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Abstract
We provide explicit formulas for the Levi-Civita connection and Riemannian Hessian
for a Riemannian manifold that is a quotient of a manifold embedded in an inner
product space with a non-constant metric function. Together with a classical formula
for projection, this allows us to evaluate Riemannian gradient and Hessian for several
families ofmetrics on classicalmanifolds, including a family ofmetrics onStiefelman-
ifolds connecting both the constant and canonical ambient metrics with closed-form
geodesics. Using these formulas, we derive Riemannian optimization frameworks on
quotients of Stiefel manifolds, including flag manifolds, and a new family of complete
quotient metrics on the manifold of positive-semidefinite matrices of fixed rank, con-
sidered as a quotient of a product of Stiefel and positive-definite matrix manifold with
affine-invariant metrics. The method is procedural, and in many instances, the Rie-
mannian gradient and Hessian formulas could be derived by symbolic calculus. The
method extends the list of potentialmetrics that could be used inmanifold optimization
and machine learning.

Keywords Optimization · Riemannian Hessian · Stiefel · Positive-definite ·
Positive-semidefinite · Flag manifold · Machine learning

Mathematics Subject Classification 65K10 · 58C05 · 49Q12 · 53C25 · 57Z20 ·
57Z25 · 68T05

Communicated by Alexandru Kristály.

B Du Nguyen
nguyendu@post.harvard.edu

1 Darien, CT, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-023-02242-z&domain=pdf
http://orcid.org/0000-0001-6662-0219


136 Journal of Optimization Theory and Applications (2023) 198:135–164

1 Introduction

In the foundational paper [9], the authors introduced Riemannian optimization frame-
works for Stiefel and Grassmann manifolds, where the Riemannian gradient and
Hessian are given globally using a projection operator and a Christoffel function,
a bilinear operator on the matrix space containing the Stiefel manifolds. The intro-
duction of these global operators allows efficient computation when the manifolds
are defined by constraints, or as quotients of constrained manifolds, as opposed to
computation using local charts in an abstract manifold. The frameworks help popular-
ize the field of Riemannian optimization. Since then, similar frameworks have been
introduced for many manifolds with several software packages [8, 16, 26] implement-
ing aspects of these frameworks. The Riemannian Hessian calculation is in general
difficult. It could be computed using the calculus of variation. ”Doing so is tedious”
[9], so the detailed calculations for Stiefel manifolds were not included in that paper,
a generalization and full derivation recently appeared in [11].

In this article, we attempt to address the problem: given a manifold, described by
equality constraints in a vector space, or quotient of such manifold, and a metric, also
defined by an analytic formula, compute the gradient and Riemannian Hessian for a
function on the manifold. Recall the Riemannian Hessian is computed using the Levi-
Civita connection. By computing, we mean a procedural, not necessarily closed-form
approach. We are looking for a sequence of equations, operators, and expressions
to solve and evaluate, rather than starting from a distance minimizing problem. We
believe that the approach we take, using a classical formula for projections together
with an adaptation of the Christoffel symbol calculation to ambient space addresses
the problem effectively for many manifolds encountered in applications. This method
provides a very explicit and transparent procedure that we hope will be helpful to
researchers in the field. The main feature is it can handle manifolds with non-constant
embeddedmetrics, such as Stiefelmanifoldswith the canonicalmetric, or themanifold
of positive-definite matrices with the affine-invariant metrics. The method allows us
to compute Riemannian gradients and Hessian for several new families of metrics
on manifolds often encountered in applications, including optimization and machine
learning. While the effect of changing metrics on first-order optimization methods has
been considered previously, we hope this will lead to future works on adapting metrics
to second-order methods. The approach is also suitable in the case where the gradient
formula is not of closed-form. We also provide several useful identities known in
special cases.

As an application of the method developed here, we give a short derivation of the
gradient and Hessian of a family of metrics studied recently in [11], extending both the
canonical and embedded metric on the Stiefel manifolds with a closed-form geodesics
formula. (We were ignorance of [11], which were done before we started this project
in 2020). We derive the Riemannian framework for the induced metrics on certain
quotients of Stiefel manifolds, including flagmanifolds.We also give complete metrics
on the fixed-rank positive-semidefinite matrix manifolds, with efficiently computable
gradient, Hessian, and geodesics.

When the metric on a submanifold of a vector space (called the ambient space)
is induced from the Euclidean metric on the vector space, the Riemannian gradient
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and Hessian correspond to the projected gradient and the projected Hessian in the
literature of constrained optimization [9, section 4.9], [10]. When the metric is given
by an analytic expression, (which is a metric when restricted to the constrained set, but
not necessarily on the whole vector space), using [22, Lemma 4.3], we can compute
Riemannian Hessian by projecting the Riemannian Hessian on the ambient space, and
[22, Lemma 7.45] give us a similar computation for a quotient manifold. Representing
the metric as an operator defined on the quotient/constrained manifold, we derive
directly formulas for the Levi-Civita connection and the Riemannian Hessian that are
dependent on the operator values on the manifold alone, giving us a procedural and
simple approach, as explained. This approach has also been advocated in [1]. However,
its usage is dependent on an extensionwith a computable Levi-Civita connection in the
ambient space. This last step seems to restrict its use, a tricky extension is sometimes
used, for example, in the case of the Grassmann manifold in [1]. We address this issue
by working directly with the metric expression, giving an explicit formula for the
connection in Eq. (3.10). This formula generalizes the connection formula using the
Weingarten map in [2] for constant metrics.

Our framework works for both real and complex cases. The paper [15] gave the
original treatment of the Hessian for the unitary/complex case. The case of Stiefel
manifolds was studied in [9, 11], we reprove the results using our framework and
provide complete formulas for theHessian.Optimization onflagmanifoldswas studied
in [21, 28] but a second-order method had not been given in an efficient form, an
expression for the Riemannian Hessian vector product was not given/implemented.
We provide second-order methods for the flagmanifolds with the full family ofmetrics
of [11], including efficient formulas for the Riemannian Hessian.

The affine-invariant metric on positive-definite matrices was also widely studied,
for example in [12, 23–25]. There are numerous metrics on the fixed-rank positive-
semidefinite (PSD) manifolds, which we mentioned [7] that motivated our approach.
Although working with the same product of Stiefel and positive-definite manifolds
with the affine-invariant metric, that paper did not use the Riemannian submersion
metric on the quotient and focused on first-order methods. We compute the Levi-
Civita connection for second-order methods. In [13, 27], two different families of
metrics on PSDmanifolds are studied. They both require solving Lyapunov equations
but have different behaviors on the positive-definite part. Articles [15, 17] discuss the
effect of adapting metrics to optimization problems ([17] adapts ambient metrics to
the objective function using first-order methods.)

In the next section, we provide some background and summarize notations. In
Sect. 3, we formulate and prove the main theoretical results of the paper. We then
identify the adjoints of common operators on matrix spaces. We apply the theory
developed to the manifolds discussed above. We then discuss numerical results and
implementation. We conclude with a discussion of future directions.

2 Preliminaries

First-order approximation of a function f onRn relies on the computation of the gradi-
ent and the second-order approximation relies on the Hessianmatrix or Hessian-vector
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product.When a function f is definedon aRiemannianmanifoldM, the relevant quan-
tities are the Riemannian gradient, which provides a first-order approximation for f ,
and Riemannian Hessian, providing the second-order term.

When a manifold M is embedded in an inner product space E with the inner
product denoted by 〈· · · 〉E, if we have a function g from M with values in the set
of positive-definite operators operating on E, we can define an inner product of two
vectors ω1, ω2 ∈ E by 〈ω1,g(Y )ω2〉E for Y ∈ M. This induces an inner product on
each tangent space TYM and hence a Riemannian metric on M, assuming sufficient
smoothness. In this setup, if f is extended to a function f̂ on an open neighborhood
of M ⊂ E, then the Riemannian gradient relates to the gradient of f̂ through a
projection to TYM. In the theory of generalized least squares (GLS) [4], it is well-
known that a projection to the nullspace of a full-rank matrix J in an inner product
space equipped with a metric g (also represented by a matrix) is given by the formula
IE−g−1 J T(Jg−1 J T)−1 J (IE is the identity matrix/operator of E). If the tangent space
is the nullspace of an operator J, and an operator g is used to describe the metric
instead of matrices J and g, we have a similar formula where the transposed matrix
J T is replaced by the adjoint operator Jt. J is the Jacobian of a full rank equality
constraint. This projection formula is not often used in the literature, the projection is
usually derived directly by minimizing the distance to the tangent space. It turns out
when J is given by a matrix equation, Jt is simple to compute. For manifolds common
in applications, J g−1 Jt could often be inverted efficiently. Thus, this will be our main
approach to computing the Riemannian gradient.

The Levi-Civita connection of the manifold, which allows us to take covariant
derivatives of the gradient, is used to compute the Riemannian Hessian. A vector
field ξ in our context could be considered as a E-valued function from M, such that
ξ(Y ) ∈ TYM for allY ∈ M. For two vector fields ξ, η onM, the directional derivative
Dξ η is an E-valued function but generally not a vector field (i.e. (Dξ η)(Y ) ∈ TYM
may not hold). A covariant derivative [22] (or connection) associates a vector field
∇ξ η to two vector fields ξ, η on M. The association is linear in ξ , R-linear in η and
satisfies the product rule

∇ξ ( f η) = f ∇ξ η + (Dξ f )η

for a function f on M, where Dξ f denotes the Lie derivative of f (the directional
derivative of f along direction ξx at each x ∈ M). For a Riemannian metric 〈, 〉R
on M, the Levi-Civita connection is the unique connection that is compatible with
metric, Dξ 〈η, φ〉R = 〈∇ξ η, φ〉R + 〈η,∇ξ φ〉R (φ is another vector field), and torsion-
free, ∇ξ η −∇ηξ = [ξ, η]. If a coordinate chart ofM is identified with an open subset
ofRn and 〈, 〉R is given by a positive-definite operator gR , (i.e. 〈ξ, η〉R = 〈ξ,gRη〉Rn )

∇ξ η = Dξ η + 1

2
g−1
R ((DξgR)η + (DηgR)ξ − X(ξ, η)),

where X(ξ, η) ∈ R
n (uniquely defined) satisfies 〈DφgRξ, η〉Rn = 〈φ,X(ξ, η)〉Rn

for all vector field φ. The formula is valid for each coordinate chart, and it is often
given in terms of Christoffel symbols in index notation ([22], proposition 3.13). We
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will generalize this operator formula. The gradient and X are examples of index-
raising, translating from a (multi)linear scalar function h to a (multi)linear vector-
valued function of one less variable, that evaluates back to h using the inner product
pairing.

