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Abstract
We present a unified theorem for the convergence analysis of stochastic gradient algo-
rithms for minimizing a smooth and convex loss plus a convex regularizer. We do
this by extending the unified analysis of Gorbunov et al. (in: AISTATS, 2020) and
dropping the requirement that the loss function be strongly convex. Instead, we rely
only on convexity of the loss function. Our unified analysis applies to a host of exist-
ing algorithms such as proximal SGD, variance reduced methods, quantization and
some coordinate descent-type methods. For the variance reduced methods, we recover
the best known convergence rates as special cases. For proximal SGD, the quantiza-
tion and coordinate-type methods, we uncover new state-of-the-art convergence rates.
Our analysis also includes any form of sampling or minibatching. As such, we are
able to determine the minibatch size that optimizes the total complexity of variance
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reduced methods. We showcase this by obtaining a simple formula for the optimal
minibatch size of two variance reduced methods (L-SVRG and SAGA). This optimal
minibatch size not only improves the theoretical total complexity of the methods but
also improves their convergence in practice, as we show in several experiments.

Keywords Stochastic optimization · Convex optimization · Variance reduction ·
Composite optimization

1 Introduction and Background

Consider the following composite convex optimization problem

min
x∈Rd

{F(x) ≡ f (x) + R(x)} , (1)

where f : Rd → R is smooth and convex and R : Rd → (−∞,∞] is a proper closed
and convex functionwith an easy-to-compute proximal term. This problemoften arises
in trainingmachine learningmodels,where f is a loss function and R is a regularization
term, e.g., �1-regularized logistic regression [33], LASSO regression [41] and elastic
net regression [47]. It also includes projected gradient descent, if R is an indicator on
a convex set.

Anatural algorithmwhich iswell-suited for solving (1) is proximal gradient descent,
which requires iteratively taking a proximal step in the direction of the steepest descent.
Unfortunately, thismethod requires computing the gradient∇ f at each iteration,which
can be computationally expensive or even impossible in several settings. This has
sparked interest in developing cheaper, practical methods that need only a stochastic
unbiased estimate gk ∈ R

d of the gradient at each iteration. These methods can be
written as

x0 ∈ R
d , xk+1 = proxγk R (xk − γkgk) , (2)

where (γk)k is a sequence of step sizes. This estimate gk can take on many different
forms depending on the problem of interest. Here we list a few.

1.1 Stochastic Approximation

Most machine learning problems can be cast as minimizing the generalization error
of some underlying model, where fz(x) is the loss over a sample z and

f (x) = Ez∼D
[
fz(x)

]
. (3)

Since D is an unknown distribution, computing this expectation is impossible in gen-
eral. However, by sampling z ∼ D, we can compute a stochastic gradient ∇ fz(x).
Using Algorithm (2) with gk = ∇ fzk (xk) and R ≡ 0 gives the simplest stochastic
gradient descent method: stochastic gradient descent (SGD) [29, 35].
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1.2 Finite-SumMinimization

Since the expectation (3) cannot be computed in general, one well-studied solution to
approximately solve this problem is to use a Monte Carlo estimator:

f (x) = 1

n

n∑

i=1

fi (x), (4)

where n is the number of samples and fi (x) is the loss at x on the i th drawn sample.
When R is a regularization function, problem (1) with f defined in (4) is often referred
to as regularized empirical minimization (R-ERM) [39]. For the approximation (4) to
be accurate, we would like n to be as large as possible. This, in turn, makes computing
the gradient extremely costly. In this setting, for low-precision problems, SGD scales
very favorably compared to gradient descent, since an iteration of SGD requiresO(d)

flops compared to O(nd) for gradient descent. Moreover, several techniques applied
to SGD such as importance sampling and minibatching [12, 21, 28, 46] have made
SGD the preferred choice for solving Problem (1) + (4). However, onemajor drawback
of SGD is that, using a fixed step size, SGD does not converge and oscillates in the
neighborhood of a minimizer. To remedy this problem, variance reduced methods
[3, 8, 19, 32, 36] were developed. These algorithms get the best of both worlds: the
global convergence properties of GD and the small iteration complexity of SGD. In
the smooth case, they all share the distinguishing property that the variance of their
stochastic gradients gk converges to 0. This feature allows them to converge to a
minimizer with a fixed step size at the cost of some extra storage or computations
compared to SGD.

1.3 Distributed Optimization

Another setting where the exact gradient∇ f is impossible to compute is in distributed
optimization. The objective function in distributed optimization can be formulated
exactly as (4), where each fi is a loss on the data stored on the i th node. Each node
computes the loss on its local data, then the losses are aggregated by the master node.
When the number of nodes n is high, the bottleneck of the optimization becomes
the cost of communicating the individual gradients. To remedy this issue, various
compression techniques were proposed [1, 2, 15, 22, 38, 43, 45], most of which can
be modeled as applying a random transformation Q : R

d �→ R
d to each gradient

∇ fi (xk) or to a noisy estimate of the gradient gki . Thus, many proximal quantized
stochastic gradient methods fit the form (2) with

gk =
n∑

i=1

Q(gki ).

While quantized stochastic gradient methods have been widely used in machine learn-
ing applications, it was not until theDIANA algorithm [26, 27] that a distributedmethod
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was shown to converge to the neighborhood of a minimizer for strongly convex func-
tions. Moreover, in the case where each fi is itself a finite average of local functions,
variance reduced versions ofDIANA, called VR-DIANA [18], were recently developed
and proved to converge sublinearly with a fixed step size for convex functions.

1.4 High-Dimensional FunctionMinimization

Lastly, regardless of the structure of f , if the dimension of the problem d is very high,
it is sometimes impossible to compute or to store the gradient at any iteration. Instead,
in some cases, one can efficiently compute some coordinates of the gradient, and
perform a gradient descent step on the selected coordinates only. These methods are
known as (randomized) coordinate descent (RCD) methods [30, 44]. These methods
also fit the form (2), for example, with

gk = ∇ f (xk)eik ,

where (ei )i is the canonical basis of Rd and ik ∈ [d] is sampled randomly at each
iteration. Though RCD methods fit the form (2) their analysis is often very different
compared to other stochastic gradient methods. One exception to this observation is
SEGA [16], the first RCD method known to converge for strongly convex functions
with nonseparable regularizers.

While all the methods presented above have been discovered and analyzed inde-
pendently, most of them rely on the same assumptions and share a similar analysis. It
is this observation and the results derived for strongly convex functions by [11] that
motivate this work.

2 Contributions

We now summarize the key contributions of this paper.

2.1 Unified Analysis of Stochastic Gradient Algorithms

Under a unified assumption on the gradients gk , it was shown by [11] that stochastic
gradient methods which fit the format (2) converge linearly to a neighborhood of
the minimizer for quasi-strongly convex functions when using a fixed step size. We
extend this line of work to the convex setting, and further generalize it by allowing for
decreasing step sizes. As a result, for all the methods which verify our assumptions,
we are able to prove either sublinear convergence to the neighborhood of a minimum
with a fixed step size or exact convergence with a decreasing step size.

2.2 Analysis of SGDWithout the Bounded Gradients Assumption

Most of the existing analysis on SGD assume a uniform bound on the secondmoments
of the stochastic gradients or on their variance. Indeed, for the analysis of stochas-
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tic (sub)gradient descent, this is often necessary to apply the classical convergence
proofs. However, for large classes of convex functions, it has been shown that these
assumptions do not to hold [20, 31]. As a result, there has been a recent surge in trying
to avoid these assumptions on the stochastic gradients for several classes of smooth
functions: strongly convex [14, 25, 31], convex [14, 25, 40, 42], or even nonconvex
functions [20, 24, 25]. Surprisingly, a general analysis for SGD with proximal itera-
tions for convex functions without these bounded gradient assumptions is still lacking.
As a special case of our unified analysis, assuming only convexity and smoothness,
we provide a general analysis of proximal SGD in the convex setting. Moreover, using
the arbitrary sampling framework of [12], we are able to prove convergence rates for
SGD under minibatching, importance sampling, or virtually any form of sampling.

2.3 Extension of the Analysis of Existing Algorithms to the Convex Case

As another special case of our analysis, we also provide the first convergence rates
for the (variance reduced) stochastic coordinate descent method SEGA [16] and the
distributed (variance reduced) compressed SGD method DIANA [26] in the convex
setting. Our results can also be applied to all the recent methods developed in [11].

2.4 Optimal Minibatches for L-SVRG and SAGA in the Convex Setting

With a unifying convergence theory in hand, we can now ask sweeping questions
across families of algorithms. We demonstrate this by answering the question

What is the optimal minibatch size for variance reduced methods?

Recently, precise estimates of the minibach sizes which minimize the total complexity
for SAGA [8] and SVRG [4, 19, 34] applied to strongly convex functions were derived
by [9] and [37]. We showcase the flexibility of our unifying framework by deriving
new optimal minibatch sizes for SAGA [8] and L-SVRG [17, 23] in the general convex
setting. Unlike prior work in the strongly convex setting [9, 37], our resulting optimal
minibatch sizes can be computed using only the smoothness constants. To verify the
validity of our claims, we show through extensive experiments that our theoretically
derived optimal minibatch sizes are competitive against a grid search.

3 Unified Analysis for Proximal Stochastic Gradient Methods

3.1 Notation

The Bregman divergence associated with f is the mapping

D f (x, y)
def= f (x) − f (y) − 〈∇ f (y), x − y〉 , x, y ∈ R

d ,
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and the proximal operator of γ R is the function

proxγ R (x)
def= argminu∈Rd

{
γ R(x) + 1

2
‖x − u‖2

}
.

Let [n] def= {1, . . . , n}. We denote the expectation of a random variable X by E [X ]
and the conditional expectation of X given a random variable Y by E [X | Y ].

[11] analyze stochastic gradient methods that fit the form (2) for smooth quasi-
strongly convex functions. In this work, we extend these results to the general convex
setting. We formalize our assumptions on f and R in the following.

Assumption 1 The function f is L–smooth and convex:

f (y) ≤ f (x) + 〈∇ f (x), y − x〉 + L

2
‖y − x‖2 , for all x, y ∈ R

d , (5)

f (y) ≥ f (x) + 〈∇ f (x), y − x〉, for all x, y ∈ R
d . (6)

The function R is convex:

R(αx + (1 − α)y) ≥ αR(x) + (1 − α)R(y), for all x, y ∈ R
d , α ∈ [0, 1].

When f has the form (4), we assume that for all i ∈ [n], fi is Li -smooth and

convex, and we denote Lmax
def= max

i∈[n] Li .

The innovation introduced by [11] is the following unifying assumption on the
stochastic gradients gk used in (2) which allows to simultaneously analyze classical
SGD, variance reduced methods, quantized stochastic gradient methods, and some
randomized coordinate descent methods.

Assumption 2 (Assumption 4.1 in [11]) Consider the iterates (xk)k and gradients (gk)k
in (2).

