
Journal of Optimization Theory and Applications (2023) 198:988–1018
https://doi.org/10.1007/s10957-023-02278-1

The Game of Two Identical Cars: An Analytical Description
of the Barrier

Maksim Buzikov1 · Andrey Galyaev1

Received: 7 July 2022 / Accepted: 14 July 2023 / Published online: 31 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this study, a pursuit-evasion game of two players, known as a game of two identical
cars, is examined. It is assumed that the game proceeds in a two-dimensional plane.
Both players have a constant speed and a limited turn radius. The goal of the first
player (pursuer) is to ensure that the second player (evader) enters the capture circle as
quickly as possible. The goal of the evader is to avoid or delay capturing for as long as
possible. The kinematics of both players are described using the same equations. Thus,
the game has only one free parameter: capture radius. This study aims to provide an
exhaustive analytical description of the barrier surface for all values of capture radius.
Previously, Merz analytically investigated the barrier in a game of two identical cars.
In this work, it was found that there is a certain critical value of the capture radius,
above which the barrier is qualitatively different from Merz’s example. In addition,
we obtained an explicit analytical description of the optimal feedback controls for the
barrier.
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1 Introduction

The game of two cars (GTC) was originally described and investigated by Isaacs in the
1950s. In his seminal work [9, pp. 237–244], Isaacs obtained a partial description of
the barrier for this problem and a description of the singular lines on the barrier. Isaacs
supposed that the independent parameters of the problem (capture radius, speed ratio,
and minimum turn radius ratio) are such that capture is possible from an arbitrary
initial state. Thus, the barrier explored by Isaacs was not closed. In [6], Cockayne
revealed necessary and sufficient conditions for the parameters of the interception
problem from an arbitrary initial state. These conditions were refined by Rublein in
[30]. The necessary and sufficient conditions for the existence of an evasion strategy
are presented in [3]. Publications [3, 6, 30] assume that interception is the coincidence
of pursuer and evader planar coordinates. This corresponds to the zero-capture radius.
In [9, 19], Isaacs and Merz intensively investigated the case of a GTC with a zero
minimum turn radius for the evader (the homicidal chauffeur game). A complete
analysis and modern discussion of this case are provided in [27]. In [4], Breakwell
and Merz calculated the minimal capture radius, which always permits interception
from an arbitrary initial state for a given speed ratio and a minimum turn radius ratio.
A new criterion for full state-space capturability based on the barrier geometry was
proposed in [28]. If the origin of the coordinate system is bonded with the pursuer
(the y-axis is aligned with the velocity of the pursuer) and the barrier surface does
not cross the positive y-axis, then the pursuer can intercept the evader from any initial
state. Later, Pachter and Miloh revealed new regions of the parameter space in which
the open barrier surface qualitatively differs from previously observed types [29]. An
optimal feedback control synthesis for GTC was introduced in [32, 34] by Simakova.
Simakova investigated the value of the game in [35] and the game of kind in [33]. Her
results are applicable only in a special case when the pursuer surpasses all parameters
of the evader. In addition, she considers only a state-space region, where the value
of the game is a smooth function. In [10], Simakova examined the obtained results
in comparison with other methods such as proportional navigation. In [7], Farber and
Shinar described a methodology to obtain an approximate solution and compared it
with Simakova’s solution. A computational approach based on discretization of the
GTC was presented in [1, pp. 48–60]. In [2], Bera et al. investigated and visualized
singular surfaces of the game in a wide range of parameters. A comprehensive survey
of GTC in the context of pursuit-evasion differential games was presented in [43].

The solution of the GTC can be utilized for a collision avoidance problem, where
it is supposed that there is no cooperation between the players, and the evader has to
imply a strategy such that its use will lead to escape for any strategy of the pursuer.
It is assumed that the evader is a plant and the pursuer plays the role of a moving
obstacle. The formal problem statement remains the same. Usually, the parameters
of the collision avoidance problem differ from those of a pursuit-evasion problem in
that the pursuer does not have the advantage of speed and minimum turn radius. In
[16], Meier introduced a method for obtaining the capture region when it is bounded.
His method was based on an analysis of reachable sets. Initially, the reachable sets
of pursuer and evader at a given time were determined. Furthermore, by combining
these loci for various fixed times and a fixed initial state, the capture region can
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be determined by finding envelopes and intersections. In [5, 18, 20], Merz et al.
examined a cooperative collision avoidance problem with equations of motion of the
GTC. Cooperative collision avoidance implies the maximization of the distance to the
closest point of approach by both players instead of maximizing the time to collision
by the evader in the pursuit-evasion game. Further, Miloh and Sharma supplemented
Merz’s results and investigated the barrier surface for a collision avoidance problem
for cooperative maneuvers of players [21, 31]. In [40, 41], Vincent et al. analyzed the
problem of collision avoidance of two vehicles when there is no cooperation among
players. The main idea of the analysis is to divide the state space into vulnerability
zones. The "red" zone corresponds to awin region of the pursuer in theGTC.Therefore,
the boundary of the red zone is a barrier surface for the GTC. In [40], an analytical
description of the barrier in the case of an evader’s superiority in terms of parameters
was provided. In [42], the same authors supplemented their analysis by considering a
proportional navigation strategy for the pursuer. Papers [22, 26] examined a collision
avoidance problem for line segments and elliptical players. In [23, 24], an extended
kinematic model that considers the variable speeds of players was examined. In [11],
Kwik calculated the escape maneuver for the evader if the pursuer maneuver was
known.

A game of two identical cars (GTIC) was originally considered by Merz in [17].
In GTIC, it is assumed that the speeds and minimum-turn radii of the players are
the same. After choosing an appropriate description of the GTIC statement, there is
only one parameter in the problem: capture radius. In [17], Merz described the barrier
of the game, the universal, and dispersal surfaces. A game of surveillance-evasion
of two identical cars is considered by Greenfeld in [8]. The difference from GTIC
is that the game set is inside the capture circle. Moreover, the pursuer maximizes,
whereas the evader minimizes the escape time. In [25], Mitchell used the description
of the barrier obtained byMerz to validate a solver of the Hamilton-Jacobi equation. A
cooperative collision avoidance problem of two identical cars is completely analyzed
by Tarnopolskaya and Fulton in [36]. Furthermore, these authors examined more
general cases of unequal parameters of players in [13–15, 37–39].

Although the GTIC has been intensively studied, there are some unexplored ques-
tions regarding this problem. The analytical description of the barrier presented in [17,
25] is constrained only by the parametric equations of the surfaces that constitute the
barrier. These publications do not provide analytical conditions for the limitations of
the parameter domains in the description of surfaces, that is, there are no conditions for
cutting off excess parts of these surfaces. The same can be said about the description
of universal and dispersal surfaces from [17]. In addition, Merz noted an unexpected
result in the numerical calculation of the angular slice of the dispersal surface at a
sufficiently small angle between the velocities of the players. Analytical analysis of
this phenomenon is not covered in the available sources.

This paper is devoted to a complete analytical description of the barrier surface.
The analysis shows that for different values of the capture radius, there is a different
analytical description of the conditions for cutting off the excess parts of the surfaces
that form the barrier. Instead of using the trial-and-error approach from [25],we present
a systematic method for constructing the barrier surface. This study also proposes
efficientmethods for calculating the optimal feedback controls for players and provides
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Fig. 1 Players in the realistic

space
[
xP yP θP xE yE θE

]�

and reduced space
[
x y θ

]�

an explicit analytical expression for the barrier surface parameterization in terms of
the state vector.

The remainder of this paper is organized as follows. Section2 provides a mathe-
matical description of GTIC. Section3 describes the strategies of players in terms of
the state and adjoint vectors. Section4 is devoted to an analytical description of the
barrier and its form depending on the capture radius. Section5 provides a synthesis of
optimal feedback controls for players and proposes an explicit analytical description
of the barrier in terms of the state vector. Finally, Sect. 6 presents conclusions.

2 Problem Formulation

In this section, we formulate a mathematical statement for the GTIC. We use the
notation z = [

x y θ
]� ∈ R

2 × S for a configuration, which is a planar position and
orientation triplet. Throughout this paper, the subscripts P and E refer to pursuer and
evader configurations, respectively (Fig. 1).