The Riemannian Hessian could be provided in two formats, as a bilinear form
rhess02f (ξ, η), returning a scalar function to every twovectorfields ξ, η on themanifold,

or a (Riemannian) Hessian vector product rhess11f ξ , an operator returning a vector
field given a vector field input ξ . In optimization, as we need to invert the Hessian
in second-order methods, the Riemannian Hessian vector product form rhess11f is

more practical. However, rhess02f is directly related to the Levi-Civita connection (see
Eq. (3.12) below), and can be read from the geodesic equation: In [9], the authors
showed the geodesic equation (for a Stiefel manifold) is given by Ÿ + Γ (Ẏ , Ẏ ) = 0
where the Christoffel function Γ (defined below) maps two vector fields to an ambient
function and the bilinear form rhess02f is f̂Y Y (ξ, η) − 〈Γ (ξ, η), f̂Y 〉E. Here, f̂Y and

f̂Y Y are the ambient gradient and Hessian, see Sect. 3.
In application, we also work with quotient manifolds, an example of Riemannian

submersion. Recall ([22], Definition 7.44) a Riemannian submersion π : M → B
between two manifoldsM and B is a smooth, onto mapping, such that the differential
dπ is onto at every pointY ∈ M, the fiberπ−1(b), b ∈ B is aRiemannian submanifold
of M, and dπ preserves scalar products of vectors normal to fibers. An important
example is the quotient space by a free and proper action of a group of isometries.
At each point Y ∈ M, the tangent space of π−1(πY ) is called the vertical space,
and its orthogonal complement with respect to the Riemannian metric is called the
horizontal space. The collection of horizontal spaces HY (Y ∈ M) of a submersion
is a subbundleH. The horizontal lift, identifying a tangent vector ξ at b = π(Y ) ∈ B
with a horizontal tangent vector ξH at Y is a linear isometry between the tangent space
TbB and HY , the horizontal space at Y . The Riemannian framework for a quotient
of embedded manifolds is studied through the horizontal lifts, the focus is on the
horizontal bundle H instead of the tangent bundle TM.

The reader can consult [1, 9] for details of Riemannian optimization, including
the basic algorithms once the Euclidean and Riemannian gradient and Hessian are
computed. In essence, it has been recognized that many popular equation solving and
optimization algorithms onEuclidean spaces can be extended to amanifold framework
([9, 10]). Steepest descent on real vector spaces could be extended to manifolds using
the Riemannian gradient defined above together with a retraction. Here, a retraction
R is a sufficiently smooth map mapping X ∈ M, η ∈ TXM to R(X , η) ∈ M for
sufficiently small η. Also, using the Riemannian Hessian, second-order optimization
methods, for example, Trust-Region ([1]), could be extended to manifold context. At
the i-th iteration step, an optimization algorithm produces a tangent vector ηi to the
manifold point Yi , which will produce the next iteration point Yi+1 = R(Yi , ηi ) ([3],
chapter 4 of [1]). For manifolds considered in this article, computationally efficient
retractions are available.
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2.1 Notations

We will attempt to state and prove statements for both the real and Hermitian cases
at the same time when there are parallel results, as discussed in Sect. 4.1. The base
field K will be R or C. We use the notation K

n×m to denote the space of matrices of
size n × m over K. We consider both real and complex vector spaces as real vector
spaces, and by TrR we denote the trace of a matrix in the real case or the real part of
the trace in the complex case. A real matrix space is a real inner product space with the
Frobenius inner product TrR abT, while a complex matrix space becomes a real inner
product space with inner product TrR abH (see Sect. 4.1). We will use the notation t to
denote the real adjoint T for a real vector space, and Hermitian adjoint H for a complex
vector space, both for matrices and operators. We denote symtX = 1

2 (X + X t),
skewtX = 1

2 (X − X t). We denote by Symt,K,n the space of t-symmetric matrices
X ∈ K

n×n with X t = X . The t-antisymmetric space Skewt,K,n is defined similarly.
Symbols ξ, η are often used to denote tangent vector or vector fields, while ω is used
to denote a vector on the ambient space. The directional derivative in direction v is
denoted by Dv , it applies to scalar, vector, or operator-valued functions. If X is a vector
field and f is a function, the Lie derivatives will be written as DX f . We also apply Lie
derivatives on scalar or operator-valued functions when X is a vector field, and write
DXg for example, where g is a metric operator. Because the vector field X may be a
matrix, we prefer the notation DXg to the usual Lie derivative notation Xg which may
be ambiguous. ByUK,d we denote the group ofKd×d matricesU satisfyingU tU = Id
(called t-orthogonal), thus UK,d is the real orthogonal group O(d) when K = R and
unitary group U(d) when K = C.

In our approach, a subspace HY of the tangent space at a point Y on a manifold
M is defined as either the nullspace of an operator J(Y ), or the range of an operator
N(Y ), both are operator-valued functions on M. Since we most often work with one
manifold point Y at a time, we sometimes drop the symbol Y to make the expressions
less lengthy. Other operator-valued functions defined in this paper include the ambient
metric g, the projectionΠH,g toH, the Christoffel metric termK, and their directional
derivatives. We also use the symbols f̂Y and f̂Y Y to denote the ambient gradient and
Hessian (Y is the manifold variable). We summarize below symbols and concepts
related to the main ideas in the paper, with the Stiefel case as an example (details
explained in sections below).
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Symbol Concept

E Ambient space, M is embedded in E. (e.g. Kn×p).
EJ, EN Inner product spaces, range of J(Y ) and domain of N(Y ) below.
H A subbundle of TM. Either TM or a horizontal bundle in practice.
J(Y ) Operator from E onto EJ, Null(J(Y )) = HY ⊂ TYM. (e.g. Y tω + ωtY ).
N(Y ) Inject. oper. from EN to E ontoHY ⊂ TYM (e.g. N(A, B) = Y A + Y⊥B).
xtrace Index-raising operator for the trace (Frobenius) inner product.
g(Y ) Metric given as self-adjoint operator on E (e.g. (α1YY t + α0Y⊥Y t⊥)η).
Πg, ΠH,g Projection toH ⊂ TM in Proposition 3.2.
K(ξ, η) Chrisfl. metric term 1

2 ((Dξg)η + (Dη)gξ − xtrace(〈(Dφg)ξ, η〉E, φ)).
ΓH(ξ, η) Chrisfl. function ΠH,gg

−1K(ξ, η) − (Dξ ΠH,g)η.

3 Ambient Space and Optimization on RiemannianManifolds

If f̂ is a scalar function from an open subset U of a Euclidean space E, its gradient
grad f̂ satisfies 〈η̂,grad f̂ 〉E = Dη̂ f̂ for all vector fields η̂ on U where Dη̂ f̂ is the Lie

derivative of f̂ with respect to η̂. As well-known [1, 9], the Riemannian gradient and
Hessian product of a function f on a submanifold M ⊂ E could be computed from
the Euclidean gradient and Hessian, which are evaluated by extending f to a function
f̂ on a region of E near M. The process is independent of the extension f̂ .

Definition 3.1 We call an inner product (Euclidean) space (E, 〈, 〉E) an embedded
ambient space of a RiemannianmanifoldM if there is a differentiable (not necessarily
Riemannian) embedding M ⊂ E.

Let f be a function onM and f̂ be an extension of f to an open neighborhood of E
containingM. We call grad f̂ an ambient gradient of f . It is a vector-valued function
fromM to E such that for all vector fields η on M

〈η(Y ),grad f̂ (Y )〉E = (Dη(Y ) f )(Y ) for all Y ∈ M (3.1)

or equivalently 〈η,grad f̂ 〉E = Dη f . Given an ambient gradient grad f̂ with continu-
ous derivatives, we define the ambient Hessian to be the map hess f̂ associating to a
vector field ξ onM the derivative Dξgrad f̂ . We define the ambient Hessian bilinear
form hess f̂ 02(ξ, η) to be 〈(Dξgrad f̂ ), η〉E. If Y ∈ M is considered as a variable, we
also use the notation f̂Y for grad f̂ and f̂Y Y for hess f̂ .

By the Whitney embedding theorem, any manifold has an ambient space. Coordinate
charts could be considered as a collection of compatible local ambient spaces.

From the embedding M ⊂ E, the tangent space of M at each point Y ∈ M is
considered as a subspace of E. Thus, a vector field on M could be considered as an
E-valued function onM and we can take its directional derivatives. This derivative is
dependent on the embedding and hence not intrinsic. For a function f and two vector
fields ξ, η on M ⊂ E we have:

f̂ 02YY (ξ, η) = hess f̂ 02(ξ, η) = Dξ (Dη f ) − 〈Dξ η, f̂Y 〉E. (3.2)
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This follows from Dξ 〈η, f̂Y 〉E = 〈Dξ η, f̂Y 〉E + 〈η,Dξ ( f̂Y )〉E = Dξ (Dη f ) by taking
directional derivatives of Eq. (3.1), thus 〈η,Dξ ( f̂Y )〉E can be evaluated by Eq. (3.2).

We begin with a standard result of inner product spaces. Recall that the adjoint of
a linear map A between two inner product spaces V and W is the map At such that
〈Av,w〉W = 〈v, Atw〉V where 〈, 〉V , 〈, 〉W denote the inner products on V and W ,
respectively. If A is represented by a matrix also called A in two orthogonal bases in
V and W respectively, then At is represented by its transpose AT. A projection from
an inner product space V to a subspace W is a linear operator ΠW on V such that
ΠW v ∈ W and 〈v,w〉V = 〈ΠW v,w〉V for all w ∈ W , v ∈ V . It is well-known a
projection always exists and unique, and ΠW v minimizes the distance from v to W .

