
Journal of Optimization Theory and Applications (2023) 197:608–638
https://doi.org/10.1007/s10957-023-02195-3

A New Global Algorithm for Max-Cut Problemwith Chordal
Sparsity

Cheng Lu1 · Zhibin Deng2 · Shu-Cherng Fang3 ·Wenxun Xing4

Received: 30 May 2022 / Accepted: 1 March 2023 / Published online: 20 March 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this paper, we develop a semidefinite relaxation-based branch-and-bound algorithm
that exploits the chordal sparsity patterns of the max-cut problem. We first study how
the chordal sparsity pattern affects the hardness of a max-cut problem. To do this,
we derive a polyhedral relaxation based on the clique decomposition of the chordal
sparsity patterns and prove some sufficient conditions for the tightness of this poly-
hedral relaxation. The theoretical results show that the max-cut problem is easy to
solve when the sparsity pattern embedded in the problem has a small treewidth and
the number of vertices in the intersection of maximal cliques is small. Based on the
theoretical results, we propose a new branching rule called hierarchy branching rule,
which utilizes the tree decomposition of the sparsity patterns.We also analyze how the
proposed branching rule affects the chordal sparsity patterns embedded in the problem,
and explain why it can be effective. The numerical experiments show that the proposed

Communicated by Bernard Ries.

B Zhibin Deng
zhibindeng@ucas.edu.cn

Cheng Lu
lucheng1983@163.com

Shu-Cherng Fang
fang@ncsu.edu

Wenxun Xing
wxing@tsinghua.edu.cn

1 School of Economics and Management, North China Electric Power University, Beijing 102206,
China

2 School of Economics and Management, University of Chinese Academy of Sciences; MOE
Social Science Laboratory of Digital Economic Forecasts and Policy Simulation at UCAS,
Beijing 100190, China

3 Department of Industrial and System Engineering, North Carolina State University, Raleigh
27695-7906, USA

4 Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-023-02195-3&domain=pdf
http://orcid.org/0000-0003-0563-5841

Journal of Optimization Theory and Applications (2023) 197:608–638 609

algorithm is superior to those known algorithms using classical branching rules and
the state-of-the-art solver BiqCrunch on most instances with sparsity patterns arisen
in practical applications.

Keywords Max-cut · Branch-and-bound · Sparsity pattern

Mathematics Subject Classification 90C20 · 90C27 · 90C57

1 Introduction

Given an undirected graph with weights associated with edges, the max-cut problem
concerns the partition of vertices into two subsets such that the sum of weights of the
edges across all pair of vertices that lie in different subsets is maximized. The max-cut
problem can be formulated as the following binary quadratic programming problem
[16]:

max xT Qx (MC)

s.t. xi ∈ {−1,+1}, i = 1, . . . , n,

where Q is the Laplace matrix of the given graph.
Themax-cut problem is a classical optimization problemwithmany practical appli-

cations that has received great attention in the past. Besides, it is known that the linearly
constrained quadratic 0–1 programming problem can also be formulated as a max-cut
problem [27]. Hence, the max-cut problem is quite general in nature. It is known that
the max-cut problem is NP-hard in general [14].

The literature for the max-cut problem consists of a large number of solution
methods in two strands. One is to design efficient heuristic algorithms for find-
ing sub-optimal solutions. Goemans and Williamson [16] proposed a semidefinite
relaxation-based approximation method for the max-cut problem. Burer et al. [7]
proposed an alternative rank-two relaxation and developed a specialized version of
rounding technique, which outperforms the classical rounding algorithm proposed
in [16]. Besides the rounding algorithms, some neighborhood search-based heuristic
methods have also been proposed (for example, [11] and [29]). The readersmay refer to
[9] for a comprehensive review and systematic comparison of various types of approx-
imation algorithms. However, these approximation algorithms are only designed for
finding sub-optimal solutions of the max-cut problem in practically acceptable com-
putational complexity [9], but cannot guarantee to find global solutions in general.

The other strand is to design branch-and-bound algorithms for finding exact solu-
tions of the max-cut problem. Depending on the relaxation methods used, we may
further classify these algorithms into four types: linear relaxation-based [4, 22], con-
vex quadratic programming relaxation-based [6], second-order cone relaxation-based
[23, 31], and semidefinite relaxation-based [20, 32] branch-and-bound algorithms.
Rendl et al. [33] discussed the advantages and limitations of the above four types of
algorithms. For the linear relaxation-based branch-and-bound algorithms, some max-
cut problem arising in statistical physics can be solved for instances with up to 12,100

123

610 Journal of Optimization Theory and Applications (2023) 197:608–638

variables for Q having ±1 entries only, and 22,500 variables for Q having entries
following a Gaussian distribution. However, Rendl et al. [33] also showed that the
linear relaxation-based algorithms may even fail to solve a general max-cut problem
with only 100 variables when the density is over 20%. Since 2010, some semidefinite
relaxation-based algorithms became capable of solving certain types of sparsemax-cut
problem with 100–200 variables [25, 26, 33]. The Biq Mac algorithm [33] applies a
bundle method to solve the semidefinite relaxations enhanced by triangle inequalities
and achieves a high performance on solving problems with hundreds of variables in
different densities. Krislock et al. [25] proposed another semidefinite relaxation-based
algorithm by using a quasi-Newton algorithm to solve the relaxation problems. The
numerical results in [25] showed that their algorithm outperforms Biq Mac on 75%
instances for a test set of 328 instances. They further improved the bounding proce-
dure in [26] and published a semidefinite relaxation-based solver “BiqCrunch” for
binary quadratic problems. As far as the authors know, BiqCrunch has achieved the
state-of-the-art efficiency, and the numerical results in [26] showed that BiqCrunch
runs faster than Biq Mac on most test instances in a large benchmark test set.

Sparsity is often utilized in designing efficient algorithms to solve the max-cut
problem exactly. The existing algorithms generally exploit the edge sparsity of a
graph to reduce the number of variables in a linear relaxations or to exploit the cycles
in a graph to derive new valid inequalities [4, 22]. However, there lacks research on
exploiting the “chordal sparsity patterns” of the max-cut problem to design efficient
global algorithms. A sparsity pattern can be naturally interpreted as an undirected
graph and the chordal sparsity pattern is then described as the clique decomposition
of a sparsity pattern. Examples of matrices with chordal sparsity patterns include
matrices with banded structure, overlapping block diagonal structure and block-arrow
structure. These matrices are often observed in real-life applications [1, 17, 35, 37].
In recent years, many works started to explore the chordal sparsity pattern for solving
semidefinite programming problems and sparse polynomial optimization problems
[12, 15, 39–44]. The readers may refer to [38] for a review on the topic of chordal
graph and its applications in optimization. However, as far as we know, in the area
of global optimization, there is no work to study how to exploit the chordal sparsity
pattern to design effective branching rules for a branch-and-bound algorithm.

This paper intends to design an efficient branch-and-bound algorithm for solving
the max-cut problem with chordal sparsity patterns. In particular, we design a new
branching rule based on the clique decomposition of the sparsity pattern of the max-
cut problem to avoid exploring unpromising subproblems in order to achieve high
efficiency. The contributions of this paper are twofold:

(1) In theory, in order to analyze how the chordal sparsity pattern affects the tight-
ness of a convex relaxation of a max-cut problem, we derive a polyhedral relaxation
and provide sufficient conditions for the tightness of the polyhedral relaxation. The
sufficient conditions imply that the convex relaxation of a max-cut problem can be
tight if the sparsity pattern of the problem has the following two properties: (i) the
treewidth is small, and (ii) the number of vertices in the intersection ofmaximal cliques
is small.

(2)Based on the theoretical results,we derive a newbranching rule called “hierarchy
branching rule,” which aims at reducing the treewidth of the sparsity pattern and

123

Journal of Optimization Theory and Applications (2023) 197:608–638 611

reducing the number of vertices in the intersection of maximal cliques. The intuitive
idea behind the proposed method is that the new rule aims to manipulate the sparsity
pattern of max-cut problem toward the one of small treewidth. To the best of our
knowledge, the proposed algorithm is the first one exploiting chordal sparsity pattern
for designing a branching rule. We test the proposed algorithm on instances of the
max-cut problem with five types of sparsity patterns. The numerical results clearly
show the benefit of our new branching rule.

The rest of this paper is organized as follows: Section2 reviews some useful defi-
nitions and theories in graph theory. Section3 designs a polyhedral relaxation of the
max-cut problem and studies the tightness of the proposed relaxation. Section4 pro-
poses a new branching rule and a cutting-plane selection scheme based on the clique
decomposition of sparsity pattern embedded in themax-cut problem. Section5 designs
a branch-and-bound algorithm that adopts the new branching rule and cutting-plane
selection scheme. Numerical results are presented in Sect. 6, while Sect. 7 concludes
the paper.

