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Abstract
We study Markowitz’s mean-variance portfolio selection problem in a continuous-
time Black–Scholes market with different borrowing and saving rates. The associated
Hamilton–Jacobi–Bellman equation is fully nonlinear. Using a delicate partial dif-
ferential equation and verification argument, the value function is proven to be C3,2

smooth. It is also shown that there are a borrowing boundary and a saving boundary
which divide the entire trading area into a borrowing-money region, an all-in-stock
region, and a saving-money region in ascending order. The optimal trading strategy
turns out to be amixture of continuous-time strategy (as suggested bymost continuous-
timemodels) anddiscontinuous-time strategy (as suggestedbymodelswith transaction
costs): one should put all the wealth in the stock in the middle all-in-stock region and
continuously trade it in the other two regions in a feedback form of wealth and time.
It is never optimal to short sale the stock. Numerical examples are also presented to
verify the theoretical results and to give more financial insights beyond them.
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1 Introduction

The famous work of Harry M. Markowitz [33, 34] inaugurated a new era in modern
finance. Markowitz’s mean-variance portfolio selection has become one of the most
prominent modern finance theories since its inception.

NumerousMarkowitz’smodelswith new features havebeen studied in the literature.
In the realm of continuous-time framework, Richardson [37] first applied martingale
method to study Markowitz’s mean-variance portfolio selection problem. Zhou and
Li [46] used an embedding technique and stochastic linear-quadratic (LQ) control
theory to study the problem. Li, Zhou and Lim [28] considered the problem with no-
shorting constraints. Hu and Zhou [22] extended it to the case with random coefficients
and cone constraints on the control variable. Czichowsky and Schweizer [7] provided
the most general solutions for cone-constrained Markowitz’s problem including new
effects resulting from the jumps in the price process. Lv, Wu and Yu [31] studied
Markowitz’s problem with random horizon in an incomplete market setting. Xiong
and Zhou [42], and Xiong, Xu and Zheng [41] investigated the problem under partial
information. Zhou and Yin [47], Hu, Shi and Xu [20, 21] considered the problem
under regime switching and trading constraints.

As a variant of Markowitz’s problem, the mean-variance (or quadratic) hedging
problem was introduced by Duffie and Richardson [13] and Schweizer [38]. Pham
[36] extended the problem to a general incomplete market with semimartingale price
process. Gourieroux, Laurent and Pham [17] introduced Numéraire to the problem.
Themost generalmodelwas instigated byCerny andKallsen [3].We refer toSchweizer
[39] for an overview of the topic. Usually, the mean-variance portfolio selection and
hedging problems are considered either for discounted prices or in the presence of
a risk-free asset. Cerny, Czichowsky, and Kallsen [4] provided a solution to both
problems that is symmetric and allows for all assets to be risky.

Stochastic LQ control method is widely used to study mean-variance portfolio
selection and hedging problems. This method is extremely powerful when dealing
with problems with trading constraints and random coefficients (see, e.g. [24, 28, 30,
45–47]), but less powerful when dealing with problems with state constraints such
as bankruptcy prohibition. The latter kind of problems is often dealt by martingale
method (which usually requires complete market setting) or by partial differential
equation (PDE) method (which requires Markovian market setting). For instance,
Bielecki, Jin, Pliska and Zhou [2] investigated continuous-time Markowitz’s prob-
lem with bankruptcy prohibition. Using martingale method, they turned the dynamic
stochastic control problem into a static random variable chosen problem that was even-
tually solved by optimization method. Li and Xu [27] studied Markowitz’s problem
with both trading and bankruptcy prohibition constraints by PDEmethod. Their idea is
first to transform the problem into an equivalent one with only bankruptcy prohibition
constraint, then to solve the latter by the method of [2]. Xia [40] established the rela-
tionship betweenMarkowitz’s problem and the expected utilitymaximization problem
with non-negative marginal utility in incomplete market with bankruptcy prohibition.
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Hou and Xu [19] examined the effect of intractable claims on the trading strategy in
Markowitz’s problem by martingale approach.

The optimal trading strategies obtained in the aforementioned papers are typically
trading continuously all the time, which are not consistent with real practice most of
time. Dai, Xu and Zhou [8] studied Markowitz’s problem with proportional transac-
tion costs by PDE method. To solve the associated Hamilton–Jacobi–Bellman (HJB)
equation, they first derived a related double-obstacle PDE problem through an intuitive
argument. The solvability of the latter PDE was completed resolved by PDE method
so that they can get a classical solution to the original HJB equation. They showed
that the optimal tradings only happen when the stock price arrives at a selling-stock
boundary or at a buying-stock boundary. This is a discontinuous-time trading (DTT )
strategy which fits the real practice better than those continuous-time trading (CTT )
strategies suggested by most existing models.

All the aforementioned papers assume that there is no difference between the bor-
rowing rate and saving rate in the market, namely the borrowing and saving rates
are the same all the time even though they may be modeled as stochastic processes.
But, as is well-known, a gap between the two rates always exists, which is fairly
large sometimes, in practice. As borrowing rate is often higher than saving rate, it
discourages/panelizes investors to borrow money. Different from a vast amount of
no-gap-market models in the literature, only a very limited number of papers studied
gap-market models. In the book Karatzas and Shreve [23], a utility maximization in a
gap-market model is studied by martingale and duality methods. For continuous price
processes, the mean-variance portfolio selection problem is rather close to the utility
maximization problem. Although the quadratic functional is not always increasing, it
can be shown that the optimal wealth process should stay always in the domain where
the quadratic functional is strictly increasing and hence behaves like a utility function
(see, Delbaen and Schachermayer [12]). Therefore, themethod of Karatzas and Shreve
[23] may be applied toMarkowitz’s problem, but it cannot provide a description of the
optimal borrowing, saving and all-in-stock regions such as their connectedness and
monotonicity. Other investment and pricing problems are also studied in gap-market
models. For instance, Fleming and Zariphopoulou [15], Xu and Chen [43] considered
optimal investment and consumption problems; Bergman [1], Korn [25], and Cvi-
tanic and Karatzas [6] studied option pricing problems; Guan [18] studied a utility
maximization problem.

Fu, Lari-Lavassani and Li [16] is the only paper we can identify in the literature
which tried to solve Markowitz’s problem in a continuous-time market with different
borrowing and saving rates. They constructed a piecewise quadratic solution to the
HJB equation, but did not verify if the solution is the value function of the original
problem. Their constructed solution is not of C3,2 smooth, but we will show the value
function is of C3,2 smooth in this paper, so [16] indeed did not get the right value
function or the optimal strategy. Therefore, the problem is still open and we will fill
this gap.

This paper investigates Markowitz’s portfolio selection problem in a continuous-
time Black–Scholes market with different borrowing and saving rates. We show that
the whole trading area is divided by a borrowing boundary and a saving boundary into
three ascending trading regions, corresponding to the optimal strategies of borrowing
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money, putting all wealth in the stock and saving money. The existence of the three
trading regions was already observed for utility maximization problem by Fleming
and Zariphopoulou in [15]. We prove that these regions are connected and ordered, so
that our results can provide the following financial insights.When an investor’s wealth
is far from her target, she must borrow money to invest in the stock so as to maximize
the chance to achieve her goal; by contrast, if her wealth is sufficiently close to her
target, she does not need to invest all her wealth in the stock and should save some
in the money account to reduce her risk; while in the middle all-in-stock region, she
should keep all her wealth in the stock so that no trading is needed inside the region.

Compared to no-gap market models, the all-in-stock region is new. In the other
two regions, the trading strategies are of the same form as the no-gap case, except
for that one should use the borrowing rate in the borrowing-money region and the
saving rate in the saving-money region. Therefore, our optimal strategy is a mixture
of CTT strategy (as suggested by most continuous-time models) and DTT strategy (as
suggested by models with transaction costs): one does not need to trade in the middle
all-in-stock region, and has to continuously trade the stock in the borrowing-money
and saving-money regions.

Althoughboth the presence of transaction costs (such as [8, 10, 11]) and the presence
of gap between the borrowing and saving rates lead to similar optimal DTT strategies,
the reasons behind are fairly different. In transaction costs models, trading frequently
directly increases transaction costs, so one should not trade all the time, leading to
the existence of no-trading regions. According our gap-market model, one should not
borrow money when the marginal cost of borrowing at a high rate is higher than the
marginal benefit of extra leveraging, and one should not savemoneywhen themarginal
benefit resulted from the low return is not high enough to compensate for giving up a
better return-risk trade-off provided by the stock, so the existence of no-trading region
is due to the gap between the borrowing and saving rates.

Mathematically speaking, it is very important to notice that the diverging of the
borrowing and saving rates forces the wealth dynamics to become piecewise linear,
and no longer linear. As a consequence, the stochastic LQ control theory cannot be
applied and new stochastic control theory is called for to solve the problem. Indeed,
one can apply stochastic LQ control methods to solveMarkowitz’s problem only when
the value function of the problem is of a quadratic form, in which case one reduces
to determining the coefficients of quadratic function by solving the so-called Riccati
equation. Because of the diverging of the borrowing and saving rates in our model, the
associated HJB equation is a fully nonlinear PDE and does not admit any solution in
quadratic form. Hence, the problem cannot reduce to solving some Riccati equation.
By contrast, because of the infinite time horizon setting, the HJB equation in Fleming
and Zariphopoulou [15] is an ordinary differential equation, which is easier to study
than our PDE. Because of this, the method of [15] cannot be applied to our model.
Instead, we adopt the PDE argument used inDai andYi [10] andGuan [18] to solve our
problem. We first transform the associated HJB equation into a semi-linear parabolic
PDE through an intuitive argument. Adopting some standard PDE tools including the
truncation method, the Leray-Schauder fixed point theorem, the embedding theorem
and the Schauder estimation, we derive a solution to the semi-linear parabolic PDE,
from which we eventually construct a C3,2 smooth solution to the original HJB equa-
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tion. Different from [10, 16, 18], we show that the constructed solution is indeed the
value function to our mean-variance problem through a verification theorem. An opti-
mal feedback strategy is also obtained during this process (where the smoothness of the
value function plays an important role). The first-order smoothness of the borrowing
and saving boundaries are obtained as well under some slightly stronger conditions
on the market parameters.