Proposition 3.1 Let E be a vector space with an inner product 〈, 〉E. Let g be a self-
adjoint positive-definite operator on E, thus 〈ge1, e2〉E = 〈e1,ge2〉E. The operator g
defines a new inner product on E by 〈e1, e2〉E,g := 〈e1,ge2〉E. If W = Null(J) for a
map J from E onto an inner product space EJ, the projection Πg = Πg,W from E to W
under the inner product 〈, 〉E,g is given by Πge = e − g−1 Jt(J g−1 Jt)−1 J e, where Jt

is the adjoint map of J for all e ∈ E.
Alternatively, ifN is a one-to-onemap from an inner product space EN to E such that

W = N(EN), then the projection to W could be given by Πge = N(NtgN)−1Ntge.
The operators gΠg and Πgg−1 are self-adjoint under 〈, 〉E.

Proof The assumption that J is onto EJ shows Jt is injective (as Jt a = 0 implies
〈a, Jω〉EJ = 0 for all ω ∈ E, and since J is onto this implies a = 0). This in
turn implies J g−1 Jt is invertible as if J g−1 Jt a = 0, then 〈J g−1 Jt a, a〉E = 0, so
〈g−1 Jt a, Jt a〉E = 0 and hence Jt a = 0 as g is positive-definite. We can show NtgN
is invertible similarly.

For the first case, if eW ∈ W = Null(J) and e ∈ E,

〈g−1 Jt(J g−1 Jt)−1 J e,geW 〉E = 〈Jt(J g−1 Jt)−1 J e, eW 〉E = 〈(J g−1 Jt)−1 J e, J eW 〉E,

where the last term is zero because eW ∈ Null(J), so 〈Πge,geW 〉E = 〈e,geW 〉E. For
the second case, assuming eW = N(eN) for eN ∈ EN then (Using (AB)t = BtAt):

〈N(NtgN)−1Ntge,gN(eN)〉E = 〈ge,N(NtgN)−1NtgN(eN)〉E = 〈ge,N(eN)〉E.

The last statement follows from the defining equations of Πg. 	

Recall the Riemannian gradient of a function f on a manifold M with Riemannian
metric 〈, 〉R is the vector field rgrad f such that 〈rgrad f (Y ), ξ(Y )〉R = (Dξ f )(Y ) for
any point Y ∈ M, and any vector field ξ . LetH be a subbundle of the tangent bundle
TM, we recall this means H is a collection of subspaces (fibers) HY ⊂ TYM for
Y ∈ M such thatH is itself a vector bundle onM, i.e.H is locally a product of a vector
space and an open subset ofM, togetherwith a linear coordinate change condition (see
[22], definition 7.24 for details). We can define theH-Riemannian gradient rgradH, f
of f as the unique H-valued vector field such that 〈rgradH, f , ξH〉R = DξH f for
any H-valued vector field ξH. Uniqueness follows from nondegeneracy of the inner
product restricted toH. Clearly, whenH = TM, rgradH, f = rgradTM f is the usual
Riemannian gradient. We have:
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Proposition 3.2 Let (E, 〈, 〉E) be an embedded ambient space of a manifold M as
in definition 3.1. Let g be a smooth operator-valued function associating each Y ∈
M a self-adjoint positive-definite operator g(Y ) on E. Thus, each g(Y ) defines an
inner product on E, which induces an inner product on TYM and hence g induces
a Riemannian metric on M. Let H be a subbundle of TM. Define ΠH,g to be the
operator-valued function such that ΠH,g(Y ) is the projection associated with g(Y )

from E to the fiber HY , and for the case H = TM, define ΠM,g = ΠTM,g. For an
ambient gradient grad f̂ of f , theH-Riemannian gradient of f can be evaluated as:

rgradH, f = ΠH,gg−1grad f̂ . (3.3)

If there is an inner product space EJ and a map J from M to the space L(E, EJ) of
linear maps from E to EJ, such that for each Y ∈ M, the range of J(Y ) is precisely EJ,
and its nullspace isHY then ΠH,g(Y )e for e ∈ E could be given by:

ΠH,g(Y )e = e − g−1 Jt(J g−1 Jt)−1 J e; all are evaluated at Y . (3.4)

If there is an inner product space EN and a map N from M to the space L(EN, E)
of linear maps from EN to E such that for each Y ∈ M, N(Y ) is one-to-one, with its
range is precisely HY then:

ΠH,ge = N(NtgN)−1Ntge; all are evaluated at Y . (3.5)

Proof For any H-valued vector field ξH, we have:

〈ΠH,gg
−1grad f̂ ,gξH〉E = 〈grad f̂ ,ΠH,gg

−1gξH〉E = 〈 f̂Y , ξH〉E = DξH f

because ΠH,gg−1 is self-adjoint and the projection is idempotent. The remaining
statements are just a parametrized version of Proposition 3.1. 	

Note, we are not making any smoothness assumption on J or N yet, although ΠH,g is
assumed to be sufficiently smooth. In fact, N is often not smooth. J is usually smooth
as it is constructed from a smooth constraint onM, or on the horizontal requirements
of a vector field.

Definition 3.2 A triple (M,g, E) with E an inner product space, M ⊂ E a differ-
entiable manifold submersion, and g is a positive-definite operator-valued-function
from M to L(E, E) is called an embedded ambient structure of M. M is a Rieman-
nian manifold with the metric induced by g.

From the definition of Lie brackets, for an embedded ambient space E ofM we have

Dξ η − Dηξ = [ξ, η] for all vector fields ξ, η onM. (3.6)

Recall if M, 〈, 〉R is a Riemannian manifold with the Levi-Civita connection ∇, the
Riemannian Hessian (vector product) of a function f is the operator sending a tan-
gent vector ξ to the tangent vector rhess11f ξ = ∇ξ rgrad f . The Riemannian Hessian
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bilinear form is the map evaluating on two vector fields ξ, η as 〈∇ξ rgrad f , η〉R .
For a subbundle H of TM and a H-valued vector field ξH, we define the H-
Riemannian Hessian similarly as rhess11H, f ξH = ΠH,g∇ξH rgradH, f and we call

rhess02H, f (ξH, ηH) = 〈ΠH,g∇ξH rgradH, f , ηH〉R = 〈∇ξH rgradH, f , ηH〉R the H-
Riemannian Hessian bilinear form. The next theorem shows how to compute the
Riemannian connection and the associated Riemannian Hessian.

Theorem 3.1 Let (M,g, E) be an embedded ambient structure of a Riemannian man-
ifoldM. There exists an E-valued bilinear formX sending a pair of vector fields (ξ, η)

to X(ξ, η) ∈ E such that for any vector field ξ0:

〈X(ξ, η), ξ0〉E = 〈ξ, (Dξ0g)η〉E. (3.7)

LetΠM,g be the projection from E to the tangent bundle ofM. ThenΠM,gg−1X(ξ, η)

is uniquely defined given ξ, η and X(ξ, η) is also unique if we require X(ξ(Y ), η(Y ))

to be in TYM for all Y ∈ M. For two vector fields ξ, η on M, define

K(ξ, η) := 1

2
((Dξg)η + (Dηg)ξ − X(ξ, η)) ∈ E,

∇̂ξ η := Dξ η + g−1K(ξ, η),

∇ξ η := ΠM;g∇̂ξ η = ΠM;g(Dξ η + g−1K(ξ, η)).

(3.8)

Then ∇ξ η is the covariant derivative associated with the Levi-Civita connection. It
could be written using the Christoffel function Γ :

Γ (ξ, η) := −(DξΠM;g)η + ΠM;gg−1K(ξ, η),

∇ξ η = Dξ η + Γ (ξ, η).
(3.9)

IfH is a subbundle of TM, and ξH, ηH are twoH-valued vector fields, we have:

ΠH,g∇ξHηH = DξHηH + ΓH(ξH, ηH) with

ΓH(ξH, ηH) := −(DξHΠH;g)ηH + ΠH;gg−1K(ξH, ηH).
(3.10)

If f is a function onM, f̂Y is an ambient gradient of f and f̂YY is the ambient Hessian
operator, then rhess11H, f ξH := ΠH;g∇ξH rgradH, f and rhess02H, f are given by:

rhess11H, f ξH = ΠH;gg−1( f̂Y Y ξH + g(DξH(ΠH,gg−1)) f̂Y + K(ξH,ΠH,gg−1 f̂Y ))

= ΠH;gg−1( f̂Y Y ξH + g(DξHΠH,g)g−1 f̂Y

−(DξHg)g−1 f̂Y + K(ξH,ΠH,gg−1 f̂Y )), (3.11)

rhess02H, f (ηH, ξH) = 〈∇ξHΠH,gg−1 f̂Y ,gηH〉E
= f̂Y Y (ξH, ηH) − 〈ΓH(ξH, ηH), f̂Y 〉E. (3.12)
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The form Γ (ξ, η) appeared in [9] and was computed for the case of a Stiefel manifold,
and was called a Christoffel function. It includes the Christoffel metric term K and
the derivative of ΠM,g. Evaluated at Y ∈ M, it depends only on the tangent vectors
η(Y ) and ξ(Y ), not on the whole vector fields. Equation (2.57) in that reference is the
expression of rhess02f in terms of Γ above. In [9], ΓH was computed for a Grassmann
manifold. The formulation for subbundles allows us to extend the result to Riemannian
submersions and quotient manifolds. Equation3.11 generalizes the Weingarten map
formula in [2, equations 7,10] when g = IE, since by product rule

ΠH;g(DξHΠH,g) f̂Y = (DξH(Π2
H,g)) f̂Y − (DξHΠH,g)ΠH;g f̂Y ,

and rhess11H, f ξH becomes

ΠH;g( f̂Y Y ξH) + ΠH;g(DξHΠH,g) f̂Y = ΠH;g( f̂Y Y ξH) + (DξHΠH,g)((IE − ΠH;g) f̂Y ).

Here, V := (IE − ΠH;g) f̂Y is vertical (ΠH;gV = 0) and (DξHΠH,g)V is horizontal.

Proof X is the familiar index-raising term: for Y ∈ M and v0, v1, v2 ∈ TYM, as
〈v1, (Dv0g)v2〉E is a tri-linear function on TYM and the Riemannian inner product
on TYM is nondegenerate, the index-raising bilinear form X̃ with value in TYM is
uniquely defined, so X(ξ(Y ), η(Y )) = X̃(ξ(Y ), η(Y )) satisfies Eq. (3.7), where we
consider TYM as a subspace of E. Thus, we have proved the existence of X. If we
take another E-valued function X1 satisfying the same condition but not necessarily
in the tangent space, the expression ΠM,gg−1X1, hence ΠM,gg−1K is independent
of the choice of X1, as for three vector fields ξ0, ξ, η

〈gξ0,ΠM,gg
−1X1(ξ, η)〉E = 〈gξ0,g−1X1(ξ, η)〉E = 〈ξ,Dξ0η〉E.

