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Abstract
Having in mind singular solutions of smooth reformulations of complementarity
problems, arising unavoidably when the solution in question violates strict comple-
mentarity, we study the behavior of Newton-type methods near singular solutions of
nonlinear equations, assuming that the operator of the equation possesses a strongly
semismooth derivative, but is not necessarily twice differentiable. These smooth-
ness restrictions give rise to peculiarities of the analysis and results on local linear
convergence and asymptotic acceptance of the full step, the issues addressed in this
work. Moreover, we consider not only the basic Newton method, but also some sta-
bilized versions of it intended for tackling singular (including nonisolated) solutions.
Applications to nonlinear complementarity problems are also dealt with.

Keywords Nonlinear equation · Constrained equation · Strongly semismooth
derivative · Singular solution · Critical solution · 2-Regularity · Perturbed Newton
method · Acceptance of the full step · Extrapolation · Nonlinear complementarity
problem

Mathematics Subject Classification 49J52 · 65J15 · 65K15 · 90C33

Dedicated to the memory of Professor Boris Polyak.

Communicated by Ebrahim Sarabi.

B Alexey F. Izmailov
izmaf@cs.msu.ru

Andreas Fischer
andreas.fischer@tu-dresden.de

Mario Jelitte
mario.jelitte@tu-dresden.de

1 Faculty of Mathematics, Technische Universität Dresden, Dresden, Germany

2 VMK Faculty, OR Department, Lomonosov Moscow State University, Moscow, Russia

3 Derzhavin Tambov State University, Tambov, Russia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-023-02350-w&domain=pdf
http://orcid.org/0000-0001-7703-1655
http://orcid.org/0000-0001-9851-0524
http://orcid.org/0000-0002-8982-2136


Journal of Optimization Theory and Applications

1 Introduction

There exists a relatively rich literature on the behavior of the Newton method near
singular solution of smooth nonlinear equations. With no intention to give a com-
prehensive survey, we mention only the works [25–27] most closely related to our
development below, but dealing with equations as smooth as needed (smoothness is
not an issue), and with the basic Newton method. In this setting, these works provide
natural conditions ensuring linear local convergence of the Newton method from an
asymptotically dense starlike domain around a singular solution, and also provide some
acceleration techniques bases on the established convergence pattern. Partial exten-
sions of these convergence results to wide classes of methods that can be interpreted
as a perturbed Newton method were developed in [30]. Acceleration of convergence
and a related issue of asymptotic acceptance of the full Newton step by a linesearch
globalization procedure were further investigated in [21, 22], while [20] contains some
extensions of these results to the case of constrained equations.

Having in mind typical equation reformulations of complementarity problems, an
important issue consists of possible extensions of the results mentioned above to equa-
tions with restricted smoothness properties. As one example of this kind, the case of
piecewise smooth equations was addressed in [19]. Different reformulations of com-
plementarity lead to equationswith different smoothness and regularity properties, and
as a result, to different methods for solving complementarity problems, and under-
standing the relative advantages and disadvantages of thesemethods is ofmuch interest
and importance.

In this work, we focus on nonlinear equations with operators differentiable near
the solution in question, and with their derivatives being strongly semismooth at this
solution, but when the second derivatives of the operator may not exist. The con-
cept of strong semismoothness was introduced in [44]; see, e.g., [35, Sect. 1.4] for a
recent exposition of the related theory. Local convergence properties of the basic New-
ton method and some acceleration techniques were studied under similar smoothness
assumptions in [42]. The main difference between the results in [42] and our devel-
opment below is that we deal not only with the basic Newton method, but with its
perturbed version covering, in particular, some stabilized modifications of the basic
Newton scheme, specially intended for tackling singular (and even nonisolated) solu-
tions. Moreover, we consider not only the local convergence properties, but also the
issue of the asymptotic acceptance of the unit stepsize by the algorithms equipped
with linesearch for globalization of convergence. The latter line of analysis leads to a
new result for the perturbed Newton method, even in the case of arbitrary smoothness.

As it will be discussed below, reformulations of complementarity problems, pos-
sessing the specified smoothness properties, necessarily give rise to singularity of
solutions violating strict complementarity, and hence, serve as a natural source of
applications, both in [42] and below.

The rest of the paper is structured as follows. In Sect. 2, we provide the needed
preliminaries, and specify the problem setting. Section3 contains the main result on
linear local convergence of the perturbed Newton method framework to singular solu-
tion satisfying a certain 2-regularity property that may only hold at solutions called
critical. In Sect. 4, we consider a linesearch globalization procedure for the methods
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in question, and investigate the issue of asymptotic acceptance of the full step, play-
ing a key role for the potential success of the extrapolation procedure intended for
acceleration of convergence to critical solutions. Finally, Sect. 5 contains examples
of application of the results obtained to smooth equation reformulations of nonlinear
complementarity problems.

Some words about our notation. For any ū, v̄ ∈ R
p, and any given scalars ε > 0

and δ > 0, define the set

Kε, δ(ū; v̄) := {u ∈ R
p | ‖u − ū‖ ≤ ε, ‖‖v̄‖(u − ū) − ‖u − ū‖v̄‖ ≤ δ‖u − ū‖‖v̄‖}.

For a q × p matrix A, the null space of the corresponding linear operator is ker A :=
{v ∈ R

p | Av = 0}. For a mapping � : Rp → R
q differentiable at ū, we will make

use of the unique decomposition of every u ∈ R
p into the sum u = u1 + u2 with

u1 ∈ (ker�′(ū))⊥ and u2 ∈ ker�′(ū), where⊥ stands for the orthogonal complement
of a linear subspace.

2 Preliminaries and Problem Setting

Consider a mapping � : Rp → R
q that is differentiable near a point ū ∈ R

p, but
not necessarily twice differentiable, even at ū. The analysis in this paper will rely on
the assumption that the derivative �′ : R

p → R
q×p is strongly semismooth at ū.

According to [35, Sect. 1.4.2], this requirement means that�′ is Lipschitz-continuous
near ū, directionally differentiable at ū in every direction, and the estimate

max
J∈∂�′(u)

‖�′(u) − �′(ū) − J (u − ū)‖ = O(‖u − ū‖2) (1)

holds as u ∈ R
p tends to ū. Here, ∂�′(u) stands for Clarke’s generalized Jacobian of

�′ at u [6, Definition 2.6.1]. These “smoothness” assumptions can actually be further
relaxed: it would be enough to assume that �′ itself is just calm at ū, while ��′ is
strongly semismooth at ū, with � being the orthogonal projector onto (im�′(ū))⊥ in
R
q . We do not pursue this further, in order to keep the presentation reasonably simple.
Let (�′)′(ū; v) stand for the directional derivative of �′ at ū in a direction v ∈

R
p. Observe that (�′)′(ū; ·) maps Rp to R

q×p, and is positively homogeneous and
Lipschitz-continuous. Define

r(u) := �(u) − �(ū) − �′(ū)(u − ū) − 1

2
(�′)′(ū; u − ū)(u − ū), (2)

R(u) := �′(u) − �′(ū) − (�′)′(ū; u − ū). (3)

Combining (1) with [35, Proposition 1.71 (c)], from (3), we readily obtain the estimate

R(u) = O(‖u − ū‖2) (4)
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as u → ū. Furthermore, according to (2), by the Newton–Leibniz formula we derive

r(u) =
∫ 1

0
(�′(τu + (1 − τ)ū) − �′(ū))(u − ū) dτ − 1

2
(�′)′(ū; u − ū)(u − ū)

=
∫ 1

0
(�′(ū + τ(u − ū)) − �′(ū) − (�′)′(ū; τ(u − ū))(u − ū) dτ

=
∫ 1

0
R(ū + τ(u − ū))(u − ū) dτ

= O(‖u − ū‖3), (5)

where the second equality employs the fact that (�′)′(ū; ·) is positively homogeneous,
the third is by (3), while the last one is by (4).