The reminder of this paper is organized as follows: In Sect. 2, we formulate a mean-
variance portfolio selection problem under different borrowing and saving rates. In
Sect. 3, we present our main theoretical results including the smoothness of the value
function and provide an optimal control to the problem. Numerical examples are also
provided to justify our theoretical results. Sections4–6 are devoted to the proofs of the
main technical results. We first derive a semi-linear parabolic PDE from the original
fully nonlinear HJB equation through an intuitive argument in Sect. 4; then show that
the parabolic PDE has a classical solution by PDE method in Sect. 5; and Sect. 6
completes the proof of the main results presented in Sect. 3. Some concluding remarks
are given in Sect. 7.

2 Model Formulation

We call a filtered complete probability space (�,F ,P, {Ft }t≥0) the financial market.
And assume that the filtration {Ft }t≥0 is generated by a standard one-dimensional
Brownian motion {Wt , t ≥ 0} defined in the probability space, augmented with all
P-null sets.

The market consists of a risk-free money account and a continuously traded stock.
The saving rate and the borrowing rate of the money account are different, denoted
by r1 and r2, respectively. Economically speaking, the borrowing rate shall be higher
than the saving rate. The stock price process S1 > 0 follows a geometric Brownian
motion:

dS1t = S1t
(
μdt + σdWt

)
,

where μ is the appreciation rate, and σ is the volatility rate of the stock. We assume
that the market parameters r1, r2, μ and σ are constants and satisfy σ > 0 and

μ > r2 > r1. (1)

Remind that r1, r2,μ are not necessary to be positive, which happens in many financial
markets right now.

Consider an agent (“She”) faced with an initial endowment x and an investment
horizon [t, T ]. Let Xs and πs denote her total wealth and dollar amount invested in the
stock at time s, respectively. When Xs > πs , the agent saves the extra money of the
amount Xs − πs in the money account to earn interests at the saving rate r1; whereas
when Xs < πs , the agent borrows the money of the amount πs − Xs from the money
account at the borrowing rate r2. Assume that the trading of shares is self-financed and
takes place continuously, and there are no transaction costs or taxes. Then, the wealth
process Xs of the agent satisfies the following stochastic differential equation (SDE):
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dXs = [(
r1χXs>πs + r2χXs<πs

)
(Xs − πs) + μπs

]
ds + σπsdWs, t ≤ s ≤ T ,

Xt = x .
(2)

Here, χS is the indicator function for a statement S: it is equal to 1 if the statement S
is true, and 0 otherwise.

We call the process π = {πs}s∈[t,T ], a portfolio of the agent. Define the set of
admissible portfolios as

�t := L2
F ([t, T ];R),

where L2
F ([t, T ];R) denotes the set of all R-valued, Fs-progressively measurable

stochastic processes f (·) on [t, T ] with E
∫ T
t | f (s)|2ds < +∞. For any admissible

portfolio π ∈ �t , the SDE (2) admits a unique strong solution X · on [t, T ].
Given a constant target d > 0, the agent’s objective is to find an admissible portfolio

π∗ ∈ �t to solve the following portfolio selection problem

V (x, t) = inf
π∈�t

E
[
(XT − d)2 | Xt = x

]
, (x, t) ∈ QT , (3)

where

QT = {
(x, t) | xer1(T−t) < d, 0 ≤ t < T

}
.

If such an admissible portfolio π∗ ∈ �t exists, we call it an optimal portfolio for the
problem (3). The agent’s target d shall be higher than the outcome of saving all her
money in the money account, so we put the constraint xer1(T−t) < d, leading to the
above admissible region QT .

The main aim of this paper is to determine the optimal value function V (x, t) and
find an optimal portfolio to the stochastic control problem (3).

Remark 2.1 The standard Markowitz’s problem can be formulated as

inf
π∈�t

Var(XT ), s.t. E
[
XT

] = z, Xt = x, (4)

where z > 0 and xer1(T−t) < z. Let VMV (x, t, z) denote its optimal value. Then, the
set

{(√
VMV (x, t, z), z

) : z > xer1(T−t)
}

is called the efficient mean-variance frontier. By the Lagrange duality theorem (see
Luenberger [26]), we have

VMV (x, t, z) = sup
d>z

[
V (x, t, d) − (d − z)2

]
, (5)
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where V (x, t, d) = V (x, t) defined by (3). Indeed, the optimal d is determined by

∂

∂d
V (x, t, d) = 2(d − z), d > z. (6)

In order to determine the efficient mean-variance frontier, it is unnecessary to solve
the optimization problem in (5), or equivalently, to solve (6). Indeed, by (5) and (6),
the efficient mean-variance frontier can be expressed as

{(√

V (x, t, d) − 1

4

( ∂

∂d
V (x, t, d)

)2
, d − 1

2

∂

∂d
V (x, t, d)

)
: d > xer1(T−t)

}
.

By the above relationship, it suffices to solve the portfolio selection problem (3) in
order to solve the standardMarkowitz’s problem (4). Our proceeding analysis will also
show that numerically solving V (x, t, d) for each fixed d can reduce to solving the
approximation equation in a bounded domain (54). Clearly, the latter can be computed
by standard such as finite difference method.

Remark 2.2 When bankruptcy is prohibited in the market, we need to replace QT by
a bounded domain

{
(x, t) | 0 < xer1(T−t) < d, 0 ≤ t < T

}
.

Meanwhile, we need to put an extra boundary condition V (0, t) = d2, 0 ≤ t < T
into the HJB equation (7) below. Our argument, after minor adjustment, still works
for that case. We encourage the interested reader to write down the details.

3 Main Results

Using the standard viscosity theory (see, e.g. Grandall and Lions [5], Yong and Zhou
[44]), one can prove that the value function of (3) is a viscosity solution to the following
HJB equation with boundary and terminal conditions:

Vt + inf
π

(
1
2σ

2π2Vxx +
(
(r1χπ<x + r2χπ>x )(x − π) + μπ

)
Vx

)
= 0 in QT ,

V (e−r1(T−t)d, t) = 0, 0 ≤ t < T ,

V (x, T ) = (x − d)2, x < e−r1(T−t)d.

(7)

This paper does not adopt the viscosity approach because viscosity solution usually
does not lead to good smoothness of the value function. Instead, we will prove that
the above HJB equation (7) admits a classical solution V (see the precise definition in
Theorem 3.1 below) by PDE method directly. This together with a verification result
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Fig. 1 The solution of the HJB
Equation (7): V (x, t) with fixed
t

e−r1(T−t)d

•

V (x, t)

x

(see Theorem 3.2 below) can guarantee that V is the value function of the problem
(3).

Theorem 3.1 (Solvability of the HJB Equation (7)) There exists a solution

V ∈ C3,2(QT \ {x = e−r1(T−t)d})
⋂

C
(
QT

)

to the HJB equation (7) such that

Vx < 0, (8)

Vxx > 0 (9)

in QT , and

lim
x→e−r1(T−t)d−

Vx = 0, lim
x→−∞ Vx = −∞, ∀ t ∈ [0, T ]. (10)

Proof We leave the proof to Sect. 6.1. 	

Figure 1 illustrates the function V (x, t), based on Theorem 3.1.

3.1 Optimal Portfolio

Let V be given in Theorem 3.1 and we divide the whole trading area

QT = {
(x, t) | xer1(T−t) < d, 0 ≤ t < T

}

into three regions:

Borrowing-money RegionB :=
{
(x, t) ∈ QT

∣
∣∣ − μ − r2

σ 2

Vx

Vxx
> x

}
,

All-in-stock RegionN :=
{
(x, t) ∈ QT

∣∣
∣ − μ − r2

σ 2

Vx

Vxx
≤ x ≤ −μ − r1

σ 2

Vx

Vxx

}
,

Saving-money RegionS :=
{
(x, t) ∈ QT

∣∣∣ − μ − r1
σ 2

Vx

Vxx
< x

}
.

The following result shows that they are connected regions and separated by two free
boundaries.
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T

t

B N S

B(t) L(t)

μ−r2
σ2+μ−r2

d μ−r1
σ2+μ−r1

d

x0

x = e−r1(T−t)d

Fig. 2 The optimal trading regions

Proposition 3.1 (Optimal Trading Regions) We have

B =
{
(x, t) | x < B(t), t ∈ [0, T )

}
,

N =
{
(x, t) | B(t) ≤ x ≤ L(t), t ∈ [0, T )

}
,

S =
{
(x, t) | L(t) < x < e−r1(T−t)d, t ∈ [0, T )

}
,

where B(·) and L(·) are, respectively, called the borrowing and saving boundaries,
defined by

B(t) := V−1
x (·, t)(−eb(T−t)), L(t) := V−1

x (·, t)(−el(T−t)),

with V−1
x (·, t) being the inverse with respect to (w.r.t.) the spatial argument x, and the

two functions b(·) and l(·) are given by (20) and (21). Moreover, we have the estimate

0 < B(t) < L(t) < e−r1(T−t)d, t ∈ [0, T ],

and the terminal values

B(T ) = μ − r2
σ 2 + μ − r2

d, L(T ) = μ − r1
σ 2 + μ − r1

d.

