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Abstract
We consider the constrained tensorial total variation minimization problem for reg-
ularizing ill-posed multidimensional problems arising in many fields, such as image
and video processing and multidimensional data completion. The nonlinearity and the
non-differentiability of the total variation minimization problem make the resolution
directly more complex. The aim of the present paper is to bring together the resolution
of this problem using an iterative tensorial double proximal gradient algorithm and
the acceleration of the convergence rate by updating some efficient extrapolation tech-
niques in the tensor form. The general structure of the proposed method expands its
fields of application.Wewill restrict our numerical application to themultidimensional
data completion which illustrates the effectiveness of the proposed algorithm.

Keywords Tensorial total variation regularization · Proximal gradient method ·
Polynomial extrapolation · T-product · Video completion and inpainting

1 Introduction

We consider solving a class of tensor convex optimization problem of the form:
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min
X∈�

(
1

2
‖H (X ) − B‖2F + μ‖|∇X‖|1

)
, (1)

where the solution X and the observation B are N th-order tensors, H is a given
linear tensor operator, and the set � is assumed to be a convex constraint over X .
The regularization term consists of the tensorial total variation regularization operator
‖|∇X‖|1 and the positive regularization parameter μ. The norms ‖ . ‖F and ‖| . ‖|1
will be defined in the next section.

The convex optimization problem (1) has the form of the well-known total variation
regularization method. This regularization technique was first introduced in [42] with
the explicit goal of preserving sharp discontinuities (edges) in a two-dimensional
image while removing noise and other unwanted fine-scale detail. Over the years, this
model has been extended to many other applications as image processing tasks [14,
18] including inpainting [31], blind deconvolution and data completion [46]. It has
also been modified in a variety of ways to improve its performance [4, 30, 35, 39].

The proposed problem (1) represents a constrained multidimensional total varia-
tion regularization problem that will cover a wide range of application fields, such as
color image and video processing. Our contribution to this work is threefold. Firstly,
a gradient descent-like algorithm is developed to minimize the non-differentiable and
nonlinear total variation problem over a convex set by computing first the proximal
mapping of the total variation termandprojecting after the problemusingTseng’s split-
ting algorithm [2]. Secondly, since the gradient algorithms have a slow convergence
rate, we will accelerate our proposed algorithm using some extrapolation techniques.
Finally, suchmethods are represented in the tensorial representationwhichmay extend
the range of application of our model and developed algorithm. To the best of our
knowledge, the proposed techniques are new.

The paper is organized as follows. In Sect. 2, we review some standard definitions.
In Sect. 3, we establish amultidimensional double proximal gradient algorithm applied
with the tensorial form of the objective function in the minimization problem (1). We
propose, in Sect. 4, to accelerate the algorithmby updating some efficient extrapolation
techniques. Section5 is devoted to apply the proposed algorithm to the low-rank tensor
completion. The performance of the proposed algorithm is tested on color images,
video completion and inpainting in Sect. 6. Finally, we state the conclusions in Sect. 7.

2 Notation and background

Tensor algebra is developed in direct response to higher dimensional representation
and analysis. Keeping the data or the operation in its natural multidimensional form
increases the ability of systems to collect and store vast volumes of multifaceted data
and also preserve the modeling accuracy.

First, let us recall some preliminaries and notation on tensor algebra. (More details
about tensor algebra can be found in [11, 26, 28].) In the remainder of our paper, we
adopt the notation used in [26]. We use lowercase letters for vectors, e.g., a, uppercase
letters for matrices, e.g., A, and calligraphic letters for tensors, e.g., A. Let us denote
byX the space IRI1×I2×···×IN and byY the spaceXN := X×X×· · ·×X. Let X ∈ X
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be an N th-order tensor of size I1 × · · · × IN . Its entries are denoted by Xi1,i2,...,iN or
X (i1, i2, . . . , iN ). Let us denote by O the tensor having all its entries equal to zero.
The mode-n matricization (also known as mode-n unfolding) of a tensor X is denoted
by the matrix X(n), and the frontal slices are denoted by the matrices Xn . Let k ≥ 1
be an integer. The norm of the tensor X is defined by

‖|X‖|k =
⎛
⎝ I1∑

i1=1

I2∑
i2=1

. . .

IN∑
iN=1

|X (i1, i2, . . . , iN )|k
⎞
⎠

1/k

.

We also will need to introduce the norm ‖|. ‖|∞ given by

‖|X‖|∞ = max
1≤i j≤I j
1≤ j≤N

|X (i1, i2, . . . , iN )|.

The inner product of two same sized tensors X ,Y ∈ IRI1×I2×···×IN is defined by

〈X |Y〉 =
I1∑

i1=1

I2∑
i2=1

. . .

IN∑
iN=1

X (i1, i2, . . . , iN )Y(i1, i2, . . . , iN ).

It follows immediately that ‖|X‖|2 = √〈X |X 〉. For the case k = 2, we use the
standard notation of the Frobenius norm ‖ . ‖F to denote the tensor norm ‖| . ‖|2.

Let f : X −→ IR ∪ {∞} be a closed proper convex function [40]. We recall the
proximal operator of f in the following definition.