The mapping � is said to be 2-regular at ū in the direction v if the linear oper-
ator B(v) : ker�′(ū) → (im�′(ū))⊥ defined as the restriction of �(�′)′(ū; v) to
ker�′(ū) is surjective; see the corresponding definitions and their discussion in [32,
33, 42].

Remark 2.1 At this point, we mention that the structure of the set consisting of direc-
tions of 2-regularity of � at ū is not arbitrary. For instance, if � is twice differentiable
at ū, it can only be 2-regular at ū in every nonzero direction if either rank�′(ū) = q,
or �′(ū) = 0.

Indeed, assuming that rank�′(ū) < q, fix any w ∈ (im�′(ū))⊥, and consider the
p × p matrix w�′′(ū) := ∑q

i=1 wi�
′′
i (ū). Then for any v̂ ∈ R

p and v ∈ ker�′(ū) it
holds that

〈w, B (̂v)v〉 = 〈w, ��′′(ū)[̂v, v]〉
= 〈�w, �′′(ū)[̂v, v]〉
= 〈w, �′′(ū)[̂v, v]〉

=
q∑

i=1

wi 〈�′′
i (ū)̂v, v〉

=
〈 q∑
i=1

wi�
′′
i (ū)̂v, v

〉

= 〈w�′′(ū)̂v, v〉, (6)

where the second equality is due to the symmetry of �, while the third is because �

acts as the identity on (im�′(ū))⊥. If the matrix w�′′(ū) is singular, then there exists
v̂ ∈ kerw�′′(ū) \ {0}, and substituting it into (6), we conclude that w ∈ (im B (̂v))⊥.
On the other hand, if w�′′(ū) is nonsingular, and �′(ū) 
= 0, then there exists v̂ ∈ R

p

such that w�′′(ū)̂v ∈ (ker�′(ū))⊥\{0}, implying, in particular, that v̂ 
= 0, and again
by (6) we have that w ∈ (im B (̂v))⊥.

Therefore, if rank�′(ū) < q and �′(ū) 
= 0, then for any w ∈ (im�′(ū))⊥ we
have the existence of a nonzero v̂ ∈ R

p such that w ∈ (im B (̂v))⊥. In particular, if
we take w 
= 0, this implies that � is not 2-regular at ū in the direction v̂.
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The case when �′(ū) = 0 is of course quite a special instance of singularity on
its own. Moreover, even in this case, from the considerations above it follows that
2-regularity of � in any nonzero direction is only possible if there exists no nonzero
w ∈ R

q such that the matrix w�′′(ū) is singular. But the latter property imposes
further restrictions on the dimensions p and q. See, e.g., [1, Theorem 1], implying in
particular, that this is not possible when p is odd and q ≥ 2. A related observation
can be found in [3].

In the rest of the paper, we deal with Newton-type methods for the equation

�(u) = 0, (7)

and to that end, we assume that p = q. In this case, ū is called a singular solution of
(7) if�′(ū) is a singular matrix. Observe that every nonisolated solution is necessarily
singular. Observe further that if ū is nonsingular, � is 2-regular at ū in every direction
v, including v = 0. At the same time, � may be 2-regular at ū in nonzero directions
even when ū is singular, and even when ū is a nonisolated solution of (7), and even in
directions v̄ ∈ ker�′(ū), which is specially important here as this will play a crucial
role in our analysis below, and leads to the

Key assumption: there exist v̄ ∈ ker�′(ū) such that the mapping � is 2-regular at
ū in the direction v̄.

According to Izmailov et al. [31, Theorem 2], a solution ū of (7) is regarded as
critical if and only if it violates the local Lipschitzian error bound property

dist(u, �−1(0)) = O(‖�(u)‖) (8)

as u ∈ R
p tends to ū. The property in (8) is related to the concept of (weak) sharp

minima (see [43, Sect. 5.2.3], and [5]) for the residual function ‖�(·)‖. By Izmailov
et al. [31, Theorem 3], every critical solution is necessarily singular, but generally not
the other way round. Moreover, the discussion in [31, p. 497] demonstrates that for
a singular (e.g., nonisolated) solution ū, our key assumption may only hold if ū is a
critical solution.

3 Local Convergence of Perturbed NewtonMethods to Critical
Solutions

As in [30], define the perturbed Newton method (pNM) framework for Equation (7)
as follows. For a given iterate uk ∈ R

p, the next iterate is uk+1 = uk + vk , where vk

is a solution of the linear equation

�(uk) + (�′(uk) + �(uk))v = ω(uk), (9)

where the mappings � : Rp → R
p×p and ω : Rp → R

p are the terms character-
izing various kinds of perturbation, and defining specific methods within the pNM
framework.
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The following is a generalization of Izmailov et al. [30, Lemma 1] and Izmailov et
al. [22, Lemma 1] to the case when the first derivative is strongly semismooth, but the
second derivative may not exist.

Lemma 3.1 Let � : Rp → R
p be differentiable near ū ∈ R

p, and let the derivative
of� be strongly semismooth at ū. Let ū be a solution of Equation (7), and assume that
� is 2-regular at ū in a direction v̄ ∈ R

p. Let � : Rp → R
p×p and ω : Rp → R

p

satisfy the following properties: there exists δ > 0 such that

�(u) = O(‖u − ū‖), ω(u) = O(‖u − ū‖2) (10)

for u ∈ Kε, δ(ū; v̄) as ε → 0+, and

��(u) = o(‖u − ū‖) (11)

for u ∈ Kε, δ(ū; v̄) as ε → 0+ and δ → 0+.
Then there exist ε̄ > 0 and δ̄ > 0 such that, for every u ∈ K ε̄, δ̄(ū; v̄)\{ū}, the

linear operator B(u − ū) is invertible,

(B(u − ū))−1 = O(‖u − ū‖−1) (12)

as u → ū, Equation (9) with uk = u has the unique solution v, and this solution
satisfies

u1 + v1 − ū1 = O(‖u − ū‖‖u1 − ū1‖) + O(‖u − ū‖‖�(u)‖)
+ O(‖ω(u)‖) + O(‖u − ū‖3), (13)

u2 + v2 − ū2 = 1

2
(u2 − ū2 + (B(u − ū))−1�(�′)′(ū; u − ū)(u1 − ū1))

+ O(‖��(u)‖) + O(‖u − ū‖−1‖�ω(u)‖)
+ O(‖u − ū‖2) (14)

as u → ū.

Proof The argument below follows the lines of that in [30, Lemma 1], with modifi-
cations needed under the current restricted smoothness assumptions. Without loss of
generality assume that ū = 0.