Proof We leave the proof to Sect. 6.2. 	

Figure2 illustrates the borrowing and saving boundaries, based on Proposition 3.1.

Remark 3.1 In fact,

B(t) = sup
{
x

∣∣∣ − μ − r2
σ 2

Vx

Vxx
> x, (x, t) ∈ QT

}
,
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and

L(t) = inf
{
x

∣
∣∣ − μ − r1

σ 2

Vx

Vxx
< x, (x, t) ∈ QT

}
.

We will also establish the first-order smoothness of the boundaries B(·) and L(·)
under certain conditions (see Proposition 5.1).

Theorem 3.2 (Verification Theorem) The function V given in Theorem 3.1 is the same
as the value function V defined by (3). Moreover, the optimal portfolio to the problem
(3), given in the feedback form, is

π(x, t) =

⎧
⎪⎨

⎪⎩

−μ−r2
σ 2

Vx (x,t)
Vxx (x,t)

, (x, t) ∈ B,

x, (x, t) ∈ N,

−μ−r1
σ 2

Vx (x,t)
Vxx (x,t)

, (x, t) ∈ S.

Proof We leave the proof to Sect. 6.3. 	


We have the following financial findings from the above theoretical results. When
one’s wealth is far from her target (i.e. x < B(t)), she must borrow money to invest
in the stock so as to maximize the chance to achieve her goal d. By contrast, if her
wealth is sufficiently close to her target (i.e. x > L(t)), she does not need to invest all
her wealth in the stock and can save some in the money account to reduce her risk. In
the middle range (i.e. B(t) ≤ x ≤ L(t)), she does not need to borrow or save money,
and shall invest all her wealth in the stock so that no trading happens there. Therefore,
we see the optimal strategy is a mixture of CTT strategy in the first two scenarios (as
suggested by most continuous-time models) and DTT strategy in the last scenario (as
suggested by models with transaction costs).

Also, the optimal portfolio is long in the stock in all scenarios, so it is never optimal
to short sale the stock. As a consequence, the portfolio is still optimal if we restrict us
to the control set with no-shorting constraint:

{
πs ∈ L2

F ([t, T ];R)

∣∣∣ πs ≥ 0, s ∈ [t, T ]
}

in the problem (3).
When r2 → r1, the optimal feedback portfolio reduces to

π(x, t) = −μ − r1
σ 2

Vx (x, t)

Vxx (x, t)
.

This recovers the classical optimal portfolio when there is no gap between the bor-
rowing and saving rates. In this case, continuously tradings happen all the time, and
the all-in-stock region is a zero measure set.
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3.2 Numerical Study

We now present numerical examples to depict the behaviors of the borrowing and
saving boundaries as well as the optimal value when the borrowing and saving rates
change.

Figure3 plots the saving and borrowing boundaries under various pairs of saving
and borrowing rates (r1, r2), where d = 10, μ = 0.15, σ 2 = 0.10 and T = 3 are
fixed. The borrowing boundary is always on the left of the saving boundary. As the
gap between the borrowing and saving rates becomes smaller, the borrowing boundary
moves to the right whereas the saving boundary moves to the left, becoming closer.
Thus, Borrowing-money Region B and Saving-money Region S expand, whereas
All-in-stock RegionN shrinks. The latter becomes a curve when the gap between the
borrowing and saving rates disappears, in which case, the optimal trading strategy
becomes a continuously trading one all the time. This is consistent with the common
financial intuition that one should trade more frequently if the gap becomes smaller,
because the marginal benefit of extra leveraging becomes higher as the costs of bor-
rowing money become less.

The left and right panels of Fig. 4 display, respectively, the value function against
the wealth position and time under various pairs of saving and borrowing rates (r1, r2),
where d = 10, μ = 0.15, σ 2 = 0.10 and T = 3 are the same as in Fig. 3. Intuitively
speaking, the smaller the gap between the borrowing and saving rates, the smaller the
risk (i.e. the value function). Both the left and right panels of Fig. 4 confirm this. We
also see from the left panel that the bigger the wealth position the smaller the risk,
since bigger wealth position is closer to the fixed target. Meanwhile, the right panel
demonstrates that the shorter the time to the maturity, the higher the risk, since shorter
time to the maturity means less trading opportunities and less likely to achieve the
goal.

Figure5 depicts the borrowing and saving boundaries under various return rates μ,
where r1 = 0.02, r2 = 0.08, σ 2 = 0.10 and d = 10 are fixed. These pictures show
that the two boundaries move to the right as μ increases. It seems that the closer the
time to the maturity day, the faster the speed to move to the right. As the return rate
of the stock increases, the role of the gap should become less important, encouraging
one in a bad wealth position to borrow money to invest in the stock, discouraging one
in a good wealth position to save money. Hence, as μ increases, Borrowing-money
RegionB shall expand, whereas Saving-money RegionS and All-in-stock RegionN
shall shrink. The above pictures confirm this financial intuition.

Figure6 displays the borrowing and saving boundaries under various volatility rates
σ , where r1 = 0.02, r2 = 0.08,μ = 0.15 and d = 10 are the same as Fig. 5. Similar to
Fig. 5, the borrowing and saving boundaries move to the right as σ decreases. This is
not surprising since nomatter increasingμ or decreasing σ will lead to an increment in
the Shape ratio of the stock,making the stockmore attractive to the investor. Therefore,
Borrowing-money Region B expands, and Saving-money Region S shrinks, that is,
one tends to borrow money to invest in the stock and is less likely to sell the stock to
earn the saving rate. However, opposite to Fig. 5, All-in-stock RegionN expends here.
We think, as σ decreases, the uncertainty becomes less, hence less frequently tradings
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Fig. 4 The value function V under various saving rates r1 and borrowing rates r2

are enough to achieve the goal. In other words, one has to trade more frequently to
control the risk if σ increases.

Figure7 displays the optimal proportionπ(x, t)/x and the optimal portfolioπ(x, t)
under various times t , where r1 = 0.02, r2 = 0.08, d = 10, μ = 0.15, σ = 0.15
and T = 3 are fixed. The above pictures show that π(x, t) = x in All-in-stock
Region N. Figure7b, c show that, as wealth x increases to the discounted target
e−r1(T−t)d, the net amount π(x, t) invested in the stock is not globally monotone
increasing or decreasing. Indeed, it is first decreasing in Borrowing-money RegionB,
then increasingAll-in-stock RegionN, and finally decreasing to zero in Saving-money
Region S. However, we can observe from Fig. 7a that the proportion invested in the
stock is globally monotone decreasing to zero as x increases. This is not surprising
because one is expected to invest less proportion in the stock to reduce the risk as
wealth approaches the discounted target.

Figure7a also shows that the proportion invested in the stock becomes bigger in
Saving-money Region S as the time to maturity is closer. This is because one has to
take a higher riskwhen there is less time available to achieve the target. By contrast, the
behavior of the optimal proportion in Borrowing-money RegionB is quite complicate
so that we cannot draw the same conclusion. But we can see that the slope of the
optimal proportion in Borrowing-money RegionB becomes flatter as time approaches
maturity, so the less time to maturity, the less sensitive to wealth position. Meanwhile,
an opposite phenomenon is observed in Saving-money Region S.

The remaining part of this paper is devoted to the rigorous proofs for the theoretical
results stated in Sect. 3.
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1π∗

2

Fig. 8 Three possible cases

4 Related Semi-Linear PDE

To study the fully nonlinear PDE (7), in this section, we transform it into a semi-linear
PDE (17) that satisfies the usual structural conditions by a heuristic argument. Many
a priori estimates of the solution will be used in this process. In the following Sect. 5,
we will rigorously prove the existence and uniqueness of the solution to the PDE (17)
as well as those prior estimates used, and finally we will construct a solution to the
PDE (7) from the solution to the PDE (17) in Sect. 6.

Our argument in the rest part of this section is intuitive and it will lead to a more
tractable PDE (17) which will service as our starting point of the theoretical treatment
in the next section.

Our subsequent argument is based on the following hypotheses

Vx < 0, Vxx > 0, (x, t) ∈ QT , (11)

and

lim
x→e−r1(T−t)d−

Vx = 0, lim
x→−∞ Vx = −∞, t ∈ [0, T ]. (12)

These hypotheses will be eventually proved in Theorem 3.1.
In order to solve the optimization problem in the HJB equation (7), write

H(π) := 1

2
σ 2π2Vxx + (

(r1χx>π + r2χx<π)(x − π) + μπ
)
Vx ,

and

π∗
i := −ai

Vx

Vxx
, ai := μ − ri

σ 2 , i = 1, 2.

By our assumption (1), a1 > a2 > 0, so that it follows from (11) that π∗
1 > π∗

2 .
Consequently, only three possible scenarios can happen, which are demonstrated in
Fig. 8.
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Correspondingly, we have

argminπ H(π) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−a1
Vx
Vxx

, −a1
Vx
Vxx

< x,

x, −a2
Vx
Vxx

≤ x ≤ −a1
Vx
Vxx

,

−a2
Vx
Vxx

, −a2
Vx
Vxx

> x .

Inserting this into (7), we get

− Vt + σ 2a21
2

V 2
x

Vxx
+ (σ 2a1 − μ)xVx = 0, −a1

Vx

Vxx
< x,

− Vt − σ 2

2
x2Vxx − μxVx = 0,−a2

Vx

Vxx
≤ x ≤ −a1

Vx

Vxx
,

− Vt + σ 2a22
2

V 2
x

Vxx
+ (σ 2a2 − μ)xVx = 0,−a2

Vx

Vxx
> x,

V (e−r1(T−t)d, t) = 0, 0 ≤ t < T ,

V (x, T ) = (x − d)2, x < d. (13)

This is a fully nonlinear free boundary problem that does not satisfy the general
structural conditions of nonlinear parabolic equation, so it is hard to apply the existing
results to study it directly. We need to rewrite it in a more tractable form.