The following notations are adopted in this paper. Sn is the set of real symmetric
matrices of size n × n and S

n+ is the set of real positive semidefinite matrices of size
n × n. For a matrix X ∈ S

n and an index set C ⊆ {1, 2, . . . , n}, X [C] represents
the square submatrix of X with the rows and columns indexed by the set C . |C | is
the cardinality of set C . Xi j denotes the i th row and j th column component of X ,
Xi : denotes the i th row of X , and X : j denotes the j th column. X � 0 means that
the matrix X is positive semidefinite. Z = X (P,C) represents the mapping that lifts
a matrix P ∈ S

|C| to the matrix Z ∈ S
n where Z [C] = P and Zi j = 0 if either

i /∈ C or j /∈ C . For any two matrices A, B ∈ S
n , their inner product is defined as

A • B = ∑m
i=1

∑n
j=1 Ai j Bi j .

2 Preliminary Results in Graph Theory

Since the sparsity pattern of a matrix Q ∈ S
n can be represented by a graph, we review

some related results in graph theory in this section.
An undirected graph G = (V, E) is defined by its vertex set V and edge set E =

{[i, j] | i, j ∈ V, i �= j}. For an undirected graph, both the two notations [i, j] and
[j, i] represent the same edge. A cycle of length r in a graph is defined by a sequence
of vertices i1, . . . , ir , ir+1 in V such that [it , it+1] ∈ E for all t = 1, . . . , r , ir+1 = i1
and i1, . . . , ir are different vertices in V . A chord in a cycle i1, . . . , ir , ir+1 of length
r ≥ 4 is an edge [is, it] ∈ E with the pair of vertices is, it being two nonconsecutive
vertices in the cycle.

To represent the sparsity pattern of amatrix Q ∈ S
n , we define the graphG = (V, E)

corresponding to Q, where V = {1, 2, . . . , n} and E = {[i, j] | Qi j �= 0, i, j ∈
V, i �= j}. The extended set of edges is then defined as

Ē := E
⋃

{[1, 1], [2, 2], . . . , [n, n]} .

123

612 Journal of Optimization Theory and Applications (2023) 197:608–638

The set of real symmetric matrices having a given sparsity pattern G = (V, E) is then
denoted as

S
n(G) = {X ∈ S

n | Xi j = X ji = 0 if [i, j] /∈ Ē}.

Similarly, the set of real positive semidefinite matrices with a given sparsity pattern
G = (V, E) is denoted as

S
n+(G) = {X ∈ S

n+ | Xi j = X ji = 0 if [i, j] /∈ Ē}.

Some definitions in graph theory, including clique, tree decomposition, chordal
graph and graph contraction, are important for deriving the branch-and-bound algo-
rithm that will be proposed in Sect. 5. We introduce them in sequence.

Definition 2.1 (Clique, maximal clique and maximum clique) Given an undirected
graph G = (V, E), a clique of G is a subset of vertices C ⊆ V , such that for any two
different vertices i, j ∈ C , we have [i, j] ∈ E . A clique C is called maximal clique
if C

⋃{i} is not a clique of G for any vertex i /∈ C . A clique C is called maximum
clique if |C | achieves the largest value among all different cliques.

Definition 2.2 (Tree decomposition ([8], Section 12.3)) For an undirected graph G =
(V, E), a tree decomposition of G is defined by a graph T = (U ,H), where vertex
set U = {C1, . . . ,Ck} is a family of nonempty subsets (sometimes called bags) of V ,
where k ≤ n, and edge setH is a tree on the k vertices, satisfying the Properties (P1),
(P2) and (P3), or Properties (P1), (P2) and (P3’)1:

– (P1) For each i ∈ V , there exists a Cr ∈ U , such that i ∈ Cr .
– (P2) For each [i, j] ∈ E , there exists a Cr ∈ U , such that i, j ∈ Cr .
– (P3) For two different verticesCs,Ct ∈ U , each vertexCr in the path that connects
Cs and Ct in T satisfies Cs

⋂
Ct ⊆ Cr .

– (P3’) For any i ∈ V , the set of vertices in T that contain i , defined by {Cr | i ∈
Cr ,Cr ∈ U}, forms a connected sub-tree of T .

The width of T is defined by max{|C1|, . . . , |Ck |}−1. The treewidth of G, denoted
by tw(G), is the minimum width among all tree decompositions of G. Treewidth is an
important parameter to describe how a graph looks like a tree. It can be shown that
G is a tree if and only if tw(G) = 1. Apparently, the tree decomposition of a graph
is far from unique. For example, a trivial tree decomposition contains all vertices of
the graph in its single root node and has width n − 1. Finding a tree decomposition
of a graph with minimum width is not easy. It is shown that for an integer r , to check
whether G has a tree decomposition with width at most r is NP-complete, if r is part
of the input [2].

Definition 2.3 (Chordal graph) A graph G is chordal if every cycle of G with length
no less than four has at least one chord.

1 It is easy to check that Properties (P3) and (P3’) are equivalent.

123

Journal of Optimization Theory and Applications (2023) 197:608–638 613

Fig. 1 Illustrations of the definitions in graph theory: a a ladder graph cited from Figure 4 in [28]; b the
chordal extension of the ladder graph; c the tree decomposition of the ladder graph, which is also the clique
decomposition of the chordal graph in b

A matrix is said to have a chordal sparsity pattern if its sparsity pattern can be
represented by a chordal graph. The interest of exploiting the chordal sparsity pattern
of a matrix is motivated from a well-defined tree decomposition structure of a chordal
graph. In detail, if a graph G is chordal, then there exists a tree decomposition T =
(U ,H) such that U is exactly the set of all maximal cliques of G. In this case, we call
this tree decomposition T as the clique decomposition of G with tw(G) = |C∗| − 1
exactly, where C∗ is one maximum clique of G. It has been shown that there exist
linear-time algorithms (in terms of the number of vertices and edges) to test chordality
of a graph and identify the maximal cliques of a chordal graph efficiently [36]. When
G is not chordal, there are heuristic algorithms to expand G to a chordal graph by
adding edges into G [19]. Figure1 illustrates an example of chordal extension, tree
decomposition and clique decomposition of a graph.

Now we give the definition of vertex contraction, which will be an important graph
operation in the branching rule to be proposed in Sect. 4.2.

Definition 2.4 (Vertex contraction) Let i, j ∈ V be two different vertices in G. By
G/[i, j], we denote the graph obtained from G by contracting the two vertices i, j into
a new vertex e, which is adjacent to all the neighbors of i and of j .

In the next, we define a similar vertex contraction operation in a tree decomposition.

Definition 2.5 (Vertex contraction in a tree decomposition) Let T = (U ,H) be a tree
decomposition of G, Cs,Ct ∈ U be two different vertices in T , and [Cs,Ct] ∈ H. By
T /[Cs,Ct], we denote the graph obtained by contracting the two vertices Cs, Ct into
a new vertex Ce = Cs

⋃
Ct , which is adjacent to all the neighbors of Cs and of Ct .

Notice that, in Definition 2.4, the contracted vertices i and j are not required to be
adjacent in G. They can be selected arbitrarily. However, in Definition 2.5, the pair of
vertices Cs and Ct is required to be an edge in T . This requirement is necessary to
guarantee that T /[Cs,Ct] is still a tree. Following from Definition 2.5, we have the
following result.

Lemma 2.1 Let T = (U ,H) be a tree decomposition of G that has k vertices with
k ≥ 2. Then, for any [Cs,Ct] ∈ H, T ′ := T /[Cs,Ct] is also a tree decomposition of
G with k − 1 vertices.

Proof It is easy to check that T ′ is a tree with k − 1 vertices that satisfies properties
(P1) and (P2) in Definition 2.2. We show that T ′ also satisfies property (P3). Denote

123

614 Journal of Optimization Theory and Applications (2023) 197:608–638

Ce as the vertex contracted fromCs andCt . LetCu,Cv be two different vertices in T ′,
and Ci1 , . . . ,Cir be the unique path in T ′ that connects Cu and Cv , where Ci1 = Cu ,
Cir = Cv , and r is the number of vertices in the path. Now consider the following
three cases:

Case 1) If Ce is not in the path of Ci1, . . . ,Cir , then the path is also a path in T and
thus Cu

⋂
Cv ⊆ Cp for all Cp ∈ {Ci1,Ci2 , . . . ,Cir }.

