximum exponent kmax, and scale the features by values ranging from 10kmin to
10kmax in equal steps in the exponent according to the number of features and in
random order. The setting (kmin, kmax) = (0, 0) corresponds to the original, unscaled
version of the datasets. We consider combinations of kmin = 0,−3 and kmax = 0, 3.
This scaling is done to check the robustness and overall effectiveness of the diagonal
preconditioner in comparison with Adam.

Figure1 shows the results of the first experiment and presents three types of line
plots for each of the datasets of interest where the loss function is the logistic regression
loss (9). Figure2 shows the same for the NLLSQ loss (10). The first row corresponds
to the loss, the second is the squared norm of the gradient, and the third is the error.
Tuning was performed in order to select the best hyperparameters (that minimize
either the loss, gradient norm squared, or the error). The hyperparameter search grid
is reported in Appendix of the full version of the paper [27]. We fixed the batch
size to be 128, in order to narrow the fine-tuned variables down to η, β, and α.
Figure1 shows the performances when minimizing the error on the unscaled datasets,

3 https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/.
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Fig. 1 Best performances of the optimizers, including Adam, on the (unscaled) LibSVM datasets using the
logistic loss. The Scaled variants are shown as dashed lines sharing the same color

Fig. 2 Best performances on the unscaled LibSVM datasets using the NLLSQ loss
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(kmin, kmax) = (0, 0). Experiments on scaled datasets can be found in Appendix of
the full version of the paper [27].

We can see fromFigs. 1 and 2 that the scaled versions ofSGD,SARAH, andL-SVRG
always improve on their non-scaled versions. In fact, they perform better than Adam
in most cases. Initial convergence of Adam might be faster, but after enough effective
passes, we can see that the scaled algorithms can generalize better.

In order to understand the main factors that affect the preconditioner, we ran com-
parative studies, including studying the parameters β, and α, as well as studying the
initialization of preconditioner D0, including a warm-up period, and studying how
the number of samples, z, impacts performance. First, recalling (7), there did not
appear to be any significant improvement from averaging across more samples of z
per minibatch, neither in the initialization nor in the update step. We also observed
that initializing D0 with a batch size of 100 was sufficiently good for non-sparse prob-
lems, and consistently resulted in a relative error of within 0.1 from the true diagonal.
However, increasing the number of warm-up samples, proportionally to the number
of features, led to observable improvements in convergence for sparse datasets.

We also investigated the role that β (4) played in algorithm performance. We found
that larger values lead to slightly slower but more stable convergence. The best β

highly depends on the dataset, but the value 0.999 appeared to be a good starting
point in general. To ensure a fair comparison, we also optimized Adam’s momentum
parameter β2 over the same range.

Aside from the batch size and learning rate, we found that, for ill-conditioned
problems, the choice of α (recall (6) and Lemma 2.1) played an important role in
determining the quality of the solution, convergence speed, and stability (which is not
obvious from Fig. 1). For example, if the features were scaled with kmin = −3 and
kmax = 0, the best α is often around 10−7 (very small), whereas if we scaled with
kmin = 0 and kmax = 3, the best α becomes 10−1 (relatively large). Therefore, finding
the best α might require some additional fine-tuning, depending on the choice of η

and β. However, we noticed that once we had tuned the learning rate for one scaled
version of the dataset, the same learning rate transferred well to all the other scaled
versions. In general, the optimal learning rate in ourScaled algorithms is very robust
to feature scaling, given that α is chosen well, whereas Adam’s learning rate depends
more heavily upon how ill-conditioned the problem is, so it requires fine-tuning across
a potentially much wider range. In our case, tuning α and β is straightforward, so we
obtained state-of-the-art performance with minimal parameter tuning.

7 Conclusion

This paper investigates optimization methods with scaling for finite sum stochas-
tic problems. The proposed algorithms are based on well-known variance reduction
techniques: SARAH/PAGE, SVRG/L-SVRG. In addition to the basic updates, gradi-
ent preconditioning matrices are used to allow individually adapting steps for each
optimization variable. Rather general assumptions on these matrices (diagonality and
positive spectrum) give opportunity to analyze combinations of variance reduction
approaches with popular scaling techniques: RMSProp, Adam, and OASIS. Mean-
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while, the unification of the assumptions gives the weakness of the result in some
sense. The theoretical guarantees of convergence are no better than for the simple
unscaled methods. Therefore, while the paper improves the results of methods with
scaling for stochastic problems, it does not address the key question of why these
methods can be better than the basic algorithms. This is an interesting and important
direction for the future research.
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