Definition 2.1 [40] The proximal operator (also called the proximal mapping) of f is
the operator given by

prox f (U) = argmin
X

(
f (X ) + 1

2
‖X − U‖2

)
for any U in X. (2)

Since the cost function of the minimization problem defined above is strongly convex
and not everywhere infinite, then there exists a unique minimizer for every U ∈ X, see
[2, 40] for more details. We will often encounter the proximal operator of the scaled
function λ f with λ > 0, which can be expressed as

proxλ f (U) = argmin
X

(
f (X ) + 1

2λ
‖X − U‖2

)
. (3)

The operator proxλ f is also called the proximal operator of f with the parameter λ.

Definition 2.2 The convex conjugate of f , denoted f ∗, is given by

f ∗(Y) = sup
X

(〈X |Y〉 − f (X )) , ∀Y ∈ X. (4)
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3 Tensorial double proximal gradient method for total variation
problem

The main goal of this work is the resolution of the constrained tensorial total variation
minimization problem (1). It will be useful to consider the following closed proper
convex functions

F : X −→ IR+
X −→ F (X ) = 1

2
‖H (X ) − B‖2F ,

G : X −→ IR+
X −→ G (X ) = μ‖|∇X‖|1.

Note that the gradient operator of an N th-order tensor X ∈ X is defined as a column
block tensor ∇X in Y consisting of the partial derivatives (∇(n)X )n , i.e., ∇X =(∇(1)X , . . . ,∇(N )X

)
. For n = 1, . . . , N , the block tensor ∇(n)X is given by

(∇(n)X )i1,...,iN =
{
Xi1,...,in+1,...,iN − Xi1,...,in ,...,iN if in < In
0 if in = In .

The convex constrained minimization problem (1) can be written as:

min
X∈�

(F (X ) + G (X )) , (5)

where � is a convex nonempty bounded set. As F and G are proper lower semi-
continuous convex functions, F is Gateau differentiable and uniformly convex on X

and if it is further assumed that � is closed, then there exists a unique solution of the
minimization problem (5), see [2, 13, 15, 21, 41] for a deeper discussion.

As in the classical vectorial case, the functionF is differentiable, and its gradient
on X is given by

∇F (X ) = H ∗(H (X ) − B), (6)

and the function G is not differentiable due to the non-differentiability of the l1 norm,
which makes the resolution of this minimization problem more complex.

3.1 Tensorial double proximal gradient algorithm

In this section, we will introduce an interesting extension of gradient descent method
to handle this tensorial convex minimization problem. In the literature, the gradient
descent technique is developed in a variety of ways to handle different minimiza-
tion problems, such as nonlinear minimization problems [13], fractional optimization
problems [5] and others. The proximal gradient method represents a generalized form
of the gradient descent method in the presence of non-differentiability in the cost
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function [1, 2, 40, 41]. First, we consider the unconstrained minimization problem

min
X∈X

(F (X ) + G (X )) . (7)

Suppose that, at the step k, we have constructed an iterate tensorXk that approximates
the solution of the constrainedminimization problem (5). The quadratic approximation
of F based at the iterate tensor Xk , for λk > 0, is given by

�k(X ) = F (Xk) + 〈X − Xk |∇F (Xk)〉 + 1

2λk
‖X − Xk‖2F . (8)

Then, it is immediate to see that the problem (7) is approached, at each step k, by the
following minimization problem

min
X

(
G (X ) + 1

2λk
‖X − Xk + λk∇F (Xk)‖2F

)
, (9)

which admits a unique minimizer Zk given by

Zk = proxλkG (Xk − λk∇F (Xk)) , ∀k ∈ IN, (10)

where the operator proxλkG denotes the proximal mapping of G with the parameter
λk .

In general, the algorithm proposed for computingZk by (10) required two essential
elements. The first one is an optimal selection of the step size sequence (λk)k that
depends on the Lipschitz constant of ∇F (to be discussed later), and the second one
is the computation of the proximal operator of λkG which is given in the following
proposition.

Proposition 3.1 For all Y ∈ X and λ > 0, the proximal operator of λG is given by

Z = proxλG (Y) = Y + λ∇T (P∗), (11)

where P∗ is an optimal solution of

min
P

(
G ∗
1 (−P) + 〈λ

2
∇
(
∇TP

)
+ ∇Y|P〉

)
, (12)

with the function G ∗
1 being the conjugate function of G1 := μ‖|. ‖|1.

Proof By Definition 2.1, for all Y and λ > 0, proxλG (Y) is the unique optimal
solution of following unconstrained minimization problem

min
U

(
G (U) + 1

2λ
‖U − Y‖2F

)
. (13)
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If we assume that G (U) = G1(∇U), with G1(Y) = μ‖|Y‖|1, the minimization prob-
lem can be transformed to a constrained minimization problem as follows

⎧⎨
⎩
min
U ,V

(
G1(V) + 1

2λ
‖U − Y‖2F

)

s.t V = ∇U .