By (11), V should be a convex function. This motives us to apply the dual trans-
formation (see, e.g., Pham [35]) to simplify (13). To this end, let

v(y, t) := inf
x<e−r1(T−t)d

(
V (x, t) + xy

)
, y > 0, 0 ≤ t ≤ T .

Thanks to the hypotheses (11) and (12), we get v(0, t) = 0. By (12), for each fixed
t ∈ [0, T ], the optimal x corresponding to y is

x = x(y, t) := V−1
x (·, t)(−y), y > 0,

where V−1
x (·, t) is the inverse of Vx (·, t). This gives the following correspondence

between v(y, t) and V (x, t),

v(y, t) = V (x(y, t), t) + x(y, t)y,

vy(y, t) = Vx (x(y, t), t)xy(y, t) + yxy(y, t) + x(y, t) = x(y, t),

vyy(y, t) = xy(y, t) = −1

Vxx (x(y, t), t)
,

vt (y, t) = Vt (x(y, t), t) + Vx (x(y, t), t)xt (y, t) + yxt (y, t) = Vt (x(y, t), t).
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It then follows from (13) that

− vt − 1

2
σ 2a21 y

2vyy − (σ 2a1 − μ)yvy = 0,− vy

vyy
> a1y,

− vt + σ 2

2

v2y

vyy
+ μyvy = 0, a2y ≤ − vy

vyy
≤ a1y,

− vt − 1

2
σ 2a22 y

2vyy − (σ 2a2 − μ)yvy = 0,− vy

vyy
< a2y,

v(0, t) = 0, 0 ≤ t < T ,

v(y, T ) = −1

4
y2 + dy, y > 0. (14)

Now we introduce

u := −vy .

After differentiating (14) w.r.t. y, we obtain an equation for u:

−ut−1

2
σ 2a21 y

2uyy+(−σ 2a21 − σ 2a1 + μ)yuy + (μ − σ 2a1)u=0,− u

uy
> a1y,

−ut−σ 2

2

( u

uy

)2
uyy+σ 2u + μyuy+μu=0, a2y ≤ − u

uy
≤ a1y,

− ut − 1

2
σ 2a22 y

2uyy+(−σ 2a22−σ 2a2+μ)yuy + (μ − σ 2a2)u=0,− u

uy
< a2y,

u(y, T )=1

2
y − d, y > 0. (15)

Making a transformation u(y, t) = w(z, s) for s = T − t , z = ln y, we get

ut = −ws, uy = wz
1

y
, uyy = (

wzz − wz
) 1

y2
,

so that (15) becomes

ws − 1

2
σ 2a21wzz + (

μ − 1

2
σ 2a21 − σ 2a1

)
wz + (μ − σ 2a1)w = 0,− w

wz
> a1,

ws − σ 2

2

( w

wz

)2(
wzz − wz

) + σ 2w + μwz + μw = 0, a2 ≤ − w

wz
≤ a1,
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ws − 1

2
σ 2a22wzz + (

μ − 1

2
σ 2a22 − σ 2a2

)
wz + (μ − σ 2a2)w = 0,− w

wz
< a2,

w(z, 0) = 1

2
ez − d, z ∈ R. (16)

For convenience, we define a function

A(ξ) := min
{
max{a2,−ξ}, a1

} =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a1, −ξ > a1,

−ξ, a2 ≤ −ξ ≤ a1,

a2, −ξ < a2.

It is clearly a 1-Lipschitz-continuous boundeddecreasing function.Nowwecan rewrite
(16) in a compact form as an initial value problem

ws − T w = 0 in QT := R × (0, T ],

w(z, 0) = 1

2
ez − d, z ∈ R, (17)

where

T w := 1

2
σ 2A2

( w

wz

)
wzz −

[
μ − 1

2
σ 2A2

( w

wz

)
− σ 2A

( w

wz

)]
wz −

[
μ − σ 2A

( w

wz

)]
w.

By definition we have

0 < a2 ≤ A(·) ≤ a1,

so (17) is a semi-linear parabolic PDE, which satisfies the usual structural conditions.
We will study its solvability and properties in the next section.

5 Solvability of the PDE (17)

We have got a semi-linear parabolic PDE (17) through an intuitive argument in the
previous section. From now on, we do a rigorous analysis and focus on the solvability
and properties of the PDE (17) in this section.

We first introduce several constants that will be used throughout the paper:

θ1 := σ 2a21 − 2r1, θ2 := σ 2a22 − 2r2,

and

k := max
{
2σ 2a1 + 4σ 2a21 , θ1

}
, κ := 2μ + σ 2(3a1 + 1)(a1 + 1).
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Our main theoretical result is stated as follows:

Theorem 5.1 There exists a solutionw ∈ C2+α,1+ α
2
(
R×[0, T ]) (for some α ∈ (0, 1))

to the PDE (17) such that

1

2
eθ2sez − e−r1sd ≤w ≤ 1

2
eθ1sez − e−r2sd, (18)

and

1

2
e−κsez ≤wz ≤ 1

2
eksez . (19)

Proof The proof, which needs some results of Sobolev space and a priori estimation
method of parabolic equations, is cumbersome, so we put it in Appendix 1. 	


In the rest part of this paper, we fix a solution w as in Theorem 5.1. Based on it,
we will construct solutions to (15), (14), (13) and (7) in the following subsections. In
particular, Theorem 3.2 will ensure such w is indeed unique.

Remark 5.1 The exact values of θ1, θ2, k and κ in Theorem 5.1 are not important. We
just need to make sure that w and wz are growth exponentially in z, which will suffice
to ensure such solution w to (17) is unique.

5.1 Free Boundaries of (17)

In order to study the properties of (17), we define three sets

B :=
{
(z, s) ∈ QT

∣∣∣ − w

wz
< a2

}
,

N :=
{
(z, s) ∈ QT

∣
∣∣ a2 ≤ − w

wz
≤ a1

}
,

S :=
{
(z, s) ∈ QT

∣
∣∣ − w

wz
> a1

}
,

and define two free boundaries

b(s) := sup
{
z ∈ R

∣∣∣ − w

wz
(z, s) ≥ a2

}

= sup
{
z ∈ R | (w + a2wz)(z, s) ≤ 0

}
, s ∈ (0, T ], (20)

l(s) := inf
{
z ∈ R

∣∣∣ − w

wz
(z, s) ≤ a1

}

= inf
{
z ∈ R | (w + a1wz)(z, s) ≥ 0

}
, s ∈ (0, T ], (21)

where we used wz > 0 to get the second expressions in above. They will be used
to study the properties of the optimal portfolio for our original problem (3). Because
a1 > a2 and wz > 0, we see b(s) > l(s) for all s ∈ (0, T ].

We have the following estimates for the two boundaries b(·) and l(·).
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Lemma 5.1 For any s ∈ (0, T ],

b(s) < ln(2d) − (r1 + θ2)s. (22)

Proof If z ≥ ln(2d) − (r1 + θ2)s, then by a2 > 0 and the lower bounds in (18) and
(19) we have

w(z, s) + a2wz >
1

2
eθ2sez − e−r1sd ≥ 0

implying (22). 	

Lemma 5.2 For any s ∈ (0, T ],

l(s) ≥ ln(2d) − ln(a1 + e(θ2−k)s) − (r1 + k)s. (23)

Proof If z < ln(2d) − ln(a1 + e(θ1−k)s) − (r2 + k)s, by the upper bounds in (18) and
(19) we have

w + a1wz ≤ 1

2
eθ1sez − e−r2sd + a1

1

2
eksez

= 1

2
eksez

(
e(θ1−k)s − 2e−(r2+k)s−zd + a1

)
< 0,

which implies (23). 	

Define two functions

I := w + a2wz

and

f (s) := sup{z ∈ R | I (z, s) < 0}, s ∈ (0, T ].

By definition, we have f (s) ≤ b(s).

Lemma 5.3 If f∗(s0−) < f ∗(s0) for some s0 ∈ (0, T ], then

I (z, s0) = 0, ∀z ∈ ( f∗(s0−), f ∗(s0)), (24)

where f∗(s0−) := lim inf
s→s0−

f (s) and f ∗(s0) := lim sup
s→s0

f (s).

Proof By the continuity of I and the definition of f (s), we have

I (z, s0) ≥ 0, z ≥ f∗(s0−). (25)
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If (24) were not true, then there would exits z0 ∈ ( f∗(s0−), f ∗(s0)) such that
I (z0, s0) > 0. Owing to the continuity, we would have

I (z0, s) > 0, s ∈ (s0 − ε, s0 + ε) (26)

for sufficiently small ε > 0. Since z0 > f∗(s0−), we could suppose z0 > f (s0 − ε)

so that

I (z, s0 − ε) ≥ 0, z > z0. (27)

Now we would prove I > 0 in

D := (z0,+∞) × (s0 − ε, s0 + ε).