Multiplying (9) by (I − �) and by �, and employing (2)–(3), Equation (9) with
uk = u ∈ R

p is decomposed into the following two equations:

(�′(ū) + (I − �)((�′)′(ū; u) + R(u) + �(u)))v1

= −�′(ū)u1 − (I − �)

(
1

2
(�′)′(ū; u)u + r(u) − ω(u)

)

− (I − �)((�′)′(ū; u) + R(u) + �(u)))v2 (15)
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and

�((�′)′(ū; u) + R(u) + �(u))(v1 + v2) = −�

(
1

2
(�′)′(ū; u)u + r(u) − ω(u)

)
. (16)

Let ε̄ > 0 and δ̄ > 0 be fixed arbitrarily for now, and from this point on, we consider
only those u ∈ K ε̄, δ̄(ū; v̄)\{0}. Define the linear operator A(u) : (ker�′(ū))⊥ →
im�′(ū) as the restriction of (�′(ū) + (I − �)((�′)′(ū; u) + R(u) + �(u))) to
(ker�′(ū))⊥. Furthermore, let Â : (ker�′(ū))⊥ → im�′(ū) be the restriction of
�′(ū) to (ker�′(ū))⊥. Then, taking into account (5), the equality (15) can be written
as

A(u)v1 = − Âu1 − (I − �)((�′)′(ū; u) + R(u) + �(u))v2

− (I − �)

(
1

2
(�′)′(ū; u)u − ω(u)

)
+ O(‖u‖3) (17)

as u → 0.
Evidently, Â is invertible, and according to (4) and the first condition in (10),

A(u) = Â + O(‖u‖).
This implies that if ε̄ > 0 is small enough, then A(u) is invertible, and

(A(u))−1 = Â−1 + O(‖u‖) (18)

as u → 0; this follows, e.g., from Izmailov and Solodov [35, Lemma A.6]. Therefore,
taking also into account the second condition in (10), (17) can be written as

v1 = −u1 + M(u)v2 + O(‖u‖2), (19)

where M(u) : ker�′(ū) → (ker�′(ū))⊥ is defined by

M(u) := −(A(u))−1(I − �)((�′)′(ū; u) + R(u) + �(u)) = O(‖u‖) (20)

as u → 0, where the last estimate is again by (4) and by the first condition in (10).
Substituting (19) into (16), and taking into account (4), we obtain the equation

�((�′)′(ū; u) + R(u) + �(u))(I + M(u))v2

= −�

(
1

2
(�′)′(ū; u)u − ω(u)

)

+ �((�′)′(ū; u) + �(u))u1 + O(‖u‖3). (21)

Define the linear operator B(u) : ker�′(ū) → (im�′(ū))⊥ as the restriction of
�((�′)′(ū; u) + R(u) + �(u))(I +M(u)) to ker�′(ū). Then (21) can be written in
the form

B(u)v2 = −1

2
B(u)u2 + �

((
1

2
(�′)′(ū; u) + �(u)

)
u1 + ω(u)

)
+ O(‖u‖3)(22)
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as u → 0.
Observe now that by Izmailov and Solodov [35, Lemma A.6], and by continuity

of (�′)′(ū; ·) at v̄, 2-regularity of � at 0 in the direction v̄ implies the existence of
C > 0 such that B(u) is invertible and

‖(B(u))−1‖ ≤ C‖u‖−1 (23)

provided δ̄ > 0 is taken small enough. This yields (12). According to (4), (10), and
(20), it further holds that

B(u) = B(u) + ��(u) + O(‖u‖2).

Further reducing ε̄ > 0 and δ̄ > 0 if necessary, by (11) and (23), and again by Izmailov
and Solodov [35, Lemma A.6], we now obtain that B(u) is invertible, and

(B(u))−1 = (B(u))−1 + O(‖u‖−2‖��(u)‖) + O(1) = O(‖u‖−1)

as u → 0. Therefore, (22) is uniquely solvable, and its unique solution has the form

v2 = −1

2
u2 + 1

2
(B(u))−1�(�′)′(ū; u)u1 + O(‖��(u)‖) (24)

+ O(‖u‖−1‖�ω(u)‖) + O(‖u‖2)
= O(‖u‖), (25)

as u → 0, where the last estimate is by (10) and (23).
Substituting (24) into (17), and employing (4) again, we obtain the equation

A(u)v1 = − Âu1 + O(‖u‖‖u1‖) + O(‖u‖‖�(u)‖) + O(‖ω(u)‖) + O(‖u‖3)

and hence, by (18),

v1 = −u1 + O(‖u‖‖u1‖) + O(‖u‖‖�(u)‖) + O(‖ω(u)‖) + O(‖u‖3) (26)

as u → 0.
From (24) and (26), and from (10), we have the needed estimates (13) and (14). �


The next example demonstrates that even in the case of twice continuous differentia-
bility of �, and even in the absence of perturbations, strong semismoothness of �′ is
essential for the conclusion of Lemma 3.1 to be valid.

Example 3.1 Let p = 2, �(u) = (u1 + 3u7/32 /7, u22/2). Then � is everywhere twice
continuously differentiable, and the unique solution of (7) is ū = 0. Furthermore, for
any u, v ∈ R

p

�′(u) =
(
1 u4/32
0 u2

)
, �′(0) =

(
1 0
0 0

)
, �′′(0)[v] =

(
0 0
0 v2

)
.
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Therefore, � is 2-regular at 0 in every nonzero direction in ker�′(0) = {0} × R.
Assuming that u2 
= 0, the basic Newton step from uk = u (i.e., the unique solution

of (9) with � ≡ 0 and ω ≡ 0) is v = (−u1 + u7/32 /14, −u2/2). In particular, (14) is
valid, while (13) (and even a weaker estimate from Izmailov et al. [30, Lemma 1]) is
not. The reason is violation of (1).

Theorem 3.1 Let � : Rp → R
p be differentiable near ū ∈ R

p, and let the derivative
of� be strongly semismooth at ū. Let ū be a solution of Equation (7), and assume that
� is 2-regular at ū in a direction v̄ ∈ ker�′(ū)\{0}. Moreover, let � : Rp → R

p×p

and ω : Rp → R
p satisfy the following properties: there exists δ > 0 such that, along

with (10), the estimates

��(u) = O(‖u1 − ū1‖) + O(‖u − ū‖2) (27)

and

�ω(u) = O(‖u − ū‖‖u1 − ū1‖) + O(‖u − ū‖3) (28)

hold for u ∈ Kε, δ(ū; v̄) as ε → 0+.
Then, for every ε̂ > 0 and δ̂ > 0, there exist ε = ε(v̄) > 0 and δ = δ(v̄) > 0

such that for any starting point u0 ∈ Kε, δ(ū; v̄) there exists the unique sequence
{uk} ⊂ R

p such that for each k it holds that uk+1 = uk + vk , where vk satisfies (9),
and for this sequence and for each k, it holds that uk2 
= ū2, uk ∈ K ε̂, δ̂(ū; v̄), {uk}
converges to ū, {‖uk − ū‖} converges to zero monotonically,

‖uk+1
1 − ū1‖

‖uk+1
2 − ū2‖

= O(‖uk − ū‖) (29)

as k → ∞, and

lim
k→∞

‖uk+1
2 − ū2‖

‖uk2 − ū2‖
= 1

2
. (30)

Proof Under the assumption (10), estimates (12)–(14) in Lemma 3.1 further imply
that

u1 + v1 − ū1 = O(‖u − ū‖2), (31)

u2 + v2 − ū2 = 1

2
(u2 − ū2) + O(‖u1 − ū1‖)

+ O(‖��(u)‖) + O(‖u − ū‖−1‖�ω(u)‖)
+ O(‖u − ū‖2) (32)

as u ∈ K ε̄, δ̄(ū; v̄)\{ū} tends to ū, where ε̄ > 0 and δ̄ > 0 are defined according to
Lemma 3.1.
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Assuming further that there exists δ > 0 such that (27), (28) hold for u ∈ Kε, δ(ū; v̄)

as ε → 0+, the estimate (32) is further simplified to

u2 + v2 − ū2 = 1

2
(u2 − ū2) + O(‖u1 − ū1‖) + O(‖u − ū‖2) (33)

as u → ū, and the subsequent analysis in the proof of Izmailov et al. [30, Theorem 1]
goes through, as it does not further rely on any smoothness assumptions but only on
the estimates (31) and (33). This yields the needed result. �

Remark 3.1 The flexibility of the assumption on perturbation terms �(·) and ω(·)
allows for applications of Theorem 3.1 to various specific Newton-type methods,
including those equipped with stabilizing features intended specially for finding sin-
gular and even nonisolated solutions. To begin with, taking �(·) ≡ 0 and ω(·) ≡ 0
recovers the classical Newton method for Equation (7), with the subproblem

�(uk) + �′(uk)v = 0. (34)

Furthermore, consider the Levenberg–Marquardt method [38, 39] (see also [41,
Sect. 10.3]) with the subproblem of the form

minimize
1

2
‖�(uk) + �′(uk)v‖2 + 1

2
ρ(uk)‖v‖2, v ∈ R

p, (35)

where ρ : Rp → R+ defines the regularization parameter. For modern local quadratic
convergence theories for this method under the local Lipschitzian error bound condi-
tion (8) (i.e., noncriticality of the solution in question), and including the associated
rules to control the regularization parameter, see [10, 13, 14, 16, 17, 24, 46].

Passing to the case of a critical solution, observe that the subproblem (35) employing
the Euclidean norm is equivalent to the linear equation

(�′(uk))��(uk) + ((�′(uk))��′(uk) + ρ(uk)I )v = 0, (36)

and the constructions in [30, Sect. 3.1] allow to interpret this equation as the subprob-
lem (9) with �(·) and ω(·) possessing the needed properties when ρ(·) := ‖�(·)‖τ ,
with τ ≥ 2. This yields a counterpart of Izmailov et al. [30, Corollary 1], saying
essentially that under the smoothness and 2-regularity assumptions in Theorem 3.1,
the conclusion of this theorem is valid for the Levenberg–Marquardt method.

Another relevant algorithm in this context is the LP-Newton method introduced in
[11], with the iteration subproblem of the form

minimize γ

subject to ‖�(uk) + �′(uk)v‖ ≤ γ ‖�(uk)‖2,
‖v‖ ≤ γ ‖�(uk)‖,
(v, γ ) ∈ R

p × R.

(37)

As demonstrated in [10, 11] (see also [17]), local convergence properties of thismethod
near noncritical solutions are the same as for the Levenberg–Marquardt method. Yet
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again, thinking of critical solutions, and following the development in [30, Sect. 3.2],
one can embed the LP-Newton method into the pNM framework above, and obtain
counterpart of Izmailov et al. [30, Corollary 2], saying that under the smoothness and
2-regularity assumptions in Theorem 3.1, for every ε̂ > 0 and δ̂ > 0, there exist
ε = ε(v̄) > 0 and δ = δ(v̄) > 0 such that for any starting point u0 ∈ Kε, δ(ū; v̄) there
exists a sequence {uk} ⊂ R

p such that for each k the pair (uk+1−uk, γk+1)with some
γk+1 solves (37), and for any such sequence and for each k, it holds that uk2 
= ū2,
uk ∈ K ε̂, δ̂(ū; v̄), {uk} converges to ū, {‖uk − ū‖} converges to zero monotonically,
and (29) and (30) hold. (Observe that uniqueness of {uk} is not claimed in this case,
and indeed, (37) may have nonunique solutions.)

Wefinallymention the stabilizedNewton–Lagrange (sequential quadratic program-
ming)method for equality-constrained optimization problems [15, 28, 34, 45]; see also
[35, Chapter 7]. It can also be covered by Theorem 3.1, thus relaxing the smoothness
hypothesis in [30, Sect. 3.3], thus generalizing [30, Corollary 3]. We do not go into
more detail regarding this issue as thiswould require an extensive discussion, including
introducing terminology not needed in this paper otherwise.

Remark 3.2 An extension of Izmailov et al. [30, Theorem1] to the case of a constrained
equation as in [20, Theorem 3.1] is also possible under the smoothness hypothesis of
this work. Consider the problem

�(u) = 0, u ∈ P,

where P ⊂ R
p is a given closed convex set. Then the analysis in [20, Sect. 3] allows to

conclude that under the assumptions of Theorem 3.1, with the additional requirement
that v̄ belongs to the interior of the radial cone to P at ū, the iterates uk in that theorem
can be additionally claimed to stay feasible (i.e., to belong to P for all k). This allows
to cover the constrained Gauss–Newton method with the subproblem

minimize
1

2
‖�(uk) + �′(uk)v‖2 subject to uk + v ∈ P;

the constrained Levenberg–Marquardt method [4, 12, 37, 47] with the subproblem

minimize
1

2
‖�(uk) + �′(uk)v‖2 + 1

2
ρ(uk)‖v‖2 subject to uk + v ∈ P

(cf. (35)); the version of the LP-Newton method with the additional constraint [11],
with the subproblem

minimize γ

subject to ‖�(uk) + �′(uk)v‖ ≤ γ ‖�(uk)‖2,
‖v‖ ≤ γ ‖�(uk)‖,
uk + v ∈ P

(cf. (37)); as well as projected version of these methods; see [20, Sect.s 1.1, 3] for
details.
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Remark 3.3 According to Izmailov et al. [30, Remark 2], the estimates (29)–(30) in
Theorem 3.1 imply that

lim
k→∞

‖uk+1 − ū‖
‖uk − ū‖ = 1

2
,

i.e., {uk} converges to ū linearly, with an asymptotic ratio exactly equal to 1/2.
This convergence pattern serves as a basis for convergence acceleration techniques

[25, 27], one of them being the so-called extrapolation. The simplest variant of it
consists of generating an auxiliary sequence {̂uk} by doubling the Newtonian step: for
each k, set

ûk+1 = uk + 2vk . (38)

According to Griewank [27, Theorem 4.1], one may expect {̂uk} to converge linearly
with the asymptotic ratio of 1/4, instead of 1/2 for {uk}, at least for the basic Newton
method with the subproblem (34). Observe that this procedure can be easily incorpo-
rated into any implementations of the algorithms discussed above: (38) does not affect
the main iteration sequence {uk}, and is not concerned with any computational over-
head except for one extra evaluation of � needed to assess the quality of the obtained
ûk+1. The specified extrapolation procedure will be employed in Sect. 5.

4 Asymptotic Acceptance of the Full Step

We will deal with the issue specified in the title of this section for the following
prototype algorithm combining the local perturbed Newton method framework with
a linesearch globalization technique.

Algorithm 4.1 Choose u0 ∈ R
p, σ ∈ (0, 1), θ ∈ (0, 1), and set k = 0.

1. If �(uk) = 0, stop.
2. Compute vk ∈ R

p as a solution of (9).
3. Set α = 1. If the inequality

‖�(uk + αvk)‖ ≤ (1 − σα)‖�(uk)‖ (39)

is satisfied, set αk = α. Otherwise, replace α by θα, check the inequality (39)
again, etc., until (39) becomes valid.

4. Set uk+1 = uk + αkv
k .

5. Increase k by 1 and go to Step 1.

The fact that Algorithm 4.1 (equipped with some further safeguards for the cases
when Step 2 fails or produces a direction “of poor quality” [21]) is well-defined and
possesses reasonable global convergence properties is supposed to be established for
the specific instances of (9) at Step 2. The role of the perturbed Newton method
framework is only local, which conforms with the local nature of our analysis, and in

123



Journal of Optimization Theory and Applications

principle, those global issues are not the subject of this work, but we will give some
related comments in Remark 4.1 below.