We can verify directly that ∇ξ η satisfies the conditions of a covariant derivative:
linear in ξ and satisfying the product rule with respect to η. Similar to the calculation
with coordinate charts, we can show ∇ is compatible with metric: for two vector
fields η, ξ , 2〈∇ξ η,gη〉E = 2〈ΠM,g∇̂ξ η,gη〉E, which is 2〈Dξ η + g−1K(ξ, η),gη〉E
by definition and by property of the projection. Expanding the last expression and use
〈X(ξ, η), η〉E = 〈(Dηg)ξ, η〉E

2〈Dξ η,gη〉E + 2〈g−1K(ξ, η),gη〉E
= 2〈Dξ η,gη〉E + 〈(Dξg)η + (Dηg)ξ − X(ξ, η), η〉E

= 2〈Dξ η,gη〉E + 〈(Dξg)η, η〉E = Dξ 〈η,gη〉E.
Torsion-free follows from the fact that K is symmetric and Eq. (3.6):

∇ξ η − ∇ηξ = ΠM,g(Dξ η − Dηξ) = [ξ, η].

For Eq. (3.9), we note ΠM,gDξ η = Dξ (ΠM,gη) − (DξΠM,g)η so

∇ξ η = Dξ (η) − (DξΠM,g)η + ΠM,gg−1K(ξ, η).
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For Eq. (3.10),ΠH,gΠM,g = ΠH,g if Y ∈ M,HY ⊂ TYM. Hence, Eq. (3.8) implies

ΠH,g∇ξHηH = ΠH;g(Dξ ηH + g−1K(ξH, ηH)),

and as before, we use ΠH,gDξHηH = DξH(ΠH,gηH) − (DξHΠH,g)ηH and
ΠH,gηH = ηH. The first line of Eq. (3.11) is by definition and Dξ (ΠH,gg−1 f̂Y ) =
Dξ (ΠH,gg−1) f̂Y + ΠH,gg−1 f̂Y Y . Expand, note ΠH,gg−1(gΠH,gDξHg

−1) f̂Y =
−ΠH,gg−1(DξHg)g−1 f̂Y (as ΠH,g is idempotent), we have the second line. For Eq.
(3.12):

〈∇ξHΠH,g(g−1 f̂Y ),gηH〉E = DξH〈ΠH,g(g−1 f̂Y ),gηH〉E − 〈ΠH,g(g−1 f̂Y ),g∇ξ ηH〉E
= DξH〈 f̂Y , ηH〉E − 〈 f̂Y ,ΠH,gg−1gΠH,g∇̂ξHηH〉E
= DξH〈 f̂Y , ηH〉E − 〈 f̂Y ,ΠH,g∇̂ξHηH〉E
= DξH〈 f̂Y , ηH〉E − 〈 f̂Y ,DξHηH〉E − 〈 f̂Y , ΓH(ξH, ηH)〉E
= f̂Y Y (ξH, ηH) − 〈 f̂Y , ΓH(ξH, ηH)〉E,

from compatibility with metric, idempotency of ΠH,g, Eqs. (3.10) and (3.2). 	

When the projection is given in terms of J, and J is sufficiently smooth we have:

Proposition 3.3 If J as in Proposition 3.2 is of class C2 then:

ΓH(ξH, ηH) = g−1 Jt(J g−1 Jt)−1(DξH J)ηH + ΠH,gg−1K(ξH, ηH) (3.13)

for twoH-valued tangent vectors ξH, ηH at Y ∈ M. We can evaluate rhess11H, f ξH by

setting ω = f̂Y in the following formula, which is valid for all E-valued function ω:

∇ξHΠH,gg−1ω = ΠH,gg−1DξHω − ΠH,gg−1(DξHg)g−1ω

− ΠH,g(DξH(g−1 Jt))(J g−1 Jt)−1 J g−1ω + ΠH,gg−1K(ξH,ΠH,g(g−1ω)).

(3.14)

Proof The first expression follows by expanding DξHΠH,g in terms of J, noting
J ηH = 0. For the second, expandΠH,g∇̂ξH(H,Πgg−1ω) = ΠH,gDξH(ΠH,gg−1ω)+
ΠH,gg−1K(ξH,ΠH,gg−1ω), then expand the first term and use ΠH,gg−1 Jt = 0. 	

The following proposition allows us to apply the results so far in familiar contexts:

Proposition 3.4 Let (M,g, E) be an embedded ambient structure.

1. Fix an orthogonal basis ei of E, let f be a function on M, which is a restriction
of a function f̂ on E, define f̂Y to be the function from M to E, having the i-th
component the directional derivative Dei f̂ , then f̂Y is an ambient gradient. IfM
is defined by the equation C(Y ) = 0 (Y ∈ M) with a full rank Jacobian, then
the nullspace of the Jacobian JC (Y ) is the tangent space ofM at Y , hence JC (Y )

could be used as the operator J(Y ).
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2. (Riemannian submersion) Let (M,g, E) be an embedded ambient structure. Let
π : M → B be a Riemannian submersion, with H the corresponding hori-
zontal subbundle of TM. If ξ, η are two vector fields on B with ξH, ηH their
horizontal lifts, then the Levi-Civita connection ∇B

ξ η on B lifts to ΠH,g∇ξHηH,
hence Eq. (3.10) applies. Also, Riemannian gradients and Hessians on B lift to
H-Riemannian gradients and Hessians onM.

Proof The construction of f̂Y ensures 〈 f̂Y , ei 〉E = Dei f . The statement about the
Jacobian is simply the implicit function theorem. Isometry of horizontal lift and [22],
Lemma 7.45, item 3, gives us Statement 2. 	


In practice, f̂Y is computed by index-raising the directional derivative. For clarity,
so far we use the subscriptH to indicate the relation to a subbundleH. For the rest of
the paper, we will drop the subscriptsH on vector fields (referring to ξ instead of ξH)
as it will be clear from the context if we discuss a vector field in H, or just a regular
vector field.

Remark 3.1 The results of this section offer two theoretical insights in deciding poten-
tial metric candidates in optimization problems:

(1.) Non-constant ambient metrics may have the same big-O time picture as the con-
stant one. This is the case with the examples in this paper when the constraint and
the metrics are given in matrix polynomials or inversion. If the ambient Hessian
could be computed efficiently, in many cases the (maybe tedious) Riemannian
Hessian expressions, could be computed by operator composition with the same
order-of-magnitude time complexity as the Riemannian gradient. This suggests
non-constant metrics may be competitive if the improvement in convergence
rate is significant. For certain problems involving positive-definite matrices, a
non-constant metric is a better option([25]).

(2.) There is a theoretical bound for the cost of computing the gradient, assuming
that the metric g is easy to invert. If the complexity of computing g and J is
known, it remains to estimate the cost of inverting J g−1 Jt (or NtgN). While in
our examples these operators are reduced to simple ones that could be inverted
efficiently, otherwise, J g−1 Jt could be solved by a conjugate gradient (CG)-
method (one example is in [14]). In that case, the time cost is proportional to
the rank of J (or N)) times the cost of each CG step, which can be estimated
depending on the problem.

Example 3.1 LetM be a submanifold of E, defined by a system of equationsC(x) = 0,
where C is a map from E to R

k (x ∈ M). In this case, JC = Cx is the Jacobian of
C , assumed to be of full rank. The projection of ω ∈ E to the tangent space TxM
given by

Πgω = ω − CT
x (CxC

T
x )

−1Cxω (3.15)

and the covariant derivative is given by ∇ξ η = Dξ η + CT
x (CxCT

x )
−1(DξCx )η for two

vector fields ξ, η. With Γ (ξ, η) = CT
x (CxCT

x )
−1(DξCx )η, the Riemannian Hessian
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bilinear form is computed from Eq. (3.12), and the Riemannian Hessian operator is:

Πg( f̂x xξ − (DξCx )
T(CxC

T
x )

−1Cx f̂x ).

The expression (CxCT
x )

−1Cx f̂x is often used as an estimate for theLagrangemultiplier,
this result was discussed in section 4.9 of [9]. When C(x) = xTx −1 (the unit sphere)
JC ω = xTω, the Riemannian connection is thus ∇ξ η = Dξ η + xξTη, a well-known
result.

Our main interest is to study matrix manifolds. As seen, we need to compute Nt or Jt.
We will review adjoint operators for basic matrix operations.

4 Matrix Manifolds: Inner Products and Adjoint Operators

4.1 Matrices and Adjoints

We will use the trace (Frobenius) inner product on matrix vector spaces considered
here. Again, the base field K is either R or C. We use the letters m, n, p to denote the
dimensions of vector spaces. We will prove results for both the real and complex cases
together, as often there is a complex result using theHermitian transpose corresponding
to a real result using the real transpose. The reason is when C

n×m , as a real vector
space, is equipped with the real inner product Re Tr(abH) (for a, b ∈ C

n×m , H is
the Hermitian transpose), then the adjoint of the scalar multiplication operator by a
complex number c, is the multiplication by the conjugate c̄. T o fix some notations,
we use the symbol TrR to denote the real part of the trace, so for a matrix a ∈ K

n×n ,
TrR a = Tr a if K = R and TrR a = Re(Tr a) if K = C. The symbol t will be
used on either an operator, where it specifies the adjoint with respect to these inner
products, or to a matrix, where it specifies the corresponding adjoint matrix. When
K = R, we take t to be the real transpose, and when K = C we take t to be the
hermitian transpose. The inner product of two matrices a, b is TrR(abt). Recall that
we denote by Symt,K,n the space of all t-symmetric matrices (At = A), and Skewt,K,n
the space of all t-antisymmetric matrices (At = −A). We consider both Symt,K,n
and Skewt,K,n inner product spaces under TrR. We defined the symmetrizer symt and
antisymmetrizer skewt in Sect. 2.1, with the usual meaning.