(14)

The Lagrangian function associated with this problem is defined as

L (U ,V,P) = G1(V) + 1

2λ
‖U − Y‖2F + 〈P|V − ∇U〉. (15)

As a consequence, the solution of (14) is exactly the saddle point of L (see [20]),
which is the solution of the Lagrangian primal problem

min
U ,V

max
P

L (U ,V,P). (16)

Since the Lagrangian is separablewith respect toU andV , thenwemay switch themin-
max order based on the min-max theorem [15, 41]. As a consequence, the Lagrangian
dual problem can be written as

max
P

[
min
U

(
1

2λ
‖U − Y‖2F − 〈P|∇U〉

)
+ min

V
(G1(V) + 〈P|V〉)

]
. (17)

On the one hand, it is clear that the minimizer of the problem in U is given by U∗ =
Y + λ∇TP with a corresponding optimal value equal to:

min
U

(
1

2λ
‖U − Y‖2F − 〈P|∇U〉

)
= 1

2λ
‖U∗ − Y‖2F − 〈

P|∇U∗〉

= −〈λ
2
∇(∇TP) + ∇Y|P〉. (18)

On the other hand, the second minimization problem verifies

min
V

(G1(V) + 〈P|V〉) = −max
V

(〈−P|V〉 − G1(V)) = −G ∗
1 (−P), (19)

where we recall that G ∗
1 is the convex conjugate function of G1. As a result, we obtain

the following dual problem

max
P

[
−G ∗

1 (−P) − 〈λ
2
∇(∇TP) + ∇Y|P〉

]
(20)

that can be rewritten as the minimization problem (12). ��
So far, we have shown that proxλG (Y) = Y + λ∇TP∗, where P∗ is an optimal

solution of the minimization problem (12). In other words, the calculation of the
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proximal mapping of the function G required, at each iteration k, the resolution of the
minimization problem (12). For Y = Yk := Xk −λk∇F (Xk), and λ = λk , at the step
k, we have to solve the problem

min
P

(
G ∗
1 (−P) + 〈λk

2
∇(∇TP) + ∇Yk |P〉

)
. (21)

For all k ∈ IN, let us consider the operators K and (Dk)k defined as

K : Y −→ IR+
P −→ K (P) = G ∗

1 (−P),

Dk : Y −→ IR

P −→ Dk(P) = 〈λk
2

∇(∇TP) + ∇Yk |P〉.

Since the objective functional of the minimization problem (21) is a sum of closed
proper convex functionK , and closed proper convex differentiable functionDk , then
we can use again the proximal gradient approaches to solve (21). Hence, the solution
can be approximated by the sequence (Pl)l defined as

∀l ∈ IN, Pl+1 = proxαlK (Pl − αl∇Dk(Pl)), (22)

with αl > 0 being a step size parameter. Notice that the expression of the proximal
gradient method (22) required two important ingredients: the gradient of the differen-
tiable functionDk and the proximal mapping of the non-differentiable functionK . It
is immediate to see that the gradient of Dk is given by:

∀k, ∇Dk(P) = λk∇(∇TP) + ∇Yk . (23)

In the other hand, the proximal mapping proxαlK is discussed in the following propo-
sition.

Proposition 3.2 For all P ∈ Y, the proximal mapping of αlK is given by

proxαlK (P) = P + proxαlG1
(−P), ∀l ∈ IN, (24)

where G1 := μ‖|. ‖|1.
Proof For any P ∈ Y, we have

proxαlK (P) = argmin
W

(
K (W) + 1

2αl
‖W − P‖2F

)
,

= argmin
W

(
G ∗
1 (−W) + 1

2αl
‖W − P‖2F

)
,

= − argmin
V

(
G ∗
1 (V) + 1

2αl
‖V + P‖2F

)
,

= −proxαlG ∗
1
(−P).
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According to Moreau decomposition [37], we have the following property that relate
the prox operator of any proper closed convex function f by their conjugates

prox f (x) + prox f ∗(x) = x, ∀x . (25)

Using the relation (25), we obtain the desired conclusion

proxαlK (P) = P + proxαlG1
(−P). (26)

Furthermore, the tensorial proximal mapping proxαlG1 := proxαlμ‖| . ‖|1 of the func-
tion G1 is a direct result of the proximal operator of the ‖|. ‖|1 norm, also known as
the soft thresholding operator in the vector case [40]. Then, by using the Moreau’s
formula (25) and the fact that the ‖|. ‖|∞ norm is the dual norm of the ‖| . ‖|1 norm,
thus, the proximal operator proxη‖| . ‖|1 , with any η > 0, can be computed based on
the orthogonal projection on the ‖|. ‖|∞-unit ball [40], which is the unit box. This
leads to

(
proxη‖|. ‖|1(P)

)
i1,...,iN

=
⎧⎨
⎩
Pi1,...,iN − η, Pi1,...,iN ≥ η,

0, |Pi1,...,iN | < η,

Pi1,...,iN + η, Pi1,...,iN ≤ −η,

(27)

which establishes the formula and ends the proof. ��

As a result, the algorithm (10) computing the sequence (Xk)k can be summarized
as the following double iterative algorithm

∀k ∈ IN,

⎧⎪⎪⎨
⎪⎪⎩

∀l = 1, . . . , lk,

{
Ql = Pl − αl∇Dk(Pl),

Pl+1 = Ql + proxαlG1
(−Ql),

Yk = Xk − λk∇F (Xk),

Zk = Yk + λk∇T (Plk+1),

(28)

where the step size scalar sequences (λk)k and (αl)l depend on the Lipschitz constants
L(∇F ) and L(∇Dk), respectively, if they are exist.

In the following subsection, we will compute the approximated solution Xk+1 of
the constrained minimization problem (5) at the step k + 1 by projecting the iterate
Zk in the convex set � using the Tseng’s splitting approach.

3.2 Tseng’s splitting algorithm

Tseng’s splitting algorithm proposed in [2] considers as a modified version of the
proximal gradient algorithm (10) used to handle the constrained convex non-smooth
optimization problem. Under a nonempty closed and convex constraint �, the algo-
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rithm may be given as follows:

∀k ∈ IN,

⎧⎪⎪⎨
⎪⎪⎩

Yk = Xk − λk∇F (Xk),

Zk = proxλkG (Yk),

Rk = Zk − λk∇F (Zk),

Xk+1 = ��(Xk − Yk + Rk),

(29)

where �� denotes the orthogonal projection on the convex set �.