For the GTIC, the kinematics of each player is described using the Dubins model.
According to this model, the pursuer and evader configurations in a realistic space
can be written as

[
xP yP θP

]� and
[
xE yE θE

]�, respectively (see Fig. 1). All angles
were counted in the clockwise direction along the y-axis. In the reduced space, we
associate the coordinate system with the pursuer position and align the y-axis with the
velocity of the pursuer. The equations of motion of the GTIC [17, Eq. 2] are presented
as

ż =
⎡

⎣
ẋ
ẏ
θ̇

⎤

⎦ =
⎡

⎣
−uy + sin θ

−1 + ux + cos θ

v − u

⎤

⎦ def= f (z, u, v). (1)

Here, the pursuer and evader controls correspond to functions

u(z)
def= u(z) ∈ U def= [−1,+1], v(z)

def= v(z) ∈ V def= [−1,+1],

where U and V are the constrained ranges of players’ controls.
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The set of all possible states defined as the game set is given by

S def= {z ∈ R
2 × S : x2 + y2 ≥ �2},

where � ∈ R
+ is the capture radius of the target set C = ∂S. We suppose that the game

starts from the initial state z0 ∈ S at the time moment t = 0, then the current state
of the game z(t) = [

x(t) y(t) θ(t)
]� depends on the players’ controls and it can be

defined as a solution of the equations of motion (1). The game terminates if the state
reaches the target set for the first time at t f ∈ R

+
0 . Further, we associate subscript f

with some final states throughout this paper. If the target set cannot be reached for
given controls, we assume that t f = +∞.

The terminal state z(t f ) in the target set can be represented in a more convenient

form. Let s = [
ϕ f θ f

]� ∈ S
2. The target set can be presented as

C = {zC(s) : s ∈ S
2}, where zC(s)

def= [
� sin ϕ f � cosϕ f θ f

]�
.

The polar angle ϕ f fixes the planar position in the capture circle.
The outcome functional of the game is

J [u(·), v(·); z0] def=
t f∫

0

L(z(t), u(z(t)), v(z(t)))dt + G(z(t f )),

where the running cost function L(z, u, v) = 1 and the terminal cost function G(z) =
0. The pursuer strives to minimize the outcome functional when the evader maximizes
it. For the optimal feedback controls u∗(·), v∗(·) and for any other admissible controls
u(·), v(·) the following inequalities hold

J [u∗(·), v(·); z0] ≤ V (z0)
def= J [u∗(·), v∗(·); z0] ≤ J [u(·), v∗(·); z0].

If the pursuer and evader play optimally, the value V (z0) is the time to capture.
It is obvious that there is a set of states in which the evader can escape with any

pursuer strategy. For example, if the velocities of players are collinear (θ = 0S) and the
evader is in front of the pursuer, then control v(z) = 0 guarantees evasion. It follows
that escape setF ⊂ S is not empty. We denoteW ⊂ S as a capture set. The boundary
separating the capture set from the escape set is a barrier B ⊂ S. In the remainder of
this paper, we describe barrier B analytically. In addition, we provide controls u∗(z)
and v∗(z) for z ∈ B.

3 Main Equation

If the initial state of the game lies on the barrier surface and both players use optimal
strategies, then the state vector does not leave the barrier. This means that the evader
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must be able to set the value of its control in such a way that it prevents the state vector
from penetrating the capture setW while the pursuer keeps the state out of the escape
set F in the same way. The property described to prevent penetration constitutes the
concept of semi-permeability.

Let νz = [
νx νy νθ

]� ∈ R
3 denote a normal vector of barrier B at some point.

The length of νz is not necessarily a unit. According to Isaacs [9, pp. 205–210], the
condition that B be a semipermeable surface

min
u∈U

max
v∈V

(νz, f (z, u, v)) = 0 (2)

for all z ∈ B. In the particular case of the GTIC, the right part of equations of motion
is separable and it can be presented in a special form

f (z, u, v) = f P (z, u) + f E (z, v) + g(z),

where we have set

f P (z, u)
def=
⎡

⎣
−uy
ux
−u

⎤

⎦ , f E (z, v)
def=
⎡

⎣
0
0
v

⎤

⎦ , g(z)
def=
⎡

⎣
sin θ

−1 + cos θ

0

⎤

⎦ .

Functions f P (·) and f E (·) are linear in the components of the controls for both
players. It follows that the main equation (2) can be analyzed by investigating the
switch functions [12, pp. 147–148]. We will denote by

sP (z, νz)
def= yνx − xνy + νθ , sE (z, νz)

def= νθ

the switch functions of the pursuer and evader. The main equation (2) helps to deter-
mine candidates to player optimal control depending on the state z and normal vector
νz

ũ(z, νz)
def= argmin

u∈U
(νz, f P (z, u)), ṽ(z, νz)

def= argmax
v∈V

(νz, f E (z, v)). (3)

Applying the notions of switch functions we obtain

(ν z, f P (z, u)) = −usP (z, νz), (ν z, f E (z, v)) = vsE (z, νz). (4)

The construction of semipermeable surface uses the evolution of normal vector νz
[12, pp. 113–114] described by the adjoint equations

ν̇z
def=
⎡

⎣
ν̇x
ν̇y
ν̇θ

⎤

⎦ = −∂ f (z, u, v)

∂ z
νz =

⎡

⎣
−uνy
uνx

−νx cos θ + νy sin θ

⎤

⎦ . (5)
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These equations hold along the barrier paths. Let νz(t) = [
νx (t) νy(t) νθ (t)

]� denote
a solution of this system at the time moment t .

Lemma 3.1 In GTIC, the candidate optimal control laws ũ(·) and ṽ(·) are given by

ũ(z, νz) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sgn sP (z, νz), sP (z, νz) 	= 0;
sgn νx , sP (z, νz) = 0, νx 	= 0;
0, sP (z, νz) = 0, νx = 0, νy < 0;
u ∈ {−1, 0,+1}, otherwise,

ṽ(z, νz) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sgn sE (z, νz), sE (z, νz) 	= 0;
sgn(νx cos θ − νy sin θ), sE (z, νz) = 0, νy sin θ 	= νx cos θ;
0, sE (z, νz) = 0, νy sin θ = νx cos θ, νx sin θ < −νy cos θ;
v ∈ {−1, 0,+1}, otherwise.

Proof These expressions were obtained from [17]. 
�
In the remainder of this section, we provide solutions to (1) and (5) for fixed values

u and v of the controls [17, 25]. These solutions are required to investigate the barrier
emanation in the next section. It is more convenient to explore emanation by using

the retrograde time variable τ = t f − t . Let z̃ = [
x̃ ỹ θ̃

]� ∈ R
2 × S. The integration

of (1) using the fixed values of controls u ∈ U , v ∈ V and the condition z(t f ) = z̃
leads to the following solution:

zu,v(τ ; z̃) def= z(t f − τ)

=

⎡

⎢
⎢
⎣

x̃ cos uτ + ỹ sin uτ + uτ 2

2 sinc2 uτ
2 − τ sinc vτ

2 sin
(
θ̃ + (

u − v
2

)
τ
)

ỹ cos uτ − x̃ sin uτ + τ sinc uτ
2 − τ sinc vτ

2 cos
(
θ̃ + (

u − v
2

)
τ
)

θ̃ + (u − v)τ

⎤

⎥
⎥
⎦ . (6)

The distance between players on the plane is equal to

ru,v(τ ; z̃) def= √
(zu,v(τ ; z̃), I XY zu,v(τ ; z̃)), where I XY

def=
⎡

⎣
1 0 0
0 1 0
0 0 0

⎤

⎦ . (7)

Let ν̃z = [
ν̃x ν̃y ν̃θ

]� ∈ R
3 and νz(t f ) = ν̃z . In turn, integrating (5) leads to

νu,v
z (τ ; z̃, ν̃z) def= νz(t f − τ) =

⎡

⎢
⎣

ν̃x cos uτ + ν̃y sin uτ

ν̃y cos uτ − ν̃x sin uτ

ν̃θ + τ sinc vτ
2

(
ν̃x cos

(
θ̃ − vτ

2

)
− ν̃y sin

(
θ̃ − vτ

2

))

⎤

⎥
⎦ .