Indeed, suppose ψ is the unique solution to

ψs − 1

2
σ 2a22ψzz + (

μ − 1

2
σ 2a22 − σ 2a2

)
ψz + (μ − σ 2a2)ψ = 0 in D,

(
ψ + a2ψz

)
(z0, s) = I (z0, s), s ∈ (s0 − ε, s0 + ε),

ψ(z, s0 − ε) = w(z, s0 − ε), z > z0. (28)

under the exponential growth conditions on ψ and ψz . Differentiating the equation in
(28) w.r.t. z, we have

ψzs − 1
2σ

2a22ψzzz + (
μ − 1

2σ
2a22 − σ 2a2

)
ψzz + (μ − σ 2a2)ψz = 0 in D,

So � = ψ + a2ψz satisfies

�s − 1

2
σ 2a22�zz + (

μ − 1

2
σ 2a22 − σ 2a2

)
�z + (μ − σ 2a2)� = 0 in D,

�(z0, s) = I (z0, s), s ∈ (s0 − ε, s0 + ε),

�(z, s0 − ε) = I (z, s0 − ε), z > z0.

Using (26) and (27), by the strong maximum principle, we have � > 0 in D. Define
a function

�(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a2, x + a2y ≥ 0,

a1, x + a2y < 0 and x + a1y ≤ 0,

− x
y , x + a2y < 0 and x + a1y > 0.
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Then (28) can be rewritten as

ψs − 1

2
σ 2�2(ψ,ψz)ψzz + (

μ − 1

2
σ 2�2(ψ,ψz) − σ 2�(ψ,ψz)

)
ψz

+ (
μ − σ 2�(ψ,ψz)

)
ψ = 0,

(
ψ + a2ψz

)
(z0, s) = (

w + a2wz
)
(z0, s), s ∈ (s0 − ε, s0 + ε)

ψ(z, s0 − ε) = w(z, s0 − ε), z > z0.

Since wz > 0 by (19), we have �(w,wz) = A(w/wz). Hence, ψ = w also satisfies
the above system, by the uniqueness of its solution, we conclude that ψ = w in D.
Consequently, I = � > 0 in D. But, by the definition of f (s0), we would have
f (s) ≤ z0 for s ∈ (s0 − ε, s0 + ε) so that

f ∗(s0) = lim sup
s→s0

f (s) ≤ z0,

contradicting to z0 ∈ ( f∗(s0−), f ∗(s0)). 	

Lemma 5.4 Given s ∈ (0, T ], we have

I (z, s) ≤ 0, ∀ z ≤ f (s). (29)

Proof Denote

C := {(z, s) | z ≤ f (s), s ∈ (0, T ]}.

If (29) were not true, i.e. I would take positive values in C. Since lim sup
z→−∞

I (z, s) < 0

for any s ∈ (0, T ] by (18) and (19), therewould exist (z0, s0) ∈ C such that I (z0, s0) =
max

(z,s)∈C
I (z, s) > 0. Note that (z0, s0) ∈ C implies

z0 ≤ f ∗(s0) = lim sup
s→s0

f (s).

By Lemma 5.3 we would have

z0 < f∗(s0−) = lim inf
s→s0−

f (s).

Therefore, I > 0 in

D := (z0 − ε, z0 + ε) × (s0 − ε, s0) ⊂ C

for sufficiently small ε > 0. Then, A(w/wz) = a2 in D, so I would satisfy a linear
equation in D. However, as (z0, s0) is the maximum point of I in D, it is impossible
by the maximum principle. 	
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By Lemma 5.4, we see I (z, s0) ≥ 0 for any z > z0 if I (z0, s0) > 0. We continue
to prove the following stronger conclusion.

Lemma 5.5 Given s0 ∈ (0, T ], we have I (z, s0) > 0 for any z > z0 if I (z0, s0) > 0.

Proof By the continuity of I , there exists 0 < ε < s0 such that

I (z0, s) > 0, s ∈ (s0 − ε, s0].

By Lemma 5.4, we further have

I (z, s) ≥ 0, (z, s) ∈ (z0,+∞) × (s0 − ε, s0]

and I satisfies a linear equation in (z0,+∞) × (s0 − ε, s0]. By the strong maximum
principle we conclude I > 0 in (z0,+∞) × (s0 − ε, s0]. 	


By Lemma 5.5 and the definition (20), we conclude

Lemma 5.6 We have

B = {(z, s) | z > b(s), s ∈ (0, T ]} (30)

with

b(0+) = ln(2d) − ln(1 + a2).

Similarly, we can prove

Lemma 5.7 We have

S = {(z, s) | z < l(s), s ∈ (0, T ]} (31)

with

l(0+) = ln(2d) − ln(1 + a1).

Recall that l(s) < b(s), so the above two lemmas imply

Lemma 5.8 We have

N = {(z, s) | l(s) ≤ z ≤ b(s), s ∈ (0, T ]}.

Next, we prove that the boundaries b(·) and l(·) are smooth when the coefficients
meet certain conditions.

Proposition 5.1 If the coefficients satisfy the following conditions

μ > 0, (32)
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σ 2a22 + r1 − 2r2 ≥ 0, (33)

1 + 2r1
μ − r1

− 2a1 + a2 ≥ 0, (34)

then the boundaries b(·), l(·) ∈ C1((0, T ]).
To prove this conclusion, we need

Lemma 5.9 Under the condition (33), we have

ws + r1w ≥ 0. (35)

Proof The condition (33) is equivalent to

θ2 = σ 2a22 + 2σ 2a2 − 2μ ≥ −r1.

Denote ϕ = er1sw, by the first inequality in (18) we have

ϕ(z, s) ≥ 1

2
e(θ2+r1)sez − d ≥ 1

2
ez − d = ϕ(z, 0), (z, s) ∈ QT .

For any �s ∈ (0, T ), let ϕ(z, s) := ϕ(z, s + �s), then by above and the equation in
(17), we have

ϕs − r1ϕ − T ϕ = 0 in QT−�s,

ϕ(z, 0) = ϕ(z,�s) ≥ ϕ(z, 0), z ∈ R.

By the comparison principle we have ϕ ≥ ϕ in QT−�s , which implies ϕs ≥ 0, so
ws + r1w ≥ 0. 	

Lemma 5.10 Under the conditions (32), (33) and (34),

∂z

( w

wz

)
> 0 in N . (36)

Proof Recall that w < 0, wz > 0 and a2 ≤ A( w
wz

) = − w
wz

≤ a1 in N , so

A2
( w

wz

)
wzz =

( w

wz

)2
wzz = w

(
1 − ∂z

( w

wz

))
in N .

By the equation in (17) and Lemma 5.9 we have

σ 2

2
w

(
1 − ∂z

( w

wz

))
= ws +

(
μ − 1

2
σ 2A2

( w

wz

)
− σ 2A

( w

wz

))
wz +

(
μ − σ 2A

( w

wz

))
w

= ws − μ

A
(

w
wz

)w + 1

2
σ 2A

( w

wz

)
w + σ 2w +

(
μ − σ 2A

( w

wz

))
w
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= ws − μ

A
(

w
wz

)w − 1

2
σ 2A

( w

wz

)
w + (σ 2 + μ)w

> −r1w − μ

a1
w − 1

2
σ 2a2w + (σ 2 + μ)w

= σ 2w
(
a1 − μ

σ 2a1
− 1

2
a2 + 1

)
in N .

The inequality is strict because A
(

w
wz

)
cannot equal a1 and a2 simultaneously. It

follows

∂z

( w

wz

)
> 1 − 2

(
a1 − μ

σ 2a1
− 1

2
a2 + 1

)
= 1 − 2a1 + a2 + 2r1

μ − r1
≥ 0 in N .

This completes the proof. 	


Now, we are ready to prove Proposition 5.1. Let J = −w/wz , from the definition
of b(·) and l(·) we have

J (b(s), s) = a2, J (l(s), s) = a1, s ∈ (0, T ].

When the conditions (33) and (34) hold, the above result shows Jz(b(s), s) and
Jz(l(s), s) < 0. So it follows from the implicit function existence theorem that b(·),
l(·) ∈ C1((0, T ]).

6 Solutions to the HJB Equation (7) and Problem (3)

We are now ready to construct a classical solution to the PDE (7) from the function w

given in Theorem 5.1 and deduce the optimal portfolio to the problem (3).
First, we rewritten the PDEs (15) and (14) of u and v in compact forms as follows:

− ut − J u = 0 in (0,+∞) × [0, T ),

u(y, T ) = 1

2
y − d, y > 0, (37)

and

− vt − Hv = 0 in (0,+∞) × [0, T ),

v(0, t) = 0, 0 ≤ t < T ,

v(y, T ) = −1

4
y2 + dy, y > 0, (38)
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where

J u := 1

2
σ 2A2

( u

yuy

)
y2uyy −

(
μ − σ 2A2

( u

yuy

)
− σ 2A

( u

yuy

))
yuy

−
(
μ − σ 2A

( u

yuy

))
u,

and

Hv := 1

2
σ 2A2

( vy

yvyy

)
y2vyy −

(
μ − σ 2A

( vy

yvyy

))
yvy .

Lemma 6.1 Let w be given in Theorem 5.1 and let

u(y, t) = w(ln y, T − t).

Then u ∈ C2+α,1+ α
2
(
(0,+∞) × [0, T ]) is a solution to the PDE (37) such that

1

2
eθ2(T−t)y − e−r1(T−t)d ≤u ≤ 1

2
eθ1(T−t)y − e−r2(T−t)d, (39)

1

2
e−κ(T−t) ≤uy ≤ 1

2
ek(T−t), (40)

in (0,+∞) × [0, T ].
This result can be easily verified, so we omit its proof.

Furthermore, we have

Lemma 6.2 For any t ∈ [0, T ],

lim
y→0+ u = −e−r1(T−t)d, lim

y→+∞ u = +∞, lim
y→0+ yu = 0, lim

y→0+ y2uy = 0.

(41)

Proof The second and third limits can be derived from (39), the fourth limit is due to
(40). It is left to prove the first limit. Thanks to the estimate (23), there exists

z0 ∈
(

− ∞, inf
s∈[0,T ] l(s)

)

such that A(w/wz) = a1 in

D := (−∞, z0] × [0, T ].