Theorem 3.1 Let X ∗ denote the unique solution of the problem (5). Suppose that � is
furthermore a closed set in X. Then, the sequence (Xk)k generated by Algorithm 29
satisfies ‖Xk − X ∗‖F −→ 0 as k −→ ∞.

Proof As the functionalF and G are proper lower semicontinuous convex functions,
F is Gateau differentiable and uniformly convex on X and the set � is a closed
convex nonempty subset of X, then, the strong convergence of the sequence (Xk)k is
an immediate consequence of the general result in [2] (see Pr.27.13 pg. 407). ��

3.3 The step size parameters selection

The choice of the step size parameters is considered as a typical condition that ensures
the convergence of the sequence (Xk)k to the minimizer of the problem (5). It is
required that the values of the step size parameters λk and αl be in the intervals
(0, 1

L(∇F )
) and (0, 1

L(∇Dk )
), respectively, where L(∇F ) and L(∇Dk) denote the

Lipschitz constants of the operators∇F and∇Dk , respectively (see [2, 13] for further
details).

For all couple (X ,Y) in X × X, we have

‖∇F (X ) − ∇F (Y)‖F = 2
∥∥∥H T (H (X )) − H T (H (Y))

∥∥∥
F

,

= 2
∥∥∥H T (H (X − Y))

∥∥∥
F

,

≤ 2
∥∥∥∣∣∣H T ◦ H

∥∥∥∣∣∣ .‖X − Y‖F ,

where ◦ stands for the composition operation. Then, we may choose as a Lipschitz
constant of the operator ∇F the constant

L(∇F ) = 2
∥∥∣∣H T ◦ H

∥∥∣∣. (30)

As consequence, the step size (λk)k can be chosen as a fixed step size value λk := λ ∈
(0, 1

L(∇F )
).

In the case of the operator ∇Dk , for a fixed step k, a Lipschitz constant L(∇Dk) is
not known; then, the step sizes (αl) can be found by a line search method [40], which
mean that we apply the proximal gradient method with an easy backtracking step size
rule as fallows

∀l ∈ IN, αl = ταl−1, (31)
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where the scalar τ > 0 is a line search parameter.

4 Accelerated tensorial double proximal gradient algorithms for total
variation problem

It is well known that the proximal gradient algorithm suffers from a slow convergence
rate. We will present in this section an accelerated version of the proximal gradient
algorithm which consists in adding an extrapolation step in the algorithm, in order to
compute the solution in less steps than the basic proximal gradient. A large amount of
research has been conducted to different extrapolation algorithms applied to a variety
of general problems [7, 9, 24, 33, 43], and others developed of the proximal gradient
method [3, 38].

Definition 4.1 Let (Xk)k and (Tk)k be two convergent sequences to the same limitX ∗,
we say that (Tk) converges faster than the sequence (Xk) if

lim
k−→∞

‖Tk − X ∗‖
‖Xk − X ∗‖ = 0. (32)

The goal of the extrapolation is to find a sequence (Tk)k from the sequence (Xk)k so
that (Tk)k converges faster to the same limit as (Xk)k . There are many extrapolation
methods in the literature, but we will only be interested to apply the Nesterov’s algo-
rithm approach and the polynomial extrapolation methods to our tensorial nonlinear
minimization problem.

4.1 The tensorial Nesterov acceleration techniques

One simple and widely studied strategy is to perform extrapolation in the spirit of
Nesterov’s extrapolation techniques [29, 38]. The basic idea of this technique is to
make use of historical information at each iteration in order to reduce the convergence
rate from O(1/k) to O(1/k2). Thus, using the position of the current iteration tensor
and the previous iteration tensor, the tensorial double proximal gradient method is
accelerated by adding an extrapolation step given by

Tk+1 = Xk +
(
tk − 1

tk+1

)
(Xk − Xk−1), (33)

where the scalars (tk) is given, at each step k, by tk+1 =
√
4t2k + 1 + 1

2
.

The convergence of the sequence (Tk)k∈IN may be investigated by following the
approaches given in several papers, e.g., [12, 13]. The complete algorithm summarizes
the accelerated tensorial double proximal gradientwithNesterov’s extrapolationwhich
is given in Algorithm 1.
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Algorithm 1: TDPG-Nesterov algorithm
1: Inputs: Initial guess X1 = O, P1 = O, T1 = X0, ∇F , t1 = 1, τ , μ, λ, α0, tol.
2: for k = 1, . . . until convergence, do
3: Yk = Tk − λ∇F (Tk ),
4: Compute the operator ∇Dk using the formula (23),
5: for l = 1, . . . , lk do
6: Update the line search parameter αl using (31).
7: Ql = Pl − αl∇Dk (Pl ),

8: Pl+1 = Ql + proxαlμ‖|.‖|1 (−Ql ), with proxαlμ‖|.‖|1 is given in (27).
9: end for
10: Zk = Yk + λ∇T (Plk+1),

11: Rk = Zk − λ∇F (Zk ),

12: Xk = ��(Tk − Yk + Rk ).

13: tk+1 =
√
4t2k + 1 + 1

2
,

14: Compute Tk+1 = Xk +
(
tk − 1

tk+1

)
(Xk − Xk−1).