This solution also requires the controls to have fixed values.
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4 Barrier

The first step in barrier construction is to determine the usable part (UP) and its
boundary. By definition, the usable part is the part of the target set where the pursuer
can guarantee termination regardless of the choice of control by the evader [12, pp. 39–
40]. The unit normal of the target set C directed into the game setS at some point zC(s)
for s ∈ S

2 will be denoted by nC(s) = [
sin ϕ f cosϕ f 0

]� ∈ R
3. The pursuer can

guarantee the termination when the velocity vector penetrates the target set. Hence,

UP def=
{
zC(s) : s ∈ S

2, min
u∈U

max
v∈V

(nC(s), f (zC(s), u, v)) < 0

}

=
{
zC(s) : θ f ∈ (0, 2π), ϕ f ∈

(
θ f

2
− π,

θ f

2

)}
.

The boundary of the usable part (BUP) is a locus of points where the barrier starts
its emanation in the backward time. By definition, BUP = ∂UP . In the GTIC, the
boundary of the usable part consists of three lines:BUP = BUP0∪BUP−1∪BUP+1.
The line BUP0 corresponds to θ f = 0S.

BUP0
def= {

zBUP0(ϕ f ) : ϕ f ∈ S
} = {z ∈ R

2 × S : θ = 0S, � =
√
x2 + y2},

where

zBUP0(ϕ f )
def= zC(ϕ f , 0S) = [

� sin ϕ f � cosϕ f 0S
]�

.

For future purposes, we specify the unit normal of the target set on BUP0.

nBUP0(ϕ f )
def= nC(ϕ f , 0S).

The last two parts of BUP correspond to the cases ϕ f = θ f /2 − π and ϕ f = θ f /2.
We denote1 byBUPυ these two lines υ ∈ B. The parametric description of these lines
is given by

BUPυ
def= {

zBUPυ
(θ f ) : θ f ∈ (0, 2π)

}
,

where

zBUPυ
(θ f )

def= zC

(
(1 + υ)π + θ f

2
, θ f

)
=
[
−υ� sin

θ f
2 −υ� cos

θ f
2 θ f

]�
.

The unit normal of the target set on BUPυ is defined by

nBUPυ
(θ f )

def= nC

(
(1 + υ)π + θ f

2
, θ f

)
.

1 Throughout the paper, B denotes the binary set {−1,+1}. Additionally, we use the letter υ (upsilon) to
denote a binary variable. This letter looks like an evader’s control v, which will actually play this role.
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The emanation of the barrier surface is determined by candidate optimal control
laws ũ(·) and ṽ(·) from Lemma 3.1. Because the values of the candidate optimal
control laws may be ambiguous, all the necessary scenarios should be examined. The
initial conditions of the retrogressive emanation are given by z(t f ) = zC(s) ∈ BUP
and νz(t f ) = nC(s). We consider emanation from BUP separately for BUP0 and
BUPυ .

4.1 Primary Barrier Emanation

For BUPυ , the candidate optimal control laws ũ(·) and ṽ(·) are determined uniquely
and according to Lemma 3.1 are equal to

ũ(zBUPυ
(θ f ), nBUPυ

(θ f )) = −υ, ṽ(zBUPυ
(θ f ), nBUPυ

(θ f )) = υ, (8)

where θ f ∈ (0, 2π). We associate the notion Bυ
P with part of the barrier B that

emanates from BUPυ (recall that υ ∈ B). Because not all emanating parts are valid
parts of the barrier, we mark the emanating parts with a tilde. Therefore, B̃υ

P emanates

from the BUPυ and Bυ
P = B̃υ

P ∩ B is a valid part of the barrier. The redundant part

B̃υ
P\Bυ

P is determined later. Combining (8) with the solution of equations of motion
for fixed values of controls (6), we obtain

zBυ
P

(τ, θ f )
def= z−υ,υ(τ ; zBUPυ

(θ f ))

=

⎡

⎢⎢
⎣

−υ� sin
(

θ f
2 − υτ

)
− υ

(
1 − cos τ + cos(θ f − 2υτ) − cos(θ f − υτ)

)

−υ� cos
(

θ f
2 − υτ

)
+ sin τ + υ

(
sin(θ f − 2υτ) − sin(θ f − υτ)

)

θ f − 2υτ

⎤

⎥⎥
⎦ .

The normal vector of B̃υ
P at zBυ

P
(τ, θ f ) is given by

νz,Bυ
P

(τ, θ f )
def= ν−υ,υ

z (τ ; zBUPυ
(θ f ), nBUPυ

(θ f )).

The range of change for retrograde time τ on B̃υ
P starts from τ = 0 and ends at an

arbitrary moment. This time moment can be defined in such a way that it is guaranteed
that it is not less than either the minimal switch time (when one of the switch functions
vanishes) or the time when B̃υ

P intersects another part of B. The second option is not
available, because the other parts of B are not described. The computation of the
minimal switch time requires finding a minimal positive root of

sP (zBυ
P

(τ, θ f ), νz,Bυ
P

(τ, θ f )) = cos
θ f

2
− cos

(
θ f

2
− υτ

)
= 0,

sE (zBυ
P

(τ, θ f ), νz,Bυ
P

(τ, θ f )) = cos

(
θ f

2
− υτ

)
− cos

θ f

2
= 0.
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A trivial verification indicates that the root is τ = (1 − υ)π + υθ f for θ f ∈ (0, 2π).
The third component of zBυ

P
(τ, θ f ) becomes zero when

τ = (1 − υ)π + υθ f

2
, θ f ∈ (0, 2π),

which occurs before the switching function vanishes. Because the evader can escape
in the case θ = 0S duplicating the strategy of the pursuer, the corresponding state does
not belong to B and lies on the redundant part of B̃υ

P . Summarizing, we set

B̃υ
P

def=
{
zBυ

P
(τ, θ f ) : θ f ∈ (0, 2π), τ ∈

(
0,

(1 − υ)π + υθ f

2

)}
.

In the future, we will use another parameterization of B̃υ
P given by a new variable

ϑ = (1 − υ)π + υθ f − 2τ .

B̃υ
P =

{
z̄Bυ

P
(τ, ϑ) : ϑ ∈ (0, 2π), τ ∈

(
0, π − ϑ

2

)}
,

where

z̄Bυ
P

(τ, ϑ)
def= zBυ

P
(τ, (1 − υ)π + υϑ + 2υτ)

=
⎡

⎣
−υ

(
� sin ϑ

2 + cosϑ − cos(τ + ϑ) + 1 − cos τ
)

−� cos ϑ
2 + sin ϑ − sin(τ + ϑ) + sin τ

(1 − υ)π + υϑ

⎤

⎦ .

This parameterization is more convenient, because the third component of the state
vector depends only on ϑ .

Let us now turn to emanating from BUP0. Candidate optimal control laws ũ(·) and
ṽ(·) are equal to

ũ(zBUP0(ϕ f ), nBUP0(ϕ f )) =
{

sgn sin ϕ f , ϕ f 	= 0S;
u ∈ {−1, 0,+1}, ϕ f = 0S,

ṽ(zBUP0(ϕ f ), nBUP0(ϕ f )) =
{

sgn sin ϕ f , ϕ f 	= 0S;
v ∈ {−1, 0,+1}, ϕ f = 0S.

(9)

If ϕ f 	= 0S, then the controls are equal. Substituting u = v = υ ∈ B and z̃ =
zBUP0(ϕ f ) into (7) yields rυ,υ(τ ; zBUP0(ϕ f )) = �. This means that the state vector
remains on BUP0 and emanation does not proceed.

Next, if ϕ f = 0S, then according to (9), we must analyze nine scenarios u, v ∈
{−1, 0,+1}. Using Taylor’s formula for expression (7), the distance between players
is as follows

ru,v(τ ; zBUP0(0S)) = � + v2 − u2

6
τ 3 + (u − v)2

8�
τ 4 + o(τ 4). (10)
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If u = v ∈ {−1, 0,+1}, as in the previous case, then rv,v(τ ; zBUP0(0S)) = �.
Next, if u ∈ B and v = 0, then according to (10), the distance becomes less than

the capture radius at the start of emanation. The region inside the capture circle does
not belong to the game set. Consequently, this case can be missed.