Case 2) If Ce is in the interior of the path, i.e., there exists a vertex Ciw , 1 < w < r ,
such that Ce = Ciw , then one of the following four paths is the unique path in T that
connects Cu and Cv:

Ci1 , . . . ,Ciw−1 ,Cs,Ct ,Ciw+1 , . . . ,Cir ,

Ci1 , . . . ,Ciw−1 ,Ct ,Cs,Ciw+1 , . . . ,Cir ,

Ci1 , . . . ,Ciw−1 ,Cs,Ciw+1 , . . . ,Cir ,

Ci1 , . . . ,Ciw−1 ,Ct ,Ciw+1 , . . . ,Cir .

Hence, Cu
⋂

Cv = Ci1
⋂

Cir ⊆ Cp holds for each

Cp ∈ {Ci1, . . . ,Ciw−1 ,Ciw+1 , . . . ,Cir },

and either Cu
⋂

Cv ⊆ Cs or Cu
⋂

Cv ⊆ Ct holds (or both). Then, for a vertex C ′
p

in the path of Ci1, . . . ,Cir in T ′, either C ′
p ∈ {Ci1, . . . ,Ciw−1 ,Ciw+1 , . . . ,Cir } or

C ′
p = Cs

⋃
Ct holds. In both situations, we have Cu

⋂
Cv ⊆ C ′

p.
Case 3) If Ce is an end point of the path, without loss of generality, we may

assume that Ce = Cu . Then, either Cs,Ct ,Ci2 , . . . ,Cir or Ct ,Cs,Ci2 , . . . ,Cir is
a path in T . In both situations, we have Cs

⋂
Cir ⊆ Cp and Ct

⋂
Cir ⊆ Cp for

all Cp ∈ {Ci2 , . . . ,Cir−1}. Then, Cu
⋂

Cv = (Cs
⋃

Ct)
⋂

Cir ⊆ Cp for all Cp ∈
{Ci1,Ci2 , . . . ,Cir }.

Based on the discussions on the above three cases, we have shown that T ′ also
satisfies property (P3) to be a tree decomposition of G that has k − 1 vertices.
�

3 A Sparse Polyhedral Relaxation of theMax-Cut Problem

In this section, we analyze how the chordal sparsity pattern affects the hardness of a
max-cut problem. To do this, we design a sparse polyhedral relaxation of the max-cut
problem. Although this polyhedral relaxation is not computational trackable, it helps
us to understand when a max-cut problem can be relaxed to a convex problem that has
a small relaxation gap. Such a convex relaxation provides a new approach to designing
an effective branching rule for a branch-and-bound algorithm.

By introducing X = xxT , problem (MC) can be reformulated as follows:

max Q • X (RF1)

s.t. X ∈ B
n,

123

Journal of Optimization Theory and Applications (2023) 197:608–638 615

where B
n = {

X = xxT ∈ S
n | xi ∈ {−1,+1}, i = 1, . . . , n

}
. Note that xxT =

(−x)(−x)T , hence there are 2n−1 distinct points in B
n . Note that (RF1) has a lin-

ear objective function, thus the problem can be reformulated as

max Q • X (RF2)

s.t. X ∈ P
n,

where Pn , called the max-cut polytope of order n, represents the convex hull of Bn .
Because the number of extreme points in P

n is 2n−1, it is impractical to solve (RF2)
directly unless n is small. However, when n is large and the problem has certain type
of sparsity patterns, we may exploit the sparse patterns to design a tight polyhedral
relaxation for (MC) from (RF2).

Assume that Q ∈ S
n(G), where G is a connected graph with vertices {1, . . . , n}.

Without loss of generality, we may also assume that G is a chordal graph, otherwise
we can expand G to a chordal one by applying the heuristic algorithms in [19]. Let
T = (U ,H) be a clique decomposition of G with U = {C1, . . . ,Ck} being the set of
all maximal cliques of G. If X ∈ P

n , then X [Cr] ∈ P
nr holds for each r = 1, . . . , k,

where nr = |Cr | and Pnr is the max-cut polytope of order nr for r = 1, . . . , k. Hence,
we define the following polyhedral relaxation of (RF2):

max Q • X (PR)

s.t. X [Cr] ∈ P
nr , r = 1, . . . , k.

The constraint X [Cr] ∈ P
nr can be represented by using the exact subgraph constraint

formulation [13] or approximated by the facet-defining inequalities [3, 4]. Here, we
use the exact subgraph constraints to describe the constraint X [Cr] ∈ P

nr . Let Bnr be
the set of extreme points in P

nr , i.e., Bnr = {Pnr
j | j = 1, . . . , Nr } with Nr = 2nr−1

and Pnr
j ’s being the extreme points of Pnr . Then, X [Cr] ∈ P

nr can be decomposed as

X [Cr] =
Nr∑

j=1

λrj P
nr
j with

Nr∑

j=1

λrj = 1 and λr1, . . . , λ
r
Nr

≥ 0. (1)

A natural question is when the relaxation (PR) becomes tight. The following two
lemmas are useful for deriving the conditions of the tightness of (PR).

Lemma 3.1 Assume that Q ∈ S
n(G), T = (U ,H) is a tree decomposition of G,

and Cs and Ct are two adjacent vertices in the tree decomposition. If X [Cs] ∈ P
ns ,

X [Ct] ∈ P
nt , and |Cs

⋂
Ct | ≤ 3, then there exists a matrix P̄ ∈ P

|Cs
⋃

Ct | such that,
for the matrix X̄ = X (P̄,Cs

⋃
Ct), we have X̄ [Cs] = X [Cs] and X̄ [Ct] = X [Ct].

Proof Denote ns,t = |Cs
⋂

Ct | and Ns,t = 2ns,t−1. Let Bns,t be the set of extreme
points of Pns,t , represented by B

ns,t := {Pns,t
j | j = 1, . . . , Ns,t }. Let r = s or t , we

partition the set {1, 2, . . . , Nr } into Ns,t disjoint sets defined by

Dr
q = { j | Pnr

j ∈ B
nr , X (Pnr

j ,Cr)[Cs

⋂
Ct] = P

ns,t
q }, q = 1, . . . , Ns,t .

123

616 Journal of Optimization Theory and Applications (2023) 197:608–638

Then, the decomposition of X [Cr] in (1) can be reformulated as

X [Cr] =
Ns,t∑

q=1

∑

j∈Dr
q

λrj P
nr
j ,

Nr∑

j=1

λrj = 1 with λr1, . . . , λ
r
Nr

≥ 0.

Based on the construction of Dr
q , r = s or t , we have

X [Cs

⋂
Ct] =

Ns,t∑

q=1

⎛

⎝
∑

j∈Ds
q

λsj

⎞

⎠ P
ns,t
q =

Ns,t∑

q=1

⎛

⎝
∑

j∈Dt
q

λtj

⎞

⎠ P
ns,t
q .

Whenns,t ≤ 3, it is easy to check that the points in the setBns,t are affinely independent.
Therefore,

∑

j∈Ds
q

λsj =
∑

j∈Dt
q

λtj , q = 1, . . . , Ns,t .

For each q = 1, . . . , Ns,t , let μq = ∑
j∈Ds

q
λsj = ∑

j∈Dt
q
λtj . For each pair i ∈ Ds

q

and j ∈ Dt
q , there exists an extreme point in B

|Cs
⋃

Ct |, denoted by P
|Cs

⋃
Ct |

i, j , such
that

X (P
|Cs

⋃
Ct |

i, j ,Cs

⋃
Ct)[Cs] = Ps

i

and

X (P
|Cs

⋃
Ct |

i, j ,Cs

⋃
Ct)[Ct] = Pt

j .

Then, we can construct

P̄ =
∑

q=1,...,Ns,t ,μq �=0

1

μq

∑

i∈Ds
q

∑

j∈Dt
q

λsi λ
t
j P

|Cs
⋃

Ct |
i, j

and X̄ = X (P̄,Cs
⋃

Ct). It is not difficult to verify that P̄ ∈ P
|Cs

⋃
Ct |, X̄ [Cs] =

X [Cs] and X̄ [Ct] = X [Ct].
�
Lemma 3.2 Assume that Q ∈ S

n(G) and T = (U ,H) is a tree decomposition of G.
If |Cs

⋂
Ct | ≤ 3 for all s, t ∈ {1, . . . , k} with s �= t , then for a matrix X ∈ S

n, the
following two statements are equivalent:

– (S1) There exists a matrix X̄ ∈ P
n such that the equation X̄ [Cr] = X [Cr] holds

for r = 1, . . . , k.
– (S2) X [Cr] ∈ P

nr for r = 1, . . . , k.