15: End the iteration if ‖Tk+1 − Tk‖F/‖Tk‖F < tol.
16: end for
17: return Tk+1.

4.2 The global tensorial polynomial extrapolationmethods

The polynomial extrapolation methods are among the best-known extrapolation meth-
ods thanks to their theoretical clarity and numerical efficiency, especiallywhen applied
to solving nonlinear problems such as the case of our main problem (1). The poly-
nomial extrapolation methods were introduced in [43] for the vectorial extrapolation
case that developed after in [6, 23, 24] using efficient implementation techniques.
Those methods were also developed in a matrix global form in [22] and recently were
generalized for the tensor sequences in [16] using tensor product.

In the spirit of [24], we define the transformation in the following form

Tk,q =
q∑
j=0

γ jXk+ j , (34)

where k defines the first term of the sequence, the integer q stands for the number of
terms of the sequence, and the scalars (γ j ) verify the following two conditions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q∑
j=0

γ j = 1 ,

q∑
j=0

γ j 〈Vi |
Xk+ j 〉 = 0, i = 0, 1, . . . , q − 1,

(35)

where 
X j = X j+1 − X j and Vi are given tensors.
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As a consequence, the conditions (35) lead to the following linear system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ0 +γ1 + · · · + γq = 1
γ0〈V0|
Xk〉 +γ1〈V0|
Xk+1〉 + · · · + γq〈V0|
Xk+q〉 = 0
γ0〈V1|
Xk〉 +γ1〈V1|
Xk+1〉 + · · · + γq〈V1|
Xk+q〉 = 0

...
...

...
...

γ0〈Vq−1|
Xk〉 +γ1〈Vq−1,
Xk+1〉 + · · · + γq〈Vq−1|
Xk+q〉 = 0

(36)

where the vector γ = [γ0, γ1, . . . , γq ]T is the solution of the matrix equation:

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
〈V0|
Xk〉 〈V0|
Xk+1〉 · · · 〈V0|
Xk+q〉
〈V1|
Xk〉 〈V1|
Xk+1〉 · · · 〈V1|
Xk+q〉

...
...

...
...

〈Vq−1|
Xk〉 〈Vq−1|
Xk+1〉 · · · 〈Vq−1|
Xk+q〉

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
M

⎛
⎜⎜⎜⎜⎜⎝

γ0
γ1
γ2
...

γq

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
...

0

⎞
⎟⎟⎟⎟⎟⎠

. (37)

It is clear that Tk,q exists and is unique if and only if the square matrix M is
nonsingular. In this work, we consider two polynomial extrapolation methods, the
global tensor minimal polynomial extrapolation (GT-MPE), where the sequence Vi is
defined as

Vi = 
Xi+k, (38)

and the global tensor reduced rank extrapolation method (GT-RRE) with

Vi = 
2Xi+k = 
Xi+k+1 − 
Xi+k . (39)

Note that there is an integer q0, such that
{

X0,
X1, . . . ,
Xq0−1

}
is a linearly inde-

pendent set, but
{

X0,
X1, . . . ,
Xq0−1,
Xq0

}
is not. As a consequence, under

the condition q < q0, bothGT-MPE andGT-RRE produce approximations Tk,q of the
solution X ∗ in the form (34). For more details, we refer the reader to [24, 43].

The process of polynomial extrapolation usingGT-MPE orGT-RRE is summarized
in Algorithm 2.

Algorithm 2: The GT-MPE/GT-RRE algorithm
1: Inputs: The sequence

{
Xk , · · · ,Xk+q+1

}
.

2: Compute M :
3: For GT-MPE: Vi = 
Xi+k .
4: For GT-RRE: Vi = 
2Xi+k .
5: Solve the matrix equation Mγ = e1.
6: Compute the approximation Tk,q using the expression (34).
7: Output: Tk,q .
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For the GT-MPE and GT-RRE methods, the number of calculations required
increases quadratically with the number of iterations q and the storage cost increases
linearly. A good method to keep the cost of storage and the cost of the lowest pos-
sible calculations is to restart these algorithms periodically. The following algorithm
describes the restarted version of those methods called also a cycling mode.

Algorithm 3: Cycling mode.
1: Fix the integer q.
2: Form the sequence

{
X1, · · · ,Xq+1

}
.

3: Calculate the approximation Tk,q using the Algorithm 2.
4: If Tk,q is satisfactory, stop. Otherwise, set Xk = Tk,q as a new initialization and k = k + 1, and go

to the second step.

Remark 4.1 In the polynomial vector extrapolation case, the author in [24, 43] pro-
posed a numerically stable and computationally economical algorithm for computing
the (γi )i via the QR factorization. The same concept was developed for the tensor
case in [16] by defining a newQR factorization of the tensor Uk contents the sequence
(
Xi ) as frontal slices. However, in our situation, we have only used a direct method
for solving the matrix Eq. (37).

The accelerated version of the tensorial double proximal gradient algorithm using
the polynomial method is summarized in Algorithm 4.

Algorithm 4: TDPG-Polynomial extrapolation algorithm
1: Initial guess X0 = O, P0 = O T1 = X0, ∇F , μ, λ, τ , α0, q, tol.
2: for k = 1, . . . until convergence, do
3: Yk = Tk − λk∇F (Tk ),
4: Compute the operator ∇Dk using the formula (23),
5: for l = 1, . . . , lk do
6: Update the line search parameter αl using (31).
7: Ql = Pl − αl∇Dk (Pl ),

8: Pl+1 = Ql + proxαlμ‖|.‖|1 (−Ql ), with proxαlμ‖|.‖|1 is given in (27).
9: end for
10: Zk = Yk + λ∇T (Plk+1),

11: Rk = Zk − λ∇F (Zk ),

12: Xk = ��(Tk − Yk + Rk ).