Theorem 4.1 Under the assumptions of Theorem 3.1, let the estimates (27) and (28)
hold with removed �, i.e.,

�(u) = O(‖u1 − ū1‖) + O(‖u − ū‖2) (40)

and

ω(u) = O(‖u − ū‖‖u1 − ū1‖) + O(‖u − ū‖3) (41)

for u ∈ Kε, δ(ū; v̄) as ε → 0+.
Then, for every ε̂ > 0 and δ̂ > 0, there exist ε = ε(v̄) > 0 and δ = δ(v̄) > 0 such

that for any starting point u0 ∈ Kε, δ(ū; v̄) Algorithm 4.1 with σ ∈ (0, 3/4) uniquely
defines the sequence {uk}, uk ∈ K ε̂, δ̂(ū, v̄) for all k, and αk = 1 holds for all k large
enough.

Observe that conditions (40) and (41) imply both (10) and (11), and of course cover
the case when �(·) ≡ 0 and ω(·) ≡ 0, and (9) turns into the basic (unperturbed)
Newton scheme (34), while Algorithm 4.1 turns into its instance considered in [22,
Algorithm 1]. Therefore, Theorem 4.1 generalizes [22, Proposition 3], both in a sense
of weaker smoothness assumptions, and of allowed perturbations of the basic Newton
scheme.

Proof As in Lemma 3.1, let ū = 0, and let ε̄ > 0 and δ̄ ∈ (0, 1) be chosen according
to that lemma. Then for u ∈ K ε̄, δ̄(ū; v̄)\{ū}, there exists the unique solution v of (9).
Moreover, by the argument in the proof of Izmailov et al. [30, Theorem 1] we then
have

‖u1‖ ≤ δ̄‖u‖ ≤ δ̄

1 − δ̄
‖u2‖, (42)

and hence, estimates (31), (33) yield

u + v = 1

2
u2 + O(‖u1‖) + O(‖u‖2) = 1

2
u2 + O(δ̄‖u2‖) + O(‖u2‖2), (43)

1

2
u + v = O(‖u1‖) + O(‖u‖2) = O(δ̄‖u2‖) + O(‖u2‖2) (44)

as u → 0 and δ̄ → 0+.
According to (2) and (5),

�(u) = �′(ū)u + 1

2
(�′)′(ū; u)u + O(‖u‖3)

= �′(ū)u1 + 1

2
(�′)′(ū; u2)u2 + O(‖u1‖2) + O(‖u1‖‖u2‖) + O(‖u‖3)
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= �′(ū)u1 + 1

2
(�′)′(ū; u2)u2 + O(δ̄‖u2‖2) + O(‖u2‖3) (45)

as u → 0 and δ̄ → 0+, where the second equality is by Lipschitz continuity of
(�′)′(ū; ·), while the last one is by (42). Furthermore, by the same reasoning, but also
employing (43), we obtain that

�(u + v) = �′(ū)(u + v) + 1

2
(�′)′(ū; u + v)(u + v) + O(‖u + v‖3)

= �′(ū)(u + v) + 1

8
(�′)′(ū; u2)u2 + O(δ̄‖u2‖2) + O(‖u2‖3) (46)

as u → 0 and δ̄ → 0+.
Since v is a solution of (9), by (2)–(5) and (40)–(41), we conclude that

0 = −�(u) − �′(u)v − �(u)v + ω(u)

= −�′(ū)u − 1

2
(�′)′(ū; u)u − �′(ū)v − (�′)′(ū; u)v

+O(‖u‖3) + O(‖u‖2‖v‖) + O(‖u1‖‖v‖) + O(‖u‖‖u1‖),

which by (42), (44) implies that

�′(ū)(u + v) = −(�′)′(ū; u)

(
1

2
u + v

)

+O(‖u3‖) + O(‖u‖2‖v‖) + O(‖u1‖‖v‖) + O(‖u‖‖u1‖)
= O(δ̄‖u2‖2) + O(‖u2‖3).

Substituting the latter into (46) yields

�(u + v) = 1

8
(�′)′(ū; u2)u2 + O(δ̄‖u2‖2) + O(‖u2‖3) (47)

as u → 0 and δ̄ → 0+.
Estimates (45) and (47) comprise what is needed for the analysis leading to Fischer

et al. [22, Proposition 3] to go through when combined with the following additional
facts none of which requires stronger smoothness assumptions. First, 2-regularity of
� in a direction v̄ ∈ ker�′(ū)\{0} implies that �(�′)′(ū; v̄)v̄ = B(v̄)v̄ 
= 0, and
then it can be seen that δ̄ > 0 can be chosen in such a way that there exists γ > 0
such that

‖(�′)′(ū; u2)u2‖ ≥ ‖�(�′)′(ū; u2)u2‖ ≥ γ ‖u2‖2.

Second, (13), (33), and (42) imply the estimates

u1 + v1 = O(‖u‖‖u1‖) + O(‖u‖3) = O(δ̄‖u2‖2) + O(‖u2‖3), (48)
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u2 + v2 = 1

2
u2 + O(‖u1‖) + O(‖u‖2) = 1

2
u2 + O(δ̄‖u2‖) + O(‖u2‖2)

(49)

as u → 0 and δ̄ → 0+.
Observe that unlike for the local convergence result in Theorem 3.1, the estimate

(48) (that is sharper than (31)) is essential here, as together with (49), it allows to
conclude that for every γ̄ > 0, one can chose ε̄ > 0 and δ̄ > 0 in such a way that

‖u1 + v1‖ ≤ γ̄ ‖u2 + v2‖2,

yielding another key ingredient of this analysis. �


Remark 4.1 Algorithm 4.1 makes perfect sense when used with the basic Newton
scheme (34) at Step 2 (i.e., with �(·) ≡ 0 and ω(·) ≡ 0 in (9)), and with Euclidean
norm in (39) at Step 3; see the related comments in [22]. In some sense, this remains
true for the Levenberg–Marquardt method with the iteration system (36) as well, since
the function ϕ : Rp → R+, ϕ(u) := ‖�(u)‖, defined using the Euclidian norm, is
differentiable at any point uk such that �(uk) 
= 0 (cf. Step 1 of Algorithm 4.1), and

ϕ′(uk) = (�′(uk))��(uk)/‖�(uk)‖,

and hence, for the solution vk of (36) it holds that

〈ϕ′(uk), vk〉 = −〈((�′(uk))��′(uk) + ρ(uk)I )vk, vk〉/‖�(uk)‖ < 0.

Therefore, vk is a direction of descent for ϕ at uk . That said, we emphasize that
here we only discuss a principal possibility of using the Levenberg–Marquardt direc-
tions with linesearch tests like (39), i.e., we only consider the descent property of
these directions for the residual. In particular, we do not discuss finite termination of
backtracking procedures using this test, as this would still not guarantee global con-
vergence of the overall algorithm, and we do not state here any formal results of this
kind, as this is beyond the scope of this paper focusing on local analysis. Moreover,
actual linesearch algorithms with known global convergence guarantees, involving
the Levenberg–Marquardt directions, either employ, in a hybrid manner, some kind of
safeguards for the case when the quality of descent is insufficient (like in [7, 13]), or
special linesearch tests (like in [23]).