Proposition 4.1 With the above notations, let Ai , Bi , X be matrices such that the
functional L(X) = ∑k

i=1 TrR(Ai X Bi ) + TrR(Ci X tDi ) is well-formed. We have:
1. The matrix xtrace(L, X) = ∑k

i=1 A
t
i B

t
i + DiCi is the unique matrix L1 such that

TrR L1X t = L(X) for all X ∈ K
n×m (this is the gradient of L).

2. The matrix xtracesym(L, X) = symt(
∑k

i=1 A
t
i B

t
i + DiCi ) is the unique matrix

L2 ∈ Symt,K,n satisfying TrR(L2X t) = L(X) for all X ∈ Symt,K,n.

3. The matrix xtraceskew(L, X) = skewt(
∑k

i=1 A
t
i B

t
i + DiCi ) is the unique matrix

L3 ∈ Skewt,K,n satisfying TrR(L3X t) = L(X) for all X ∈ Skewt,K,n.
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There is an abuse of notation as xtrace(L, X) is not a function of two variables, but
X should be considered a (symbolic) variable and L is a function in X , however, this
notation is convenient in symbolic implementation.

Proof We have TrR(xtrace(L)X t) = L(X) from

TrR(Ai X Bi ) = TrR(Bt
i X

tAt
i ) = TrR(At

i B
t
i X

t)

and TrR(Ci X tDi ) = TrR(DiCi X t). Uniqueness follows from the fact that TrR is a
non-degenerate bilinear form. The last two statements follow from

• TrR(xtrace(L)X t) = TrR(xtrace(L)t)X if X t = X .
• TrR(xtrace(L)tX) = −TrR(xtrace(L)t)X if X t = −X .

	

Remark 4.1 The index-raising operation/gradient xtrace could be implemented as a
symbolic operation on matrix trace expressions, as it involves only linear opera-
tions, matrix transpose, and multiplications. It could be used to compute an ambient
gradient, for example. For another application, let M be a manifold with ambient
space Kn×m , recall rhess02f (ξ, η) = f̂Y Y (ξ, η) − Γ (ξ, η). Assume 〈Γ (ξ, η), f̂Y 〉E =
∑

i TrR(AiηBi )+TrR(Ciη
tDi )with Ai , Bi ,Ci , Di are not dependent on η, and iden-

tify tangent vectors with their images in Kn×m , we have:

rhess11f ξ = Πgg−1 xtrace(rhess02f (ξ, η), η),

as the inner product of the right-hand side with η is rhess02f (ξ, η), and the projection
ensures it is in the tangent space. If the ambient space is identified with Symt,K,n ,
Skewt,K,n or a direct sum of matrix spaces, we also have similar statements.

Proposition 4.2 With the same notations as Proposition 4.1:
1. The adjoint of the left multiplication operator by a matrix A ∈ K

m×n, sending
X ∈ K

n×p to AX ∈ K
m×p is the left multiplication by At, sending Y ∈ K

m×p to
AtY ∈ K

m×n.
2. The adjoint of the right multiplication operator by a matrix A ∈ K

m×n fromK
p×m

to Kp×n is the right multiplication by At.
3. The adjoint of the operator sending X �→ X t for X ∈ K

m×m is again the operator
Y �→ Y t for Y ∈ K

m×m. Adjoint is additive, and (F ◦ G)t = Gt ◦ F t for two linear
operators F and G.
4. The adjoint of the left multiplication operator by A ∈ K

p×n sending X ∈ Symt,K,p

to AX ∈ K
p×n is the operator sendingY �→ 1

2 (A
tY+Y tA) for Y ∈ K

p×n.Conversely,
the adjoint of the operator Y �→ 1

2 (A
tY +Y tA) ∈ Symt,K,p is the operator X �→ AX.

5. The adjoint of the left multiplication operator by A ∈ K
p×n sending X ∈ Skewt,K,p

to AX ∈ K
p×n is the operator sendingY �→ 1

2 (A
tY−Y tA) for Y ∈ K

p×n.Conversely,
the adjoint of the operator Y �→ 1

2 (A
tY−Y tA) ∈ Skewt,K,p is the operator X �→ AX.

6. Adjoint is linear on the space of operators. If F1 and F2 are two linear operators
from a space V to two spaces W1 and W2, then the adjoint of the direct sum operator
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(operator sending X to
[
F1X F2X

]
) is the map sending

[
A
B

]

to F t
1A + F t

2B. Adjoint

of the map sending

[
X1
X2

]

to F X1 is the map Y �→
[
F tY
0

]

, and more generally a map

sending a row block Xi of a matrix X to FXi is the map sending Y to a matrix where
the i-th block is F tY , and zero outside of this block.

Most of the proof is just a simple application of trace calculus. For the first state-
ment, the real case follows from Tr(AabT) = Tr(a(ATb)T), and TrR(AabH) =
TrR(a(AHb)H) gives us the complex case. Statement 2. is proved similarly, statement
4 is standard. Statements 4. and 5. are checked by direct substitution, and 6. is just the
operator version of the corresponding matrix statement, observing for example:

TrR(F1X At + F2XBt) = TrR((F t
1A + F t

2B)X t).

5 Application to Stiefel Manifold

The Stiefel manifold StK,d,n on E = K
n×d is defined by the equation Y tY = Id ,

where the tangent space at a point Y consists of matrices η satisfying ηtY + Yηt = 0.
WhenK = Rwe assume d < n, so the manifold is connected. We apply the results of
Sect. 3 for the full tangent bundleH = TStK,d,n . We can consider an ambient metric:

g(Y )ω = α0ω + (α1 − α0)YY
tω = α0(In − YY t)ω + α1YY

tω (5.1)

for ω ∈ E = K
n×d . It is easy to see ω0 − YY tω0 is an eigenvector of g(Y ) with

eigenvalue α0, and YY tω1 is an eigenvector with eigenvalue α1, for any ω0, ω1 ∈ E,
and these are the only eigenvalues and vectors. Hence, g(Y )−1ω = α−1

0 (In−YY t)ω+
α−1
1 YY tω and g is a Riemannian metric if α0, α1 are positive. We can describe the

tangent space as a nullspace of J(Y ) with J(Y )ω = ωtY + Y tω ∈ EJ := Symt,K,d .
We will evaluate everything at Y , so we will write J and g instead of J(Y ) and g(Y ),
etc. By Proposition 4.2, Jt a = (aY t)t + Ya = 2Ya for a ∈ EJ. We have g−1 Jt a =
α−1
0 2Ya+ (α−1

1 −α−1
0 )2Ya = 2α−1

1 Ya. Thus J g−1 Jt a = J(2α−1
1 Ya) = 4α−1

1 a and
by Proposition 3.1:

Πgν = Πgν = ν − 2α−1
1

α1

4
(YνtY + YY tν) = ν − 1

2
(YνtY + YY tν). (5.2)

In this case, the ambient gradient f̂Y is the matrix of partial derivatives of an extension
of f on the ambient space K

n×d . More conveniently, using the eigenspaces of g,
Πgν = (In − YY t)v + Y skewtY tv and g−1 f̂Y = α−1

0 (In − YY t) f̂Y + α−1
1 YY t f̂Y

Πgg−1 f̂Y = α−1
0 (In − YY t) f̂Y + α−1

1 Y skewt(Y
t f̂Y )

= α−1
0 f̂Y + α−1

1 − 2α−1
0

2
YY t f̂Y − α−1

1

2
Y f̂ tY Y .
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If ξ and η are vector fields, (Dξg)η = (α1 −α0)(ξY t +Y ξ t)η. Using Proposition 4.1,
we can take the cross term X(ξ, η) = (α1 − α0)(ξηt + ηξ t)Y , thus:

K(ξ, η) = α1 − α0

2
((ξY tη + ηY tξ) + Y (ξ tη + ηtξ) − (ξηt + ηξ t)Y ).

By the tangent condition, (ξY tη+ηY tξ) = −(ξηt+ηξ t)Y , hence K(ξ, η) = α1−α0
2 F

with F = Y (ξ tη+ηtξ)−2(ξ tη+ηtξ)Y , we see Y tF is symmetric so skewtY tF = 0,
therefore

Πgg−1F = α−1
0 (In − YY t)F = −2α−1

0 (In − YY t)(ξ tη + ηtξ)Y ,

Πgg−1K(ξ, η) = α0 − α1

α0
(In − YY t)(ξηt + ηξ t)Y . (5.3)

Using g−1 Jt(J g−1 Jt)−1(Dξ J)η = 1
2Y (ξ tη +ηtξ) to evaluate Eq. (3.13), the connec-

tion for two vector fields ξ, η is:

∇ξ η = Dξ η + 1

2
Y (ξ tη + ηtξ) + α0 − α1

α0
(In − YY t)(ξηt + ηξ t)Y . (5.4)

With Π0 = (In − YY t) and let f̂Y Y be the ambient Hessian, from Eq. (3.12):

rhess02f (ξ, η) = f̂Y Y (ξ, η) − TrR( f̂ tY {1
2
Y (ξ tη + ηtξ) + α0 − α1

α0
Π0(ξηt + ηξ t)Y }).

(5.5)

By Remark 4.1, rhess11f ξ is Πgg−1 xtrace(rhess02ξ,η, η), thus

rhess11f ξ = ΠY ,gg−1( f̂Y Y ξ − 1

2
ξ( f̂ tY Y + Y t f̂Y ) − α0 − α1

α0
(Π0 f̂Y Y

t + Y f̂ tYΠ0)ξ).

(5.6)

We note the term inside ΠY ,gg−1 can be modified by any expression sent to zero
by ΠY ,gg−1. The case α0 = 1, α1 = 1

2 correspond to the canonical metric on a
Stiefel manifold, where the connection is given by formula 2.49 of [9], in a slightly
different form, but we could show they are the same by noting YY t(ξηt + ηξ t)Y =
Y (ξ tYY tη+ηtYY tξ) using the tangent constraint. The case α0 = α1 = 1 corresponds
to the constant tracemetric where we do not need to compute K. This family of metrics
has been studied in [11], where a closed-form geodesic formula is provided. In [20]
we also provide efficient closed-form geodesic formulas similar to those in [9].