13: Compute the iterate Tk+1 using Algorithm 3.
14: End the iteration if ‖Tk+1 − Tk‖F/‖Tk‖F < tol
15: end for
16: return Tk+1.
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5 Application in low-rank tensor completion

In this section, we will apply the proposed algorithm to the tensor completion prob-
lems. Completion is a technique of filling missing elements of incomplete data
using the values of available elements and the structural assumptions of data. Let
us consider the N th-order tensor G with observed entries indexed by the set C , i.e.,
C = {(i1, i2, . . . , iN ) : Xi1,i2,...,iN is observed }. Following the same definition of
Candes and Tao in [8], we define, in the tensor form, the projection PC (X ) to be the
N th-order tensor with the observed elements of X preserved and the missing entries
replaced with 0, namely

PC (X ) =
{
Xi1,i2,...,iN if (i1, i2, . . . , iN ) ∈ C,

0 otherwise.
(40)

One of the variants of the data completion problem is to find the lowest rank which
matches the observed data. This leads to an NP-hard rank minimization problem due
to the non-convexity of the rank function [45]. For that purpose, we need to replace
the rank function with something similar that provides the same results. Therefore, the
nuclear norm minimization method [17, 32, 47] is widely used in this case to replace
the rank minimization problem by the following one

{
min
X

‖X‖∗
subject to PC (X ) = PC (G).

(41)

where ‖. ‖∗ stands for the tensor nuclear norm defined as sum of the singular values
of the n-mode matricization X(n) of the tensor X , i.e., ‖X‖∗ =

∑
n

‖X(n)‖∗. Tensor

completion via total variation minimization was proposed in [31, 46] as an efficient
technique to regularize the minimization problem (41). The tensor total variation
completion problem is given in the following form:

min
X

‖PC (X ) − PC (G)‖2F + ‖X‖∗ + μ‖|∇X‖|1. (42)

The problem (42) can be formulated to a constrained minimization problem as

min
X∈�

‖PC (X ) − PC (G)‖2F + μ‖|∇X‖|1, (43)

where � = {X , ‖X‖∗ ≤ ε}.
By setting H = PC and B = PC (G), the problem (43) leads to the main problem

(1). Then, to solve the minimization problem (43), we can use our proposed acceler-
ated tensorial double proximal gradient algorithm. To apply the algorithm, we need
to introduce some notation, definitions and properties. The first notion we have to
introduce is the t-product. We give the definitions only for the third-order tensor, and
the other cases are defined recursively [25].
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Definition 5.1 [25] The t-product of two tensors A ∈ IRI1×I2×I3 and B ∈ IR I2×J×I3

is a tensor A ∗t B ∈ IRI1×J×I3 defined as

A ∗t B = ibvec (bcirc(A) · bvec(B)) (44)

where the dot · stands for the usual matrix product, the matrix bcirc(A) is a block
circulant matrix defined by using the frontal slices of A, bvec(B) defined as a block
vector contain the frontal slices of B, and ibvec stands for the inverse operation of
bvec.

bcirc(A) =

⎛
⎜⎜⎜⎝

A1 AI3 · · · A2
A2 A1 · · · A3

: . . . :
AI3 AI3−1 · · · A1

⎞
⎟⎟⎟⎠ and bvec(B) =

⎛
⎜⎜⎝

B1
B2
:

BI3

⎞
⎟⎟⎠ .

Definition 5.2 [25] The conjugate transpose of a tensor A ∈ IRI1×I2×I3 is the
A∗ ∈ IR I2×I1×I3 obtained by conjugate transposing each of the frontal slice and
then reversing the order of transposed frontal slices 2 through I3.

Definition 5.3 [TensorSingularValueDecomposition: t-SVD] [26]ForA ∈ IRI1×I2×I3 ,
the t-SVD of the third tensor A is given by

A = U ∗t S ∗t V∗, (45)

whereU andV are orthogonal tensors of size I1× I1× I3 and I2× I2× I3, respectively.
The tensor S is a rectangular f-diagonal tensor of size I1 × I2 × I3, and the entries in
S are called the singular values of A.

Definition 5.4 [26] The nuclear norm of X is defined using t-SVD decomposition
X = U ∗t S ∗t V∗ as follows:

‖X‖∗ =
r∑

i=1

S(i, i, 1), (46)

where r denotes the tubal rank of X .

Let �� denote the projection on the convex set �. It is immediate to proof that the
expression of the projection �� on � reduces to the proximal mapping of the nuclear
norm. Namely, for all Z in the tensor space X

��(Z) = proxσ‖. ‖∗(Z), (47)

where the proximal mapping of the nuclear norm is given in Proposition 5.1.
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Proposition 5.1 [34] Let U ∗t S ∗t V∗ be the t-SVD decomposition of the tensor X .
The proximal mapping of the nuclear norm is given by

proxσ‖. ‖∗(X ) = U ∗t Sσ ∗t V∗, for any σ > 0, (48)

where Sσ is the result of the inverse discrete Fourier transform (IDFT) on max(S̄ −
σ, 0) along the third dimension, which means performing the IDFT on all the tubes.
S̄ is the result of DFT on S along the third dimension.