Observe that the result on asymptotic acceptance of the full step for the Levenberg–
Marquardt method with ρ(·) := ‖�(·)‖τ , τ ≥ 2, in cases of convergence to (critical)
solutions with the needed 2-regularity property, following from Theorem 4.1 and
considerations in [30, Sect. 3.1] (recall also Remark 3.1), is new even in the case of
twice differentiable �.

As for the LP-Newton method, the natural choice of the norm in the subproblem
(37) is the infinity-norm, as it makes (37) a linear programming problem. In any case,
the globalization procedure proposed in [18, Algorithm 1] employs the stepsize test
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of the form

‖�(uk + αvk)‖ ≤ (1 − σα)‖�(uk)‖ + σαγk+1‖�(uk)‖2

with the same norm as the one appearing in (37). This test is evidently weaker than (39)
(with the same norm), and hence, accepts the unit stepsize once (39) does. Therefore,
Theorem 4.1 and considerations in [30, Sect. 3.2] (recall also Remark 3.1 again) yield
the result on asymptotic acceptance of the full step for the LP-Newton method, under
the needed assumptions.

In completion of this section we note that, unlike in [22], under the current smooth-
ness assumptions one cannot expect the set of excluded directions for starlike domains
of convergence and asymptotic acceptance of the full step to be thin, even for the basic
(unperturbed) Newton method; see Examples 5.1–5.3 below.

5 Applications to a Smooth Reformulation of Nonlinear
Complementarity Problems and Numerical Results

Consider the nonlinear complementarity problem (NCP)

u ≥ 0, F(u) ≥ 0, 〈u, F(u)〉 = 0, (50)

where F : Rp → R
p is a given smooth mapping. Using the complementarity function

ψ : R × R → R,

ψ(a, b) := 2ab − (min{0, a + b})2 (51)

(originally introduced in [9]), NCP (50) is equivalently reformulated as (7) with

�(u) := ψ(u, F(u)), (52)

where ψ is applied componentwise. The function ψ in (51) is one of known smooth
complementarity functions [36, 40]: assuming that F is differentiable at u ∈ R

p, the
corresponding mapping defined in (52) is also differentiable at u, with the Jacobian
�′(u) having the rows

�′
i (u) = 2ui F

′
i (u) + 2Fi (u)ei − 2min{0, ui + Fi (u)}(F ′

i (u) + ei ), i = 1, . . . , p,(53)

where e1, . . . , ep is the standard basis in R
p. From [35, Proposition 1.75] it then

follows that if F ′ is strongly semismooth at ū ∈ R
p (in particular, if it is twice

differentiable near ū, with its second derivative being Lipschitz-continuous near ū),
then �′ is strongly semismooth at ū.
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If ū is a solution of NCP (50), then the disjoint index sets

I0(ū) := {i = 1, . . . , p | ūi = Fi (ū) = 0},
I1(ū) := {i = 1, . . . , p | ūi > 0, Fi (ū) = 0},
I2(ū) := {i = 1, . . . , p | ūi = 0, Fi (ū) > 0},

provide a partition of {1, . . . , p}, and from (53) we have

�′
i (ū) =

⎧⎨
⎩
0 if i ∈ I0(ū),

2ūi F ′
i (ū) if i ∈ I1(ū),

2Fi (ū)ei if i ∈ I2(ū).

(54)

This implies that if I0(ū) 
= ∅, meaning violation of the strict complementarity
condition at ū, then ū is necessarily a singular solution of Equation (7).

From (53) one can easily obtain that for any v ∈ R
p and i ∈ I0(ū)

(�′
i )

′(ū; v) = 2(vi − min{0, vi + 〈F ′
i (ū), v〉})F ′

i (ū)

+ 2(〈F ′
i (ū), v〉 − min{0, vi + 〈F ′

i (ū), v〉})ei
= 2max{vi , −〈F ′

i (ū), v〉}F ′
i (ū) − 2min{vi , −〈F ′

i (ū), v〉}ei .

Then from (54), we derive that the key assumption of 2-regularity of � at ū in some
direction v̄ ∈ ker�′(ū) automatically holds for any v̄ ∈ R

p such that

〈F ′
i (ū), v̄〉 = 0, i ∈ I1(ū), v̄i = 0, i ∈ I2(ū), (55)

and the matrix with the rows

max{v̄i , −〈F ′
i (ū), v̄〉}F ′

i (ū) − min{v̄i , −〈F ′
i (ū), v̄〉})ei , i ∈ I0(ū),

F ′
i (ū), i ∈ I1(ū),

ei , i ∈ I2(ū),

(56)

is nonsingular. The latter sufficient condition for 2-regularity of � at ū in a direction
v̄ evidently implies that

F ′
i (ū), i ∈ I1(ū), ei , i ∈ I2(ū), are linearly independent, (57)

andmoreover, this sufficient condition also becomes necessary under (57). The general
characterization of 2-regularity in the current context, not assuming (57), can be found
in [42]. For easier understanding of the essence of the properties in question, here we
restrict ourselves to the case when singularity is imposed in a natural way, i.e., only
by violation of strict complementarity at ū, or, in other words, when (57) holds. That
said, see Example 5.3 below, demonstrating the case when the key assumption holds
in the absence of (57).

Example 5.1 [19, Example 1] Let p = 1, F(u) = u2. Then NCP (50) has the unique
solution ū = 0, with I1(ū) = I2(ū) = ∅, F ′(ū) = 0, and the first line in (56) is
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Fig. 1 Example 5.2: the Newton method

positive if v̄ < 0, and equals 0 otherwise. Therefore, the key assumption holds with
any v̄ < 0, but not with v̄ ≥ 0.

Being initialized at u0 < 0, Algorithm 4.1 employing the basic Newton method,
and with σ < 3/4, converges to ū by full steps (from some iteration on), and the rate
of convergence is linear with the asymptotic ratio 1/2. For σ ≥ 3/4, the full step is
never accepted (the ultimate stepsize value is α = 0.5 for σ = 3/4, and approaches
0 as σ approaches 1), and the linear convergence rate is lower (with the asymptotic
ratio 3/4 for σ = 3/4, and approaching 1 as σ approaches 1).

The casewhen u0 > 0 is not covered by the theory above, and themethod ultimately
accepts the unit stepsize for sufficiently small values of σ (only for those smaller than
some threshold σ̄ ∈ (0, 3/4)), but in such cases the rate of convergence is linear with
the asymptotic ratio 2/3. This specific rate is explained by the fact that for u > 0, it
holds that �(u) = 2u3, and the Newton iteration at uk > 0 produces uk+1 = 2uk/3.
This also agrees with the theory developed in [26] for arbitrarily smooth equations and
for the basic Newton method, allowing for higher-order regularity when �′′(ū) = 0
(as it essentially happens in this case).

Example 5.2 (Test problem affknot1 in [42]) Let p = 2, F(u) = (u2 − 1, u1).
Then NCP (50) has the solution set {0} × [1, +∞) (thick line in Fig. 1, where thin
lines are contours of ‖�(·)‖), with ū = (0, 1) (thick dot in Fig. 1) being the unique
critical solution, and I0(ū) = {1}, I1(ū) = {2}, I2(ū) = ∅, F ′

1(ū) = e2, F ′
2(ū) = e1.