1. The gradient estimates are conditionally unbiased:

E [gk | xk] = ∇ f (xk). (7)

2. There exist constants A, B,C, D1, D2, ρ ≥ 0, and a sequence of random variables
σ 2
k ≥ 0 such that for all possible minimizers x∗ of F :

E

[
‖gk − ∇ f (x∗)‖2 | xk

]
≤ 2AD f (xk, x∗) + Bσ 2

k + D1, (8)

E

[
σ 2
k+1 | xk

]
≤ (1 − ρ) σ 2

k + 2CD f (xk, x∗) + D2. (9)

Though we chose to present Eqs. (7), (8) and (9) as an assumption, we show
throughout the main paper and in the appendix that for all the algorithms we consider
(excludingDIANA), these equations all holdwith known constantswhenAssumption 1
holds. An extensive yet nonexhaustive list of algorithms satisfying Assumption 2 and
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the corresponding constants can be found in [11, Table 2].We report in Section B of the
appendix these constants for five algorithms: SGD, two variance reduced methods L-
SVRG and SAGA, a distributed method DIANA and a coordinate descent-type method
SEGA.

We now state our main theorem.

Theorem 3.1 Suppose that Assumptions 1 and 2 hold. Let M
def= B/ρ and let (γk)k≥0

be a decreasing, strictly positive sequence of step sizes chosen such that

0 < γ0 < min

{
1

2(A + MC)
,
1

L

}
.

The iterates given by (2) satisfy

E [F(x̄t ) − F(x∗)] ≤
‖x0 − x∗‖2 + 2γ0

(
δ0 + γ0Mσ 2

0

) + 2 (D1 + 2MD2)
t−1∑

k=0
γ 2
k

2
∑t−1

i=0 (1 − 2γi (A + MC)) γi
,

(10)

where x̄t
def= ∑t−1

k=0
(1−2γk (A+MC))γk∑t−1
i=0(1−2γi (A+MC))γi

xk and δ0
def= F(x0) − F(x∗).

The proof of Theorem 3.1 is deferred to the appendix (Section C).

4 TheMain Corollaries

In contrast to [11], our analysis allows both constant and decreasing step sizes. In this
section,wewill present two corollaries corresponding to these two choices of step sizes
and discuss the resulting convergence rates depending on the constants obtained from
Assumption 2. Then, we specialize our theorem to SGD, which allows us to recover
the first analysis of proximal SGDwithout the bounded gradients or bounded gradient
variance assumptions in the general convex setting. We apply the same analysis to
DIANA and present convergence results for this algorithm in the convex setting.

First, we show that by using a constant step size the average of iterates of any
stochastic gradient method of the form (2) satisfying Assumptions 1 and 2 converges
sublinearly to the neighborhood of the minimum.

Corollary 4.1 Consider the setting of Theorem 3.1. Let M = B/ρ. Choose stepsizes

γk = γ > 0 for all k, where γ ≤ min
{

1
4(A+MC)

, 1
2 L

}
; then substituting in the rate

in (10), we have,

E [F(x̄t ) − F(x∗)] ≤ 2γ
(
δ0 + γ Mσ 2

0

) + ‖x0 − x∗‖2
γ t

+ 2γ (D1 + MD2) .

One can already see that to ensure convergence with a fixed step size, we need
to have D1 = D2 = 0. The only known stochastic gradient methods which satisfy
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this property are variance reduced methods, as we show in Sect. 5. When D1 �= 0 or
D2 �= 0, which is the case for SGD andDIANA (See Section B), the solution to ensure
anytime convergence is to use decreasing step sizes.

Corollary 4.2 Consider the setting of Theorem 3.1. Let M = B/ρ. Choose stepsizes

γk = γ√
k+1

for all k ≥ 0, where γ ≤ min
{

1
4(A+MC)

, 1
2 L

}
. Then substituting in the

rate in (10), we have

E [F(x̄t ) − F(x∗)] ≤
γ
(
δ0 + γ Mσ 2

0

) + ‖x0 − x∗‖2 +
(
D1
2 + MD2

)
(log(t) + 1)

γ
(√

t − 1
)

∼ O
(
log(t)√

t

)
.

4.1 SGDWithout the Bounded Gradients Assumption

To better illustrate the significance of the convergence rates derived in Corollaries 4.1
and 4.2, consider the SGD method for the finite sum setting (4):

x0 ∈ R
d , xk+1 = proxγk R

(
xk − γk∇ fik (xk)

)
, (11)

where ik is sampled uniformly at random from [n]. Note that we consider the finite
sum setting just for illustration, and our results continue to hold under themore general
Monte Carlo setting.

Lemma 4.1 Assume that f has a finite sum structure (4) and that Assumption 1 holds.
The iterates defined by (11) verify Assumption 1 with

A = 2Lmax, B = 0, ρ = 1, C = 0, D1 = 2σ 2, D2 = 0, (12)

where σ 2 = 1
n sup
x∗∈X∗

∑n
i=1 ‖∇ fi (x∗)‖2, where X∗ is the set of minimizers of F, and

Lmax = max
i∈[n] Li .

Proof See Lemma A.1 in [11]. ��
This analysis can be easily extended to includeminibatching, importance sampling,

and virtually all forms of sampling by using the constants given in (12), with the
exception of Lmax which should be replaced by the expected smoothness constant
[12]. Due to lack of space, we defer this general analysis of SGD to the appendix
(Sections A and B). Using Theorem 3.1 and Lemma 4.1, we arrive at the following
result.

Corollary 4.3 Let (γk)k be a sequence of decreasing step sizes such that 0 < γ0 ≤
1/4Lmax for all k ∈ N. Let Assumption 1 hold. The iterates of (11) verify

E [F(x̄t ) − F(x∗)] ≤ ‖x0 − x∗‖2 + 2γ0 (F(x0) − F(x∗))
∑t−1

i=0 γi
+ 2σ 2 ∑t−1

k=0 γ 2
k∑t−1

i=0 γi
.
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Moreover, as we did in Corollaries 4.1 and 4.2, we can show sublinear convergence
to a neighborhood of the minimum if we use a fixed step size, or O(log(k)/

√
k)

convergence to the minimum using a step size γk = γ√
k+1

. Moreover, if we know the

stopping time of the algorithm, we can derive aO(1/
√
k) upper bound as done in [29].

Corollary 4.3 fills a gap in the theory of SGD. Indeed, to the best of our knowl-
edge, this is the first analysis of proximal SGD in the convex setting which does not
assume neither bounded gradients nor bounded variance (as done in, e.g., [10, 29]).
Instead, it relies only on convexity and smoothness. The closest results to ours here
are Theorem 1.6 in [14] and Theorem 5 in [40], both of which are in the same setting
as Lemma 4.1 but study more restrictive variants of proximal SGD. [14] studies SGD
with projection onto closed convex sets and [40] studies vanilla SGD,without proximal
or projection operators. Unfortunately, neither result extends easily to include using
proximal operators, and hence our results necessitate a different approach. When spe-
cialized to the setting where g = 0 (i.e., no prox) and L-smoothness (A = L , B = 0),
Corollary 4.1 gives us the following guarantee after T steps of SGD:

E [ f (x̄T ) − f (x∗)] ≤ 2γ δ0 + ‖x0 − x∗‖2
γ t

+ 2γ D1.

Observe that by the smoothness of f we have δ0 ≤ L
2 ‖x0 − x∗‖2, therefore

E [ f (x̄T ) − f (x∗)] ≤ (1 + γ L)‖x0 − x∗‖2
γ t

+ 2γ D1.

Optimizing over γ , we get that for γ = min
{

1
2 L ,

‖x0−x∗‖√
2D1T

}
we have the convergence

rate

E [ f (x̄T ) − f (x∗)] ≤ 3L‖x0 − x∗‖2
T

+ 3
√
2R

√
D1√

T
.

This matches the guarantees given in [14, 40] up to constants. Therefore, our analysis
is more general while sacrificing no degradation in the convergence rate.

4.2 Convergence of DIANA in the Convex Setting

DIANA was the first distributed quantized stochastic gradient method proven to con-
verge to the minimizer in the strongly convex case and to a critical point in the
nonconvex case [26]. See Section B.2 in the appendix for the definition of DIANA
and its parameters.

123



508 Journal of Optimization Theory and Applications (2023) 199:499–540

Lemma 4.2 Assume that f has a finite sum structure and that Assumption 1 holds.
The iterates of DIANA (Algorithm 4) satisfy Assumption 2 with constants:

A =
(
1 + 2w

n

)
Lmax, B = 2w

n
, ρ = α,

C = Lmaxα, D1 = (1 + w)σ 2

n
, D2 = ασ 2,

where w > 0 and α ≤ 1
1+w

are parameters of Algorithm 4 and σ 2 is such that

∀k ∈ N,
1

n

n∑

i=1

E

[∥∥∥gki − ∇ f (xk)
∥∥∥
2
]

≤ σ 2.

Proof See Lemma A.12 in [11]. ��
As yet another corollary of Theorem 3.1, we can extend the results of [26] to the

convex case and show that DIANA converges sublinearly to the neighborhood of the
minimum using a fixed step size, or to the minimum exactly using a decreasing step
size.

Corollary 4.4 Assume that f has a finite sum structure (4) and that Assumption 1
holds. Let (γk)k≥0 be a decreasing, strictly positive sequence of step sizes chosen such
that

0 < γ0 <
1

4(1 + 4w
n )Lmax

.

By Theorem 3.1 and Lemma 4.2, we have that the iterates given by Algorithm 4 verify

E [F(x̄t ) − F(x∗)]

≤
‖x0 − x∗‖2 + 2γ0

(
F(x0) − F(x∗) + 2wγ0

αn σ 2
0

)
+ 2(1+5w)σ 2

n

∑t−1
k=0 γ 2

k
∑t−1

i=0 γi
.

5 Optimal Minibatch Sizes for Variance ReducedMethods

Variance reduced methods are of particular interest because they do not require a
decreasing step size in order to ensure convergence. This is because for variance
reducedmethodswe have D1 = D2 = 0, and thus, thesemethods converge sublinearly
with a fixed step size.

Variance reduced methods were designed for solving (1) in the special case where
f has a finite sum structure. In this case, in order to further improve the convergence
properties of variance reduced methods, several techniques can be applied such as
adding momentum [3] or using importance sampling [13], but the most popular of
such techniques is by far minibatching. Minibatching has been used in conjunction
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with variance reduced methods since their inception [21], but it was not until [9, 37]
that a theoretical justification for the effectiveness of minibatching was proved for
SAGA [8] and SVRG [19] in the strongly convex setting. In this section, we show
how our theory allows us to determine the optimal minibatch sizes whichminimize the
total complexity of any variance reduced method. This allows us to compute the first
estimates of these minibatch sizes in the nonstrongly convex setting. For simplicity, in
the remainder of this section, we will consider the special case where R = 0. Hence,
in this section

F(x) = f (x) ≡ 1

n

n∑

i=1

fi (x).