123

Journal of Optimization Theory and Applications (2023) 197:608–638 617

Proof If (S1) is true, then we naturally have X [Cr] = X̄ [Cr] ∈ P
nr for all r =

1, . . . , k, thus (S2) is true. We now show the reverse direction using the induction on
k.

For k = 2, following Lemma 3.1, we can construct a matrix X̄ ∈ P
|C1

⋃
C2| = P

n

such that X̄ [C1] = X [C1] and X̄ [C2] = X [C2]. Hence (S1) holds for k = 2.
Now assume that (S1) can be derived from (S2) when k ≤ q, where q ≥ 2,

and consider the case of k = q + 1. We choose a leaf vertex Cs from the tree T
and let Ct be the unique neighborhood of Cs . Using Lemma 3.1, we can construct
a matrix P̄ ∈ P

|Cs
⋃

Ct | such that, for X̂ = X (P̄,Cs
⋃

Ct), the equations X̂ [Cs] =
X [Cs] and X̂ [Ct] = X [Ct] hold. Then, we generate a new matrix X̃ by assigning
X̃ [Cs

⋃
Ct] = P̄ and X̃i j = Xi j if i /∈ Cs

⋃
Ct or j /∈ Cs

⋃
Ct . Based on this

construction, we know that if X̃i j �= Xi j , then either i ∈ Cs \ Ct , j ∈ Ct \ Cs or
i ∈ Ct\Cs, j ∈ Cs\Ct must hold. Now we analyze the block X̃ [Cu] where u /∈ {s, t}.
Since Cu

⋂
Cs ⊆ Ct (according to the running intersection property (P3) of tree

decomposition), which implies (Cu
⋂

Cs)\Ct = ∅, i.e., for any i ∈ Cu , we have
i /∈ Cs \ Ct . Hence, for any i, j ∈ Cu , the equation X̃i j = Xi j must hold, and thus
X̃ [Cu] = X [Cu] ∈ P

|Cu |. Then, X̃ satisfies X̃ [Cr] ∈ P
|Cr | for all vertices Cr in

T /[Cs,Ct], and the contracted tree T /[Cs,Ct] has q = k − 1 vertices. Moreover,
let Ce be the vertex contracted from [Cs,Ct]. Then, for a neighbor Cr of Ce, we
have Cr

⋂
Ce = Cr

⋂
(Cs

⋃
Ct) = Cr

⋂
Ct , where the last equality holds due to

the property Cr
⋂

Cs ⊆ Ct . Thus, we have shown that |Cr
⋂

Ce| = |Cr
⋂

Ct | ≤ 3.
Consequently, T /[Cs,Ct] is another tree decomposition of G such that for each pair
of vertices Cs and Ct in T /[Cs,Ct], we have |Cs

⋂
Ct | ≤ 3. By induction, we know

that (S1) is true.
�
Note that Lemma 2.1 shows that T /[Cs,Ct] is a tree decomposition, but not neces-

sary a clique decomposition, of the chordal graph G. In general, the set Ce = Cs
⋃

Ct

may not be a clique in G. Hence, in Lemmas 3.1 and 3.2, we assume that T is a tree
decomposition, rather than a clique decomposition, of G. Furthermore, in the proof of
Lemma 3.2, the induction procedure only requires T /[Cs,Ct] to be a tree decompo-
sition. Now, we are ready to prove the conditions for the tightness of the polyhedral
relaxation (PR).

Theorem 3.1 Assume that Q ∈ S
n(G) and T = (U ,H) is a tree decomposition of G.

If |Cs
⋂

Ct | ≤ 3 for all s, t ∈ {1, . . . , k} with s �= t , then the polyhedral relaxation
(PR) is tight.

Proof Since (PR) is a relaxation of (RF2), we only need to show that, for every feasible
solution X of (PR), there is a feasible solution X̄ of (RF2) such that both X and X̄ give
the same objective value. Following Lemma 3.2, we know that X is feasible to (PR)
if and only if there is a matrix X̄ ∈ P

n such that X̄ [Cr] = X [Cr] for r = 1, . . . , k.
Since Q ∈ S

n(G), we have Q • X̄ = ∑
[i, j]∈E Qi j X̄i j and Q • X = ∑

[i, j]∈E Qi j Xi j .
Note that T = (U ,H) is a tree decomposition of G, then, for any [i, j] ∈ E , there is
a Cr ∈ U , r ∈ {1, . . . , k}, such that i, j ∈ Cr . Therefore, we have Q • X̄ = Q • X .
Consequently, (PR) is equivalent to (RF2), and thus tight.
�

123

618 Journal of Optimization Theory and Applications (2023) 197:608–638

Corollary 3.1 Assume that Q ∈ S
n(G) and T = (U ,H) is a tree decomposition of G.

If the width of T is no more than 3, then the polyhedral relaxation (PR) is tight.

Proof When the width of T is no more than 3, we have that |Cs
⋂

Ct | ≤ 3 for all
s, t ∈ {1, . . . , k} with s �= t . The conclusion then follows from Theorem 3.1.
�

Based on Theorem 3.1 and Corollary 3.1, we can see that relaxation (PR) is tight if
the treewidth of the sparsity pattern G corresponding to Q is no more than three, or if
the intersection set Cs

⋂
Ct among different maximal cliques has no more than three

elements. These theoretical results give the sufficient conditions for the tightness of
relaxation (PR).

4 The Hierarchy Branching Strategy

The sufficient conditions for the tightness of problem (PR) provide important insights
on how to design an effective branch-and-bound rule—if the treewidth of the sparsity
pattern is small, and the intersections of different cliques have very few vertices, then
(PR) is likely to be a tight relaxation for problem (MC). Motivated by this intuitive
idea, we exploit the clique decomposition structure in the sparsity pattern of problem
(MC) to design a new branching rule, such that the sparsity patterns of subproblems
in the deep level of the proposed branch-and-bound algorithm have small treewidth
and small clique intersection. The new features of the proposed algorithm include:

– A new branching rule, which aims to manipulate the sparsity pattern of the prob-
lem toward a sparsity pattern that has a low treewidth and few vertices in the
intersections of different cliques.

– A new cutting-plane selection scheme that only involves the valid inequalities on
variables in X [Cr] for r = 1, . . . , k.

To further explain the ideas of the proposed branch-and-bound techniques, we
first analyze the relation between the proposed polyhedral relaxation and the classical
semidefinite relaxations of the max-cut problem. Then, we develop a new semidefinite
relaxation-based branch-and-bound algorithm

4.1 Semidefinite Relaxations

If there is a clique Cr ∈ U with large nr = |Cr |, then it is computationally expensive
to solve (PR) directly. A practical way is to further relax X [Cr] ∈ P

nr to a com-
putationally efficient relaxation. One straightforward way is to relax X [Cr] ∈ P

nr to
X [Cr] � 0, and then add valid inequalities on X [Cr]. One set of such valid inequalities
is Xii = 1 for i = 1, . . . , n. Then, we arrive at the following semidefinite relaxation:

max Q • X (CSDR)

s.t. Xii = 1, i = 1, . . . , n,

X [Cr] � 0, r = 1, . . . , k.

123

Journal of Optimization Theory and Applications (2023) 197:608–638 619

This relaxation has actually appeared in [12]. It is a compact reformulation of the
following classical semidefinite relaxation for (MC):

max Q • X (SDR)

s.t. Xii = 1, i = 1, . . . , n,

X � 0.

To see the equivalence between (CSDR) and (SDR), we cite the following result of
[18]:

Lemma 4.1 ([18], Theorem 7) Assume that G is a chordal graph and X ∈ S
n(G). Let

T = (U ,H) be a clique decomposition of G, where U = {C1, . . . ,Ck} is the set of all
maximal cliques in G. Then, the following two statements are equivalent:

(S1) X [Cr] � 0 for r = 1, . . . , k.
(S2) There exists an X̄ ∈ S

n+ such that X̄ [Cr] = X [Cr] for r = 1, . . . , k.

As indicated in Theorem 3.1 and Corollary 3.1, if the treewidth of sparsity pattern
is no more than three or the intersection of any two cliques has no more than three
vertices, then the relaxation (PR) is tight. Since (CSDR) is derived by further relaxing
(PR), it can be regarded as an approximation of (PR). Hence, when the treewidth
of the sparsity pattern is reduced, and the number of elements in the intersection
of cliques is small, it is expected that the gap between (CSDR) and (MC) is small.
Intuitively speaking, the gap between the polyhedral constraint X [Cr] ∈ P

nr and its
semidefinite relaxation X [Cr] � 0 depends on the size of Cr . When nr is small,
P
nr is a low-dimension polyhedral, and the gap between P

nr and its semidefinite
relaxation is small [21]. In this sense, when the treewidth of the sparsity pattern is
small, the semidefinite relaxation (CSDR) or (SDR) may involve a tight relaxation to
each submatrix constraint X [Cr] ∈ P

nr such that it is likely to provide a tight bound.
This motivates us to design a new branching rule such that the treewidth of the

sparsity pattern and the intersection of any two cliques are reduced as the branch-and-
bound tree traverses deep. To achieve this purpose, we propose a new branching rule
based on the clique decomposition of sparsity pattern in problem (MC) in the next
section.