Now, let v = −u = υ ∈ B. We associate the notions Bυ
PL and B̃υ

PL with the part

of barrier B, that emanates from
[
0 � 0S

]� ∈ BUP0 by analogy with Bυ
P and B̃υ

P
notions. B̃υ

PL is a line, whereas B̃υ
P is a surface. Similarly, we can describe the points

on B̃υ
PL

zBυ
PL

(τ )
def= z−υ,υ(τ ; zBUP0(0S)) =

⎡

⎣
−υ (� sin τ − 2 cos τ + 1 + cos 2τ)

� cos τ + 2 sin τ − sin 2τ
(1 + υ)π − 2υτ

⎤

⎦

and corresponding normal vector

νz,Bυ
PL

(τ )
def= ν−υ,υ

z (τ ; zBUP0(0S), nBUP0(0S)).

The analysis of the switch functions

sP (zBυ
PL

(τ ), νz,Bυ
PL(τ )) = υ(cos τ − 1) = 0,

sE (zBυ
PL

(τ ), νz,Bυ
PL(τ )) = υ(1 − cos τ) = 0

gives the minimal switch time τ = 2π . The third component of zBυ
PL

(τ ) vanishes at
τ = π . Therefore, it may be concluded that

B̃υ
PL

def= {zBυ
PL

(τ ) : τ ∈ (0, π)}. (11)

Applying a new parametrization τ = π − ϑ/2, we can rewrite (11) as

B̃υ
PL = { z̄Bυ

PL
(ϑ) : ϑ ∈ (0, 2π)},

where

z̄Bυ
PL

(ϑ)
def= zBυ

PL

(
π − ϑ

2

)
=
⎡

⎣
−υ

(
� sin ϑ

2 + 2 cos ϑ
2 + 1 + cosϑ

)

−� cos ϑ
2 + 2 sin ϑ

2 + sin ϑ

(1 − υ)π + υϑ

⎤

⎦ .

A simple computation shows that z̄Bυ
P

(ϑ, π − ϑ/2) = z̄Bυ
PL

(ϑ) for all ϑ ∈ (0, 2π),

which implies that B̃υ
PL is part of the boundary of B̃υ

P .
Finally, we consider the case u = 0 and v = υ ∈ B. We will see later that this case

corresponds to the emanation of barrier universal line. The notations Bυ
UL and B̃υ

UL
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are associated with the emanation. The points of B̃υ
UL are given by

zBυ
UL

(τ )
def= z0,υ(τ ; zBUP0(0S)) =

⎡

⎣
υ(1 − cos τ)

� + τ − sin τ

(1 + υ)π − υτ

⎤

⎦ .

The normal vector is defined by

νz,Bυ
UL

(τ )
def= ν0,υz (τ ; zBUP0(0S), nBUP0(0S)) =

⎡

⎣
0
1

υ(1 − cos τ)

⎤

⎦ . (12)

Computing the switch functions on B̃υ
UL gives

sP (zBυ
UL

(τ ), νz,Bυ
UL

(τ )) = 0, sE (zBυ
UL

(τ ), νz,Bυ
UL

(τ )) = υ(1 − cos τ).

Because the first component of (12) is equal to zero and the second component is
non-negative, emanation with u ∈ {−1, 0,+1} is not prohibited on B̃υ

UL (according
to Lemma 3.1). The minimum switch time of the evader switch function is τ = 2π .
Thus,

B̃υ
UL

def= {zBυ
UL

(τ ) : τ ∈ (0, 2π)}.

For the uniformity of notation, we define z̄Bυ
UL

(ϑ) = zBυ
UL

(ϑ).
Thus, the primary emanation of trajectories fromBUP is exhausted by two surfaces

B̃υ
P and four lines B̃υ

PL, B̃υ
UL (υ ∈ B). Simultaneously, each line B̃υ

PL corresponds

to the boundary of the surface B̃υ
P . Next, we describe the tributaries of B̃υ

UL, which
consist of retrograde trajectories emanating in a retrograde sense from this line.

4.2 Tributaries Emanation

We explore the emanation in two scenarios, since the tributaries emanate from B̃υ
UL

with two possible values for the pursuer control u ∈ B. In the first scenario, we assume
that players’ controls are equal and that the players turn in the same direction. In the
second scenario, the players turn in opposite directions. That is, the controls of the
players are different.

We associate the notions Bυ
PL and B̃υ

PL with the emanation of tributaries with the
equal control of players. Substituting u = v = υ ∈ B into the solution of equations
of motion for fixed values of controls, we have

zBυ
T S

(τ1, τ2)
def= zυ,υ(τ2; zBυ

UL
(τ1)) =

⎡

⎣
υ ((� + τ1) sin τ2 + 1 − cos τ1)

(� + τ1) cos τ2 − sin τ1
(1 + υ)π − υτ1

⎤

⎦ .
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Here, τ1 ∈ (0, 2π) is the time spent on B̃υ
UL and τ2 is spent on the tributary path. The

normal vector is defined by

νz,Bυ
T S

(τ1, τ2)
def= νυ,υ

z (τ2; zBυ
UL

(τ1), νz,Bυ
UL

(τ1)).

Computing the switch functions on B̃υ
PL gives

sP (zBυ
T S

(τ1, τ2), νz,Bυ
T S

(τ1, τ2)) = υ(1 − cos τ2) = 0,

sE (zBυ
T S

(τ1, τ2), νz,Bυ
T S

(τ1, τ2)) = υ (1 − cos (τ1 + τ2)) = 0.

The minimal positive solution of these equations τ2 = 2π − τ1 corresponds to zero
of the evader switch function. Hence,

B̃υ
PL

def=
{
zBυ

T S
(τ1, τ2) : τ1 ∈ (0, 2π) , τ2 ∈ (0, 2π − τ1)

}
.

Using a new parameterization, τ1 = ϑ and τ2 = τ − ϑ we can rewrite the above as

B̃υ
PL =

{
z̄Bυ

T S
(τ, ϑ) : ϑ ∈ (0, 2π) , τ ∈ (ϑ, 2π)

}
,

where

z̄Bυ
T S

(τ, ϑ)
def= zBυ

T S
(ϑ, τ − ϑ) =

⎡

⎣
υ ((� + ϑ) sin(τ − ϑ) + 1 − cosϑ)

(� + ϑ) cos(τ − ϑ) − sin ϑ

(1 + υ)π − υϑ

⎤

⎦ .

Note that τ = τ1 + τ2 has a sense of the time-to-go to BUP0.
Next, we associate the notions Bυ

T D and B̃υ
T D with the emanation of tributaries

with different values of players’ controls. Substituting v = −u = υ ∈ B into the
solution of the equations of motion, we obtain

zBυ
T D

(τ1, τ2)
def= z−υ,υ(τ2; zBυ

UL
(τ1))

=
⎡

⎣
υ (−(� + τ1) sin τ2 + 2 cos τ2 − cos(τ1 + 2τ2) − 1)

(� + τ1) cos τ2 + 2 sin τ2 − sin(τ1 + 2τ2)
(1 + υ)π − υ(τ1 + 2τ2)

⎤

⎦ .

The variables τ1 and τ2 have the same meaning as in the previous case. The normal
vector is

νz,Bυ
T D

(τ1, τ2)
def= ν−υ,υ

z (τ2; zBυ
UL

(τ1), νz,Bυ
UL

(τ1)).

Calculation of the switch functions yields

sP (zBυ
T D

(τ1, τ2), νz,Bυ
T D

(τ1, τ2)) = υ(cos τ2 − 1) = 0,

sE (zBυ
T D

(τ1, τ2), νz,Bυ
T D

(τ1, τ2)) = υ (1 − cos (τ1 + τ2)) = 0.
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The minimal positive τ2 = 2π − τ1 also corresponds to zero in the evader switch
function, but the third component of zBυ

T D
(τ1, τ2) vanishes earlier at τ2 = π − τ1/2.

Therefore, we set

B̃υ
T D

def=
{
zBυ

T D
(τ1, τ2) : τ1 ∈ (0, 2π) , τ2 ∈

(
0, π − τ1

2

)}
.

Using a new parameterization, τ1 = 2τ − ϑ and τ2 = ϑ − τ we obtain

B̃υ
T D =

{
z̄Bυ

T D
(τ, ϑ) : ϑ ∈ (0, 2π) , τ ∈

(
ϑ

2
, ϑ

)}
,

where

z̄Bυ
T D

(τ, ϑ)
def= zBυ

T D
(2τ − ϑ, ϑ − τ)

=
⎡

⎣
υ ((� + 2τ − ϑ) sin(τ − ϑ) + 2 cos(τ − ϑ) − 1 − cosϑ)

(� + 2τ − ϑ) cos(τ − ϑ) − 2 sin(τ − ϑ) − sin ϑ

(1 + υ)π − υϑ

⎤

⎦ .