To derive a meaningful optimal minibatch size from our theory, we need to use the
tightest possible upper bounds on the total complexity. When R = 0, we can derive a
slightly tighter upper bound than the one we obtained in Theorem 3.1 as follows.

Proposition 5.1 Let R = 0 and M = B/2ρ. Suppose that Assumption 2 holds with
D1 = D2 = 0. Let the step sizes γk = γ for all k ∈ N, with γk = γ ≤ 1/(4(A+MC))

for all k ∈ N. Then,

E [ f (x̄k) − f (x∗)] ≤ ‖x0 − x∗‖2 + 2Mγ 2σ 2
0

γ k
. (13)

We can translate this upper bound into a convenient complexity result as follows.

Corollary 5.1 Assume that there exists a constant G ≥ 0 such that

σ 2
0 ≤ G ‖x0 − x∗‖2. (14)

Let ε > 0 and γ = 1
4(A+ BC

2ρ )
. It follows that

k ≥
(
4(A + BC

2ρ
) + BG

2(2ρA + BC)

) ‖x0 − x∗‖2
ε

(15)

�⇒ E [ f (x̄k) − f (x∗)] ≤ ε. (16)

Proof The result follows from taking γ = 1
4(A+ BC

2ρ )
and upper bounding σ 2

0 by

G‖x0 − x∗‖2 in (13). ��
In the same way we specialized the general convergence rate given in Theorem 3.1
to the cases of SGD and DIANA in Sect. 4, we can specialize the iteration complexity
result (15) to any method which verifies D1 = D2 = 0. Due to their popularity, we
chose to analyze minibatch variants of SAGA [8] and L-SVRG [17, 23], a single-loop
variant of the original SVRG algorithm [19]. The pseudocode for these algorithms is
presented in Algorithms 1 and 2. We define for any subset B ⊆ [n] the minibatch
average of f over B as fB(x) = 1

b

∑
i∈B fi (x).
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Algorithm 1 b-SAGA
Parameters minibatch size b, step size γ

Initialization x0 ∈ R
d and J i0 = ∇ fi (x0) for i = 1, . . . , n.

for k = 0, 1, . . . do
Sample a batch B ⊆ [n] with |B| = b
gk = 1

n
∑n

i=1 J ik + ∇ fB (xk ) − 1
b
∑

i∈B J ik
xk+1 = xk − γ gk

J ik+1 =
{
J ik if i /∈ B
∇ fi (xk ) if i ∈ B

end for

Algorithm 2 b-L-SVRG
Parameters minibatch size b, step size γ , p ∈ (0, 1]
Initialization w0 = x0 ∈ R

d

for k = 0, 1, . . . do
Sample a batch B ⊆ [n] with |B| = b
gk = ∇ fB (xk ) − ∇ fB (wk ) + ∇ f (wk )

xk+1 = xk − γ gk

wk+1 =
{
xk w. prob. p
wk w. prob. 1 − p

end for

As we will show next, the iterates of Algorithms 1 and 2 satisfy Assumption 2 with
constants which depend on the minibatch size b. These constants will depend on the
following expected smoothness and expected residual constants L(b) and ζ(b) used
in the analysis of SAGA and SVRG in [9, 37]:

L(b)
def= 1

b

n − b

n − 1
Lmax + n

b

b − 1

n − 1
L, and ζ(b)

def= 1

b

n − b

n − 1
Lmax. (17)

5.1 Optimal Minibatch Size for b-SAGA

Consider the b-SAGA method in Algorithm 1. Define

H(x)
def= [ f1(x), . . . , fn(x)] ∈ R

d

and let ∇H(x) ∈ R
d×n denote the Jacobian of H . Let Jk = [J 1k , . . . , Jnk ] be the

current stochastic Jacobian.

Lemma 5.1 The iterates of Algorithm 1 satisfy Assumption 2 and Eq. (14) with

σ 2
k = 1

nb

n − b

n − 1
‖Jk − ∇H(x∗)‖2Tr , (18)

where for all Z ∈ R
d×n, ‖Z‖2Tr = tr

(
Z Z�)

, and constants

A = 2L(b), B = 2, ρ = b

n
, C = bζ(b)

n
, D1 = D2 = 0, G = ζ(b)L. (19)
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Using Corollary 5.1, we can determine the iteration complexity of Algorithm 1.

Corollary 5.2 (Iteration complexity of b−SAGA)Consider the iterates of Algorithm 1.
Let the stepsize used be γ = 1

4(2L(b)+ζ(b)) . Given the constants obtained for Algorithm
1 in (19), by Corollary 5.1 we have that

k ≥
(
4(2L(b) + ζ(b)) + nζ(b)L

2b (2L(b) + ζ(b))

) ‖x0 − x∗‖2
ε

�⇒ E [F(x̄k) − F(x∗)] ≤ ε.

We define the total complexity as the number of gradients computed per iteration
(b) times the iteration complexity required to reach an ε-approximate solution. Thus,
multiplying by b the iteration complexity in Corollary 5.2 and plugging in (17), the
total complexity for Algorithm 1 is upper bounded by

Ksaga(b)
def=

(
4 (3(n − b)Lmax + 2n(b − 1)L)

n − 1

+ n(n − b)LmaxL

2 (3(n − b)Lmax + 2n(b − 1)L)

)‖x0 − x∗‖2
ε

.

(20)

Minimizing this upper bound in the minibatch size b gives us an estimate of the
optimal empirical minibatch size, which we verify in our experiments.

Proposition 5.2 Let b∗
saga = argmin

b∈[n]
Ksaga(b), where Ksaga(b) is defined in (20).

– If Lmax ≤ 2nL
3 then

b∗
saga =

⎧
⎨

⎩

1 if b̄ < 2
�b1� if 2 ≤ b̄ < n
n if b̄ ≥ n,

(21)

where

b1
def= n

(
(n − 1)L

√
Lmax − 2

√
2nL − 3Lmax(3Lmax − 2 L)

)

2(2nL − 3Lmax)
3
2

.

– Otherwise, if Lmax > 2nL
3 then b∗ = n.

5.2 Optimal Minibatch Size for b-L-SVRG

Since the analysis for Algorithm 2 is similar to that of Algorithm 1, we defer its details
to the appendix and only present the total complexity and the optimal minibatch size.
Indeed, as shown in Section E.3, an upper bound on the total complexity to find an
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ε-approximate solution for Algorithm 2 is given by

Ksvrg(b)
def= (1 + 2b)

(
12 ((n − b)Lmax + n(b − 1)L)

b(n − 1)
+ nL

6

) ‖x0 − x∗‖2
ε

.

Proposition 5.3 Let b∗
svrg = argmin

b∈[n]
Ksvrg(b), where Ksvrg(b) is defined in (44).

Then,

b∗
svrg = 6

√
n (Lmax − L)

72 (nL − Lmax) + n(n − 1)L
.

6 Experiments

Here we test our new formula for optimal minibatch size of SAGA given by (21)
against the best minibatch size found over a grid search. We used logistic regression
with no regularization (λ = 0) to emphasize that our results hold for nonstrongly
convex functions with data sets taken from the LIBSVM collection [7]. For each data
set, we ran minibatch SAGA with the stepsize given in Corollary 5.2 and until a
solution with

F(xt ) − F(x∗) < 10−4(F(x0) − F(x∗))
was reached.

In Fig. 1 we plot the total complexity (number of iterations times theminibatch size)
to reach this tolerance for each minibatch size on the grid. We can see in Fig. 1 that for
ijcnn and phishing the optimal minibatch size b∗

theory = b∗
saga (21) is remarkably close

to the best minibatch size over the grid b∗
empirical. Even when b∗

theory is not close to
b∗
empirical, such as on the YearPredictionMSD problem, the resulting total complexity
is still very close to the total complexity of b∗

empirical.

Outline of the Appendix

The appendix is organized as follows:

– Section A: we present the arbitrary sampling framework for stochastic gradient
methods introduced by [13], which will be used for the analysis of SGD and
L-SVRG.

– SectionB: we present specializations of Theorem 3.1 to the algorithmswe discuss:
SGD, DIANA, L-SVRG, SAGA and SEGA.

– Section C: we present the proof of our main Theorem 3.1.
– Section D: we present the proof of Corollary 4.2.
– Section E, we present the proof of Proposition 5.1, and the detailed analysis of the
optimal minibatch results for b-SAGA and b-L-SVRG, in addition to an analysis
for the optimal miniblock size for b-SEGA.

– Section F: we present some technical lemmas which we use in our analysis.
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(a) b (b) b

(c) phishing (d)YearPredictionMSD

Fig. 1 Comparing the theoretical optimal batchsize (21) with the best over a grid

Appendix A: Arbitrary Sampling

In this section, we recall the arbitrary sampling framework [12] which allows us
to analyze our algorithms for minibatching, importance sampling and virtually all
possible forms of sampling.

Appendix A.1: Stochastic reformulation

To see importance sampling and minibatch variants of stochastic gradient methods
all through the same lens, we introduce a sampling vector which we will use to re-
write (1).

Definition A.1 We say that a random element-wise positive vector v ∈ R
n+ drawn from

some distribution D is a sampling vector if its expectation is the vector of all ones:

ED [vi ] = 1, for all i ∈ [n]. (22)

For a given distribution D, we introduce a stochastic reformulation of (1) as follows

min
x∈Rd

{

ED

[

fv(x)
def= 1

n

n∑

i=1

vi fi (x)

]

+ R(x)

}

. (23)
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By definition of the sampling vector, fv(x) and ∇ fv(x) are unbiased estimators of
f (x) and ∇ f (x), respectively, and hence problem (23) is indeed equivalent (i.e., a
reformulation) of the original problem (1). In the case of the gradient, for instance, we
get

ED [∇ fv(x)]
(23)= 1

n

n∑

i=1

ED [vi ]∇ fi (x)
(22)= ∇ f (x).

Reformulation (23) can be solved using proximal stochastic gradient descent via

xk+1 = proxγk R

(
xk − γ∇ fvk (xk)

)
, (24)

where vk ∼ D is sampled i.i.d. at each iteration and γ > 0 is a stepsize. By substituting
specific choices of D, we obtain specific variants of SGD for solving (1). We further
show that (24) is a special case of (2) with a sequence of vectors gk = ∇ fvk (xk) and
use the unified analysis in Theorem 3.1 to obtain convergence rates for (24).

Appendix A.2: Expected Smoothness and Gradient Noise

In order to analyze (24), we will make use of the following result, which characterizes
the smoothness of the subsampled functions fv .

Lemma A.1 (Expected Smoothness) If for all i ∈ [n], fi is convex and Li−smooth,
then there exists a constant L ≥ 0 such that

ED
[
‖∇ fv(x) − ∇ fv(x∗)‖2

]
≤ 2L D f (x, x∗), (25)

for all x ∈ R
d and where x∗ is any minimizer of (1).