Condition (55) yields v̄1 = 0, while the matrix with rows given by (56) takes the form

(
0 −v̄2
1 0

)

when v̄2 < 0, and

(
v̄2 0
1 0

)

otherwise. Therefore, the key assumption holds with v̄ = (0, v̄2) for any v̄2 < 0, but
does not hold for v̄2 ≥ 0.
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Fig. 2 Example 5.3: the Newton method

Fig. 3 Example 5.3: the Newton method

Figure 1a demonstrates the starting points from which convergence of the basic
Newton method to the critical solution ū was detected. In order to obtain this figure,
we initialized the method at 10000 random starting points distributed uniformly in the
cubic neighborhood of ū with the half-edge equal to 1. The runs were terminated with
success when the residual ‖�(uk)‖ was achieving a value below 10−11, and out of
these cases, convergence to ū was claimed when ‖uk − ū‖ at successful termination
was smaller than 10−3. Figures with domains of attraction for other examples below
were generated similarly. Note that the tolerance 10−3 is a compromise between the
tasks of numerically detecting the cases of convergence and non-convergence to the
solution of interest.

Figure 1b shows some typical iterative sequences. The observed pattern of con-
vergence to ū agrees with the developed theory, and the full step is ultimately
accepted.

Example 5.3 [2, Example 3.3] Let p = 2, F(u) = ((u1 − 1)u2, (u1 − 1)2). Then
NCP (50) has the solution set (R+ × {0}) ∪ ({1} ×R+), with (0, 0) and (1, 0) being
the only critical solutions. Figures2 and 3 provide the same kind of information as
Fig. 1 above.
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Fig. 4 Example 5.4: the Newton method

For ū = (0, 0) we have I0(ū) = {1}, I1(ū) = ∅, I2(ū) = {2}, F ′
1(ū) = −e2,

F ′
2(ū) = 2e1. Condition (55) yields v̄2 = 0, while the matrix with rows given by (56)

takes the form
(−v̄1 0

0 1

)

when v̄1 < 0, and

(
0 −v̄1
0 1

)

otherwise. Therefore, the key assumption holds with v̄ = (v̄1, 0) for any v̄1 < 0, but
does not hold for v̄1 ≥ 0.

Figure 2a demonstrates the starting points from which convergence of the basic
Newton method to the critical solution ū = (0, 0) was detected, while Fig. 2b shows
some typical iterative sequences. The observed pattern of convergence to ū agrees
with the developed theory, and the full step is ultimately accepted.

For ū = (1, 0) we have I0(ū) = {2}, I1(ū) = {1}, I2(ū) = ∅, F ′
1(ū) = F ′

2(ū) =
(0, 0), implying, in particular, that (57) does not hold. Nevertheless, it can be seen
that the key assumption holds with any v̄ such that v̄2 < 0.

Figure 3 is intended to emphasize the role of the critical solution ū = (1, 0).
Observe that ε(v̄) → 0 as v̄2 → 0−, i.e., as v̄ approaches nonzero directions in the
u1-axis, in which 2-regularity is violated. That said, the boundary of the attraction
domain in Fig. 3a is tangential to the u1-axis at (1, 0), and ε(v̄) is positive for every
direction v̄ with v̄2 < 0. A similar effect is observed in other examples.

Example 5.4 [2, Example 3.2] Let p = 2, F(u) = (0, −u1+u2 +1). Then NCP (50)
has the solution set ([0, 1] × {0}) ∪ {(t + 1, t) | t ≥ 0}, with (0, 0) and (1, 0) being
the only critical solutions. Figures4, 5 and 6 provide the same kind of information as
Figs. 1, 2 and 3 above, though Figs. 5 and 6 are for the Levenberg–Marquardt method
rather than the basic Newton method.
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Fig. 5 Example 5.4: the Levenberg–Marquardt method

Fig. 6 Example 5.4: the Levenberg–Marquardt method

For ū = (0, 0) as in the previous examples one can check that the key assumption
holds with v̄ = (v̄1, 0) for any v̄1 < 0, and Figs. 4 and 5 reflect this fact.

Furthermore, one can see that �′
1(u) = −2min{0, u1}e1 = 0 for all u ∈ R

2

with u1 ≥ 0, implying that �′(u) is singular for all such u, and in particular, it is
singular in a neighborhood of ū = (1, 0). Therefore, the key assumption cannot hold
at this ū, and the Newton method is not well-defined near this solution. At the same
time, the Levenberg–Marquardt method behaves nicely near this solution, and does
not exhibit any tendency of convergence to it; see Fig. 6. In particular, the sparse set
in Fig. 6a is actually a result of using an approximate test on closeness of the iterate
at termination to ū, with rather rough tolerance 10−3. Further reducing this tolerance
makes the “domain of attraction” being shown more and more sparse, and eventually
eliminates it completely at the level 10−6.

Example 5.5 (Test problem quadknot in [42]) Let p = 2, F(u) = (u2 − 1, u21). Then
NCP (50) has the solution set {0} × [1, +∞), with ū = (0, 1) being the only critical
solution. See Fig. 7.
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Fig. 7 Example 5.5: the Levenberg–Marquardt method

Fig. 8 Example 5.6: the Levenberg–Marquardt method

Example 5.6 [2, Example 3.4] Let p = 2, F(u) = ((u1−1)2+(u1−1)u2, (u1−1)2).
Then apart from a strictly complementary solution (0, 0), NCP (50) has the solution
set {1} × R+, with ū = (1, 0) being the only critical solution. See Fig. 8.

We complete the paper with numerical results for a collection of small NCPs taken
from Oberlin and Wright [42], and for some other examples of NCP with solutions
violating strict complementarity, taken from various sources. The algorithms being
tested were applied to (7) with � defined according to (51)–(52).

Table 1 presents the results for Algorithm 4.1 employing the basic Newton method
with the subproblem (34), and with σ = 0.01 and θ = 1/2 (abbreviated below as
“NM”), as well as for the version of the method supplied with the simplest extrap-
olation procedure defined according to (38) (abbreviated as “NM-EP”). Successful
termination was declared when the Euclidean residual of (7) at the main or extrapo-
lated iterate was getting smaller or equal to 10−11, within 50 iterations. The identifiers
of test problems with the key assumption satisfied at the singular solution in question
are boldfaced. Some of the test problems have two solutions of interest, and then
their identifiers have additional attributes 1 or 2. For each test problem, we performed
a single run from the “recommended” starting point (when available; abbreviated as
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Table 1 Numerical results for NCPs: the Newton method

Test problems NM NM-EP

Rec Rand Rec Rand

quarp 15 18 (100%, 5.1e−4) 14 16 (100%, 6.7e−4)

DIS61 19 17 (100%, 1.7e−6) 10 9 (100%, 1.2e−6)

quarquad, 1 16 20 (100%, 6.7e−7) 8 13 (100%, 4.0e−7)

quarquad, 2 18 20 (97%, 5.6e−4) 17 17 (97%, 6.2e−4)

affknot1 20 11 (100%, 4.9e−6) 2 5 (100%, 2.8e−7)

affknot2 18 19 (100%, 4.5e−6) 1 9 (100%, 5.7e−13)

quadknot 18 19 (100%, 2.1e−6) 9 9 (100%, 1.3e−6)

munson4 19 19 (100%, 1.7e−6) 10 9 (100%, 1.5e−6)

DIS64 – 19 (100%, 1.7e−6) – 1 (100%, 1.2e−16)

ne-hard 25 22 (100%, 2.1e−6) 16 15 (100%, 2.7e−7)

doubleknot 21 19 (88%, 2.6e−6) 11 10 (88%, 6.6e−13)

quad1 15 19 (100%, 7.2e−5) 5 13 (100%, 7.0e−5)

quad2 20 19 (100%, 6.3e−5) 9 12 (100%, 7.0e−5)

quarn 15 19 (100%, 1.0e−4) 14 18 (100%, 7.3e−4)