6 Quotients of a Stiefel Manifold and FlagManifolds

Continuing with the setup in the previous section, consider a Stiefel manifold StK,d,n
(we will assume 0 < d < n). The metric induced by the operator g in Eq. (5.1),
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α0 TrR ωt
1ω2 + (α1−α0)Tr ωt

1YY
tω2 with Y ∈ StK,d,n , ω1, ω2 ∈ E is preserved if we

replace Y , ω1, ω2 by YU , ω1U , ω2U , for U tU = Id , or if we define the t-orthogonal
group by UK,d := {U ∈ K

d×d |U tU = Id} then this is a group of isometries of
g. Therefore, any subgroup G of UK,d acts on StK,d,n by right-multiplication also
preserves the metric, and if G is compact, we can consider the quotient manifold
StK,d,n/G, identifying Y ∈ StK,d,n with YU for U ∈ G.

If the cost function f on the Stiefel manifold is invariant when applying trans-
formations by a group G, it may be advantageous to consider optimization on a
quotient manifold. The case of the Rayleigh quotient cost function TrR Y tAY for
Y ∈ StK,d,n and A is a positive-definite matrix is well-known. As the cost func-
tion is invariant if we replace Y by YU for U ∈ G = UK,d , we can optimize
over the Grassmann manifolds StK,d,n/UK,d . When Y ∈ StK,d,n is divided into
two column blocks Y = [Y1|Y2] of d1 + d2 = d columns, the cost function
f1 = TrR Y t

1A1Y1 +TrR Y t
2A2Y2 for two positive-definite matrices A1, A2 ∈ K

n×n is
invariant if we replace Y1,Y2 by Y1U1,Y2U2 for U1 ∈ UK,d1 ,U2 ∈ UK,d2 , while
the cost function f2 = TrR Y t

1A1Y1 + TrR Y2B2Y t
2 for positive-definite matrices

A1 ∈ K
n×n, B2 ∈ K

d2×d2 is invariant if we replace Y1 by Y1U1 only, for a generic
B2. In the first case, we can optimize over StK,d,n/(UK,d1 ×UK,d2) and in the second
case we can optimize over StK,d,n/UK,d1 . We will define an optimization framework
for a quotient of StK,d,n by a group G, {Id} ⊂ G ⊂ UK,d , where G consists of
q + 1 blocks diagonal blocks, q ≥ 0, with at most one block could be trivial. The
case G = {Id} corresponds to the Stiefel manifold, G = UK,d corresponds to the
Grassmann manifold and the intermediate case includes flag manifolds. Background
materials for optimization on flag manifolds are in [21, 28], but the examples just
described and the review below should be sufficient to understand the setup and the
results. We generalize the formula for rhess02 in [28, Proposition 25] to the full family
of metrics in [11] and provide a formula for rhess11.

Let us describe the group G of block-diagonal matrices considered here. Assume
there is a sequence of positive integers d̂ = {d1, · · · , dq}, di > 0 for 1 ≤ i ≤ q,
such that

∑q
i=1 di ≤ d. Set dq+1 = d − ∑q

i=1 di , thus dq+1 ≥ 0. This sequence
allows a partition of a matrix A ∈ K

d×d to (q + 1) × (q + 1) blocks A[i j] ∈ K
di×d j ,

1 ≤ i, j ≤ q+1. The right-most or bottom blocks correspond to i or j equals to q+1
are empty when dq+1 = 0. Consider the subgroup G = U

K,d̂ = UK,d1 ×UK,d2 · · · ×
UK,dq × {Idq+1} of UK,d of block-diagonal matrices U , with the i-th diagonal block
from the topU[i i] ∈ UK,di , 1 ≤ i ≤ q, andU[q+1,q+1] = Idq+1 . An elementU ∈ U

K,d̂
has the form

U = diag(U[11], · · · ,U[qq], Idq+1) for U[i i] ∈ UK,di , 1 ≤ i ≤ q

and transforms Y = [Y1| · · · |Yq |Yq+1] to [Y1U1| · · · |YqUq |Yq+1]. When q = 0,

we define d̂ = ∅ and U
K,d̂ = {Id}. We will consider the manifold StK,d,n/G for

G = U
K,d̂ . Thus, when d̂ = ∅, this quotient is the Stiefel manifold StK,d,n itself,

when d̂ = {d}, it is the Grassmann manifold. When dq+1 = 0 i.e.
∑q

i=1 di = d, the
quotient is called a flag manifold, denoted by Flag(d1, · · · , dq ; n,K). In the example
above for q = 2, if d1+d2 = d, StK,d,n/(UK,d1 ×UK,d2) is a flag manifold (we do not
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have a special name if d1 + d2 < d). Therefore, these quotients could be considered
as intermediate objects between a Stiefel and a Grassmann manifold, as we will soon
see more clearly.

Define the operator symf acting on K
d×d , sending A ∈ K

d×d to Asymf such that
(Asymf)[i j] = 1

2 (A[i j] + At[ j i]) if 1 ≤ i �= j ≤ q + 1 or i = j = q + 1, and
(Asymf)[i i] = A[i i] if 1 ≤ i ≤ q. Thus, symf preserves the diagonal blocks for
1 ≤ i ≤ q, but symmetrizes the off-diagonal blocks and the q + 1-th diagonal block.
The following illustrates the operation when q = 2 for A = (A[i j]) ∈ K

d×d .

Asymf = 1

2

⎡

⎣
2A[11] A[12] + At[21] A[13] + At[31]

A[21] + At[12] 2A[22] A[23] + At[32]
A[31] + At[13] A[32] + At[23] A[33] + At[33]

⎤

⎦ .

For the case d̂ = ∅ of the full Stiefel manifold, symf is just symt and for the case
d̂ = {d} of theGrassmannmanifold, symf is the identitymap.We show these quotients
share similar Riemannian optimization settings.

Theorem 6.1 With the metric in Eq. (5.1), the horizontal space HY at Y ∈ StK,d,n of
the quotient StK,d,n → StK,d,n/UK,d̂ consists of matrices ω ∈ E := K

n×d such that

(Y tω)symf = 0, (6.1)

or equivalently, Y tω is t-antisymmetric with first q diagonal blocks ((Y tω)symf)[i i]
vanish for 1 ≤ i ≤ q. For ω ∈ E = K

n×d , the projection ΠH from E to HY and the
Riemannian gradient are given by

ΠHω = ω − Y (Y tω)symf , (6.2)

ΠHg−1 f̂Y = α−1
0 f̂Y + (α−1

1 − α−1
0 )YY t f̂Y − α−1

1 Y (Y t f̂Y )symf . (6.3)

Let Π0 = In − YY t. For two vector fields ξ, η, the horizontal lift of the Levi-Civita
connection and Riemannian Hessians are given by

ΠH∇ξ η = Dξ η + Y (ξ tη)symf + α0 − α1

α0
Π0(ξηt + ηξ t)Y , (6.4)

rhess02f (ξ, η) = f̂Y Y (ξ, η) − TrR( f̂ tY {Y (ξ tη)symf + α0 − α1

α0
Π0(ξηt + ηξ t)Y }),

(6.5)

rhess11f ξ = ΠHg−1( f̂Y Y ξ − ξ(Y t f̂Y )symf − α0 − α1

α0
(Π0 f̂Y Y

t + Y f̂ tYΠ0)ξ).

(6.6)

Proof First we note that symf is a self-adjoint operator, as both the identity opera-
tor on the first q diagonal blocks and symmetrize operator on the remaining blocks
are self-adjoint. The orbit of Y ∈ StK,d,n under the action of U

K,d̂ is YU
K,d̂ , thus
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the vertical space consists of matrices of the form Y D with D is block-diagonal, t-
skewsymmetric and D[(q+1),(q+1)] = 0. Since gY D = α1Y D, a horizontal vector ω

satisfies skewt(Y tω) = 0 and TrR(ωtY D) = 0. This shows the first q diagonal blocks
of Y tω are zero, hence (Y tω)symf = 0.

For the projection, we proceed like the Stiefel case, with the map Jω = (Y tω)symf ,
mapping E to EJ = {A ∈ K

d×d |A[i j] = At[ j i], 1 ≤ i �= j ≤ q + 1 or i = j = q + 1}.
Since symf is self-adjoint, Jt A = Y Asymf = Y A for A ∈ EJ. From here we get
(J g−1 Jt)A = α−1

1 A and Eq. (6.2) follows. Equation6.3 is a substitution of g−1 f̂Y to
Eq. (6.2), noting (Y t(g−1 f̂Y ))symf = α−1

1 (Y t f̂Y )symf , using the eigen decomposition
of g.

For the Levi-Civita connection, we use Eq. (3.10). For two horizontal vector fields
ξ, η, (DξΠH)η = −ξ(Y tη)symf − Y (ξ tη)symf = −Y (ξ tη)symf and ΠH = ΠHΠ ,
where Π is the Stiefel projection Eq. (5.2), hence ΠHg−1K(ξ, η) = Πg−1K(ξ, η) −
Y (Y tΠg−1K(ξ, η))symf . The last term vanishes from Eq. (5.3), and we have Eq. (6.4).

Equation (6.5) follows from Eq. (3.12). We derive Eq. (6.6) from remark 4.1 and
self-adjointness of symf, expanding TrR f̂Y Y (ξ tη)symf to

TrR(Y t f̂Y )t(ξ tη)symf = TrR(Y t f̂Y )symf(ξ
tη)t = TrR ξ(Y t f̂Y )symfη

t.

	


7 Positive-Definite Matrices

Consider the manifold S+
K,n of t-symmetric positive-definite matrices in K

n×n . In
our approach, we take E = K

n×n with its Frobenius inner product. The metric g is
〈ξ,gη〉E = Tr(ξY−1ηY−1), with the metric operator g : η �→ Y−1ηY−1 for two
vector fields ξ, η. The full tangent bundleH = TS+

K,n is identified fiber-wise with the
nullspace of the operator J : η �→ J η = η − ηt, with EJ = Skewt,K,n . By item 5 in
Proposition 4.2, we have Jt a = 2a where a is a t-antisymmetric matrix. From here
J g−1 Jt a = 4YaY and (write Π for Πg):

Πη = η − g−1 Jt(J g−1 Jt)−1 J η = η − 2Y (
1

4
Y−1(η − ηt)Y−1)Y = 1

2
(η + ηt)

= symtη.