Thus,

ws − 1

2
σ 2a21wzz + (

μ − 1

2
σ 2a21 − σ 2a1

)
wz + (μ − σ 2a1)w = 0 in D.
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Let

M := max

{
1

2
ez0 , max

s∈[0,T ] w(z0, s) + e−r1sd

}

and denote

�(z, s) := Me|θ1|sez−z0 − e−r1sd.

Then

�s − 1

2
σ 2a21�zz +

(
− 1

2
σ 2a21 − σ 2a1 + μ

)
�z +

(
μ − σ 2a1

)
�

= Me|θ1|sez−z0
(
|θ1| − 1

2
σ 2a21 +

(
− 1

2
σ 2a21 − σ 2a1 + μ

)
+

(
μ − σ 2a1

))

+e−r1sd(r1 − (μ − σ 2a1))

≥ 0,

by recalling the definitions of θ1 and a1. Moreover,

�(z, 0) = Mez−z0 − d ≥ 1
2e

z − d = w(z, 0), z ≤ z0,

�(z0, s) ≥ M − e−r1sd ≥ w(z0, s), s ∈ [0, T ],

so, by the comparison principle, we get� ≥ w inD. Together with the first inequality
in (18), we have lim

z→−∞ w = −e−r1sd, which implies lim
y→0+ u = −e−r1(T−t)d. 	


It follows from (40) and (41) that

uy > 0, lim
y→0+ u = −e−r1(T−t)d, lim

y→+∞ u = +∞,

so −u is one-to-one mapping (0,+∞) to (−∞, e−r1(T−t)d) for each t ∈ [0, T ).

Lemma 6.3 Let u be given in Lemma 6.1. Define

v(y, t) := −
∫ y

0
u(ξ, t)dξ, (y, t) ∈ (0,+∞) × [0, T ].

Then v ∈ C3,2
(
(0,+∞) × [0, T ]) is a solution to the PDE (38) such that

−1

2
eθ1(T−t)y + e−r2(T−t)d ≤vy ≤ −1

2
eθ2(T−t)y + e−r1(T−t)d, (42)

−1

2
ek(T−t) ≤vyy ≤ −1

2
e−κ(T−t), (43)
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in (0,+∞) × [0, T ]. Moreover, for any t ∈ [0, T ],

lim
y→0+ vy = e−r1(T−t)d, lim

y→+∞ vy = −∞, lim
y→0+ yvy = 0 lim

y→0+ y2vyy = 0.

(44)

Proof Clearly vy = −u, so (42), (43) and (44) are the direct consequences of (39),
(40) and (41) respectively. Since u ∈ C2+α,1+ α

2
(
(0,+∞) × [0, T ]), we have v,

vy ∈ C2+α,1+ α
2
(
(0,+∞) × [0, T ]). Moreover, it is easy to check that

∂y(−vt − Hv) = ut + J u = 0

and

(−vt − Hv)(0, t) = 0,

so

(−vt − Hv)(y, t) = (−vt − Hv)(0, t) +
∫ y

0
∂y(−vt − Hv)(ξ, t)dξ = 0.

Therefore, v is a solution to the PDE (38). As a consequence,

−vt t − 1

2
σ 2A2

( vy

yvyy

)
y2vt yy +

(
μ − σ 2A

( vy

yvyy

))
yvt y = ∂t (−vt − Hv) = 0.

Using the Schauder interior estimation (see [29] Theorem 4.9), we get vt ∈
C2+α,1+ α

2
(
(0,+∞) × [0, T ]), therefore, v ∈ C3,2

(
(0,+∞) × [0, T ]). 	


6.1 Proof of Theorem 3.1

Now we are ready to prove Theorem 3.1. Let v be given in Lemma 6.3. Define

V (x, t) := sup
y>0

(v(y, t) − xy), x < er1(T−t)d, t ∈ [0, T ]. (45)

We come to prove that the above V satisfies the requirements of Theorem 3.1.
For each t ∈ [0, T ], the estimates (43) and (44) imply vy(·, t) is strictly decreasing

and maps (0,∞) to (−∞, e−r1(T−t)d), so

J (x, t) := argmaxy>0 (v(y, t) − xy) = (vy(·, t))−1(x) > 0,

and

V (x, t) = v(J (x, t), t) − x J (x, t), x < er1(T−t)d, t ∈ [0, T ]. (46)
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Also the function J (x, t) ∈ C(QT ) and is strictly increasing w.r.t. x . Therefore,

Vx (x, t) = vy(J (x, t), t)Jx (x, t) − x Jx (x, t) − J (x, t) = −J (x, t) < 0,

Vxx (x, t) = −Jx (x, t) = −∂x [(vy(·, t))−1(x)] = −1

vyy(J (x, t), t)
> 0,

Vt (x, t) = vy(J (x, t), t)Jt (x, t) + vt (J (x, t), t) − x Jt (x, t) = vt (J (x, t), t).

As v ∈ C3,2
(
(0,+∞) × [0, T ]), we get

V ∈ C3,2(QT \ {x = e−r1(T−t)d}).

Since v is a solution to the PDE (38), which is equivalent to (14), one can check that
V satisfies the PDE in (13). This together with Vx < 0 and Vxx > 0 shown above
implies the PDE in (7).

From (44), we know for any t ∈ [0, T ],

lim
x→e−r1(T−t)d−

J (x, t) = 0, lim
x→−∞ J (x, t) = +∞. (47)

So (10) holds. Moreover, (47) and (46) imply

V (e−r1(T−t)d−, t) = v(0+, t) = 0,

so the boundary condition in (7) holds.
Now, we verify the terminal condition. Thanks to (42) and v(0, t) = 0, we have

−1

4
eθ1(T−t)y2 + e−r2(T−t)dy ≤ v ≤ −1

4
eθ2(T−t)y2 + e−r1(T−t)dy,

and consequently,

V (x, t) = sup
y>0

(v(y, t) − xy)

≥ sup
y>0

(
− 1

4
eθ1(T−t)y2 + e−r2(T−t)dy − xy

)

= e−θ1(T−t)(e−r2(T−t)d − x)2, (48)

and

V (x, t) ≤ sup
y>0

(
− 1

4
eθ2(T−t)y2 + e−r2(T−t)dy − xy

)

= e−θ2(T−t)(e−r1(T−t)d − x)2. (49)

Letting t → T in the above two inequalities, it follows that V satisfies the terminal
condition in (7). This completes the proof of Theorem 3.1.
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6.2 Proof of Proposition 3.1

This is the consequence of Lemmas 5.6 and 5.7. Thanks to (8) and (9), we see (0, t) ∈
B, so B(t) > 0.

6.3 Proof of Theorem 3.2

In this section, we prove Theorem 3.2.
Suppose V is the solution to (7) given in Theorem 3.1. Fix any (x, t) ∈ QT and

any admissible portfolio π ∈ �t , let X be the unique strong solution to (2). We set

τn = inf
{
s ≥ t

∣∣∣ |Vx (Xs, s)| +
∫ s

t
|πu |2du ≥ n

}
.

Then

s �→
∫ s∧τn∧T

t
Vx (Xu, u)σπudWu

is a martingale, whose mean is 0. Therefore, by Itô’s formula and the HJB equation
(7),

E[V (XT∧τn , T ∧ τn) | Xt = x]

= V (x, t) + E

[ ∫ T∧τn

t

(
Vt + 1

2
σ 2π2

s Vxx +
(
(r1χXs>πs + r2χXs<πs )(Xs − πs)

+ μπs

)
Vx

)
(Xs, s)ds +

∫ T∧τn

t
Vx (Xs, s)σπsdWs

∣∣
∣ Xt = x

]

≥ V (x, t). (50)

Using the estimates (48) and (49), we have

0 ≤ V (XT∧τn , T ∧ τn) ≤ C
(
1 + sup

s∈[t,T ]
|Xs |2

)
.

By the standard estimate for SDE, the right hand side is integrable, so we can apply
the dominated convergence theorem to E[V (XT∧τn , T ∧ τn) | Xt = x], and obtain

V (x, t) ≤ E[ lim
n→∞ V (XT∧τn , T ∧ τn) | Xt = x]

= E[V (XT , T ) | Xt = x]
= E[(XT − d)2 | Xt = x]. (51)

Therefore, we have

V (x, t) ≤ inf
π∈�t

E[(XT − d)2 | Xt = x]. (52)
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To show the reverse inequality, define a feedback control

π∗(x, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−a1
Vx (x,t)
Vxx (x,t)

, −a1
Vx (x,t)
Vxx (x,t)

< x,

x, −a2
Vx (x,t)
Vxx (x,t)

≤ x ≤ −a1
Vx (x,t)
Vxx (x,t)

,

−a2
Vx (x,t)
Vxx (x,t)

, −a2
Vx (x,t)
Vxx (x,t)

> x .

Clearly (42) and (43) imply |yvyy | ≤ C(1 + |vy |) for some constant C independent
of t , which is equivalent to

∣
∣∣
Vx (x, t)

Vxx (x, t)

∣
∣∣ ≤ C(1 + |x |).

This indicates π∗(x, t) is linear growth in x uniformly for t ∈ [0, T ]. Moreover,
because V ∈ C3,2, π∗(x, t) is locally Lipschitz continuous. By Mao [32, Theorem
3.4, p.56], there exists a unique strong solution X∗ to the following SDE:

dX∗
s = [(

r1χX∗
s >π∗(X∗

s ,s) + r2χX∗
s <π∗(X∗

s ,s)
)
(X∗

s − π∗(X∗
s , s))

+μπ∗(X∗
s , s)

]
ds + σπ∗(X∗

s , s)dWs, s ∈ [t, T ],
X∗
t = x .