Asimple computation shows that z̄Bυ
T D

(ϑ/2, ϑ) = z̄Bυ
PL

(2π−ϑ) for allϑ ∈ (0, 2π),

proving that the line B̃υ
PL is a part of the boundary of the surface B̃υ

T D.

4.3 Barrier Self-Intersections

The description provided above is a convenient presentation of the key results from [17,
25]. Further analysis refines these results and leads to explicit analytical expressions
for optimal feedback controls.

We now turn to the problem of determining “redundant” parts of obtained semiper-
meable surfaces. These “redundant” parts are semipermeable, but they are not involved
in the barrier B. The GTIC has symmetry (x, y, θ, u, v) ↔ (−x, y, 2π − θ,−u,−v),
that is, the equations of motion (1) and the capture set C hold when we use this replace-
ment of variables. This fact admits exploration of the GTIC only for θ ∈ (0, π ]. For
the rest of the values θ ∈ (π, 2π), we can use this symmetry.

A graphical analysis of the θ -slices of the emanating parts (see Fig. 2) shows that,
for sufficiently small values of the capture radius � (e.g., for � = 1/2), the surface B̃υ

P
crosses B̃−υ

T D, but the surface B̃υ
T D does not cross B̃−υ

T S . However, at the same time,
for sufficiently large values of � (e.g., for � = 1), we observe the opposite behavior.
This fact suggests the existence of an intermediate value of � = �J when the surface
B̃υ
P does not cross B̃−υ

T D and B̃υ
T D does not cross B̃−υ

T S , but the boundaries of these
surfaces share a common point for some θ = (1 − υ)π + υϑJ , where ϑJ ∈ (0, π)

(see Fig. 3).

Lemma 4.1 There is only one value of the capture radius � = �J when line B̃υ
PL

crosses line B̃−υ
UL.
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Fig. 2 Cross sections of the emanated surfaces for the small and large capture radius
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Fig. 3 Cross sections of the emanated surfaces for the medium capture radius � = �J

For future purposes, we introduce a special rotation matrix

Rυ(α)
def=
⎡

⎣
−υ cosα sin α 0
υ sin α cosα 0

0 0 1

⎤

⎦ , α ∈ S, υ ∈ B.

Note that, for allυ ∈ B andα ∈ S thismatrix is non-singular.We also use the following
functions:

ξ�(α)
def= (� + α) sin

α

2
+ 2 cos

α

2
, η�(α)

def= (� + α) cos
α

2
− 2 sin

α

2
.

Proof We first prove that system

z̄B−υ
UL

(ϑ) − z̄Bυ
PL

(ϑ) = 0, ϑ ∈ (0, 2π), � ∈ R
+

has only one solution for each υ ∈ B. By applying Rυ(ϑ/2), we can rewrite this as
follows:

Rυ

(
ϑ

2

)(
z̄B−υ

UL
(ϑ) − z̄Bυ

PL
(ϑ)

)
=
⎡

⎣
ξ�(ϑ) − 2 − 4 cos ϑ

2
η�(ϑ) + �

0S

⎤

⎦ = 0.

Eliminating the variable � from the system yields

ϑ − 4

(
1 + cos

ϑ

2

)
cot

ϑ

2
= 0, ϑ ∈ (0, 2π). (13)

The left part of (13) approaches −∞ as ϑ → +0 and 2π as ϑ → 2π − 0. The
derivative of the left part equals

1 + 2

(

cos
ϑ

2
+ 1 + cos ϑ

2

sin2 ϑ
2

)

=
(
1 + cos ϑ

2

)2 (
3 − 2 cos ϑ

2

)

sin2 ϑ
2

> 0, ϑ ∈ (0, 2π).
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Thus, the left-hand side of (13) is a continuous monotonic function. It has the opposite
signs for ϑ → +0 and ϑ → 2π − 0. Hence, Eq. (13) has only one root. 
�

Applying Newton’s method gives the value ϑJ ≈ 2.343 ≈ 134◦ for the root. The
corresponding capture radius is given by

�J
def= −2

cos ϑJ
2 + cosϑJ

sin ϑJ
2

≈ 0.671.

The intersection of the semipermeable surfaces constituting the barrier indicates the
presence of a dispersal line on the barrier. Analysis of θ -slices in Figs. 2–3 shows that
the dispersal line is built in different ways, depending on the value of the capture radius
�. Simultaneously, for values of θ close to 0S for all values of the capture radius, there
is an intersection B̃υ

P ∩ B̃−υ
T S , and for θ close to π there is an intersection B̃υ

T D ∩ B̃−υ
T D.

We used the notation BDL for the dispersal line. Taking into account all of these facts,
we distinguish three cases of constructing a dispersal line:

– The small capture radius � ∈ (0, �J )

BDL
def=

⋃

υ∈B

[(
B̃υ
P ∩ B̃−υ

T S

)
∪
(
B̃υ
P ∩ B̃−υ

UL

)
∪
(
B̃υ
P ∩ B̃−υ

T D

)

∪
(
B̃υ
PL ∩ B̃−υ

T D

)
∪
(
B̃υ
T D ∩ B̃−υ

T D

)]
,

– The medium capture radius � = �J

BDL
def=

⋃

υ∈B

[(
B̃υ
P ∩ B̃−υ

T S

)
∪
(
B̃υ
PL ∩ B̃−υ

UL

)
∪
(
B̃υ
T D ∩ B̃−υ

T D

)]
,

– The large capture radius � ∈ (�J ,+∞)

BDL
def=

⋃

υ∈B

[(
B̃υ
P ∩ B̃−υ

T S

)
∪
(
B̃υ
PL ∩ B̃−υ

T S

)
∪
(
B̃υ
T D ∩ B̃−υ

T S

)

∪
(
B̃υ
T D ∩ B̃−υ

UL

)
∪
(
B̃υ
T D ∩ B̃−υ

T D

)]
.

To determine which range of θ corresponds to the intersection B̃υ
P ∩ B̃−υ

T S , we must

find the critical value of the angle at which the universal line B̃−υ
UL crosses the surface

B̃υ
P if � is small. If � is large, then the critical value of the angle corresponds to the

intersection of line B̃υ
PL with the surface B̃−υ

T S . For the medium value of �, the critical
value of the angle is (1− υ)π + υϑJ . We denote by ϑ1

� the dependence of the critical
value of the angle from the capture radius � for υ = +1. If υ = −1, this angle is
equal to 2π −ϑ1

� owing to the symmetry of the problem. Next, we will calculate these
intersections.
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The intersection of B̃−υ
UL with B̃υ

P is given by the system and interval constraints

z̄B−υ
UL

(ϑ) = z̄Bυ
P

(τ, ϑ), ϑ ∈ (0, 2π), τ ∈
(
0, π − ϑ

2

)
, � ∈ (0, �J ).

A unique solution to the system for the given ranges of ϑ and τ is

τ = −w�

2
+ arccos

(

2 cos
w�

2
−
√

(� + w�)2 − �2 + 4

2

)

, ϑ = w�,

where w� is the root of the transcendental equation

η�(w) + � = 0, w ∈ (0, 2π), � ∈ (0, �J ).

The intersection of B̃υ
PL with B̃−υ

T S is determined by the system and interval con-
straints

z̄B−υ
T S

(τ, ϑ) = z̄Bυ
PL

(ϑ), ϑ ∈ (0, 2π), τ ∈ (ϑ, 2π), � ∈ (�J ,+∞).

A unique solution to the above system for the given ranges of ϑ and τ is

τ = π − arccos
� cos m�

2 + 2 sin m�

2

� + m�

, ϑ = m�.

Here, m� is the root of the transcendental equation

(� + m)2 −
(
2 sin

m

2
− �

)2 −
(
2 + 2 cos

m

2

)2 = 0, m ∈ (0, 2π), � ∈ (�J ,+∞).

Summarizing, we obtain the critical value of angle given by

ϑ1
�

def=

⎧
⎪⎨

⎪⎩

w�, � ∈ (0, �J ),

ϑJ , � = �J ,

m�, � ∈ (�J ,+∞).