6 Numerical results

This section presents that some results illustrate the performance of the developed
algorithm. The described model is successfully applied on multidimensional data. Let
Xtrue denote the original image or video, and the tensor B represents the incomplete
data. To evaluate the effectiveness of our algorithm, we use the peak signal-to-noise
ratio (PSNR) and the relative error (RE) defined as

PSN R = 10 log10

(
d2 I1 · · · IN

‖Xtrue − X̃‖2F

)
and RE = ‖Xtrue − X̃‖F

‖Xtrue‖F , (49)

where I1 × · · · × IN is the size of the approximate solution X̃ and d is the maximal
variation in the input data. On the other hand, we adopt the stopping criterion of the
algorithm as follows

ek = ‖Xk+1 − Xk‖F
‖Xk‖F ≤ tol,

where the tolerance tol is chosen in the interval [10−4, 10−1]. All computations were
carried out using theMATLABR2018a environment on an Intel(R) Core(TM) i7-8550
CPU @ 1,80 GHz 1,99 GHz computer with 16 GB of RAM.

In the following subsections, we will be interested in two essential parts of tensor
completion: color image and video inpainting (text removal) and grayscale video
completion. We first illustrate the performance of the proposed Algorithms 1 and 4
by comparing three acceleration methods in inpainting different color images and
grayscale videos. The completion of the grayscale video is reported after to show the
efficiency of our algorithm in case of uniformly random missing pixels. Finally, we
end with some comparisons with state-of-the-art algorithms.

6.1 Text removal

As an interesting application of completion problems, the text removal is a process of
data inpainting that based on the completion techniques to recover the missing region
in the tensor data or removing some objects added to it. The operation of inpainting
depends on the type damaging in the image, and the application that caused this
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Fig. 1 Original image (left), the
observed image
(PSN R = 15.5) (right)

Fig. 2 Inpainted image without acceleration (PSN R = 21.71), inpainted image with TDPG-Nesterov
(PSN R = 32.45), inpainted image with TDPG-MPE (PSN R = 32.5), inpainted image with TDPG-RRE
(PSN R = 32.47)

distortion. For example, in the text removal process, we talk about removing the text
that can be found in an image or a video [44]. In the literature, many techniques have
been developed to solve this problem [19, 27, 36]. The total variation was among the
most efficient method to solve such a problem.

In this example, we took the original Barbara color image of size 256 × 256 × 3
and we added a text to this image like shown in Fig. 1. The criterion for stopping the
proposed algorithms consists of the tolerance tol = 10−2, the maximum number of
iterations kmax = 200. We hand turned all the parameters λ, μ, α and σ by choosing
each one in its appropriate interval. We hand turned the value of λ in the interval
(0, 1/L(∇P�)) = (0, 1/2) by choosing λ = 2.5 × 10−1. On the other hand, the
step size sequence(αk) was computed using the line search iterative method starting
by α0 = 1.1 with a line search parameter τ = 0.5. We set σ = 6.5×10−2, and finally,
the regularization parameter was chosen to be μ = 1.2 × 10−2. The corresponding
results are shown in Fig. 2. Clearly, the accelerated version of the tensorial double
proximal gradient method provides clearer images by removing all the added text,
either usingAlgorithm1basedonNesterov acceleration approachorAlgorithm4using
the polynomial extrapolation techniques. Moreover, the relative error and the PSNR
curves represented in Fig. 3 show that the results produced by the TDPG algorithm
accelerated by the polynomial extrapolation techniques RRE orMPE converge faster
than those produced by the TDPG accelerated by Nesterov’s technique. The speed
of the convergence of the polynomial extrapolation method in comparison with the
Nesterov’s approach is clearly illustrated in the report of acceleration in Fig. 4 that
shows the fast convergence of TDPG-MPE and TDPG-RRE in less iterations than
TDPG-Nesterov.
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Fig. 3 The PSNR and relative error curves

Fig. 4 The report of acceleration
‖Tk − X∗‖
‖Xk − X∗‖

In Table 1, we have reported the PSNR of the completed tensor, the relative error,
as well as the number of iterations and the CPU-time results for “barbara.bmp ”color
image and “xylophone.mpg ”grayscale video of size 120 × 160 × 30. Based on the
tests reported in Table 1 and many more unreported tests, we remark that our proposed
algorithm works very effectively for image and video inpainting problems, in terms
of the PSNR as well as in terms of the relative error.

6.2 Grayscale video completion

In order to have more quantitative evaluations on the proposed approach, we used the
“news.mpg ”grayscale video of size 144×176×10 as original data and we randomly
mask off about 80% of entries that we regard them as missing values, as shown in
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Table 1 Comparison between the proposed acceleration techniques for tensorial total variation proximal
gradient method

Data size Algorithm PSN R(X ∗) RE Step time (s)