4.2 A Hierarchy Branching Rule

In this subsection, we will develop a new branching rule based on the clique decom-
position of the sparsity pattern of problem (MC). In the existing three semidefinite
relaxation-based branch-and-bound algorithms [20, 25, 33], two branching rules are
widely adopted: the easy first rule (called rule R2) and the difficult first rule (called rule
R3). For an optimal solution X of a semidefinite relaxation, rule R2 selects i and j such
that their rows of X are closest to a {−1, 1} vector, i.e., they are the minimum solution
and the second minimum solution of argmins

∑n
t=1(1 − |Xst |)2, respectively. Rule

R3 picks the one which minimizes |Xi j |. One may refer to [20, 33] for more detailed
descriptions of rules R2 and R3.

123

620 Journal of Optimization Theory and Applications (2023) 197:608–638

Aswe can see, both rulesR2 andR3 are numerical-driven rules,which only consider
the information of the optimal solution of current relaxation problem. However, the
branching procedure has significant impacts on the sparsity pattern of the problem.
Note that by assigning Xi j to either Xi j = 1 or Xi j = −1, the constraint xi = x j
or xi = −x j is added implicitly in the child nodes. This is equivalent as saying that
the vertices i and j are contracted to a new vertex in the sparsity pattern of the child
problems. Viewing from this perspective, the branching rules R2 and R3 are actually
vertex contraction on the sparsity pattern of the problem. Here, different from the
above two branching rules, we design a new rule that takes the sparsity pattern of the
problem into consideration.

We first analyze how the branching procedure will affect the sparsity pattern of a
problem. For a problem with Q ∈ S

n(G), when we select a variable Xi j to branch, the
branching procedure will eliminate the variable x j by replacing it with xi or −xi in
the child nodes, the dimension of the problem reduces by one, and the matrix Q in the
objective function can be updated by Algorithm 1 as given below, where p = −1 in
case xi = −x j , and p = 1 in case xi = x j . The set VQ := {�1, . . . , �r } ⊆ {1, . . . , n}
in Algorithm 1 defines an ordered sequence, in which, for each s = 1, . . . , r , �s
represents the vertex in G that the sth row (or column) of Q corresponds to. In a
branch-and-bound algorithm,VQ is initialized as the set of all vertices in the root node.
After some branching steps, some variables have been eliminated, and the number of
undetermined variables in the objective function will be reduced to r with r < n. In
general, VQ in an enumeration node is a subset of V . Algorithm 1 provides a general
procedure for the case Q ∈ S

r that corresponds to a subset of the vertices. The new
vertex generated by contracting i and j is denoted by e. Then, we update VQ to a new
ordered sequence VQ′ according to the following V-Procedure:

V-Procedure: Replace the vertex i in the ordered sequence VQ by e, and delete the
vertex j from the sequence to generate a new sequence VQ′ .

Algorithm 1 Update the matrix Q for vertex merging
1: Input: Q ∈ S

r , i, j ∈ VQ := {�1, . . . , �r } and p ∈ {−1,+1}.
2: Output: A new matrix Q′ ∈ S

r−1 and a new ordered sequence VQ′ .
3: Q:i ← Q:i + pQ: j
4: Qi : ← Qi : + pQ j :
5: Set C = {1, . . . , r} \ {t} and Q′ := Q[C], where t is the index that �t = j .
6: Use V-Procedure to generate VQ′ .
7: Return Q′ and VQ′ .

To simplify the notations, we use QVQ(s,t) to represent the entry of Q in the row that
corresponds to s and the column that corresponds to t , where s and t are two vertices
inVQ . The next lemma shows how the branching procedure affects the sparsity pattern
of the problem.

Lemma 4.2 For Q ∈ S
r (G), if Q′ is the matrix updated by Algorithm 1 with a given

pair of indices i, j ∈ VQ, then Q′ ∈ S
r−1(G/[i, j]).

123

Journal of Optimization Theory and Applications (2023) 197:608–638 621

Proof Let e denote the vertex contracted from i and j and G′ = G/[i, j]. For two
vertices s, t ∈ VQ′ , if s �= e and t �= e, then the entity Q′

V ′
Q(s,t) is nonzero if and

only if QVQ(s,t) is a nonzero of Q because the row and column in Q, corresponding
to s and t , respectively, do not change in this case. Since QVQ(s,t) �= 0, [s, t] is an
edge of G. Therefore, it is also an edge of G′. On the other hand, when one of the
two vertices is e, say, s = e and t �= e, then Q′

V ′
Q(s,t) is nonzero if either QVQ(i,t) or

QVQ(j,t) is nonzero, i.e., either [i, t] or [j, t] is an edge of G. In this case, according
to the definition of vertex contraction, [e, t] is an edge of G′. Consequently, we have
Q′ ∈ S

r−1(G′).
�
Lemma 4.2 shows that the branching procedure is in fact a vertex contraction on the

sparsity pattern of the problem. Thus, the sparsity pattern will be changed in general.
However, the chordal structure in the sparsity pattern will be kept when it is a chordal
graph and an appropriate variable is carefully selected to branch. We prove this result
in the next theorem.

Theorem 4.1 Let G = {V, E} be a chordal graph and [i, j] ∈ E , then the graph
G′ = G/[i, j] remains to be a chordal graph.

Proof Let e represent the new vertex in G′ that is contracted from vertices i, j . Let
�1, . . . , �r , �1 be a cycle in G′ of length r ≥ 4, we show that there is a chord in the
cycle. Consider the following situations: If e /∈ {�1, . . . , �r }, then �1, . . . , �r , �1 is
also a cycle in G of length r , and the chord of the cycle in G is also a chord of the same
cycle in G′. Otherwise, when e ∈ {�1, . . . , �r }, without loss of generality, the cycle
can be represented by e, �2, . . . , �r , e. There are four possible cases to be discussed.

Case 1: The sequence i, �2, . . . , �r , i is a cycle inG. In this case, there exists a chord
of the cycle in graphG. If the chord is constructed by [�s, �t]with �s, �t ∈ {�2, . . . , �r },
then [�s, �t] is also a chord of the cycle �1, . . . , �r , �1 in G′. Otherwise, the chord is
constructed by [i, �t] for some �t ∈ {�3, . . . , �r−1}, then [e, �t] is a chord of the cycle
�1, . . . , �r , �1 in G′.

Case 2: The sequence j, �2, . . . , �r , j is a cycle in G. Using the same arguments as
Case 1, we can show that there exists a chord of the cycle �1, . . . , �r , �1 in G′.

Case 3: The sequence i, j, �2, . . . , �r , i is a cycle of length r + 1 in G. In this case,
there exists a chord of the cycle in graph G. If the chord is constructed by [�s, �t] with
�s, �t ∈ {�2, . . . , �r }, then [�s, �t] is also a chord of the cycle �1, . . . , �r , �1 in G′.
Otherwise, the chord is constructed by [w, �t] for w ∈ {i, j} and �t ∈ {�2, . . . , �r }.
We further consider the three subcases: (i) �t ∈ {�3, . . . , �r−1}. In this subcase, [e, �t]
is a chord of the cycle �1, . . . , �r , �1 in G′; (ii) [w, �t] = [i, �2]. In this subcase,
i, �2, . . . , �r , i is another cycle in G, then this subcase is reduced to Case 1, in which
we have shown that there exists a chord of �1, . . . , �r , �1 in G′; (iii) [w, �t] = [j, �r].
In this subcase, j, �2, . . . , �r , j becomes a cycle in G, and this subcase is reduced to
Case 2, thus there exists a chord of �1, . . . , �r , �1 in G′.

Case 4: The sequence j, i, �2, . . . , �r , j is a cycle of length r + 1 in G. Using
the same arguments as Case 3, we can show that there exists a chord of the cycle
�1, . . . , �r , �1 in G′.

In all, we conclude that for any cycle in G′ of length r ≥ 4, there must exist a chord
in the cycle. Hence G′ is chordal.
�

123

622 Journal of Optimization Theory and Applications (2023) 197:608–638

Theorem 4.1 shows that the chordal structure of the sparsity pattern will be kept if
we only select the variables Xi j with [i, j] ∈ E as candidates for branching. As we
have mentioned, the purpose of our new branching rule is to reduce the treewidth of
sparsity pattern, if possible, after branching. To do this, we need the next theorem.