Similarly, we can determine the range of θ corresponding to the intersection B̃υ
T D∩

B̃−υ
T D. Nowwemust find the critical value of the angle atwhich the line B̃υ

PL crosses the

surface B̃−υ
T D if � is small. If � is large, then the critical value of the angle corresponds

to the intersection of the universal line B̃−υ
UL with the surface B̃υ

T D. For the medium
value of �, the critical value of the angle is (1 − υ)π + υϑJ . Similarly, we denote
by ϑ2

� the dependence of the critical value of the angle from the capture radius � for
υ = +1. If υ = −1, this angle is equal to 2π − ϑ2

� .
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The intersection of B̃υ
PL with B̃−υ

T D is given by the system

z̄B−υ
T D

(τ, ϑ) = z̄Bυ
PL

(ϑ), ϑ ∈ (0, 2π), τ ∈
(

ϑ

2
, ϑ

)
, � ∈ (0, �J ).

A unique solution to the system for the given ranges of ϑ and τ is

τ = w�

2
+ arccos

√
(� + w�)2 − �2 + 4 − 2

4
, ϑ = 2 arccos

√
(� + w�)2 − �2 + 4 − 2

4
.

The intersection of B̃−υ
UL with B̃υ

T D is determined by the system

z̄B−υ
UL

(ϑ) = z̄Bυ
T D

(τ, 2π − ϑ), ϑ ∈ (0, 2π),

τ ∈
(

π − ϑ

2
, 2π − ϑ

)
, � ∈ (�J ,+∞).

A unique solution to the system for the given ranges of ϑ and τ is

τ = π − � + n�

2
+
√

(� + n� − 2 sin n�)2 − 4 sin2 n�

2
, ϑ = n�.

Here n� is the root of the transcendental equation

η�

(√
(� + n − 2 sin n)2 − 4 sin2 n − �

)
+ η�(n) = 0, n ∈ (0, 2π), � ∈ (�J , +∞).

Summarizing, we obtain the critical value of angle given by

ϑ2
�

def=

⎧
⎪⎪⎨

⎪⎪⎩

2 arccos
√

(�+w�)
2−�2+4−2
4 , � ∈ (0, �J );

ϑJ , � = �J ;
n�, � ∈ (�J ,+∞).

The critical values of the angles ϑ1
� and ϑ2

� provide valid ranges of θ for the com-
putation of intersections B̃υ

P ∩ B̃−υ
T S and B̃υ

T D ∩ B̃−υ
T D, respectively. Moreover, for

υ = +1 an interval (ϑ1
� , ϑ2

� ) gives the range of θ where the surface B̃υ
P crosses B̃−υ

T D
if � is small and the surface B̃υ

T D crosses the B̃−υ
T S if � is large (see Fig. 2). For υ = −1,

the interval is (2π − ϑ2
� , 2π − ϑ1

� ).
The surface B̃−υ

T S crosses B̃υ
P when parameter ϑ ∈ (0, ϑ1

� ). We use the notation τ ′

for the parameterization of B̃−υ
T S to distinguish between the parameter τ of B̃υ

P . The
intersection is given by

z̄B−υ
T S

(
τ ′, ϑ

) = z̄Bυ
P

(τ, ϑ) , ϑ ∈ (0, ϑ1
� ), τ ∈

(
0, π − ϑ

2

)
, τ ′ ∈ (ϑ, 2π).
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For ϑ ∈ (0, ϑ1
� ), a unique solution to the system for the given ranges of τ and τ ′ is

τ = −ϑ

2
+ arccos

⎛

⎝cos
ϑ

2
− 1

2

√

(� + ϑ)2 −
(

� − 2 sin
ϑ

2

)2
⎞

⎠ ,

τ ′ = ϑ

2
+ arccos

2 sin ϑ
2 − �

� + ϑ
.

(14)

Similarly, the intersection of B̃υ
T D and B̃−υ

T D is given by the system

z̄B−υ
T D

(τ, ϑ) = z̄Bυ
T D

(
τ ′, 2π − ϑ

)
, ϑ ∈ (ϑ2

� , 2π − ϑ2
� ), τ ∈

(
ϑ

2
, ϑ

)
,

τ ′ ∈
(

π − ϑ

2
, 2π − ϑ

)
.

The parameter τ relates to B̃−υ
T D and τ ′ to B̃υ

T D. For ϑ ∈ (ϑ2
� , 2π − ϑ2

� ), a unique
solution to the system for the given ranges of τ and τ ′ is

τ = ϑ + p�(ϑ)

2
, τ ′ = π − � + ϑ

2

+1

2

√(
ξ�(p�(ϑ)) − 4 cos

ϑ

2

)2

+ η2�(p�(ϑ)) − 4, (15)

where p�(ϑ) is the root of the transcendental equation

η�(p) + η�

⎛

⎝

√(
ξ�(p) − 4 cos

ϑ

2

)2

+ η2�(p) − 4 − �

⎞

⎠ = 0, p ∈ (0, ϑ),

ϑ ∈ (ϑ2
� , 2π − ϑ2

� ).

As previously noted, the surface B̃−υ
T D crosses B̃υ

P only if � ∈ (0, �J ). We associate

the parameter τ with B̃υ
P and τ ′ with B̃−υ

T D. Consider the system

z̄B−υ
T D

(
τ ′, ϑ

) = z̄Bυ
P

(τ, ϑ) , ϑ ∈ (ϑ1
� , ϑ2

� ), τ ∈
(
0, π − ϑ

2

)
,

τ ′ ∈
(

ϑ

2
, ϑ

)
, � ∈ (0, �J ).

For ϑ ∈ (ϑ1
� , ϑ2

� ), a unique solution to the system for the given ranges of τ and τ ′ is

τ = −ϑ

2
+ arccos

(

2 cos
ϑ

2
−
√

(� + w�)2 − �2 + 4

2

)

, τ ′ = w� + ϑ

2
. (16)
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The surface B̃υ
T D crosses B̃−υ

T S only if � ∈ (�J ,+∞). As earlier, we associate

parameters τ , τ ′ with B̃−υ
T S , B̃υ

T D, respectively. Consider the system

z̄B−υ
T S

(τ, ϑ) = z̄Bυ
T D

(
τ ′, 2π − ϑ

)
,

ϑ ∈ (ϑ1
� , ϑ2

� ), τ ∈ (ϑ, 2π), τ ′ ∈
(

π − ϑ

2
, 2π − ϑ

)
, � ∈ (�J ,+∞).

For ϑ ∈ (ϑ1
� , ϑ2

� ), a unique solution to the system for the given ranges of τ and τ ′ is
given by

τ = π − arcsin
(� + ϑ)2 − (� + q�(ϑ))2

4(� + ϑ)
, τ ′ = π + q�(ϑ) − ϑ

2
, (17)

where q�(ϑ) is the root of the transcendental equation

(� + ϑ)2 −
(
2 + 2 cos

q − ϑ

2

)2

−
(

� + q + 2 sin
q − ϑ

2

)2

= 0,

q ∈ (0, 2π − ϑ), ϑ ∈ (ϑ1
� , ϑ2

� ), � ∈ (�J ,+∞).

(18)

4.4 Actual Parts of the Barrier

Now, when all conditions of intersection are obtained, we can determine the valid
parts of the emanated semipermeable surfaces that constitute the barrier B. First, we
describe surface Bυ

P = B̃υ
P ∩ B. θ -slices of this surface exist for all ϑ ∈ (0, 2π) (see

Figs. 2–3). For all values of �, if ϑ ∈ (0, ϑ1
� ], then the intersection is determined by

(14). If � ∈ (0, �J ), the surface B̃υ
P crosses B̃−υ

T D and the maximum value of τ is given
by (16). Summarizing, we have

Bυ
P

def=
{
z̄Bυ

P
(τ, ϑ) : ϑ ∈ (0, 2π), τ ∈

(
0, τmax

BP ,�(ϑ)
)}

, (19)

where

τmax
BP ,�(ϑ)

def=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

arccos

(

cos ϑ
2 −

√
(�+ϑ)2+(�−2 sin ϑ

2 )2

2

)

− ϑ
2 , ϑ ∈ (0, ϑ1

�

]
,

arccos

(
2 cos ϑ

2 −
√

(�+w�)
2−�2+4

2

)
− ϑ

2 , ϑ ∈ [ϑ1
� , ϑ21

�

]
,

π − ϑ
2 , ϑ ∈ [ϑ21

� , 2π
)

and

ϑ21
�

def=
{

ϑ2
� � ∈ (0, �J ],

ϑ1
� , � ∈ [�J ,+∞).
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Next, we describe surface Bυ
T S = B̃υ