The proof of this result follows closely that of Lemma 1 in [9].

Proof Since for all i ∈ [n], fi is Li -smooth and convex, we have that each realization
fv (defined in (23)) is Lv-smooth and convex. Thus, from Lemma F.1, we have that
for all x ∈ R

d ,

‖∇ fv(x) − fv(x∗)‖2 ≤ 2Lv ( fv(x) − fv(x∗) − 〈∇ fv(x∗), x − x∗〉)
= 2

n

n∑

i=1

Lvvi ( fi (x) − fi (x∗) − 〈∇ fi (x∗), x − x∗〉) .

Taking expectation over the samplings,

ED
[‖∇ fv(x) − fv(x∗)‖2

] ≤ 2

n

n∑

i=1

ED [vi Lv] ( fi (x) − fi (x∗) − 〈∇ fi (x∗), x − x∗〉)

≤ 2 max
j=1,...,n

ED
[
Lvv j

]
( f (x) − f (x∗) − 〈∇ f (x∗), x − x∗〉)

= 2 max
j=1,...,n

ED
[
Lvv j

]
D f (x, x∗).
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��
Next, we define the gradient noise.

Definition A.2 (Gradient Noise) The gradient noise σ 2 = σ 2( f ,D) is defined by

σ 2 def= ED
[
‖∇ fv(x∗) − ∇ f (x∗)‖2

]
. (26)

Appendix A.3: Minibatching ElementsWithout Replacement

Since analyzing minibatching for variance reducedmethods is one of the main focuses
of our work, we present minibatching without replacement as an example of the use
of arbitrary sampling.

First, we define samplings.

Definition A.3 (Sampling) A sampling S ⊆ [n] is any random set-valued map which

is uniquely defined by the probabilities
∑

B⊆[n] pB = 1 where pB
def= P(S =

B), ∀B ⊆ [n]. A sampling S is called proper if for every i ∈ [n], we have that

pi
def= P(i ∈ S) = ∑

C :i∈C
pC > 0.

We can build a sampling vector using a sampling as follows.

Lemma A.2 (Sampling vector, Lemma 3.3 in [12]) Let S be a proper sampling. Let

pi
def= P(i ∈ S) and P

def= diag (p1, . . . , pn). Let v = v(S) be a random vector defined
by

v(S) = P−1
∑

i∈S
ei

def= P−1eS . (27)

It follows that v is a sampling vector.

Proof The i th coordinate of v(S) is vi (S) = 1(i ∈ S)/pi and thus

E [vi (S)] = E [1(i ∈ S)]

pi
= P(i ∈ S)

pi
= 1. ��

Next, we define b-nice sampling, also known as minibatching without replacement.

Definition A.4 (b-nice sampling) S is a b-nice sampling if it is a sampling such that

P(S = B) = 1
(n
b

) , ∀B ⊆ [n], with |B| = b.

To construct such a sampling vector based on the b–nice sampling, note that pi = b
n

for all i ∈ [n] and thus we have that v(S) = n
b

∑
i∈S ei according to Lemma A.2. The
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resulting subsampled function is then fv(x) = 1
|S|

∑
i∈S fi (x), which is simply the

minibatch average over S.
A remarkable result for b-nice sampling is that when all the functions fi , i ∈ [n] are

Li -smooth and convex, then the expected smoothness constant (25) nicely interpolates
between L , the smoothness constant of f , and Lmax = max

i∈[n] Li .

Lemma A.3 (L for b−nice sampling, Proposition 3.8 in [12]) Let v be a sampling
vector based on the b-nice sampling defined in A.4. If for all i ∈ [n], fi is convex and
Li -smooth, then (25) holds with

L(b) = 1

b

n − b

n − 1
Lmax + n

b

b − 1

n − 1
L,

where L is the smoothness constant of f and Lmax = max
i∈[n] Li .

Appendix B: Notable Corollaries of Theorem 3.1

In this section, we present corollaries of Theorem 3.1 for five algorithms:

– SGD with arbitrary sampling (Algorithm 3).
– DIANA (Algorithm 4).
– L-SVRGwith arbitrary sampling (Algorithm5), andminibatchL-SVRG as a special
case (Algorithm 2).

– Minibatch SAGA (Algorithm 1).
– Miniblock SEGA (Algorithm 6).

This means that for each method, we will present the constants which satisfy Assump-
tion 2 and specialize Theorem 3.1 using these constants.

Appendix B.1: SGDwith Arbitrary Sampling

Algorithm 3 SGD-AS
Parameters step sizes (γk )k , a sampling vector v ∼ D
Initialization x0 ∈ R

d

for k = 1, 2, . . . do
Sample vk ∼ D
gk = ∇ fvk (xk )
xk+1 = proxγk R (xk − γk gk )

end for

Lemma B.1 The iterates of Algorithm 3 satisfy Assumption 2 with

σ 2
k = 0
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and constants:

A = 2L, B = 0, ρ = 1, C = 0, D1 = 2σ 2, D2 = 0,

where L is defined in (25) and σ 2 in (26).

Proof See Lemma A.2 in [11]. ��
Using the constants given in the above lemma, we have the following immediate

corollary of Theorem 3.1.

Corollary B.1 Assume that f has a finite sum structure (4) and that Assumption 1
holds. Let (γk)k≥0 be a decreasing, strictly positive sequence of step sizes chosen such
that

0 < γ0 < min

{
1

4L ,
1

L

}
.

Then, from Theorem 3.1 and Lemma B.1, we have that the iterates given by Algorithm
3 verify

E [F(x̄t ) − F(x∗)] ≤ ‖x0 − x∗‖2 + 2γ0 (F(x0) − F(x∗)) + 4σ 2 ∑t−1
k=0 γ 2

k

2
∑t−1

i=0 (1 − 4γiL) γi
,

where x̄t
def= ∑t−1

k=0
(1−4γkL)γk∑t−1
i=0(1−4γiL)γi

xk .

Appendix B.2: DIANA

A complete description of the DIANA algorithm can be found in [26].
To analyze the DIANA algorithm (Algorithm 4), we introduce quantization opera-

tors.

Definition B.1 (w-quantization operator, Definition 4 in[26]) Let w > 0. A random
operator Q : Rd → R with the properties:

E [Q(x)] = x, E

[
‖Q(x)‖2

]
≤ (1 + w)‖x‖2, (28)

for all x ∈ R
d is called a w-quantization operator.

Several examples of quantization operators can be found in [26].
For convenience, we repeat the statement of Lemma 4.2 below.

Lemma B.2 Assume that f has a finite sum structure and that Assumption 1 holds.
The iterates of DIANA (Algorithm 4) satisfy Assumption 2 with constants:

A =
(
1 + 2w

n

)
Lmax, B = 2w

n
, ρ = α, C = Lmaxα, D1 = (1 + w)σ 2

n
, D2 = ασ 2,
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Algorithm 4 DIANA
Parametersw-quantization operator Q, Learning ratesα > 0 and γ > 0, initial vectors x0, h01, . . . , h

0
n ∈

R
d and h0 = 1

n

n∑

i=1
h0i

Initialization x0, h01, . . . , h
0
n ∈ R

d

Set h0 = 1
n

n∑

i=1
h0i

for k = 1, 2, . . . do
Broadcast xk to all workers.
for k = 1, 2, . . . do

Sample gki such that Ek

[
gki

]
= ∇ fi (xk )

�k
i = gki − hki

Sample �̂k
i ∼ Q(�k

i )

hk+1
i = hki + α�k

i
ĝki = hki + �̂k

i
end for

�̂k = 1
n

n∑

i=1
�k
i

gk = 1
n

n∑

i=1
ĝki = hk + �̂k

xk+1 = proxγk R (xk − γk gk )

hk+1 = 1
n

n∑

i=1
hk+1
i = hk + α�̂k

end for

where w > 0 and α ≤ 1
1+w

are parameters of Algorithm 4 and σ 2 is such that

∀k ∈ N,
1

n

n∑

i=1

E

[∥∥∥gki − ∇ f (xk)
∥∥∥
2
]

≤ σ 2.

Proof See Lemma A.12 in [11]. ��

Now using the constants given in the above lemma in Theorem 3.1 gives the fol-
lowing corollary.

Corollary B.2 Assume that f has a finite sum structure (4) and that Assumption 1
holds. Let (γk)k≥0 be a decreasing, strictly positive sequence of step sizes chosen such
that

0 < γ0 <
1

2(1 + 4w
n )Lmax

.
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Then, from Theorem 3.1 and Lemma B.2, we have that the iterates given by Algorithm
4 verify

E [F(x̄t ) − F(x∗)]

≤
‖x0 − x∗‖2 + 2γ0

(
F(x0) − F(x∗) + 2wγ0

αn σ 2
0

)
+ 2(1+5w)σ 2

n

∑t−1
k=0 γ 2

k

2
∑t−1

i=0 (1 − γiη) γi
,

where η
def= 2(1 + 4w

n )Lmax, x̄t
def= ∑t−1

k=0
(1−γkη)γk∑t−1
i=0(1−γiη)γi

xk and δ0
def= F(x0) − F(x∗).

Appendix B.3: L-SVRGwith Arbitrary Sampling

Algorithm 5 L-SVRG-AS
Parameters step size γ , sampling vector v ∼ D
Initialization w0 = x0 ∈ R

d

for k = 1, 2, . . . do
Sample vk ∼ D
gk = ∇ fvk (xk ) − ∇ fvk (wk ) + ∇ f (wk )

xk+1 = proxγ R (xk − γ gk )

wk+1 =
{
xk with probability p
wk with probability 1 − p

end for

Lemma B.3 If Assumption 1 holds then the iterates of Algorithm 5 satisfy

Ek

[
‖gk − ∇ f (x∗)‖2

]
≤ 4LD f (xk, x∗) + 2σ 2

k

Ek

[
σ 2
k+1

]
≤ (1 − p)σ 2

k + 2pLD f (xk, x∗),

where

σ 2
k = ED

[∥∥∇ fvk (wk) − ∇ fvk (x∗) − (∇ f (wk) − ∇ f (x∗))
∥∥2

]

and L is defined in (25).

Proof By Lemma A.1 we have that (25) holds with L > 0. Furthermore

Ek

[
‖gk‖2

]
= Ek

[∥
∥∇ fvk (xk) − ∇ fvk (wk) + ∇ f (wk) − ∇ f (x∗)

∥
∥2

]

≤ 2Ek

[∥∥∇ fvk (xk) − ∇ fvk (x∗)
∥∥2

]

+ 2Ek

[∥∥∇ fvk (wk) − ∇ fvk (x∗) − (∇ f (wk) − ∇ f (x∗))
∥∥2

]
,
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where we used in the inequality that for all a, b ∈ R
d , ‖a + b‖2 ≤ 2‖a‖2 + 2‖b‖2.