Theorem 4.2 Let G = {V, E} be a chordal graph, for any [i, j] ∈ E , if T = (U ,H)

with U = {C1, . . . ,Ck} being a clique decomposition of G, then T ′ = (U ′,H′) is a
tree decomposition of G′ = G/[i, j] with

C ′
r =

{
Cr , if i /∈ Cr and j /∈ Cr ,

Cr
⋃{e} \ {i, j}, otherwise,

r = 1, . . . , k, (2)

where e is the new vertex generated by the contraction of the vertices i and j in G,
and for two vertices C ′

s,C
′
t ∈ U ′, [C ′

s,C
′
t] ∈ H′ if and only if [Cs,Ct] ∈ H.

Proof It is easy to verify that T ′ satisfies properties (P1) and (P2) in Definition 2.2,
we only need to show that it satisfies property (P3’).

For a vertex w in G′, if w �= e, then the set of vertices {C ′
t | w ∈ C ′

t ,C
′
t ∈ U ′}

is the same as the set of vertices {Ct | w ∈ Ct ,Ct ∈ U}, thus property (P3’) holds
automatically. Otherwise, we consider the case that w = e. Since [i, j] ∈ EG , there is
a vertex Cr ∈ U such that both i and j are in Cr . Based on property (P3’) for T , the
sets Ui := {Ct |Ct ∈ U , i ∈ Ct } and U j := {Ct |Ct ∈ U , j ∈ Ct } induce connected
subgraphs in T , denoted by T [Ui] and T [U j], respectively. Since Cr ∈ Ui

⋂
U j , the

intersection of the two connected subgraphs T [Ui] and T [U j] is nonempty. Hence, the
subgraph T [Ui

⋃
U j] is also a connected subgraph in T . Note that for each C ′

t ∈ U ′,
we have e ∈ C ′

t if and only if i ∈ Ct or j ∈ Ct , i.e., Ct ∈ Ui
⋃

U j . Then, the set of
vertices in U ′ that contains e induces a connected subgraph of T ′. Therefore, property
(P3’) holds for T ′.
�

Theorem 4.2 shows that it is possible to reduce the treewidth of the problem if the
indices i and j of the selected variable Xi j are both in the same maximum clique of
the G. Moreover, we have the following two observations:

(i) If i, j ∈ Cr for some r ∈ {1, . . . , k}, then |C ′
r | = |Cr | − 1.

(ii) If i, j ∈ Cs
⋂

Ct for some s, t ∈ 1, . . . , k, then |C ′
s
⋂

C ′
t | = |Cs

⋂
Ct | − 1.

Hence, if we select a suitable pair [i, j] ∈ E , then we may reduce not only the
number of vertices in some cliques, but also the number of vertices in the intersections
of different maximal cliques.

On the other hand, if we arbitrarily select a pair [i, j] /∈ E for contracting, then the
chordal structure of the sparsity pattern may be destroyed and the treewidth of graph G
may even increase. For example, consider a simple graph G with 5 vertices {1, . . . , 5}
and 4 edges

{[1, 2], [2, 3], [3, 4], [4, 5]} .

It is easy to see that G is a tree (and also a chordal graph), with treewidth being 1.
Let G′ = G/[1, 5]. Then, G′ becomes a circle with vertices {e, 2, 3, 4} and edges

{[e, 2], [e, 4], [2, 3], [3, 4]}.

123

Journal of Optimization Theory and Applications (2023) 197:608–638 623

It is straightforward to verify that G′ is not a chordal graph and the treewidth of
G′ is increased to 2. Hence, the sparsity pattern of the problem may become more
complicated if the pair i, j to be contracted is not well selected.

The above simple example indicates that we should carefully choose a variable to
branch in the algorithm to keep the chordal structure intact. In our branch-and-bound
algorithm, we only select the variables Xi j with [i, j] ∈ E as candidates to branch.
An immediate question is whether such an entry exists when the relaxation (SDR) is
not tight. The following theorem gives a positive answer to this question.

Theorem 4.3 Assume that G = {V, E} is a connected chordal graph. Let X∗ be an
optimal solution of (SDR). If |X∗

i j | = 1 for all [i, j] ∈ E , then problem (SDR) is tight.

Proof We prove the theorem by showing that X∗ is a rank-one matrix. Since X∗ � 0,
it can be decomposed as X∗ = V�V , where V := [v1, . . . , vn] ∈ S

n and vi ∈ R
n

for i = 1, . . . , n. We have v�
i vi = X∗

i i = 1 for all i = 1, . . . , n, thus each column
of V is a unit vector. For any entry X∗

i j with [i, j] ∈ E , since |X∗
i j | = 1, we have

|v�
i v j | = |X∗

i j | = 1. Following the Cauchy–Schwartz inequality |vTi v j | ≤ ‖vi‖‖v j‖,
together with ‖vi‖ = 1, ‖v j‖ = 1, the equality |vTi v j | = 1 holds if and only if vi = v j

or vi = −v j . Also note that G is connected, then for any j ∈ {2, . . . , n}, there exists a
path i0, . . . , ir with i0 = 1 and ir = j , such that (it , it+1) ∈ E for t = 0, 1, . . . , r −1.
Hence, v1 = v j or v1 = −v j for any j ∈ {2, . . . , n}. It follows that V is a rank-one
matrix, so is X∗.
�

Theorem 4.3 shows that if the relaxation (SDR) is not tight, then there must exist
an edge [i, j] ∈ E such that |X∗

i j | < 1, where X∗ is an optimal solution of (SDR).
Therefore, it is valid to design a branching rule that only selects variables Xi j with
[i, j] ∈ E to branch.

Obviously, there could be multiple candidates Xi j with [i, j] ∈ E . To pick the one
that is effective in reducing the treewidth and the number of vertices in the intersections
of maximal cliques, the proposed branching rule needs to consider the priorities of
the edges [i, j] in E . That is, in order to reduce the treewidth of the sparsity pattern,
the edges in the maximum cliques should have higher priorities. Similarly, in order
to reduce the number of vertices in the intersections of cliques, the edges in many
different maximal cliques will have higher priorities. For this purpose, we define two
priority values for each [i, j] ∈ E :
– P1

i j = maxi, j∈Cr |Cr | is the largest cardinality of the maximal cliques that contain
both vertices i and j .

– P2
i j = |{Cr | i, j ∈ Cr , r = 1, . . . , k}| is the number of different maximal cliques

that contain both vertices i and j .

A good candidate [i, j] ∈ E should have large values in both P1
i j and P2

i j . We then
define the unified priority value Pi j of [i, j] as the cardinality of the set Ui, j , where

Ui, j = {v ∈ V | [i, v] ∈ E, [j, v] ∈ E} .

Note that G is assumed to be a chordal graph (or have been expanded to a chordal
graph) and the set Ui, j consists of all vertices v that are adjacent to both i and j in G,

123

624 Journal of Optimization Theory and Applications (2023) 197:608–638

Pi j actually denotes the number of vertices that are located in the same cliques with
i and j . When Pi j is large for some [i, j] ∈ E , there are many vertices v adjacent to
both i and j . If these vertices v belong to one maximal clique, then the cardinality
of this maximal clique is large and P1

i j is large. On the other hand, if these vertices v

belong to different maximal cliques, then P2
i j is large. Therefore, if Pi j is large, then

either P1
i j or P

2
i j should be large. In this sense, Pi j simultaneously takes the priority

values P1
i j and P2

i j into consideration. We prefer to select the variable Xi j with the
largest priority value Pi j and [i, j] ∈ E as the one to branch.

Based on the above discussion, we now propose our new branching rule, referred to
as hierarchy branching rule (rule HB in short): From the set

{[i, j] ∈ E
∣
∣ |Xi j | < 1

}
,

select the pair [i, j] that achieves the largest priority value Pi j for branching. If there
are multiple edges that achieve the largest priority, then we break the tie by using the
conventional branching rule R3, i.e., we select the variable such that |Xi j | achieves
the smallest value among the candidate edges [i, j] that have the largest priority. If
there still exist more than one candidate, then we randomly select one among them.

4.3 A Sparsity-Pattern-Driven Cutting-Plane Scheme

In this subsection, we develop a cutting-plane selection scheme based on the sparsity
pattern to further improve the efficiency of the branch-and-bound method for the
max-cut problem.