TDPG 21.71 1.72e−1 200 27.41

barbara.bmp TDPG-Nesterov 32.45 5e−2 97 13.37

256 × 256 × 3 TDPG-MPE (q = 5) 32.50 5e−2 20 19.72

TDPG-RRE (q = 5) 32.47 5e−2 21 19.88

TDPG 28.62 4.80e−2 18 6.71

xylophone.mpg TDPG-Nesterov 29.65 3.98e−2 12 4.10

120 × 160 × 30 TDPG-MPE (q = 5) 32.27 2.99e−2 3 5.38

TDPG-RRE (q = 5) 29.53 4.03e−2 3 5.66

Fig. 5 Original frames (top), incomplete frames with PSNR = 7.94 (center), recovered frames with PSNR
= 33.21 (bottom)

the second line of Fig. 5. The completed frames in Fig. 5 with PSNR = 33.21 are
obtained by using Algorithm 4 with the GT-RRE polynomial extrapolation technique.
The criterion for stopping the algorithm consists of the tolerance tol = 10−2 and
the maximum number of iterations kmax = 200. We set the step size parameters λ =
2× 10−1, α0 = 1.1, σ = 6× 10−1 and the regularization parameter μ = 2× 10−2.
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Fig. 6 Four benchmark color images: Baboon, Lena, Flower and Airplane, respectively

We can see that the results are visually pleasant using the accelerated version of the
tensorial double proximal gradient method that achieves a PSNR value equal to 33.21.

6.3 Comparison with state-of-the-art algorithms

In this subsection, we compare the performance of our proposed method with the fol-
lowing state-of-the-art tensor completion algorithms: LRTC, TNN, FBCP and RTC.
The LRTC algorithms are based on minimizing the sum of nuclear norms of the
unfolded matrices of a given tensor. The LRTC has two versions, HaLRTC and FaL-
RTC [32]. The first one stands for a fast low-rank tensor completion algorithm, and
the second stands for a high accuracy low-rank tensor completion algorithm. We also
found the TNN method [48] which is a tensor nuclear norm-based method developed
using the tensor—singular value decomposition (t-SVD) [25]. The concept of auto-
matic tensor rank determination was introduced in [49] which is based on a Bayesian
CP factorization (FBCP) in order to recover incomplete tensor. For the same goal
of completing tensors, recently, the RTC algorithm [10] was developed as an auto-
weighted approach using this time the well-known tensor trains decomposition [26].
Four benchmark color images, of size 256 × 256 × 3, are used in the comparisons,
Baboon, Lena, Flower andAirplane (see Fig. 6). To show the efficiency of the proposed
algorithm for different types of tensor completion, we generate different incomplete
images either using uniformly random missing pixels or non-random missing pixels.
In the first case, 80% and 60% of missing pixels are uniformly distributed in Flower
and Airplane color images, respectively. Non-random missing pixels, such as text and
scrabble, are used to corrupt the color images of Lena and Baboon. The corrupted
images are shown in the first column of Fig. 7. In order to provide a fair and unified
framework for comparison, all six algorithms are endowed with the same convergence
criterion, i.e., the iterations for all algorithms were terminated when the relative error
between two successive iterates of approximated primal variable is less than the tol-
erance tol = 10−4 or when a maximum of 200 iterations has been performed. In
addition, the parameters of the six algorithms are refined in relation to the best PSNR,
RE and CPU times scores on the images. Table 2 reports the PSNR, the relative error
RE, as well as the CPU time in seconds for all the six algorithms, while the recovered
images are shown in Fig. 7.

For the uniformly random missing pixels examples, the proposed TGPG algorithm
is comparable with the TNN algorithm. Both approaches reach the best results in
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Fig. 7 Image completion comparisons of Airplane, Flower, Lena and Baboon by six algorithms. a the
column of the observed (incomplete) images, b the completed images with FaLRTV algorithm, c the
completed images with HaLRTV algorithm, d the completed images with TNN algorithm, e the completed
images with FBCP algorithm, f the completed images with RTC algorithm and g the completed images
with the proposed TDPG algorithm

Table 2 Comparison of the results of six methods applied to four different images

Data Methods FaLRTV HaLRTV TNN FBCP RTC TDPG

PSNR 25.39 26.14 29.37 26.70 26.83 29.03

Airplane RE 6.69e−2 6.13e−2 4.23e−2 5.75e−2 5.66e−2 4.40e−2

Time (s) 89.44 58.76 26.30 38.43 15.64 36.44

PSNR 22.04 22.40 24.94 24.29 23.84 24.97

Flower RE 1.64e−1 1.58e−1 1.18e−1 1.27e−1 1.34e−1 1.17e−1

Time (s) 214.71 117.12 43.81 83.66 43.70 28.05

PSNR 28.13 28.94 28.91 26.39 28.57 30.29

Lena RE 7.07e−2 6.44e−2 6.46e−2 8.64e−2 6.73e−2 5.51e−2

Time (s) 226.40 148.06 42.67 27.19 8.81 44.91

PSNR 25.69 25.45 25.41 21.13 25.10 26.84

Baboon RE 9.63e−2 9.89e−2 9.94e−2 1.63e−1 1.03e−1 8.44e−2

Time (s) 133.15 72.92 28.91 23.38 8.30 25.54
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terms of PSNR and RE. However, by increasing the missing pixels in the Flower
color image, the proposed algorithm converges faster than TNN. On the other hand,
in the non-random missing pixels example, the proposed algorithm achieves the best
PSNR and RE among all other methods. Meanwhile, in terms of computation time,
algorithms RTC and FBCP are faster than ours.

7 Conclusion

The accelerated tensorial double proximal gradient algorithms described in this paper
can be applied to other fields like image and video restoration. The applications illus-
trated in this paper are only a small portion of what these algorithms can tackle. The
tensorial structure of the main problem offers the possibility of treating multidimen-
sional data; in addition, the use of extrapolation techniques has improved significantly
the convergence speed of the proposed algorithm.
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