Thus,

Ek

[
‖gk‖2

] (25)≤ 4LD f (xk, x∗) + 2σ 2
k .

Moreover,

Ek
[
σk+1

] = (1 − p)σ 2
k + pEk

[∥∥∇ fvk (xk) − ∇ fvk (x∗) − (∇ f (xk) − ∇ f (x∗))
∥∥2

]

(25)≤ (1 − p)σ 2
k + 2pLD f (xk, x∗) ,

where we also used in the last inequality that E
[‖X − E [X ]‖2] = E

[‖X‖2] −
‖E [X ]‖2 ≤ E

[‖X‖2]. ��
We have the following immediate consequence of the previous lemma.

Lemma B.4 If Assumption 1 holds then the iterates of Algorithm 5 satisfy Assumption
2 with

σ 2
k = ED

[
‖∇ fv(xk) − ∇ fv(wk) + ∇ f (wk)‖2

]

and constants

A = 2L, B = 2, ρ = p, C = pL, D1 = D2 = 0,

where L is defined in (25).

Using the constant derived in LemmaB.4 in Theorem3.1 gives the following corollary.

Corollary B.3 Assume that f has a finite sum structure (4) and that Assumption 1
holds. Let γk = γ for all k ∈ N, where

0 < γ < min

{
1

8L ,
1

L

}
.

Then, from Theorem 3.1 and Lemma B.4, we have that the iterates given by Algorithm
5 verify

E [F(x̄t ) − F(x∗)] ≤
‖x0 − x∗‖2 + 2γ

(
F(x0) − F(x∗) + 2γ

p σ 2
0

)

2γ (1 − 8γL) t
,

where x̄t
def= 1

t

∑t−1
k=0 xk and where L is defined in (25).
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Appendix B.3.1: b-L-SVRG

As we demonstrated in Section A.3, we can specialize the results derived for arbitrary
sampling to minibatching without replacement by using a b−nice sampling defined
in Definition A.4 and the corresponding sampling vector (27).

Indeed, using Algorithm 5 with b-nice sampling is equivalent to using Algorithm
2. Thus, we have the following lemma.

Corollary B.4 From Lemma B.4, we have that the iterates of Algorithm 2 satisfy
Assumption 2 with constants:

A = 2L(b), B = 2, ρ = p, C = pL(b), D1 = D2 = 0,

where L(b) is defined in (17).

A convergence result for Algorithm 2 can be easily concluded from Corollary B.3,
with L(b) in place of L.

Appendix B.4: b-SAGA

Lemma 5.1 in the main text is a consequence of the following lemma.

Lemma B.5 Consider the iterates of Algorithm 1. We have:

Ek

[
‖gk‖2

]
≤ 4L(b) ( f (xk) − f (x∗)) + 2σ 2

k (29)

Ek

[
σ 2
k+1

]
≤

(
1 − b

n

)
σ 2
k + 2

bζ(b)

n
( f (xk) − f (x∗)) , (30)

where:

σ 2
k = 1

nb

n − b

n − 1
‖Jk − ∇H(x∗)‖2Tr and ζ(b)

def= 1

b

n − b

n − 1
Lmax,

with ‖Z‖2Tr = tr(Z�Z) for any Z ∈ R
d×n.

Proof The inequality (29) corresponds to Lemma 3.10 and (30) to Lemma 3.9 in [13].
��

The previous Lemma gives us the constants for Assumption 2 for Algorithm 1.

Lemma B.6 The iterates of Algorithm 1 satisfy Assumption 2 with

σ 2
k = 1

nb

n − b

n − 1
‖Jk − ∇H(x∗)‖2Tr

and constants

A = 2L(b), B = 2, ρ = b

n
, C = bζ(b)

n
, D1 = D2 = 0.
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Using the constant derived in Lemma B.6 in Theorem 3.1 gives the following
corollary.

Corollary B.5 Assume that f has a finite sum structure (4) and that Assumption 1
holds. Choose for all k ∈ N γk = γ , where

0 < γ <
1

2(2L(b) + ζ(b))
.

Then, from Theorem 3.1 and Lemma B.6, we have that the iterates given by Algorithm
1 verify

E [F(x̄t ) − F(x∗)] ≤
‖x0 − x∗‖2 + 2γ

(
F(x0) − F(x∗) + 2nγ

b σ 2
0

)

2γ (1 − 2γ (2L(b) + 2ζ(b))) t
,

where x̄t
def= 1

t

t−1∑

k=0
xk.

Appendix B.5: b-SEGA

Lemma B.7 Consider the iterates of Algorithm 6. We have:

Ek

[
‖gk‖2

]
≤ 4dL

b
D f (xk, x∗) + 2

(
d

b
− 1

)
σ 2
k

Ek

[
σ 2
k+1

]
≤

(
1 − b

d

)
σ 2
k + 2bL

d
D f (xk, x∗) ,

where:

σ 2
k = ‖hk − ∇ f (x∗)‖2.

Proof Let S be a randomminiblock s.t. P(S = B) = 1
(nb)

for any B ⊆ [n] s.t. |B| = b.

Then, for any vector a = [a1, . . . , an] ∈ R
d , we have:

E

[
‖ISa‖2

]
= b

d
‖a‖2 and E

[∥∥∥
∥(I − d

b
IS)a

∥∥∥
∥

2
]

=
(
d

b
− 1

)
‖a‖2. (31)

Indeed,

E
[‖ISa‖2] = E

[
∑

i∈S
a2i

]

=
∑

B⊆[d],|B|=b

P(S = B)
∑

i∈B
a2i = 1

(d
b

)
∑

B⊆[d],|B|=b

d∑

i=1

a2i 1B(i)

= 1
(d
b

)
d∑

i=1

a2i
∑

B⊆[d],|B|=b

1B(i) =
(d−1
b−1

)

(d
b

)
d∑

i=1

a2i = b

d
‖a‖2,
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where we used that |B ∈ [d] : |B| = b ∧ i ∈ B| = (d−1
b−1

)
. And

∥∥∥∥(I − d

b
IS)a

∥∥∥∥

2

=
∑

i∈S

(
1 − d

b

)2

a2i +
∑

i /∈S
a2i = d2 − 2bd

b2
∑

i∈S
a2i + ‖a‖2

= d2 − 2bd

b2
‖ISa‖2 + ‖a‖2.

Thus,

E

[∥
∥∥∥(I − d

b
IS)a

∥
∥∥∥

2
]

=
(
d2 − 2bd

b2
b

d
+ 1

)
‖a‖2 =

(
d

b
− 1

)
‖a‖2.

We have

Ek

[
‖gk − ∇ f (x∗)‖2

]

= Ek

[∥∥∥∥
d

b
IBk (∇ f (xk) − ∇ f (x∗)) +

(
I − d

b
IBk

)
(hk − ∇ f (x∗))

∥∥∥∥

2
]

≤ 2d2

b2
Ek

[∥∥IBk (∇ f (xk) − ∇ f (x∗))
∥∥2

]

+2 Ek

[∥
∥∥∥

(
I − d

b
IBk

)
(hk − ∇ f (x∗))

∥
∥∥∥

2
]

(31)= 2d

b
‖∇ f (xk) − ∇ f (x∗)‖2 + 2

(
d

b
− 1

)
‖hk − ∇ f (x∗)‖2.

wherewe used in the first inequality that for all a, b ∈ R
d , ‖a + b‖2 ≤ 2‖a‖2+2‖b‖2.

Thus, using the fact that f is L-smooth, we have

Ek

[
‖gk‖2

]
≤ 4dL

b
D f (xk, x∗) + 2

(
d

b
− 1

)
σ 2
k .

Moreover,

Ek

[
σ 2
k+1

]
= Ek

[
‖hk+1 − ∇ f (x∗)‖2

]

= Ek

[∥∥∥IBc
k
(hk − ∇ f (x∗)) + IBk (∇ f (xk) − ∇ f (x∗))

∥∥∥
2
]

(31)=
(
1 − b

d

)
‖hk − ∇ f (x∗)‖2 + b

d
‖∇ f (xk) − ∇ f (x∗)‖2

+2
〈
IBc

k
(hk − ∇ f (x∗)), IBk (∇ f (xk) − ∇ f (x∗))

〉

=
(
1 − b

d

)
‖hk − ∇ f (x∗)‖2 + b

d
‖∇ f (xk) − ∇ f (x∗)‖2
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+2

〈

IBk IBc
k︸ ︷︷ ︸

=0

(hk − ∇ f (x∗)),∇ f (xk) − ∇ f (x∗)
〉

≤
(
1 − b

d

)
‖hk − ∇ f (x∗)‖2 + 2bL

d
D f (xk, x∗) ,

where we used in the last inequality the L−smoothness of f . ��
Lemma B.8 FromLemmaB.7, we have that the iterates of Algorithm 6 satisfy Assump-
tion 2 and Eq. (14) with

σ 2
k = ‖hk − ∇ f (x∗)‖2

and constants:

A = 2dL

b
, B = 2

(
d

b
− 1

)
, ρ = b

d
, C = bL

d
, D1 = D2 = 0, G = 0.

Using the constant derived in LemmaB.8 in Theorem3.1 gives the following corollary.

Corollary B.6 Assume that f satisfies Assumption 1. Choose for all k ∈ N, γk = γ ,
where

0 < γ <
1

4( 2db − 1)L
.

Then, from Theorem 3.1 and Lemma B.8, we have that the iterates given by Algorithm
6 verify

E [F(x̄t ) − F(x∗)] ≤ ‖x0 − x∗‖2 + 2γ
(
F(x0) − F(x∗) + 2d

b

( d
b − 1

)
γ σ 2

)

2γ
(
1 − 4γ

( 2d
b − 1

))
t

,

where x̄t
def= 1

t

∑t−1
k=0 xk .

Appendix C: Proofs for Sect. 3

Appendix C.1: Proof of Theorem 3.1

Before proving Theorem 3.1, we present several useful lemmas.

Lemma C.1 (Bounding the gradient variance) Assuming that the gk are unbiased and
that Assumption 2 holds, we have

E

[
‖gk − ∇ f (xk)‖2

]
≤ 2AD f (xk, x∗) + Bσ 2

k + D1. (32)
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Proof Starting from the left-hand side of (32), we have

E

[
‖gk − ∇ f (xk)‖2

]
= E

[
‖gk − ∇ f (x∗) − (∇ f (xk) − ∇ f (x∗))‖2

]

= E

[
‖gk − ∇ f (x∗) − E [gk − ∇ f (x∗)]‖2

]

≤ E

[
‖gk − ∇ f (x∗)‖2

]
≤ 2AD f (xk, x∗) + Bσ 2

k + D1,

where we used that E
[‖X − E [X ]‖2] = E

[‖X‖2] − ‖E [X ]‖2 ≤ E
[‖X‖2] for any

random variable X . ��
Lemma C.2 (Lemma 8 in [5]) Suppose that Assumption 1 holds and let γ ∈ (

0, 1
L

]
,

then for all x, y ∈ R
d and p = proxγ g(y) we have,

− 2γ (F(p) − F(x∗)) ≥ ‖p − z‖2 + 2 〈p − x∗, x − γ∇ f (x) − y〉 − ‖x∗ − x‖2.
(33)

Proof We leave the proof to Section F.3. ��
Lemma C.3 For any x ∈ R

d and minimizer x∗ of F, we have,

D f (x, x∗) ≤ F(x) − F(x∗). (34)

Proof Because x∗ is a minimizer of F , we have that −∇ f (x∗) ∈ ∂R(x∗). By the
definition of subgradients, we have

R(x∗) + 〈−∇ f (x∗), x − x∗〉 ≤ R(x).