Cutting planes are usually added into the relaxation problem (SDR) to obtain a
tighter upper bound for problem (MC). One set of such cutting planes are the so-
called triangle inequalities proposed in [20]:

Xi j + Xit + X jt ≥ −1
Xi j − Xit − X jt ≥ −1

−Xi j + Xit − X jt ≥ −1
−Xi j − Xit + X jt ≥ −1

⎫
⎪⎪⎬

⎪⎪⎭
for all i < j < t, and i, j, t ∈ V. (3)

Let X∗ be an optimal solution of (SDR) before adding any triangle inequalities in (3).
It is not difficult to find the most violated γ inequalities from (3) by X∗ and add them
into (SDR). We call this process as traditional cutting-plane (TCP in short) scheme.

To keep the algorithm efficient it is extremely important to select just a small number
of promising inequalities from the vast set of violated triangle inequalities. Hence, we
derive a heuristic criterion based on the clique decomposition to select the violated
triangle inequalities from a subset of (3). By the equivalent formulation of (SDR), i.e.,
problem (CSDR), we can see that variable Xi j can be eliminated whenever i and j
do not simultaneously belong to any clique Cr , r = 1, . . . , k. In this case, the triangle
inequalities involving Xi j would be expected to have little improvement in the bound.
To avoid selecting these triangle inequalities, we only enumerate triangle inequalities
from the following set:

123

Journal of Optimization Theory and Applications (2023) 197:608–638 625

Xi j + Xit + X jt ≥ −1
Xi j − Xit − X jt ≥ −1

−Xi j + Xit − X jt ≥ −1
−Xi j − Xit + X jt ≥ −1

⎫
⎪⎪⎬

⎪⎪⎭

for all i < j < t, and i, j, t ∈ Cr , (4)

for each clique Cr , r = 1, . . . , k, and add no more than γ triangle inequalities that are
most violated by X∗[Cr] into (SDR). We call this process as sparsity driven cutting-
plane (SCP in short) scheme. Note that SCP is different from TCP in that the entries
i , j and t are required to be in the same clique Cr .

Following the SCP scheme, the added valid inequalities have the form Ai • X ≤ bi ,
i = 1, . . . ,m ≤ γ with Ai ∈ S

n(G[Cr]), and G[Cr] being the subgraph of G induced
by Cr . Thus, as a byproduct of SCP, the sparsity pattern of matrix Ai is in fact a
subgraph of G. That is, SCP will not complicate the sparsity pattern of subproblems
in the branch-and-bound tree.

Wewould like to point out that the redundancy of a variable Xi j in (CSDR) does not
indicate that all triangle inequalities in (3) involving Xi j are ineffective in improving
the tightness of (SDR). The effect of these triangle inequalities depends on the structure
of the problem. More discussions on the effectiveness of the SCP and TCP schemes
will be provided in Sect. 6.

5 A New Branch-and-Bound Algorithm

In this section, we describe the main steps of the proposed semidefinite relaxation-
based branch-and-bound algorithm. The main framework of the proposed algorithm
is similar to the ones in Biq Mac [33], except that the proposed one uses the new
branching rule and cutting-plane selection scheme described in Sects. 4.2 and 4.3,
respectively. The main steps and some implementation details of the proposed algo-
rithm are provided as follows.

Preprocessing Before solving the problem, we first construct a graph to represent
the sparsity pattern of the matrix Q and expand the graph to a chordal graph by using
the greedy fill-in heuristic chordal extension algorithm in [24]. The expanded graph
is denoted as G. We also obtain the clique decomposition of G by using Algorithm 3.1
in [38, Section 3.5]. The details of Algorithm 3.1 can be referred to [38, Section 4].

ProblemenumerationprocedureTheproblemenumerated by the branch-and-bound
algorithm is represented by a tree. In each enumeration step, we adopt the best-first
search rule. In other words, we choose the leaf node in the tree that has the largest
upper bound. If there are multiple leaf node that achieve the same largest upper bound,
we break the tie arbitrary.

Iterative upper bound procedure We solve the relaxation (SDR) by Mosek [30], a
commercial interior-point based solver. Meanwhile, an iterative cutting-plane method
that is similar to the one in [20] is adopted as follows: Valid triangle inequalities
are iteratively added into (SDR) after solving the semidefinite relaxation, and then the
relaxation with newly added triangle inequalities is re-optimized byMosek. Following
the SCP scheme, we only select the violated triangle inequalities from (4). In our

123

626 Journal of Optimization Theory and Applications (2023) 197:608–638

implementation,we add atmost 250 valid triangle inequalities in each iteration, and the
number of iterations is limited to 30. Moreover, we set an early-stop rule to terminate
the iteration if one of the following two conditions holds: (i) Let �∗ be the best-known
lower bound and u j be the upper bound obtained in the j th iteration. Under the
assumption that the entries in Q are all integers, the iteration terminates immediately
when u j < �∗ + 0.99. (ii) If the improvement in the successive iterations is marginal,

then we terminate the iteration. In our implementation, when
u j−u j+1
u0−�∗ < 0.1 for some

j , the iteration terminates, where u0 is the upper bound obtained by solving the initial
relaxation (SDR) without adding any triangle inequality.

Lower bound procedure For each enumeration node, after obtaining the optimal
solution of relaxation (SDR), we use the classical semidefinite relaxation-based round-
ing scheme in [16] to generate a feasible solution of problem (MC). The best-known
feasible solution is recorded, and its corresponding objective value �∗ serves as a
global lower bound of problem (MC).

Branching rule We compute the priority value Pi j for each [i, j] ∈ E , and select
the variable Xi j to branch following the rule HB described at the end of Sect. 4.2.

We would like to point out that the framework of the proposed branch-and-bound
algorithm is flexible. For example, the SCP scheme can be replaced by TCP scheme
in the iterative upper bound procedure, and other branching rules, such as rule R2,
instead of rule HB, can be applied in branching step.

Since it is not always more efficient to solve (CSDR) than (SDR) by using an
interior-point-based solverwhen themaximal cliques in the clique decomposition have
large intersections with each other, we use (SDR) rather than (CSDR) for computing
the upper bound. In fact, we introduce (CSDR) for analyzing its connection to (PR)
and explaining how the chordal sparsity pattern affects the tightness of (SDR), rather
than for computational purpose.

6 Computational Experiments

In this section, we test the proposed algorithm with different options on randomly
generated instances. The algorithm is implemented using MATLAB R2017a on a
personal computer with Intel Core i7-9700 CPU and 16 GB RAM. We adopt the
commercial solver Mosek [30] (version 9.2) to solve the semidefinite relaxations in
the proposed algorithm. We first describe different option settings of the proposed
algorithm, and the datasets used in our experiment, and then present and analyze the
numerical results. More experiments on larger instances and discussions on the feature
of the proposed algorithm are presented at the end of this section.

6.1 Experiment Settings and Datasets

To study the effects of rule HB and SCP scheme, we implemented the proposed
algorithm with three different variants as follows.

HB-SCP algorithm This is the exact algorithm described in Sect. 5, which applies
both of rule HB and SCP scheme.

123

Journal of Optimization Theory and Applications (2023) 197:608–638 627

HB algorithm This algorithm uses TCP, instead of SCP, scheme in the upper bound
procedure. The purpose here is to study the effectiveness of SCP scheme.

R2 algorithm This algorithm turns off both rule HB and SCP scheme, but applies
rule R2 and TCP scheme. This option is similar to Biq Mac [33], except that we
solve the semidefinite relaxations using Mosek while Biq Mac uses the conic bundle
algorithm.

We have also implemented another variant called “R3 algorithm,” which uses rule
R3 as the branching rule. However, our preliminary numerical results show that this
variant performed worse than the R2 algorithm. This phenomenon has also been
observed in other works, such as [20, 25] and [33]. Hence, we use R2 algorithm
as a benchmark to study the effectiveness of rule HB and SCP scheme. Since all three
algorithms use the same solver and run on the same computer, the comparison between
these three algorithms is fair, and can reflect the effects of rule HB and SCP scheme.

Moreover, we have tested BiqCrunch [26] in our experiment. As introduced in
Sect. 1, BiqCrunch is currently the best semidefinite relaxation-based branch-and-
bound solver for solving themax-cut problem2. The code of BiqCrunch3 was compiled
by GCC compiler and ran on the same computer.

Since most of the public benchmark test sets, such as Biq Mac Library,4 do not
have instances with any chordal sparsity pattern, we generate random instances of five
different sparsity patterns with wide applications for our experiment.