. (53)

Furthermore, as π∗(x, t) is linear growth in x , by Mao [32, Lemma 3.2, p.51], we
obtain from (53) that

E

[
sup

s∈[t,T ]
|X∗

s |2
]

< ∞,

which further implies π̂s := π∗(X∗
s , s) is an admissible control in �t by the linear

growth property of π∗(x, t) in x . Repeat the preceding argument with the control π̂ ,
then the inequalities in (50) and (51) become equations, giving

V (x, t) = E[(X∗
T − d)2|Xt = x].

Compared to (52), we conclude that π∗ is an optimal feedback control to the problem
(3), and V is the value function.

7 Concluding Remarks

In this paper, we solved Markowitz’s mean-variance portfolio selection problem in
a continuous-time Black–Scholes market with different borrowing and saving rates
by PDE methods. A feedback optimal portfolio is provided. Efficiently numerical
schemes can be easily developed to calculate it. Different from many existing papers,
the optimality of the portfolio is proved by a verification argument, where the smooth-
ness of the value function plays an important role. It is of great interests to extend
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our model to the case with jumps in stock price. This may lead to some new financial
insights.

Clearly, Theorem 3.2 implies the function V given in Theorem 3.1 is unique. As
a consequence, we have that the functions w in Theorem 5.1, u in Lemma 6.1 and v

in Lemma 6.3 are unique as well. The above uniqueness can be proved by pure PDE
argument as well. We leave this to the interested readers.

This paper usedPDEmethod to solve the portfolio selection problem.This approach
does not work if the system is notMarkovian or d is stochastic in general. So stochastic
control theory for piecewise linear quadratic problems is expected to be developed.
Of course, it is of great importance to develop such theories and also far beyond the
scope of this paper. But we hope our method can inspire the readers to develop such
theories.
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Appendix: Proof of Theorem 5.1

In this section, we prove Theorem 5.1 by approximation method.
Firstly, for each fixed 0 < ε < 1, define a continuous function

�ε(ξ, η) := A
( ξ

η + ε

)
, (ξ, η) ∈ (−∞,+∞) × [0,+∞).

Note that

∂ξ�ε(ξ, η) = A′( ξ

η + ε

) 1

η + ε
=

{
− 1

η+ε
∈ [− 1

ε
, 0), if a2 < − ξ

η+ε
< a1,

0, if − ξ
η+ε

> a1 or − ξ
η+ε

< a2,

and

∂η�ε(ξ, η) = A′( ξ

η + ε

) −ξ

(η + ε)2

=
{

ξ
η+ε

1
η+ε

∈ [− a1
ε

, 0), if a2 < − ξ
η+ε

< a1,

0, if − ξ
η+ε

> a1 or − ξ
η+ε

< a2,

so the function �ε(·, ·) is Lipschitz continuous in (−∞,+∞) × [0,+∞). More-
over, for each fixed c > 0, ∂ξ�ε(ξ, η) and ∂η�ε(ξ, η) are uniformly bounded for all
(ξ, η, ε) ∈ (−∞,+∞) × [c,+∞) × [0, 1].
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Now, consider an approximation equation in a bounded domain QN
T := (−N , N )×

[0, T ],

w
ε,N
s − 1

2σ
2A2

(
wε,N

|wε,N
z |+ε

)
w

ε,N
zz +

(
μ − 1

2σ
2A2

(
wε,N

|wε,N
z |+ε

)
− σ 2A

(
wε,N

|wε,N
z |+ε

))
w

ε,N
z

+
(
μ − σ 2A

(
wε,N

|wε,N
z |+ε

))
wε,N = 0 in QN

T ,

(wε,N − w
ε,N
z )(−N , s) = −e−r2sd, w

ε,N
z (N , s) = 1

2e
θ1seN , s ∈ [0, T ],

wε,N (z, 0) = 1
2e

z − d, −N < z < N ,

(54)

The Leray-Schauder fixed point theorem (see [14] Theorem 4, p.541) and embedding

theorem (see [29] Theorem 6.8) imply the existence of C1+α, 1+α
2

(
QN

T

)
(for some

α ∈ (0, 1)) solution to the problem (54). Moreover, the Schauder estimation (see [29]
Theorem 4.23) implies

wε,N ∈ C2+α,1+ α
2
(
QN

T

)
.

In the proceeding proof, we will frequently use the following fact without claim:

0 < a2 ≤ A(ξ) ≤ a1, |A′(ξ)| ≤ 1, a2 ≤ |A′(ξ)ξ | ≤ a1, a22 ≤ |A′(ξ)ξ2| ≤ a21 .

We first establish the estimates

1

2
eθ2sez − e−r1sd ≤ wε,N ≤ 1

2
eθ1sez − e−r2sd. (55)

Denote

ψ(z, s) = 1

2
eθ2sez − e−r1sd, A(··) = A

( wε,N

|wε,N
z | + ε

)
.

Using the definitions of θ2, a1 and a2 as well as the bounds on A and A′, we get

ψs − 1

2
σ 2A2(··)ψzz +

(
μ − 1

2
σ 2A2(··) − σ 2A(··)

)
ψz +

(
μ − σ 2A(··)

)
ψ

= 1

2
eθ2sez

(
θ2 − 1

2
σ 2A2(··) +

(
μ − 1

2
σ 2A2(··) − σ 2A(··)

)
+

(
μ − σ 2A(··)

))

+e−r1sd
(
r1 − (μ − σ 2A(··))

)

≤ 1

2
eθ2sez

(
θ2 − σ 2a22 − 2σ 2a2 + 2μ

)
+ e−r1sd

(
r1 − (μ − σ 2a1)

)

= 0.
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Notice θ1 > θ2, so

ψ(z, 0) = 1
2e

z − d = wε,N (z, 0),−N < z < N ,

(ψ − ψz)(−N , s) = −e−r1sd ≤ −e−r2sd = (wε,N − w
ε,N
z )(−N , s), s ∈ [0, T ],

ψz(N , s) = 1
2e

θ2seN ≤ 1
2e

θ1seN = w
ε,N
z (N , s), s ∈ [0, T ].

Applying the comparison principle for linear equations, the first inequality in (55) is
established.

Similarly, let

�(z, s) = 1

2
eθ1sez − e−r2sd.

Then by the definitions of θ1, a1 and a2,

�s − 1

2
σ 2A2(··)�zz +

(
μ − 1

2
σ 2A2(··) − σ 2A(··)

)
�z +

(
μ − σ 2A(··)

)
�

= 1

2
eθ1sez

(
θ1 − 1

2
σ 2A2(··) +

(
μ − 1

2
σ 2A2(··) − σ 2A(··)

)
+

(
μ − σ 2A(··)

))

+e−r2sd
(
r2 − (μ − σ 2A(··))

)

≥ 1

2
eθ1sez

(
θ1 − σ 2a21 − 2σ 2a1 + 2μ

)
+ e−r2sd

(
r2 − (μ − σ 2a2)

)

= 0.

Moreover,

�(z, 0) = 1
2e

z − d = wε,N (z, 0),−N < z < N ,

(� − �z)(−N , s) = −e−r2sd = (wε,N − w
ε,N
z )(−N , s), s ∈ [0, T ],

�z(N , s) = 1
2e

θ1seN = w
ε,N
z (N , s), s ∈ [0, T ],

by the comparison principle, the second inequality in (55) is established.
Due to the setting of boundary conditions, we cannot establish w

ε,N
z ≥ 1

2e
−κsez .

Instead, we first prove

wε,N
z ≥ −e−θ3sd, (56)

where

θ3 = min{μ − σ 2a1(a1 + 3), r1}.
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Differentiating the equation in (54) w.r.t. z we have

∂sw
ε,N
z − σ 2

2
∂z

(
A2(··)∂zwε,N

z

)
+

(
μ − 1

2
σ 2A2(··) − σ 2A(··)

)
∂zw

ε,N
z

+
(
μ − σ 2A(··)

)
wε,N
z

− σ 2A′(··)
( w

ε,N
z

|wε,N
z | + ε

− wε,N

(|wε,N
z | + ε)2

sgn(wε,N
z )wε,N

zz

)(
A(··) + 1

)
wε,N
z

− σ 2A′(··)
( w

ε,N
z

|wε,N
z | + ε

− wε,N

(|wε,N
z | + ε)2

sgn(wε,N
z )wε,N

zz

)
wε,N = 0.

After reorganizing, we get an equation for w
ε,N
z in the divergence form:

∂sw
ε,N
z − σ 2

2
∂z

(
A2(··)∂zwε,N

z

)
+

(
− 1

2
σ 2A2(··) − σ 2A(··) + μ

)
∂zw

ε,N
z

+
(
μ − σ 2A(··)

)
wε,N
z − σ 2A′(··) w

ε,N
z

|wε,N
z | + ε

(
A(··) + 1

)
wε,N
z

+ σ 2A′(··)
( wε,N

|wε,N
z | + ε

)( w
ε,N
z

|wε,N
z | + ε

)(
A(··) + 1

)
sgn(wε,N

z )∂zw
ε,N
z

+ σ 2A′(··)
( wε,N

|wε,N
z | + ε

)2
sgn(wε,N

z )∂zw
ε,N
z − σ 2A′(··) wε,N

|wε,N
z | + ε

wε,N
z = 0.