Rearranging gives

−〈∇ f (x∗), x − x∗〉 ≤ R(x) − R(x∗).

Adding f (x) − f (x∗) to both sides we have,

f (x) − f (x∗) − 〈∇ f (x∗), x − x∗〉 ≤ f (x) + R(x) − ( f (x∗) + R(x∗)) = F(x) − F(x∗).

Now note that the on the left-hand side we have the Bregman divergence D f (x, x∗).
��

Definition C.1 Given a stepsize γ > 0, the prox-grad mapping is defined as:

Tγ (x)
def= proxγ R (x − γ∇ f (x)) .

For the ease of exposition, we restate Theorem 3.1.
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Theorem C.1 Suppose that Assumptions 2 and 1 hold. Let M
def= B/ρ and let (γk)k≥0

be a decreasing, strictly positive sequence of step sizes chosen such that

0 < γ0 <
1

2(A + MC)
.

The iterates given by (2) converge according to

E [F(x̄t ) − F(x∗)] ≤ V0 + 2γ0δ0 + 2 (D1 + 2MD2)
∑t−1

k=0 γ 2
k

2
∑t−1

i=0 (1 − 2γi (A + MC)) γi
,

where x̄t
def= ∑t−1

k=0
(1−γkη)γk∑t−1
i=0(1−γiη)γi

xk and V0
def= ‖x0 − x∗‖2 + 2γ 2

0 Mσ 2
0 and

δ0
def= F(x0) − F(x∗).

Proof Let x∗ be a minimizer of F . Using (33) from Lemma C.2 with y = xk − γkgk ,
x = xk and γ = γk gives

−2γk (F(xk+1) − F(x∗)) ≥ ‖xk+1 − x∗‖2 − ‖xk − x∗‖2
+ 2γk 〈xk+1 − x∗, gk − ∇ f (xk)〉 .

Multiplying both sides by −1 results in

2γk (F(xk+1) − F(x∗)) ≤ ‖xk − x∗‖2 − ‖xk+1 − x∗‖2
+ 2γk 〈xk+1 − x∗,∇ f (xk) − gk〉 .

(35)

Now focusing on the last term in the above and consider the straightforward decom-
position

〈xk+1 − x∗,∇ f (xk) − gk〉 = 〈
xk+1 − Tγk (xk),∇ f (xk) − gk

〉

+ 〈
Tγk (xk) − x∗,∇ f (xk) − gk

〉
.

(36)

By Cauchy Schwartz we have that

〈
xk+1 − Tγk (xk),∇ f (xk) − gk

〉 ≤ ∥∥xk+1 − Tγk (xk)
∥∥ ‖gk − ∇ f (xk)‖ . (37)

Now using the nonexpansivity of the proximal operator

∥∥xk+1 − Tγk (xk)
∥∥ = ∥∥proxγk R (xk − γkgk) − proxγk R (xk − γk∇ f (xk))

∥∥

≤ ‖(xk − γkgk) − (xk − γk∇ f (xk))‖ = γk ‖gk − ∇ f (xk)‖ .

Using this in (37), we have

〈
xk+1 − Tγk (xk),∇ f (xk) − gk

〉 ≤ γk ‖gk − ∇ f (xk)‖2 . (38)
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Using (38) in (36) and taking expectation conditioned on xk , and using Ek [·] def=
E [· | xk] for shorthand, we have

Ek
[〈xk+1 − x∗, gk − ∇ f (xk)〉

] ≤ γk · Ek

[
‖gk − ∇ f (xk)‖2

]

+
〈

Tγk (xk) − x∗,Ek [∇ f (xk) − gk]︸ ︷︷ ︸
=0

〉

= γk · Ek

[
‖gk − ∇ f (xk)‖2

]
.

(39)

Let rk
def= xk − x∗. Taking expectation conditioned on xk in (35) and using (39), we

have

2γkEk
[
F(xk+1 − F(x∗))

] ≤ ‖rk‖2 − Ek

[
‖rk+1‖2

]
+ 2γ 2

k Ek

[
‖gk − ∇ f (xk)‖2

]
.

Using (8) from Assumption 2, we have

2γkEk
[
F(xk+1) − F(x∗)

]

≤ ‖rk‖2 − Ek

[
‖rk+1‖2

]
+ 2γ 2

k

(
2AD f (xk, x∗) + Bσ 2

k + D1

)
.

Let Vk
def= ‖rk‖2 + 2Mγ 2

k σ 2
k where M = B

ρ
, then

2γkEk
[
F(xk+1) − F(x∗)

] ≤ Vk − Ek
[
Vk+1

] + 4γ 2
k AD f (xk, x∗) + 2γ 2

k D1

+ γ 2
k (2B − 2M) σ 2

k + 2Mγ 2
k+1E

[
σ 2
k+1

]
.

(40)

Since γk+1 ≤ γk , we have that

2γk+1Ek
[
F(xk+1) − F(x∗)

] ≤ Vk − Ek
[
Vk+1

] + 4γ 2
k AD f (xk, x∗) + 2γ 2

k D1

+ γ 2
k (2B − 2M) σ 2

k + 2Mγ 2
k E

[
σ 2
k+1

]
.

Using (9) from Assumption 2, we have

2γ 2
k (B − M) σ 2

k + 2Mγ 2
k Ek

[
σ 2
k+1

]
≤ 2γ 2

k (B − M + M(1 − ρ)) σ 2
k + 4Mγ 2

k CD f (xk , x∗)

+ 2Mγ 2
k D2

= 2γ 2
k (B − ρM)
︸ ︷︷ ︸

=0

σ 2
k + 4Mγ 2

k CD f (xk , x∗) + 2Mγ 2
k D2

≤ 4Mγ 2
k CD f (xk , x∗) + 2Mγ 2

k D2. (41)
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Using (41) in (40) gives

2γk+1Ek
[
F(xk+1) − F(x∗)

] ≤ Vk − Ek
[
Vk+1

] + 2γ 2
k (2A + 2MC) D f (xk, x∗)

+ 2γ 2
k (D1 + MD2) .

(42)

Let η
def= 2A + 2MC . Using (34) in (42) we have,

2γk+1Ek
[
F(xk+1) − F(x∗)

]

≤ Vk − Ek
[
Vk+1

] + 2γ 2
k η (F(xk) − F(x∗)) + 2γ 2

k (D1 + MD2) .

Using the abbreviation δk = F(xk) − F(x∗) gives

2γk+1Ek
[
δk+1

] ≤ Vk − Ek
[
Vk+1

] + 2γ 2
k ηδk + 2γ 2

k (D1 + MD2) .

Taking expectation,

2γk+1E
[
δk+1

] ≤ E [Vk] − E
[
Vk+1

] + 2γ 2
k ηE [δk] + 2γ 2

k (D1 + MD2) ,

summing over k = 0, . . . , t − 1 and using telescopic cancellation gives

2
t∑

k=1

γkE [δk] ≤ V0 − E [Vt ] + 2η
t−1∑

k=0

γ 2
k E [δk] + 2 (D1 + MD2)

t−1∑

k=0

γ 2
k .

Adding 2γ0δ0 to both sides of the above inequality and rearranging,

2
t−1∑

k=0

γk(1 − ηγk)E [δk] ≤ V0 − E [Vt ] + 2γ0δ0 + 2 (D1 + MD2)

t−1∑

k=0

γ 2
k

where we also used that Vt ≥ 0 and δt ≥ 0. By the choice of γ0 we have 1− γ0η > 0,
and since (γi )i is a decreasing sequence, we have 1−γiη > 0 for all i . Hence, dividing
both sides by 2

∑t−1
i=0 (1 − γiη) γi , we have

t−1∑

k=0

wkE [δk] ≤ V0 + 2γ0δ0

2
∑t−1

i=0 (1 − γiη) γi
+ (D1 + 2MD2)

∑t−1
k=0 γ 2

k∑t
i=1 (1 − γiη) γi

,
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where wk
def= (1−γkη)γk∑t−1

i=0(1−γiη)γi
for all k ∈ {0, . . . , t − 1}. Note that

∑t−1
k=0 wk = 1 and

wk ≥ 0 for all k ∈ {0, . . . , t − 1}. Hence, since F is convex, we can use Jensen’s
inequality to conclude

E

[
F(x̄ k) − F(x∗)

]
= E

[

F

(
t−1∑

k=0

wk xk

)

− F(x∗)
]

≤
t−1∑

k=0

wkE [δk ] ≤ V0 + 2γ0δ0

2
∑t−1

i=0 (1 − γiη) γi
+ (D1 + 2MD2)

∑t−1
k=0 γ 2

k∑t−1
i=0 (1 − γiη) γi

.

Writing out the definition of δ0 yields the theorem’s statement. ��

Appendix D: Proofs for Sect. 4

Appendix D.2: Proof of Corollary 4.2

Proof Note that, using the integral bound, we have:

t−1∑

k=0

γ 2
k ≤ γ 2 (log(t) + 1)

t−1∑

k=0

γk ≥ 2γ
(√

t − 1
)

.

Moreover, note that since γk ≤ 1
4(A+MC)

, we have 1 − 2γk(A + MC) ≥ 1
2 for all

k ∈ N. Thus

1

2
∑t−1

k=0 γk (1 − ηγk)
≤ 1

2γ
(√

t − 1
) ,

where η
def= 2(A + MC). Corollary 4.2 follows from using these bounds in Equation

(10). ��

Appendix E: Roofs for Sect. 5

Appendix E.1: Proof of Proposition 5.1

Proof We start by expanding the square:

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2γ 〈gk, xk − x∗〉 + γ 2‖gk‖2.
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Thus, taking expectation conditioned on xk , and using Ek [·] def= E [· | xk] for short-
hand, we have

Ek

[
‖xk+1 − x∗‖2

]
= ‖xk − x∗‖2 − 2γ 〈∇ f (xk), xk − x∗〉 + γ 2

Ek

[
‖gk‖2

]

(6)+(7)+(8)≤ ‖xk − x∗‖2 − 2γ (1 − 2γ A) ( f (xk) − f (x∗)) + Bσ 2
k .