Thus, the Riemannian gradient is Πg−1 f̂Y = 1
2Y ( f̂Y + f̂ tY )Y . Next, we compute

(Dξg)η = Dξ |η constant(Y−1ηY−1) = −Y−1ξY−1ηY−1 − Y−1ηY−1ξY−1, where we
keep η constant in the derivative, as we evaluate Dξg as an operator-valued function.
From here, (Dηg)ξ = (Dξg)η. We note for three vector fields ξ, η, ξ0

TrR(Y−1ξ0Y
−1ηY−1 + Y−1ηY−1ξ0Y

−1)ξ = TrR ξ0(Y
−1ηY−1ξY−1

+Y−1ξY−1ηY−1).
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Thus, we can take X(ξ, η) = −Y−1ηY−1ξY−1 − Y−1ξY−1ηY−1 and

Γ (ξ, η) = −(DξΠ)η − 1

2
Y (Y−1ηY−1ξY−1 + Y−1ξY−1ηY−1)Y ,

∇ξ η = Dξ η − 1

2
(ξY−1η + ηY−1ξ). (7.1)

Hence, the Riemannian Hessian bilinear form rhess02(ξ, η) is

f̂Y Y (ξ, η)+1

2
TrR((ξY−1η+ηY−1ξ) f̂Y )= f̂Y Y (ξ, η)+1

2
TrR(( f̂Y ξY−1+Y−1ξ f̂Y )η).

(7.2)

Using a symmetric version of remark 4.1, rhess11f ξ = Πgg−1symt( f̂Y Y ξ +
1
2 ( f̂Y ξY−1 + Y−1ξ f̂Y )). We get the following formula, as in [8]:

rhess11f ξ = Y symt( f̂Y Y ξ)Y + symt(ξsymt( f̂Y )Y ). (7.3)

8 A Family of Metrics for theManifold of Positive-Semidefinite
Matrices of Fixed Rank

In [7], the authors defined a family of metrics on the manifold S+
K,p,n of positive-

semidefinite matrices of size n and rank p for the case K = R. Each such matrix will
have the form Y PY t with Y ∈ StK,p,n (Y tY = Ip) and P is positive-definite of size
p × p, up to the equivalent relation (Y , P) ∼ (YU ,U tPU ) for a matrix U ∈ UK,p,
(that means U ∈ K

p×p and UU t = Ip). So the manifold S+
K,p,n could be identified

with the quotient space (StK,p,n × S+
K,p)/UK,p of the product of the Stiefel manifold

StK,p,n and themanifold of positive-definitematrices S+
K,p over the t-orthogonal group

UK,p. (The paper actually uses R = P
1
2 to parametrize the space.) From our point

of view, the ambient space is E = K
n×p × K

p×p, and the tangent space is identified
with the image of the operator N1 from K

(n−p)×p × Symt,K,p to E, N1 : (B, D) �→
(Y⊥B, D), where the matrix (Y |Y⊥) is t-orthogonal. On the tangent space, [7] uses the
metric Tr(BBt)+k Tr(DP−1DP−1) for a positive number k. The action of the group
gives us the vertical vectors (Yq, Pq − qP) for a t-antisymmetric matrix q such that
q+qt = 0. In the paper, the image of N1 transverses but not orthogonal to the vertical
vectors, and no second-order method is provided. We modify this approach, using
a Riemannian quotient metric to provide a second-order method. In the following,
the projection to the horizontal space is denoted by ΠH. The horizontal lift of the
Levi-Civita connection (denote by ∇H) is ΠH∇.

Theorem 8.1 Let M = StK,p,n × S+
K,p ⊂ E := K

n×p × K
p×p be an embedded

ambient space ofM. Identifying the manifold S+
K,p,n of positive-semidefinite matrices

with B = (StK,p,n × S+
K,p)/UK,p, where the pair S = (Y , P) represents the matrix
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Y PY t with Y ∈ StK,p,n, P ∈ S+
K,p, and the action of U ∈ UK,p sends (Y , P) to

(YU ,U tPU ). The self-adjoint metric operator

g(S)(ωY , ωP ) = g(ωY , ωP ) = (α0ωY + (α1 − α0)YY
tωP , βP−1ωP P

−1) (8.1)

forω = (ωY , ωp) ∈ E = K
n×p×K

p×p defines the inner productTrR(α0ω
t
YωY+(α1−

α0)ω
t
Y YY

tωY + βωP P−1ωP P−1) on E, which induces a metric on StK,p,n × S+
K,p,

invariant under the action ofUK,p and induces a quotient metric on S
+
K,p,n. Its tangent

bundle TS+
K,p,n lifts to the subbundleH ⊂ T (StK,p,n ×S+

K,p) horizontal to the group
action, where a vector η = (ηY , ηP ) ∈ E is a horizontal tangent vector at S = (Y , P)

if and only if it satisfies:

α1Y
tηY + βηP P

−1 − βP−1ηP = 0. (8.2)

HS = H(Y ,P) could be identified as the range of the one-to-one operator N(S) from
EN = K

(n−p)×p × Symt,K,p to E, mapping (B, D) ∈ EN to:

N(S)(B, D) = (NY (B, D),NP (B, D)) := (βY (P−1D − DP−1) + Y⊥B, α1D),

(8.3)

where Y⊥ is orthogonal complement matrix to Y , (Y |Y⊥) ∈ UK,n. The projection of
ω = (ωY , ωP ) ∈ E = K

n×p × K
p×p to the horizontal space H(Y ,P) is given by

ΠH(S)(ωY , ωP ) = (βY (P−1D − DP−1) + ωY − YY tωY , α1D)

with D = D(P)ω := L(P)−1symt(ωP + Y tωY P − PY tωY )

where L(P)X := (α1 − 2β)X + β(PX P−1 + P−1X P).

(8.4)

The operator L(P) could be inverted by Proposition 8.1. The Riemannian Hessian
could be evaluated by Eq. (3.11), and the lift of the Levi-Civita connection is given by

∇H
ξ η := ΠH∇ξ η = Dξ η − (DξΠH)η + ΠHg−1K(ξ, η), (8.5)

for horizontal lifts ξ = (ξY , ξP ), η = (ηY , ηP ) of tangent vectors of S+
K,p,n with

K(ξ, η)Y = α1 − α0

2
(Y (ηtY ξY + ξ tY ηY ) − 2(ηY ξ tY + ξY ηtY )Y ),

K(ξ, η)P = −β

2
(P−1ηP P

−1ξP P
−1 + P−1ξP P

−1ηP P
−1), (8.6)

(DξΠH)ω = (((DξΠH)ω)Y , α1D̊),

((DξΠH)ω)Y = βξY (P−1D − DP−1) + βY (P−1D̊ − D̊P−1

+DP−1ξP P
−1 − P−1ξP P

−1D) − (ξY Y
t + Y ξ tY )ωY ,

with D̊ := (DξD)ω = L(P)−1{symt(ξ
t
YωY P − Pξ tYωY + Y tωY ξP − ξPY

tωY )
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−β(ξPDP−1 + P−1DξP − PDP−1ξP P
−1 − P−1ξP P

−1DP)}. (8.7)

Thus, the Hessian could be evaluated at O(np2)-complexity, by operator composition
using Eq. (3.11). Note that (DξΠH)η could be further simplified if η = (ηY , ηP ) is a
horizontal tangent vector, as D = 1

α1
ηP in that case.

Proof We have TrR(α1η
t
Y Yq + β(ηtP P

−1(Pq − qP)P−1)) = 0 for a tangent vector
(ηY , ηP ) and a t-antisymmetric matrix q from the horizontal condition. Using Propo-
sition 4.1 this means skewt(α1η

t
Y Y + βP−1ηtP − βηtP P

−1) = 0. Using the fact that
ηtP = ηP and ηtY Y is t-antisymmetric, we have Eq. (8.2).

It is clear that N(B, D) satisfies this equation and is one-to-one: if N(B, D) = 0
then immediately D = 0, and B = 0 since Y t⊥Y⊥ = I . It is onto the tangent space by
a dimension count. The adjoint Nt = (Nt

B,Nt
D) has two components corresponding

to the B and D factors. By Proposition 4.2 we have

Nt(ωY , ωP )B = Y t⊥ωY ,

Nt(ωY , ωP )D = symt(α1ωP + βP−1Y tωY − βY tωY P
−1),

Ntg(ωY , ωP )B = α0Y
t⊥ωY ,

Ntg(ωY , ωP )D = α1βsymt(P
−1ωP P

−1 + P−1Y tωY − Y tωY P
−1),

(NtgN(B, D))B = α0B,

(NtgN(B, D))D = α1βsymt(P
−1(α1D)P−1

+ P−1Y t(βY (P−1D − DP−1) + Y⊥B)

− Y t(βY (P−1D − DP−1) + Y⊥B)P−1)

= α1βsymt(α1P
−1DP−1 + βP−2D − βP−1DP−1

− βP−1DP−1 + βDP−2)

= α1βP−1((α1 − 2β)D + βPDP−1 + βP−1DP)P−1

= α1βP−1L(P)DP−1.

Hence

(NtgN)−1(B, D) = (α−1
0 B, (α1β)−1L(P)−1(PDP)),

(NtgN)−1Ntg(ωY , ωP )

= (Y t⊥ωY ,D).

The projection formula Eq. (8.4) is just N(NtgN)−1Ntg. The formulas for K follow
from the corresponding Stiefel and positive-definite manifold formulas. For DξΠH,
we take directional derivative of Eq. (8.4) using standard matrix calculus, the only
difficulty is D̊ = (DξD)ω. We evaluate it by evaluating Dξ (L(P)D)ω as

(α1 − 2β)(D̊ + β(PD̊P−1 + P−1D̊P) + β(ξPDP−1 + P−1DξP )

−β(PDP−1ξP P
−1 + P−1ξP P

−1DP)
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= symt(ξ
t
YωY P − Pξ tYωY + Y tωY ξP − ξPY

tωY )

by differentiating the equation for D. From here, we get the equation for D̊. 	