(57)

It is not hard to check that all the coefficients in (57) are bounded. Denote ψ(z, s) =
−e−θ3sd, then

∂sψ − σ 2

2
∂z

(
A2(··)∂zψ

)
+

(
μ − 1

2
σ 2A2(··) − σ 2A(··)

)
∂zψ

+
(
μ − σ 2A(··)

)
ψ − σ 2A′(··) w

ε,N
z

|wε,N
z | + ε

(
A(··) + 1

)
ψ

+ σ 2A′(··)
( wε,N

|wε,N
z | + ε

)( w
ε,N
z

|wε,N
z | + ε

)(
A(··) + 1

)
sgn(wε,N

z )∂zψ

+ σ 2A′(··)
( wε,N

|wε,N
z | + ε

)2
sgn(wε,N

z )∂zψ − σ 2A′(··) wε,N

|wε,N
z | + ε

ψ

= e−θ3sd
(
θ3 − μ + σ 2A(··) + σ 2A′(··) w

ε,N
z

|wε,N
z | + ε

(
A(··) + 1

)

+ σ 2A′(··) wε,N

|wε,N
z | + ε

)

≤ e−θ3sd(θ3 − μ + σ 2a1 + σ 2a1(a1 + 1) + σ 2a1) ≤ 0,
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thanks to the definition of θ3. Moreover,

w
ε,N
z (z, 0) = 1

2e
z ≥ 0 ≥ ψ(z, 0),

w
ε,N
z (−N , s) = wε,N (−N , s) + e−r2sd > −e−r1sd ≥ ψ(−N , s), (by (55))

w
ε,N
z (N , s) = 1

2e
θ1seN ≥ 0 ≥ ψ(N , s).

Using the comparison principle for divergence forms (see [29] Corollary 6.16), we
obtain w

ε,N
z ≥ ψ , giving (56).

We next to prove

wε,N
z ≤ 1

2
eksez . (58)

Denote gε,N (z, s) = e−zw
ε,N
z (z, s). According to (57), we have

∂s g
ε,N − σ 2

2
∂z

(
A2(··)gε,N

z

)
− σ 2A2(··)gε,N

z − σ 2

2
A2(··)gε,N

− σ 2A(··)A′(··)
( w

ε,N
z

w
ε,N
z + ε

g −
( wε,N

|wε,N
z | + ε

)( w
ε,N
z

|wε,N
z | + ε

)
sgn(wε,N

z )
(
gε,N
z + gε,N ))

+
(
μ − 1

2
σ 2A2(··) − σ 2A(··)

)(
gε,N
z + gε,N )

+
(
μ − σ 2A(··)

)
gε,N − σ 2A′(··)

(
A(··) + 1

)
gε,N

+ σ 2A′(··) wε,N

|wε,N
z | + ε

(
A(··) + 1

)
sgn(wε,N

z )
(
gε,N
z + gε,N )

+ σ 2A′(··)
( wε,N

|wε,N
z | + ε

)2
sgn(wε,N

z )
(
gε,N
z + gε,N ) − σ 2A′(··) wε,N

|wε,N
z | + ε

gε,N = 0. (59)

On the other hand, denote �(z, s) = 1
2e

ks , then

∂s� − σ 2

2
∂z

(
A2(··)�z

)
− σ 2A2(··)�z − σ 2

2
A2(··)�

− σ 2A(··)A′(··)
( w

ε,N
z

w
ε,N
z + ε

� −
( wε,N

|wε,N
z | + ε

)( w
ε,N
z

|wε,N
z | + ε

)
sgn(wε,N

z )
(
�z + �

))

+
(

− 1

2
σ 2A2(··) − σ 2A(··) + μ

)(
�z + �

)

+
(
μ − σ 2A(··)

)
� − σ 2A′(··)

(
A(··) + 1

)
�

+ σ 2A′(··) wε,N

|wε,N
z | + ε

(
A(··) + 1

)
sgn(wε,N

z )
(
�z + �

)
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+ σ 2A′(··)
( wε,N

|wε,N
z | + ε

)2
sgn(wε,N

z )
(
�z + �

) − σ 2A′(··) wε,N

|wε,N
z | + ε

�

≥ 1

2
eks

(
k − 1

2
σ 2a21 − σ 2a21 − 1

2
σ 2a21 − σ 2a1(a1 + 1) − σ 2a21 − σ 2a1

)
≥ 0,

thanks to the definition of k. Notice k ≥ θ1, so

gε,N (z, 0) = 1
2 = �(z, 0),

gε,N (−N , s) = eN (wε,N + e−r2sd)(−N , s) ≤ 1
2 e

θ1s ≤ 1
2 e

ks = �(−N , s), (by (55))

gε,N (N , s) = 1
2 e

θ1s ≤ 1
2 e

ks = �(N , s).

Using the comparison principle for divergence forms, we obtain gε,N ≤ �, proving
(58).

Thanks to (55), (56) and (58), for each a < b, when N > max{|a|, |b|}, taking
the Cα, α

2 interior estimate (see [29] Theorem 6.33) to the equations in (54) and (57)
respectively, we obtain

∣
∣∣wε,N

∣
∣∣
Cα, α

2 ([a,b]×[0,T ]),
∣
∣∣wε,N

z

∣
∣∣
Cα, α

2 ([a,b]×[0,T ]) ≤ C .

where C is independent of ε and N . Since �ε(·, ·) is Lipschitz continuous in
(−∞,+∞) × [0,+∞), we have

∣∣∣∣ A
( wε,N

|wε,N
z | + ε

) ∣∣∣∣ Cα, α
2 ([a,b]×[0,T ]) ≤ Cε (60)

i.e. the coefficients in the equation of (54) belong to Cα, α
2 ([a, b] × [0, T ]), so we can

take the Schauder interior estimate to the equation in (54) to get

∣∣∣wε,N
∣∣∣
C2+α,1+ α

2 ([a,b]×[0,T ]) ≤ Cε. (61)

where the above two Cεs are independent of N . Therefore, there exists wε ∈
C2+α,1+ α

2
(
QT

)
such that, for any region Q = (a, b) × (0, T ] ⊂ QT , there exists

a subsequence of wε,N , which we still denote by wε,N , such that wε,N → wε in
C2,1(Q) when N → ∞. So wε satisfies the initial problem

wε
s − 1

2σ
2A2

(
wε

|wε
z |+ε

)
wε
zz +

(
μ − 1

2σ
2A2

(
wε

|wε
z |+ε

) − σ 2A
(

wε

|wε
z |+ε

))
wε
z

+
(
μ − σ 2A

(
wε

|wε
z |+ε

))
wε = 0 in QT ,

wε(z, 0) = 1
2e

z − d.

(62)
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The exponential growth conditions on wε and wε
z come from the estimates (55), (56)

and (58).
We now prove

wε
z ≥ 1

2
e−κsez . (63)

Denote

gε(z, s) = e−zwε
z (z, s), A(· · · ) = A

( wε

|wε
z | + ε

)
.

Letting N → ∞ in (59), we obtain

∂sg
ε − σ 2

2
∂z

(
A2(· · · )gε

z

)
− σ 2A2(· · · )gε

z − σ 2

2
A2(· · · )gε

− σ 2A(· · · )A′(· · · )
( wε

z

|wε
z | + ε

gε −
( wε

|wε
z | + ε

)( wε
z

|wε
z | + ε

)
sgn(wε

z )
(
gε
z + gε

))

+
(
μ − 1

2
σ 2A2(· · · ) − σ 2A(· · · )

)(
gε
z + gε

)

+
(
μ − σ 2A(· · · )

)
gε − σ 2A′(· · · )

(
A(· · · ) + 1

)
gε

+ σ 2A′(· · · ) wε

|wε
z | + ε

(
A(· · · ) + 1

)
sgn(wε

z )
(
gε
z + gε

)

+ σ 2A′(· · · )
( wε

|wε
z | + ε

)2
sgn(wε

z )
(
gε
z + gε

) − σ 2A′(· · · ) wε

|wε
z | + ε

gε = 0.

On the other hand, denote �(z, s) = 1
2e

−κs , we have

∂s� − σ 2

2
∂z

(
A2(· · · )�z

)
− σ 2A2(· · · )�z − σ 2

2
A2(· · · )�

− σ 2A(· · · )A′(· · · )
( wε

z

|wε
z | + ε

� −
( wε

|wε
z | + ε

)( wε
z

|wε
z | + ε

)
sgn(wε

z )
(
�z + �

))

+
(

− 1

2
σ 2A2(· · · ) − σ 2A(· · · ) + μ

)(
�z + �

)

+
(
μ − σ 2A(· · · )

)
� − σ 2A′(· · · )

(
A(· · · ) + 1

)
�

+ σ 2A′(· · · ) wε

|wε
z | + ε

(
A(· · · ) + 1

)
sgn(wε

z )
(
�z + �

)

+ σ 2A′(· · · )
( wε

|wε
z | + ε

)2
sgn(wε

z )
(
�z + �

) − σ 2A′(· · · ) wε

|wε
z | + ε

�

≤ 1

2
e−κs

(
− κ + σ 2a1(1 + a1) + μ + μ + σ 2(a1 + 1) + σ 2a1(a1 + 1) + σ 2a21 + σ 2a1

)
= 0,

thanks to the definition of κ . Moreover, g(z, 0) = 1
2 = �(z, 0). By the comparison

principle, we have g ≥ �; hence, (63) is proved.
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Thanks to (58) and (63),wε
z has positive lower and upper boundswhich are indepen-

dent of ε in any bounded region, noting that the bounds of |∂η�ε(ξ, η)| and |∂η�ε(ξ, η)|
are independent of ε when η has a positive lower bound, so the constants Cεs in the
estimates (60) and (61) are independent of ε. Let ε → 0 in (62), we obtain a limit w
that satisfies (17). Moreover, (18) and (19) are the direct consequences of (55), (58),
(63).
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