PL ∩ B. θ -slices of this surface exist only for
ϑ ∈ (0, ϑ1

� ) if � ∈ (0, �J ] and for ϑ ∈ (0, ϑ2
� ) if � ∈ (�J ,+∞) (see Figs. 2–3). The

maximum value of time-to-go τ is determined by τ ′ of (14) and τ of (17). Thus,

Bυ
T S

def=
{
z̄Bυ

T S
(τ, ϑ) : ϑ ∈ (0, ϑ12

� ), τ ∈
(
ϑ, τmax

BT S ,�(ϑ)
)}

, (20)

where

ϑ12
�

def=
{

ϑ1
� , � ∈ (0, �J ],

ϑ2
� , � ∈ [�J ,+∞)

and

τmax
BT S ,�(ϑ)

def=
⎧
⎨

⎩

ϑ
2 + arccos

2 sin ϑ
2 −�

�+ϑ
, ϑ ∈ (0, ϑ1

� ],
π − arcsin (�+ϑ)2−(�+q�(ϑ))2

4(�+ϑ)
, ϑ ∈ [ϑ1

� , ϑ12
� ].

Lemma 4.2 0 < τmax
BT S ,�

(ϑ) < ϑ + π holds for all ϑ ∈ (0, ϑ12
� ].

Proof For ϑ ∈ (0, ϑ1
� ] (or � ≤ �J ), this statement is trivial because

τmax
BT S ,�(ϑ) − ϑ = −ϑ

2
+ arccos

2 sin ϑ
2 − �

� + ϑ
< arccos

2 sin ϑ
2 − �

� + ϑ
≤ π.

For ϑ ∈ (ϑ1
� , ϑ2

� ] (and � > �J ), proving that q�(ϑ) < ϑ is sufficient because

τmax
BT S ,�(ϑ) − ϑ < τmax

BT S ,�(ϑ) = π − arcsin
(ϑ − q�(ϑ))(2� + ϑ + q�(ϑ))

4(� + ϑ)
< π.

Assume the contrary that q�(ϑ) ≥ ϑ . Transform (18) to

(� + ϑ)2 − (� + q�(ϑ))2 = 8

(
1 + cos

q�(ϑ) − ϑ

2

)
+ 4(� + q�(ϑ)) sin

q�(ϑ) − ϑ

2
.

According to (18), the root q�(ϑ) is less than 2π − ϑ , implying that 0 ≤ (q�(ϑ) −
ϑ)/2 < π . Hence, the left part of the equation is non-positive, whereas the right part
is positive. The contradiction completes the proof. 
�

Further, we will obtain a description of Bυ
T D = B̃υ

T D ∩ B. θ -slices of this surface
exist only forϑ ∈ (0, 2π−ϑ2

� ) if � ∈ (0, �J ] and forϑ ∈ (0, 2π−ϑ1
� ) if � ∈ [�J ,+∞)

(see Figs. 2–3). The maximal value of time-to-go τ is determined by τ ′ of (16), τ ′ of
(17), and τ , τ ′ of (15). Therefore,

Bυ
T D

def=
{
z̄Bυ

T D
(τ, ϑ) : ϑ ∈ (0, 2π − ϑ21

� ), τ ∈
(

ϑ

2
, τmax

BT D,�(ϑ)

)}
, (21)
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where

τmax
BT D,�(ϑ)

def=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϑ, ϑ ∈ (0, ϑ12
� ],

w�+ϑ
2 , ϑ ∈ [ϑ1

� , ϑ2
� ], � ∈ (0, �J ],

p�(ϑ)+ϑ
2 , ϑ ∈ [ϑ2

� , 2π − ϑ2
� ],

q�(2π−ϑ)+ϑ
2 , ϑ ∈ [2π − ϑ2

� , 2π − ϑ1
� ], � ∈ [�J ,+∞).

Finally, we give expressions for Bυ
PL = B̃υ

PL ∩ B and Bυ
UL = B̃υ

UL ∩ B using the
fact that these lines are parts of the boundaries of the corresponding surfaces:

Bυ
PL

def=
{
z̄Bυ

PL
(ϑ) : ϑ ∈ (ϑ21

� , 2π)
}

, Bυ
UL

def=
{
z̄Bυ

UL
(ϑ) : ϑ ∈ (0, ϑ12

� ]
}

.

(22)

For completeness, we also provide a parametric description of the barrier dispersal
line BDL. In the description, we use the function

γθ
def=
{

−1, θ ∈ (0, π ],
+1, θ ∈ [π, 2π).

For all values of the capture radius � and all θ -slices, the dispersal line is a part of the
boundary of Bυ

T S or Bυ
T D. Using this fact, we obtain:

BDL
def= {

zBDL(θ) : θ ∈ (0, 2π)
}
, (23)

where

zBDL(θ)
def=
⎧
⎨

⎩

z̄Bγθ
T D

(
τmax
BT D

(π − |π − θ |) , π − |π − θ |
)

, θ ∈ [ϑ12
� , 2π − ϑ12

� ],
z̄Bγθ

T S

(
τmax
BT S

(π − |π − θ |) , π − |π − θ |
)

, otherwise.

Visualization of the surfaces Bυ
P , Bυ

T S , Bυ
T D and lines Bυ

PL, Bυ
UL for the different

values of the capture radius � is presented in Fig. 4. These figures show the θ -slices
of the 3-dimensional barrier surface B. The colors of the lines and dots correspond to
the colored labels with the names of the surfaces and lines. In Fig. 5, we highlight the
difference between the small, medium, and large radius cases. If the capture radius is
small, then B+1

P and B−1
T D have a union part of their boundary. For the large capture

radius, the union part is between B−1
T S and B+1

T D. For the medium capture radius, the

union part degenerates into a point where B+1
P , B−1

T D, B−1
T S , and B+1

T D meet each other.

5 Optimal Feedback Controls on the Barrier

In the previous sections, we obtained parametric descriptions of all the pieces of the
barrier with corresponding restrictions on the parameters. Since the values of the
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Fig. 4 Barrier cross sections for the small, medium, and large capture radius
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Fig. 5 Difference between the small � ∈ (0, �J ) (left figure), medium � = �J (middle figure), and large
� ∈ (�J ,+∞) (right figure) capture radius cases

optimal controls for both players on each of these pieces are known, by checking
which of the pieces the current state belongs to, we can calculate the values of the
optimal controls for both players. For the obtained parameterizations (19)–(22), such
verification is complicated by the additional calculation of parameters τ and ϑ . Only
for the dispersal line BDL, the parameterization (23) immediately allows checking
whether the state z = [

x y θ
]� belongs to the dispersal line. In this section, we obtain

a parameterization for (19)–(22) using the state vector z.
For GTIC, it will be demonstrated that each piece of the barrier (denoted by P) can

be parameterized in the following form:

P = {z ∈ F�
P : � = �P (z)}. (24)

Here, F�
P ⊂ R

2 × S is the frame set. This corresponds to the restrictions on the
parameters τ and ϑ .

To obtain the desired parametric description of Bυ
P , we must exclude τ and ϑ from

the system of equations

z̄Bυ
P

(τ, ϑ) = z, ϑ ∈ (0, 2π), τ ∈
(
0, τmax

BP ,�(ϑ)
)

.

By applying the transformation Rυ(ϑ/2) we obtain

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 cos
ϑ

2
− 2 cos

(
τ + ϑ

2

)
= −υx cos

ϑ

2
+ y sin

ϑ

2
,

− � = υx sin
ϑ

2
+ y sin

ϑ

2
,

(1 − υ)π + υϑ = θ, ϑ ∈ (0, 2π), τ ∈
(
0, τmax

BP ,�(ϑ)
)

.
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Eliminating ϑ from the second equation, we obtain

� = −υ

(
x sin

θ

2
+ y cos

θ

2

)
def= �Bυ

P
(z).

Taking into account that 0 < τmax
BP ,�

(ϑ) < π − ϑ/2, we transform τ ∈ (0, τmax
BP ,�

(ϑ))

into

−2 cos
ϑ

2
< −2 cos

(
τ + ϑ

2

)
< −2 cos

(
τmax
BP ,�(ϑ) + ϑ

2

)
.