To solve for D and D̊, we need an extension of the symmetric Lyapunov equation:

Proposition 8.1 Let P ∈ Symt,K,p be an t-symmetric matrix having the eigenvalue

decomposition P = UΛU t with eigenvalues (Λi )
p
i=1 and UU t = I . Let the set of

coefficients (cst )−k≤s,t≤k be such that Mi j := ∑s=k,t=k
s=−k,t=−k cstΛ

s
i Λ

t
j is not zero for

all pairs (Λi ,Λ j ) of eigenvalues of P, then the equation

s=k,t=k∑

s=−k,t=−k

cst P
s X Pt = B (8.8)

has the following unique solution that could be computed at O(p3) complexity:

X = U {(U tBU )/M}U t (8.9)

with M = (Mi j )
i=p, j=p
i=1, j=1 and / denotes the by-entry division. In particular, for a

positive-definite matrix P and positive scalars (α, β), the equation

(α − 2β)X + β(P−1X P + PX P−1) = B

has a unique solution with Mi j = α + β(Λ−1
i Λ j + ΛiΛ

−1
j − 2).

Proof We follow the idea of [5, 6] but use the eigenvalue decomposition in place of
the Schur decomposition. Substitute P = UΛU t to Eq. (8.8) and multiply U t and U
on the left-hand and right-hand sides of that equation, we get

s=k,t=k∑

s=−k,t=−k

cstΛ
sU tXUΛt = U tBU ,

which is equivalent to (U tXU )i j Mi j = (U tBU )i j or U tXU = (U tBU )/M , and we
have Eq. (8.9). If α and β are positive then α1 + β(Λ−1

i Λ j + ΛiΛ
−1
j − 2) > 0 by the

AGM-inequality. The eigenvalue decomposition has O(p3) cost. 	

Horizontal lifts of geodesics on S+

K,p,n are geodesics on StK,p,n × S+
K,p. Recall a

complete manifold has geodesics that extend indefinitely along any direction. Under
this quotient metric, S+

K,p,n is a complete Riemannian manifold, as both factors above
are. The metric in [27] is complete, while the metric in [13] is not. If (ηY , ηP ) is
a horizontal tangent vector at S = (Y , P), a horizontal geodesic γ with γ (0) =
S, γ̇ (0) = (ηY , ηP ) is of the form (Y (t), P1/2 exp(t P−1/2ηP P−1/2)P1/2), with Y (t)
is the geodesic of the metric in Sect. 5, described in [11, 20].
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9 Implementation and Data Availability

Wedeveloped aPython package based onPymanopt andManopt [8, 26] implementing
themanifoldswithmetrics considered in this paper, for both the real and complex cases
in the package [18]. To reuse the optimization code in [8, 26], our NullRangeManifold
class implements templates of the methods egrad2rgrad and ehess2rhess based on the
formulas in Propositions 3.2 and 3.3 and Theorem 3.1. For a new manifold, the user
needs to implement the constraint operator J, its transpose and derivative, the metric
operator g, its inverse, derivative, and the third Christoffel termX, as well as a method
to solve J g−1 Jt (defaulted to use a conjugate-gradient solver otherwise).A retraction is
also required. NullRangeManifold automatically provides the projection, Riemannian
gradient, and Hessian derived in this paper. Besides the numerical implementation, we
also include notebooks showing symbolic derivations of the formulas, and numerical
tests, including geodesics in most cases.

We also implement real and complex Stiefel manifolds and positive-semidefinite
manifolds with metric parameters. For each manifold, we provide a manifold class
to support optimization problems. For flag manifolds, [18] contains a larger class
of metric, the results in Sect. 6) is implemented separately in [19], the numerical
result is shown here. For testing, we numerically verify the projection satisfying the
nullspace condition, metric compatibility, and torsion-freeness of the connection. As
the manifolds considered here are constructed from Stiefel or positive-definite matrix
manifolds, we use their typical retractions. Since we focus on methodology in this
paper, we will not discuss formal numerical experiments. However, we have tested
each manifold with a quadratic cost problem including matrices with one size of
1000 dimensions with a Trust-Region solver, ([26], [1, section 7.2.2], summarized in
Algorithm 1). Here, an approximate solution is sufficient in step 3 with η ∈ TxkM,
this step is the inner iteration versus the outer iteration in step 2; ||xk and 〈〉k denote
norm/inner product at xk ; a terminal condition is imposed).

For flag manifolds, we optimize the function f (Y ) = TrR((YΛY tA)2) over matri-
ces Y ∈ StR,d,n . Here, A is a positive-definite matrix, d < n are two positive integers,
d̂ = (d1, · · · , dq) is a partition of d with

∑q
i=1 di = d, Λ = diag(λ1 Id1 , · · · , λq Idq )

for positive numbers λ1 · · · λq . This cost function is invariant under the action of
U
R,d̂ , thus could be considered as a function on the flag manifold StR,d,n/UR,d̂ . The

Euclidean gradient is 4(AYΛ)Y t(AYΛ), and the Euclidean Hessian is computed by
routine matrix calculus. For testing, we consider d = 60, d̂ = (30, 20, 10), n = 1000
and use a trust-region solver. In this case, there is no noticeable variation in time
when different values of α are used, typically a few seconds on a free colab engine
in the notebook colab/SimpleFlag.ipynb in [19]. Convergence is achieved after typi-
cally 16 trust-region iterations, with small alpha requiring more outer iterations. The
convergence is superlinear as seen in Fig. 1.

For another test of theRiemannian optimization framework,we consider a nonlinear
weighted PCA (principal component analysis) problem, which could be solved by
optimizing over the positive-semidefinite matrix manifold. Given a symmetric matrix

123

https://github.com/dnguyend/SimpleFlag/blob/main/colab/SimpleFlag.ipynb


160 Journal of Optimization Theory and Applications (2023) 198:135–164

Algorithm 1 Riemannian Trust-Region minimizing a function f on a manifold M
1: Input: x0 ∈ M; Parameters: Δ̄ > 0, Δ0, ρ

′; Require a retraction R
2: for k = 0, 1, 2 · · · do
3: Solve ηk ← argmin

|η|xk ≤Δk

{m̂xk (η) := f (xk ) + 〈rgrad f (xk ), η〉k + 1
2 〈rhess11f (xk )η, η〉k };

4: Calculate ρk ← f (xk )− f (R(xk ,ηk ))
m̂xk (0xk )−m̂xk (ηk )

;

5: if ρk < 1
4 then

6: Δk+1 ← 1
4Δk ;

7: else if ρk > 3
4 and |ηk | = Δk then

8: Δk+1 ← min(2Δk , Δ̄);
9: else
10: Δk+1 ← Δk ;
11: end if
12: if ρk > ρ′ then
13: xk+1 ← R(xk , ηk );
14: else
15: xk+1 ← xk ;
16: end if � Terminal condition is verified after this step
17: end for

Fig. 1 Optimization on flag manifold Flag(30, 20, 10; 1000,R) using a trust-region solver. Left, number
of total iterations versus α = α1/α0. Right, log10 of gradient for α = 1

A ∈ SymT,R,n and a weight vector W ∈ R
n , take the cost function to be

Tr(A − Y PY T) diag(W )(A − Y PY T)=TrWd(A
2−AY PY T−Y PY TA+Y P2Y T)

of a positive-semidefinite matrix S = Y PY T ∈ S+
R,p,n , with Y ∈ StR,p,n, P ∈ S+

R,p.
Here, Wd denotes the diagonal matrix diag(W ). When W has identical weight λ,
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Fig. 2 Weighted PCA using Positive-semidefinite manifold optimization with a trust-region solver. Left,
log10 of distance to the optimal value. Right, quadratic cost by iteration

Wd = λIn , expanding the cost function, we need to minimize Tr P2−2 Tr Y T AY P in
Y and P , which implies P = Y T AY . Thus, the problem is optimizing −Tr(Y TAY )2

over the Stiefel manifold (actually over the Grassmann manifold as the function is
invariant when Y is multiplied on the right by an orthogonal matrix), which could
be considered as a quadratic PCA problem. When W has nonidentical weights, we
optimize over the positive-semidefinite manifold, with a trust-region solver.

The cost function from M = StR,p,n,×S+
R,p extends to E = R

n×p × R
p×p, and

is denoted by f̂ (Y , P). For a horizontal tangent vector ξ = (ξY , ξP ) at (Y , P) ∈ M

(Dξ f̂ )(Y , P) = TrWd(−AξY PY
T − AY ξPY

T − AY PξTY

−ξY PY
TA − Y ξPY

TA − Y PξTY A + ξY P
2Y T

+Y (ξP P + PξP )Y T + Y P2ξTY ).

We have TrWd(−AξY PY T − AY PξTY − ξY PY TA − Y PξTY A) = −2 Tr(AWd +
Wd A)Y PξTY , TrWd(ξY P2Y T + Y P2ξTY ) = 2 TrWdY P2ξTY and similar equalities for
ξP give us

grad f̂ = (−4symT(AWd)Y P + 2WdY P2,−2symT(Y
TWd(AY − Y P))).
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The ambient Hessian hess f̂ (ξ) follows from a directional derivative calculation

hess f̂ (ξ) = −4symT(AWd)(ξY P + Y ξP ) + 2WdξY P
2 + 2WdY (ξP P + PξP ),

−2symT(ξ
T
YWd(AY − Y P))

−2symT(Y
TWd(AξY − ξY P − Y ξP ))).

The Riemannian gradient is computed as ΠH,gg−1grad f̂ , with ΠH,g is given by Eq.
(8.4), the Riemannian Hessian is computed from Eq. (3.11) and Theorem 8.1.

In our experiment (implemented in the notebook colab/WeightedPCA.ipynb in
[18]), we take n = 1000, p = 50, with A and W generated randomly. To find the
optimum S = Y PY T, we optimize with α0 = α1 = 1, with β is 0.1 for the first 20
iterations, β = 10 for the next 20 and β = 30 for the remaining iterations. This choice
of β comes from our limited experiments, we find varying β has a strong effect on
the speed of convergence, and updating β as such gives better convergence rates than
a static β. Philosophically, the small starting β could be thought of as focusing first
on aligning the subspace. The convergence graph is summarized in Fig. 2. We hope to
revisit the topic with a more systematic study in future works.

10 Conclusion

In this paper, we have proposed a framework to compute the Riemannian gradient,
Levi-Civita connection, and the Riemannian Hessian effectively when the constraints,
the symmetry of the problem, and the metrics are given analytically and have applied
the framework to several manifolds important in applications. We look to apply the
results in this paper to several problems in optimization, machine learning and com-
putational statistics. We hope the research community will find the method useful in
future works.
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