Thus, using (9),

Ek

[
‖xk+1 − x∗‖2

]
+ 2Mγ 2

Ek

[
σ 2
k+1

]

≤ ‖xk − x∗‖2 − 2γ (1 − 2γ (A + MC)) ( f (xk) − f (x∗)) + 2Mγ 2σ 2
k .

Thus, rearranging and taking the expectation, we have:

2γ (1 − 2γ (A + MC))E [ f (xk) − f (x∗)] ≤ E

[
‖xk − x∗‖2

]
− E

[
‖xk+1 − x∗‖2

]

+ 2Mγ 2
(
E

[
σ 2
k

]
− E

[
σ 2
k+1

])
.

Summing over k = 0, . . . , t − 1 and using telescopic cancellation gives

2γ (1 − 2γ (A + MC))

t−1∑

k=0

E [ f (xk) − f (x∗)] ≤ ‖x0 − x∗‖2 − E

[
‖xk − x∗‖2

]

+2Mγ 2
(
E

[
σ 2
0

]
− E

[
σ 2
k+1

])
.

Ignoring the negative terms in the upper bound, and using Jensen’s inequality, we have

E [ f (x̄t ) − f (x∗)] ≤ ‖x0 − x∗‖2 + 2Mγ 2σ 2
0

2γ (1 − 2γ (A + MC))t
.

Moreover, notice that if γ ≤ 1
4(A+MC)

, then 2(1 − 2γ (A + MC)) ≥ 1, which gives
(13). ��

Appendix E.2: Optimal Minibatch Size for b-SAGA (Algorithm 1)

In this section, we present the proofs for Sect. 5.1.
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Appendix E.2.1: Proof of Lemma 5.1

Proof For constant A, B, ρ,C, D1, D2, see Lemma B.5. Moreover,

σ 2
0 = 1

nb

n − b

n − 1
‖∇H(x0) − ∇H(x∗)‖2Tr = 1

nb

n − b

n − 1

n∑

i=1

‖∇ fi (x0) − ∇ fi (x∗)‖2

= 1

b

n − b

n − 1

1

n

n∑

i=1

‖∇ fi (x0) − ∇ fi (x∗)‖2

(52)≤ 1

b

n − b

n − 1
Lmax ( f (x0) − f (x∗))

(5)+(18)≤ ζ(b)L‖x0 − x∗‖2.

Thus, (14) holds with G = ζ(b). ��

Appendix E.2.2: Proof of Proposition 5.2

Proof First, since ‖x0−x∗‖2
ε

does not depend on b, the variations of K (b) are the same
as those of

Q(b) = 4 (3(n − b)Lmax + 2n(b − 1)L)

b(n − 1)
+ n(n − b)LmaxL

2b (3(n − b)Lmax + 2n(b − 1)L)
.

Let’s determine the sign of Q
′
(b). We have:

Q
′
(b) = W1b2 + W2b + W3

4(n − 1)
(
(2nL − 3Lmax) b +

(
3Lmax

2 − L
)
n
)2 ,

where

W1 = 4 (2nL − 3Lmax)
3 ,

W2 = 8n (3Lmax − 2L) (2nL − 3Lmax)
2 ,

W3 = n2
(
−108L3

max + 72 (n + 2) L2
maxL −

(
n2 + 94n + 49

)
L2Lmax + 32nL3

)
.

And we have:

W 2
2 − 4W1W2 = 16n2(n − 1)2L2Lmax (2nL − 3Lmax)

3 .

Case 1 Lmax > 2nL
3 . We have 2nL − 3Lmax < 0. Hence, W 2

2 − 4W1W2 < 0.
Moreover, since W1 < 0, we have

Lmax >
2nL

3
�⇒ K ′(b) < 0.
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Thus,

Lmax >
2nL

3
�⇒ b∗ = n

Case 2 Lmax ≤ 2nL
3 . Then,W 2

2 −4W1W2 ≥ 0 and K ′(b) = 0 has at least one solution.
We are now going to examine whether or not K (b) is convex. We have:

Q
′′
(b) = 2n2(n − 1)LmaxL2 (2nL − 3Lmax)

((2nL − 3Lmax) b + (3Lmax − 2L) n)3
≥ 0.

Thus, K (b) is convex. K
′
(b) = 0 has two solutions:

b1 = n
(
(n − 1)L

√
Lmax − 2

√
2nL − 3Lmax(3Lmax − 2L)

)

2(2nL − 3Lmax)
3
2

,

b2 = −n
(
(n − 1)L

√
Lmax + 2

√
2nL − 3Lmax(3Lmax − 2L)

)

2(2nL − 3Lmax)
3
2

.

But since b2 ≤ 0, we have that:

Lmax ≤ 2nL

3
�⇒ b∗ =

⎧
⎨

⎩

1 if b1 < 2
�b1� if 2 ≤ b1 < n
n if b1 ≥ n

.

��

Appendix E.3: Optimal Minibatch Size for b-L-SVRG (Algorithm 2)

In this section, we present a detailed analysis of the optimal minibatch size derived in
Sect. 5.2.

Lemma E.1 We have that the iterates of Algorithm 2 satisfy Assumption 2 and Eq. (14)
with

σ 2
k = E

[∥∥
∥‖∇ fB(wk) − ∇ fB(x∗) − (∇ f (wk) − ∇ f (x∗))‖2

∥∥
∥
2
]

,

and constants

A = 2L(b), B = 2, ρ = p, C = pL(b), D1 = D2 = 0, G = L(b)L, (43)

where L(b) is defined in (17).

Proof For constant A, B, ρ,C, D1, D2, see Lemma B.4 and Corollary B.4.
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Moreover,

E

[∥
∥∇ fv0 (x0) − ∇ fv0 (x∗) − (∇ f (x0) − ∇ f (x∗))

∥
∥2

]
≤ E

[∥
∥∇ fv0 (x0) − ∇ fv0 (x∗)

∥
∥2

]

(25)≤ 2L(b)D f (x0, x∗)
(5)≤ L(b)L‖x0 − x∗‖2.

where we used in the first inequality that E
[‖X − E [X ]‖2] = E

[‖X‖2] −
‖E [X ]‖2 ≤ E

[‖X‖2]. Thus, (14) holds with G = L(b)L . ��
In the next corollary, we will give the iteration complexity for Algorithm 2 in the

case where p = 1/n, which is the usual choice for p in practice. A justification for
this choice can be found in [23, 37].

Corollary E.1 (Iteration complexity of L-SVRG) Consider the iterates of Algorithm 2.
Let p = 1/n and γ = 1

12L(b) . Given the constants obtained for Algorithm 2 in (43),
we have, using Corollary 5.1, that if

k ≥
(
12L(b) + nL

6

) ‖x0 − x∗‖2
ε

,

then, E [ f (x̄k) − f (x∗)] ≤ ε.

The usual definition for the total complexity is the expected number of gradi-
ents computed per iteration, times the iteration complexity, required to reach an
ε-approximate solution in expectation. However, since L-SVRG computes the full
gradient every n iterations in expectation, we can say that L-SVRG computes roughly
2b+1 gradients every iteration, so that after n iteration, it will have computed n+2bn
gradient. Thus, the total complexity for SVRG is:

K (b)
def= (1 + 2b)

(
12L(b) + nL

6

) ‖x0 − x∗‖2
ε

(44)

= (1 + 2b)

(
12 ((n − b)Lmax + n(b − 1)L)

b(n − 1)
+ nL

6

) ‖x0 − x∗‖2
ε

. (45)

Appendix E.3.1: Proof of Proposition 5.3

Proof Since the factor ‖x0−x∗‖2
ε

which appears in (44) does not dependon theminibatch
size, minimizing the total complexity in the minibatch size corresponds to minimizing
the following quantity:

Q(b) = (1 + 2b)

(
12L(b) + nL

6

)
.
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We have

(n − 1)Q(b) = 12(n − 1)L(b) + 24(n − 1)bL(b) + n(n − 1)Lb

3
+ nL

6

= 12n(Lmax − L)

b
+

(
24(nL − Lmax) + n(n − 1)L

3

)
b + ξ,

where ξ is a constant independent of b. Differentiating, we have:

(n − 1)Q′(b) = −12n(Lmax − L)

b2
+ 24(nL − Lmax) + n(n − 1)L

3
.

Since Lmax ≥ L and nL ≥ Lmax (see for example Lemma A.6 in [37]), C(b) is a
convex function of b. Thus, Q(b) is minimized when Q′(b) = 0. Hence:

b∗ = 6

√
n (Lmax − L)

72 (nL − Lmax) + n(n − 1)L
.

Since Lmax can take any value in the interval [L, nL], we have b∗ ∈ [0, 6]. ��

Appendix E.4: Optimal Miniblock Size for b-SEGA (Algorithm 6)

In this section, we define for any j ∈ [d] the matrix I j ∈ R
d×d such that

(I j )pq
def=

{
1 if p = q = j
0 otherwise

,

and we consequently define for any subset B ⊆ [d],

IB
def=

∑

j∈B
I j .

Algorithm 6 b-SEGA
Parameters step size γ , block size b ∈ [d]
Initialization x0 ∈ R

d , h0 = 0
for k = 1, 2, . . . do

Sample a miniblock Bk ⊆ [d] s.t. |Bk | = d
hk+1 = hk + IBk (∇ f (xk ) − hk )

gk = d
b IBk (∇ f (xk ) − hk ) + hk

xk+1 = proxγ R (xk − γ gk )
end for
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Corollary E.2 From Lemma B.8, we have that the iterates of Algorithm 6 satisfy
Assumption 2 and Eq. (14) with

σ 2
k = ‖hk − ∇ f (x∗)‖2

and constants:

A = 2dL

b
, B = 2

(
d

b
− 1

)
, ρ = b

d
, C = bL

d
, D1 = D2 = 0, G = 0. (46)

Proof For the constants A, B, ρ,C, D1, D2, see Lemma B.8. Moreover, in Algorithm
6, h0 = 0. Thus, σ 2

0 = ‖h0‖2 = 0. Thus, (14) holds with G = 0. ��
In the next corollary, we will give the iteration complexity for Algorithm 6.

Corollary E.3 (Iteration complexity of b-SEGA) Consider the iterates of Algorithm 6.
Let γ = b

4(3d−b)L . Given the constants obtained for Algorithm 6 in (46), we have,
using Corollary 5.1, that if

k ≥ 4(3d − b)L

b

‖x0 − x∗‖2
ε

,

then, E [F(x̄k) − F(x∗)] ≤ ε.

Here, we define the total complexity as the number of coordinates of the gradient
that we sample at each iteration times the iteration complexity. Since at each iteration,
we sample b coordinates of the gradient, the total complexity for Algorithm 6 to reach
an ε-approximate solution is

K (b)
def= 4 (3d − b) L

‖x0 − x∗‖2
ε

. (47)

Thus, we immediately have the following proposition.