Substituting ϑ in the first equation and using the obtained inequality, we conclude that

F�
Bυ
P

def=
{
z ∈ R

2 × S : 0 < −x cos
θ

2
+ y sin

θ

2

< 2υ

(
cos

θ

2
− cos

(
τmax
Bυ
P ,�(θ) + υθ

2

))
, 0 < θ < 2π

}
,

where τmax
Bυ
P ,�

(θ) = τmax
BP ,�

((1 − υ)π + υθ).

To obtain the same parametric description for Bυ
T S , we must solve the system

z̄Bυ
T S

(τ, ϑ) = z, ϑ ∈ (0, ϑ12
� ), τ ∈

(
ϑ, τmax

BT S ,�(ϑ)
)

.

Expressing sin(τ − ϑ) and cos(τ − ϑ) in the system yields

sin(τ − ϑ) = υx − 1 + cosϑ

� + ϑ
, cos(τ − ϑ) = y + sin ϑ

� + ϑ
.

For a fixed ϑ ∈ (0, ϑ12
� ), it corresponds to a parametric description of a circle on

xy-plane, where τ is a parameter. Using τ > ϑ and Lemma 4.2 we obtain

sin(τ − ϑ) > 0, cos(τ − ϑ) > cos(τmax
BT S ,�(ϑ) − ϑ).

Expressing ϑ and substituting in these inequalities, we obtain the frame

F�
Bυ
T S

def= {z ∈ R
2 × S : 0 < (1 + υ)π − υθ < ϑ12

� , 1 − cos θ < υx,

(� + (1 + υ)π − υθ) cos(τmax
Bυ
T S ,�(θ) + υθ) < y − υ sin θ},

where τmax
Bυ
T S ,�

(θ) = τmax
BT S ,�

((1 + υ)π − υθ). Eliminating τ from the circle parame-

terization and expressing �, we have

� = −(1 + υ)π + υθ +
√

(υx − 1 + cos θ)2 + (y − υ sin θ)2
def= �Bυ

T S
(z).
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To obtain the parametric description for Bυ
T D we have to exclude τ and ϑ from the

system of equations

z̄Bυ
T D

(τ, ϑ) = z, ϑ ∈ (0, 2π − ϑ21
� ), τ ∈

(
ϑ/2, τmax

BT D,�(ϑ)
)

.

Expressing sin(τ − ϑ) and cos(τ − ϑ) from the system gives

sin(τ − ϑ) = (υx + 1 + cosϑ)(� + 2τ − ϑ) − 2(y + sin ϑ)

(� + 2τ − ϑ)2 + 4
,

cos(τ − ϑ) = 2(υx + 1 + cosϑ) + (y + sin ϑ)(� + 2τ − ϑ)

(� + 2τ − ϑ)2 + 4
.

The sum of squares of these values and inequality � + 2τ − ϑ > 0 give

� + 2τ − ϑ =
√

(υx + 1 + cosϑ)2 + (y + sin ϑ)2 − 4. (25)

Since τ − ϑ ∈ (−ϑ/2, τmax
BT D,�

(ϑ) − ϑ) ⊂ (−π, 0), sin(τ − ϑ) must be negative.
Hence, we can invert cos(τ − ϑ) to

τ − ϑ = − arccos
2(υx + 1 + cosϑ) + (y + sin ϑ)(� + 2τ − ϑ)

(� + 2τ − ϑ)2 + 4
. (26)

Combining (25) and (26), and using ϑ = (1 + υ)π − υθ we obtain

� =
√

(υx + 1 + cos θ)2 + (y − υ sin θ)2 − 4 − (1 + υ)π + υθ

+2 arccos

(
2(υx + 1 + cos θ)

(υx + 1 + cos θ)2 + (y − υ sin θ)2

+ (y − υ sin θ)
√

(υx + 1 + cos θ)2 + (y − υ sin θ)2 − 4

(υx + 1 + cos θ)2 + (y − υ sin θ)2

)
def= �Bυ

T D
(z).

Given the above, the frame is described by

F�
Bυ
T D

def= {z ∈ R
2 × S : 0 < (1 + υ)π − υθ < 2π − ϑ21

� ,

0 < −� +
√

(υx + 1 + cos θ)2 + (y − υ sin θ)2 − 4

< 2τmax
Bυ
T D,�(θ) − (1 + υ)π + υθ,

(υx + 1 + cos θ)

√
(υx + 1 + cos θ)2 + (y − υ sin θ)2 − 4 < 2(y − υ sin θ)},

where τmax
Bυ
T D,�

(θ) = τmax
BT D,�

((1 + υ)π − υθ).
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The parametric descriptions (22) of Bυ
PL and Bυ

UL contain only one parameter ϑ

which can be expressed through θ in both cases. Hence,

Bυ
PL = {z ∈ R

2 × S : z̄Bυ
PL

((1 − υ)π + υθ) = z, ϑ21
� < (1 − υ)π + υθ < 2π},

Bυ
UL = {z ∈ R

2 × S : z̄Bυ
UL

((1 + υ)π − υθ) = z, 0 < (1 + υ)π − υθ ≤ ϑ12
� }.

Proposition 5.1 The optimal feedback controls on the barrier for the pursuer and
evader in the GTIC are given by

u∗(z) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, z ∈ B−1
UL ∪ B+1

UL;
+1, z ∈ B−1

P ∪ B−1
PL ∪ B+1

T S ∪ B−1
T D ∪ BUP−1 ∪ BDL;

−1, z ∈ B+1
P ∪ B+1

PL ∪ B−1
T S ∪ B+1

T D ∪ BUP+1 ∪ BDL;
sgn x, z ∈ BUP0,

v∗(z) =

⎧
⎪⎨

⎪⎩

+1, z ∈ B+1
P ∪ B+1

PL ∪ B+1
T S ∪ B+1

T D ∪ B+1
UL ∪ BUP+1 ∪ BDL;

−1, z ∈ B−1
P ∪ B−1

PL ∪ B−1
T S ∪ B−1

T D ∪ B−1
UL ∪ BUP−1 ∪ BDL;

sgn x, z ∈ BUP0.

Proposition 5.1 provides optimal feedback control on the barrier. All parts of the
barrier were explicitly described using analytical expressions in terms of the state vec-
tor. Thus, the problem of calculating the feedback control on the barrier is completely
solved. Note that the process of trimming the excess parts of the barrier, as described
in the previous section, provided an analytical description of the ranges of parameter
changes. This analytical description is used in the description of the frame sets F�

P ,
which in turn participates in the explicit description of the barrier pieces.

Direct calculations with floating points will almost always miss the barrier because
the barrier is a two-dimensional manifold in a three-dimensional space. A natural
method to avoid this problem is to check for belonging to the layer

P ′ =
{
z ∈ F�P (z)

P : � ≤ �P (z) ≤ �(1 + δ)
}

adjacent to the piece of barrier surface P given by (24). Here, δ ∈ R
+ denotes the

relative layer width. If the calculations are precise, the evader can guarantee evasion
with the minimal approaching distance �(1 + δ).

6 Conclusions

In this study, we have derived a complete analytical description of the barrier for the
GTIC. The obtained description is provided for all possible values of capture radius.
Analysis of the variation in the barrier geometry with a variation in the capture radius
showed that there are differences between the shape of the barrier for small and large
values of the capture radius. These differences indicate that the analytical conditions
for cutting off redundant parts of semipermeable surfaces that constitute the barrier
have different forms.
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Considering the classification of possible forms of the barrier depending on the
capture radius, it is no longer necessary to use the trial-and-error method to construct
the barrier, as has been done in other approaches when analyzing the barrier of the
GTIC. In addition, we obtained a parametric description of the barrier in terms of
the state vector. Such a description makes it possible to synthesize feedback optimal
control that does not require the elimination of additional parameters by numerical
methods. Thus, the resulting control can be calculated directly from the state vector.

For the collision avoidance problem, the expression obtained for the evader’s opti-
mal feedback control on the barrier can be made resistant to the rounding error of the
state vector. To achieve this, instead of calculating the control for the barrier surface,
we must calculate the control for the state belonging to the layer whose boundary
is the barrier itself. Indicator of belonging to such a layer can also be established
using explicit analytical calculations. This makes evasive control more attractive for
practical implementations.

One possible avenue for further research is to investigate the barrier of the GTC
using the same methods.
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