[2, Example 3.1] – – – –

[2, Example 3.2] 18 18 (50%, 2.3e−6) 9 8 (51%, 8.4e−13)

[2, Example 3.3], 1 20 10 (100%, 2.8e−6) 11 4 (100%, 3.4e−7)

[2, Example 3.3], 2 19 5 (100%, 2.3e−6) 5 2 (100%, 3.0e−5)

[2, Example 3.4] 20 17 (100%, 7.0e−5) 11 11 (100%, 6.0e−5)

[8, Example 6] 19 19 (100%, 1.9e−6) 1 1 (100%, 2.2e−16)

[8, Example 7] 19 18 (100%, 2.8e−6) 1 1 (100%, 2.7e−16)

[8, Example 8] 20 17 (100%, 1.9e−6) 11 8 (100%, 1.3e−6)

[8, Example 9] 19 19 (100%, 2.1e−6) 1 1 (100%, 6.0e−16)

[19, Example 1] 19 19 (100%, 7.2e−5) 8 12 (100%, 7.0e−5)

[19, Example 3], 1 21 19 (100%, 6.9e−5) 16 13 (100%, 3.8e−9)

[19, Example 3], 2 19 19 (100%, 6.9e−5) 10 13 (100%, 6.2e−5)

[20, Example 4.2] 19 18 (100%, 2.1e−6) 1 1 (100%, 1.4e−16)

[20, Example 4.3] 19 19 (100%, 1.6e−6) 9 8 (100%, 1.3e−10)

[29, Example 3.4] 19 18 (100%, 1.6e−6) 1 1 (100%, 6.3e−18)

[29, Example 3.5] 20 19 (100%, 1.6e−6) 1 1 (100%, 8.4e−16)

[32, Example 1] 19 19 (100%, 1.7e−6) 7 9 (100%, 1.2e−6)

[32, Example 2] 19 18 (100%, 2.0e−6) 1 1 (100%, 7.2e−16)

“Rec”), and also 1000 runs from randomly generated starting points distributed uni-
formly in the cubic neighborhood of the solution in question, with a half-edge equal
to 1 (abbreviated as “Rand”). For the former case, we report only the iteration count,
while for the latter we report the average iteration count over successful runs (rounded
up to the nearest integer), and additionally the percentage of successful runs and the
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Table 2 Numerical results for NCPs: the Levenverg–Marquardt method

Test problems LMM LMM-EP

Rec Rand Rec Rand

quarp 15 18 (100%, 9.5e−4) 14 16 (100%, 5.3e−4)

DIS61 19 18 (100%, 3.8e−6) 10 10 (100%, 1.2e−6)

quarquad, 1 17 21 (100%, 1.3e−6) 8 14 (100%, 4.1e−7)

quarquad, 2 16 20 (100%, 6.4e−4) 15 17 (100%, 6.8e−4)

affknot1 20 13 (100%, 2.3e−6) 11 7 (100%, 5.6e−7)

affknot2 18 19 (100%, 2.2e−6) 7 9 (100%, 2.3e−8)

quadknot 19 17 (100%, 4.3e−6) 9 9 (100%, 1.4e−6)

munson4 20 19 (100%, 3.6e−6) 11 10 (100%, 1.5e−6)

DIS64 28 19 (100%, 3.9e−6) 16 7 (100%, 1.2e−6)

ne-hard - 22 (29%, 1.3e−6) 43 14 (28%, 8.7e−7)

doubleknot 21 20 (100%, 5.4e−6) 12 10 (100%, 6.5e−8)

quad1 16 20 (100%, 1.4e−4) 5 13 (100%, 7.0e−5)

quad2 20 20 (100%, 1.4e−4) 9 13 (100%, 7.2e−5)

quarn 15 19 (100%, 3.5e−4) 14 18 (100%, 6.3e−4)

[2, Example 3.1] 20 11 (100%, 2.1e−6) 7 5 (100%, 1.1e−6)

[2, Example 3.2] 19 12 (99%, 3.0e−6) 10 8 (99%, 3.3e−7)

[2, Example 3.3], 1 20 11 (100%, 3.4e−6) 11 7 (100%, 2.8e−07)

[2, Example 3.3], 2 19 8 (100%, 2.3e−6) 7 5 (100%, 1.0e−5)

[2, Example 3.4] 20 14 (100%, 8.0e−5) 11 10 (100%, 6.7e−5)

[8, Example 6] 20 19 (100%, 1.7e−3) 8 7 (100%, 1.1e−6)

[8, Example 7] 19 18 (100%, 2.4e−6) 8 7 (100%, 1.6e−6)

[8, Example 8] 21 18 (100%, 2.0e−6) 11 9 (100%, 1.3e−6)

[8, Example 9] 20 19 (100%, 1.9e−6) 9 7 (100%, 1.3e−6)

[19, Example 1] 20 19 (100%, 7.1e−5) 9 12 (100%, 7.1e−5)

[19, Example 3], 1 21 19 (100%, 1.4e−6) 16 14 (100%, 3.8e−9)

[19, Example 3], 2 20 19 (100%, 5.8e−5) 10 14 (100%, 7.1e−5)

[20, Example 4.2] 20 17 (100%, 2.2e−6) 11 7 (100%, 4.5e−6)

[20, Example 4.3] 20 19 (100%, 1.6e−6) 10 9 (100%, 7.9e−9)

[29, Example 3.4] 19 18 (100%, 1.6e−6) 7 6 (100%, 9.9e−7)

[29, Example 3.5] 20 19 (100%, 3.1e−6) 8 8 (100%, 1.9e−6)

[32, Example 1] 19 19 (100%, 1.8e−6) 9 9 (100%, 1.3e−6)

[32, Example 2] 19 19 (100%, 2.0e−6) 7 7 (100%, 1.2e−6)

average distance to the solution of interest over cases when this distance at success-
ful termination was no greater than 10−3 (in parenthesis, separated by commas). The
cases when there were no successful runs are marked by “–”.

Table 2 reports the same kind of information as Table 1 for Algorithm 4.1 with
the same parameter values, but employing the Levenberg–Marquardt method with
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the subproblem (36) making use of the regularization parameter ρ(·) := ‖�(·)‖2
(abbreviated as LMM, and as LMM-EP for a version supplied with extrapolation).

The asymptotic acceptance of the full step was encountered in all runs of these
experiments. Moreover, the full step was accepted almost always, except for some
rare cases when it was not accepted on some early iteration (usually once per run,
if at all). Moreover, for LMM, the iterations where the full step was not accepted
were systematically encountered for DIS61 and quarquad, 2, only. These observations
confirm the conclusions of Theorem 4.1: despite convergence to singular solutions,
the full step is asymptotically accepted.

Furthermore, the results reported in Tables 1 and 2 clearly demonstrate the acceler-
ating effect of the extrapolation procedure for problems satisfying the key assumption,
both for the Newton and the Levenberg–Marquardt methods. This can be considered
as an indirect evidence of the convergence pattern established in Theorem 3.1.

6 Conclusions

Wehave extended someknown results on behavior ofNewton-typemethods (including
the Levenberg–Marquardt and the LP-Newton methods) near singular (and perhaps
nonisolated) solutions of nonlinear equations to the case when the operator of the
equation possesses a strongly semismooth derivative, but is not necessarily twice
differentiable. Specifically, we have presented the results on local linear convergence,
and on asymptotic acceptance of the full step by linesearch versions of such algorithms.
The results were further applied to nonlinear complementarity problems violating
strict complementarity, and a collection of examples was presented demonstrating
peculiarities of the smoothness assumptions used in this work.
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