Proposition E.1 Let b∗ = argmin
b∈[d]

K (b), where K (b) is defined in (47). Then,

b∗ = d.

The consequence of this proposition is thatwhen usingAlgorithm6, one should always
use as big a miniblock as possible if the cost of a single iteration is proportional to the
miniblock size.

Appendix F: Auxiliary Lemmas

Appendix F.1: Smoothness and Convexity Lemma

Wenow develop an immediate consequence of each fi being convex and smooth based
on the follow lemma.
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Lemma F.1 Let g : Rd �→ R be a convex function

g(z) − g(x) ≤ 〈∇g(z), z − x〉 , ∀x, z ∈ R
d , (48)

and Lg-smooth

g(z) − g(x) ≤ 〈∇g(x), z − x〉 + Lg

2
‖z − x‖22 , ∀x, z ∈ R

d . (49)

It follows that

‖∇g(x) − ∇g(z)‖2 ≤ Lg(g(x) − g(z) − 〈∇g(z), x − z〉), ∀x ∈ R
d . (50)

Proof Fix i ∈ {1, . . . , n} and let

z = x − 1

Lg
(∇g(x) − ∇g(x∗)).

To prove (50), it follows that

g(x∗) − g(x) = g(x∗) − g(z) + g(z) − g(x)
(48)+(49)≤ 〈∇g(x∗), x∗ − z

〉 + 〈∇g(x), z − x〉 + Lg

2
‖z − x‖22 .

(51)

Substituting this in z into (51) gives

g(x∗) − g(x) =
〈
∇g(x∗), x∗ − x + 1

Lg
(∇g(x) − ∇g(x∗))

〉

− 1

Lg

〈∇g(x),∇g(x) − ∇g(x∗)
〉 + 1

2Lg

∥∥∇g(x) − ∇g(x∗)
∥∥2
2

= 〈∇g(x∗), x∗ − x
〉

− 1

Lg

∥∥∇g(x) − ∇g(x∗)
∥∥2
2 + 1

2Lg

∥∥∇g(x) − ∇g(x∗)
∥∥2
2

= 〈∇g(x∗), x∗ − x
〉 − 1

2Lg

∥
∥∇g(x) − ∇g(x∗)

∥
∥2
2 . ��

Lemma F.2 Suppose that for all i ∈ [n], fi is convex and Li -smooth, and let Lmax =
maxi∈[n] Li . Then

1

n

n∑

i=1

‖∇ fi (x) − ∇ fi (x∗)‖2 ≤ 2Lmax ( f (x) − f (x∗)) . (52)
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Proof From (50), we have for all i ∈ [n],

‖∇ fi (x) − ∇ fi (x∗)‖2 ≤ 2Li ( fi (x) − fi (x∗) − 〈∇ fi (x∗), x − x∗〉)

Thus,

1

n

n∑

i=1

‖∇ fi (x) − ∇ fi (x∗)‖2 ≤ 2Lmax ( f (x) − f (x∗) − 〈∇ f (x∗), x − x∗〉)

= 2Lmax ( f (x) − f (x∗)) .

��

Appendix F.2: Proximal Lemma

Lemma F.3 Let R : Rd �→ R be a convex lower semi-continuous function. For z, y ∈
R
d and γ > 0. With p = proxγ g(y) we have that for

g(p) − g(z) ≤ − 1

γ
〈p − y, p − z〉 . (53)

Proof This is classic result, see, for example, the “Second Prox Theorem” in Section
6.5 in [6]. ��

Appendix F.3: Proof of Lemma C.2

This proof follows the proof of Lemma 8 in [5], and we reproduce it for completeness.
Indeed, using the convexity of f

f (x) − f (x∗) ≥ −〈∇ f (x), x∗ − x〉

in combination with (53) where z = x∗ gives

f (x) + g(p) − F(x∗) ≤ − 1

γ
〈p − y, p − x∗〉 − 〈∇ f (x), x∗ − x〉 .

Now using smoothness

f (p) − f (x) ≤ 〈∇ f (x), p − x〉 + 1

2γ
‖p − x‖2 ,
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gives

F(p) − F(x∗) ≤ − 1

γ
〈p − y, p − x∗〉 − 〈∇ f (x), x∗ − x〉 + 〈∇ f (x), p − x〉

+ 1

2γ
‖p − x‖2

= − 1

γ
〈p − y, p − x∗〉 + 〈∇ f (x), p − x∗〉 + 1

2γ
‖p − x‖2

= − 1

γ
〈p − γ∇ f (x) − y, p − x∗〉 + 1

2γ
‖p − x‖2

= − 1

γ
〈p − x + x − γ∇ f (x) − y, p − x∗〉 + 1

2γ
‖p − x‖2

= − 1

γ
〈p − x, p − x∗〉 − 1

γ
〈x − γ∇ f (x) − y, p − x∗〉 + 1

2γ
‖p − x‖2 .

(54)

Using that

−2 〈p − x, p − x∗〉 + ‖p − x‖2 = −‖p − x∗‖2 + ‖z − x‖2 ,

in combination with (54) gives

F(p) − F(x∗) ≤ − 1

2γ
‖p − x∗‖2 − 1

γ
〈x − γ∇ f (x) − y, p − x∗〉 + 1

2γ
‖x∗ − x‖2.

Now it remains to multiply both sides by −2γ to arrive at (33).
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32. Nguyen, L.M., Liu, J., Scheinberg, K., Takáč, M.: SARAH: a novel method for machine learning
problems using stochastic recursive gradient. In: Proceedings of the 34th International Conference on
Machine Learning, vol. 70, pp. 2613–2621 (2017)

33. Ravikumar, P., Wainwright, M.J., Lafferty, J.D.: High-dimensional Ising model selection using �1-
regularized logistic regression. Ann. Stat. 38(3), 1287–1319 (2010)

34. Reddi, S.J., Hefny, A., Sra, S., Póczos, B., Smola, A.J.: Stochastic variance reduction for nonconvex
optimization. In: Proceedings of the 33nd International Conference on Machine Learning, vol. 48, pp.
314–323 (2016)

123

http://arxiv.org/abs/1904.05115
http://arxiv.org/abs/2002.03329
http://arxiv.org/abs/1611.07555
http://arxiv.org/abs/1901.09269


540 Journal of Optimization Theory and Applications (2023) 199:499–540

35. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)
36. Schmidt,M., Le Roux, N., Bach, F.:Minimizing finite sumswith the stochastic average gradient.Math.

Program. 162(1–2), 83–112 (2017)
37. Sebbouh, O., Gazagnadou, N., Jelassi, S., Bach, F., Gower, R.M.: Towards closing the gap between

the theory and practice of SVRG. Adv. Neural Inf. Process. Syst. 32, 646–656 (2019)
38. Seide, F., Fu, H., Droppo, J., Li, G., Yu, D.: 1-bit stochastic gradient descent and its application to

data-parallel distributed training of speech DNNS. In: INTERSPEECH, 15th Annual Conference of
the International Speech Communication Association, pp. 1058–1062 (2014)

39. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press, Cambridge (2014)

40. Stich, S.U.: Unified optimal analysis of the (stochastic) gradient method. arXiv:1907.04232 (2019)
41. Tibshirani, R.J.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288

(1996)
42. Vaswani, S., Bach, F., Schmidt, M.: Fast and faster convergence of SGD for over-parameterizedmodels

and an accelerated perceptron. In: The 22nd International Conference on Artificial Intelligence and
Statistics, vol. 89, pp. 1195–1204 (2019)

43. Wangni, J., Wang, J., Liu, J., Zhang, T.: Gradient sparsification for communication-efficient distributed
optimization. Adv. Neural Inf. Process. Syst. 31, 1306–1316 (2018)

44. Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)
45. Zhang, H., Li, J., Kara, K., Alistarh, D., Liu, J., Zhang, C.: Zipml: training linear models with end-to-

end low precision, and a little bit of deep learning. In: Proceedings of the 34th International Conference
on Machine Learning, vol. 70, pp. 4035–4043 (2017)

46. Zhao, P., Zhang, T.: Stochastic optimization with importance sampling for regularized loss minimiza-
tion. In: Proceedings of the 32nd International Conference on Machine Learning, vol. 37, pp. 1–9
(2015)

47. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat.
Methodol. 67(2), 301–320 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1907.04232

	Unified Analysis of Stochastic Gradient Methods for Composite Convex and Smooth Optimization
	Abstract
	1 Introduction and Background
	1.1 Stochastic Approximation
	1.2 Finite-Sum Minimization
	1.3 Distributed Optimization
	1.4 High-Dimensional Function Minimization

	2 Contributions
	2.1 Unified Analysis of Stochastic Gradient Algorithms
	2.2 Analysis of SGD Without the Bounded Gradients Assumption
	2.3 Extension of the Analysis of Existing Algorithms to the Convex Case
	2.4 Optimal Minibatches for L-SVRG and SAGA in the Convex Setting

	3 Unified Analysis for Proximal Stochastic Gradient Methods
	3.1 Notation

	4 The Main Corollaries
	4.1 SGD Without the Bounded Gradients Assumption
	4.2 Convergence of DIANA in the Convex Setting

	5 Optimal Minibatch Sizes for Variance Reduced Methods
	5.1 Optimal Minibatch Size for b-SAGA
	5.2 Optimal Minibatch Size for b-L-SVRG

	6 Experiments
	Outline of the Appendix
	Appendix A: Arbitrary Sampling
	Appendix A.1: Stochastic reformulation
	Appendix A.2: Expected Smoothness and Gradient Noise
	Appendix A.3: Minibatching Elements Without Replacement

	Appendix B: Notable Corollaries of Theorem 3.1
	Appendix B.1: SGD with Arbitrary Sampling*-12pt
	Appendix B.2: DIANA
	Appendix B.3: L-SVRG with Arbitrary Sampling*-12pt
	Appendix B.3.1: b-L-SVRG

	Appendix B.4: b-SAGA
	Appendix B.5: b-SEGA

	Appendix C: Proofs for Sect.3
	Appendix C.1: Proof of Theorem 3.1

	Appendix D: Proofs for Sect.4
	Appendix D.2: Proof of Corollary 4.2

	Appendix E: Roofs for Sect.5 
	Appendix E.1: Proof of Proposition 5.1
	Appendix E.2: Optimal Minibatch Size for b-SAGA (Algorithm 1)
	Appendix E.2.1: Proof of Lemma 5.1 
	Appendix E.2.2: Proof of Proposition 5.2

	Appendix E.3: Optimal Minibatch Size for b-L-SVRG (Algorithm 2)
	Appendix E.3.1: Proof of Proposition 5.3

	Appendix E.4: Optimal Miniblock Size for b-SEGA (Algorithm 6)

	Appendix F: Auxiliary Lemmas
	Appendix F.1: Smoothness and Convexity Lemma
	Appendix F.2: Proximal Lemma
	Appendix F.3: Proof of Lemma C.2

	References