Set A Ten instances with the overlapping block diagonal sparsity pattern are ran-
domly generated in this set. In this sparsity pattern, there are k blocks, each of which
contains w fully connected vertices. The two adjacent blocks are overlapped, with s
vertices in their intersection. See Fig. 2a for an illustration. The vertices in the over-
lapping block diagonal sparsity pattern are local-clustered and graph-connected. Such
a graph often appears in a social network, where each vertex is an individual and an
edge represents the relation between two individuals. The individuals in a common
community are connected with each other (locally clustered) while individuals in dif-
ferent communities are connected via others [5]. In our experiment, we set k = 4,
w = 30 and s = 10. The generated instances are indexed by “Block_w_s_k_id,”
where id∈ {1, . . . , 10} denotes the index of the instance. Given the sparsity pattern
with the above parameters, the graph has 90 vertices and 1695 edges. The density of
the graph is 42.3%.

Set B Ten instances with the banded sparsity pattern are generated in this set.
The banded sparsity often appears in the finite-difference and finite-element models
for various practical problems [17, 37]. In this sparsity pattern, two vertices i, j ∈
{1, . . . , n} are adjacent if and only if |i − j | ≤ w, where w is a positive integer that
denotes the bandwidth. In our experiment, we set n = 100 andw = 30. The generated
instances are indexed by “Band_n_w_id.” Each graph in this set has 100 vertices and
2635 edges with density being 53.2%.

2 See https://biqcrunch.lipn.univ-paris13.fr/BiqCrunch/results for detailed numerical results of BiqCrunch
and Biq Mac.
3 Available at https://biqcrunch.lipn.univ-paris13.fr/BiqCrunch. Our results is based on the second release
of BiqCrunch.
4 See http://biqmac.uni-klu.ac.at/biqmaclib.html.

123

https://biqcrunch.lipn.univ-paris13.fr/BiqCrunch/results
https://biqcrunch.lipn.univ-paris13.fr/BiqCrunch
http://biqmac.uni-klu.ac.at/biqmaclib.html

628 Journal of Optimization Theory and Applications (2023) 197:608–638

Fig. 2 Illustrations of five sparsity patterns: a overlapping block diagonal; b banded; c block arrow; d disk
graph; e generic random graph

Set C Ten instances with the block-arrow sparsity pattern are generated in this set.
Thematrices of block-arrow sparsity pattern appear in Statistics [1] and power network
[35]. In this sparsity pattern, there are n vertices in total, and the first k vertices are
connected with each other while any vertex i ∈ {k + 1, . . . , n} is adjacent to the first
k vertices. We set n = 120 and k = 40 in our experiment. The generated instances are
indexed by “Arrow_n_k_id.” Each graph in this set has 120 vertices and 4100 edges
with density being 57.4%.

SetDTen instanceswith the sparsity pattern derived from a disk graph are generated
in this set. The disk graph appears in communication networks [10]. For each instance,
we first generate a random disk graph following the procedure in [10, Section 5.1]:
We sample n points p1, . . . , pn ∈ R

2 uniformly on the unit square. Edges are created
between pairs of vertices i and j if ‖pi − p j‖ ≤ d, where d > 0 is a constant
parameter. The graph is then expanded with edges between pairs of vertices which
have a neighbor in common. We set n = 100 and d = 0.3. The generated instances
are indexed by “DiskGraph_n_id.” Different from the previous three sparsity patterns
that have deterministic structures in the positions of nonzero elements, the number and
positions of nonzero elements in the disk-graph sparsity pattern are random. Hence,
the density of different instances varies. Our Monte Carlo simulation shows that the
expected density of the instances in this set is about 56.8%.

Set E Ten instances with the sparsity pattern derived from a random graph are
generated in this set. In a random graph with n vertices, each pair of vertices is

123

Journal of Optimization Theory and Applications (2023) 197:608–638 629

adjacent with probability p. This type of sparsity pattern is a generic random sparsity
pattern in which it does not have any deterministic structure. In our experiment, we
set n = 100 and p = 0.3. The generated instances are indexed by “Rand_n_P_id,”
where P = 100p. The expected number of edges in such a graph is 1485, and the
density is expected to be 30%.

Please refer to Fig. 2 for an illustration of the five sparsity patterns. In addition, we
generate another set of test instances by using RUDY [34] as follows.

Set F Ten instances with the random-graph sparsity are generated in this set. The
random graphs are generated by issuing the command “rudy -rnd_graph n d s1 -
random -50 50 s2” in RUDY, where n = 120 is the number of vertices, d ∈ {20, 50}
represents the density, and s1 and s2 are two seeds that are both equal to id. Note that
the first five instances in this set have a density of 20%, and the other five instances
have a density of 50%. The generated instances are indexed by “Rudy_n_d_id.”

For every instance with a given sparsity pattern G = (V, E), we uniformly sample
the entry Qi j of the symmetric matrix Q from {−50,−49, . . . , 50} for each edge
[i, j] ∈ E . In total, we have 60 test instances, whose size ranges from 90 to 120 and
density from 20% to 57.4%. The sparsity patterns in Sets A-C have the deterministic
structure. The aim of the experiments on these instances is to test the proposed algo-
rithms on problemswith special structures arisen in various practical applications. The
sparsity patterns in Sets D-F are derived from random graphs. The sparsity pattern for
Set D contains some geometrical information: the vertices are defined by a set of points
in the unit square, and a point is only connected with its nearby points. In comparison,
the sparsity patterns for Sets E and F are derived from generic random graphs that do
not have any structural information. By evaluating the performance of the proposed
algorithm on these random sparsity patterns, we could assess whether the proposed
algorithm remains to be efficient on general sparsity patterns.

6.2 Numerical Results

The numerical results for Sets A-F are reported in Tables 1, 2, 3, 4, 5 and 6, respec-
tively. All computational time is the wall clock time in seconds. The computation time
for both HB-SCP algorithm and HB algorithm includes the time for chordal exten-
sion, clique decomposition and the branch-and-bound procedure. Since the time for
applying chordal extension and clique decomposition is much less than the one for
branch-and-bound procedure, we do not show them separately in the tables.

First, we evaluate the effectiveness of SCP scheme by comparing the results of
HB-SCP and HB algorithms. The computational time in Tables 1 and 4 shows that
HB-SCP runs faster than HB on all instances in Set A, and slightly faster on 9 out of 10
instances in Set D. However, Tables 2, 3, 5 and 6 show that HB-SCP performs worse
than HB on almost all instances in Sets B, C, E and F. Based on this observation,
we could conclude that the effectiveness of SCP scheme depends on the sparsity
pattern. An intuitive reason for the above observation is that the sparsity patterns in
Sets A and D are locally clustered while they are not in other sets. For example, in
the overlapping block diagonal sparsity pattern in Set A, the vertices in the first block
are not adjacent with the vertices in the third or fourth blocks. Specifically, for any

123

630 Journal of Optimization Theory and Applications (2023) 197:608–638

Table 1 Numerical results for Set A (overlapping block diagonal sparsity pattern)

Problem Nodes enumerated Time (s)
Name HB-SCP HB R2 BiqC HB-SCP HB R2 BiqC

Block_30_10_4_1 9 11 23 11 9.06 13.17 35.56 33.69

Block_30_10_4_2 7 9 23 9 9.16 23.06 60.68 39.00

Block_30_10_4_3 9 17 63 13 7.22 18.94 104.70 40.82

Block_30_10_4_4 7 7 67 7 8.42 14.44 129.97 29.63

Block_30_10_4_5 7 11 79 11 6.56 13.42 99.02 43.34

Block_30_10_4_6 5 5 5 1 2.99 4.75 6.10 1.82

Block_30_10_4_7 3 5 5 1 1.14 2.65 2.99 1.12

Block_30_10_4_8 35 35 81 35 35.08 52.32 95.67 101.85

Block_30_10_4_9 9 11 55 15 12.31 16.03 73.48 42.98

Block_30_10_4_10 19 21 61 15 15.00 30.93 101.36 45.20

The signifcance in bold fonts means the best performance among the candidates

Table 2 Numerical results for Set B (banded sparsity pattern)

Problem Nodes enumerated Time (s)
Name HB-SCP HB R2 BiqC HB-SCP HB R2 BiqC

Band_100_30_1 15 15 23 15 24.05 22.06 44.77 55.89

Band_100_30_2 53 35 75 35 76.25 64.52 138.08 105.15

Band_100_30_3 101 59 137 101 128.63 124.79 205.64 288.17

Band_100_30_4 91 71 105 59 126.38 109.35 175.03 185.00

Band_100_30_5 5 7 5 3 5.31 8.73 7.65 9.43

Band_100_30_6 35 23 51 29 45.04 33.52 106.22 98.16

Band_100_30_7 239 147 317 183 318.45 254.93 463.96 490.67

Band_100_30_8 201 131 343 135 300.60 326.20 494.97 423.68

Band_100_30_9 201 123 251 133 277.07 236.25 397.95 370.13

Band_100_30_10 3 7 9 1 3.12 12.17 7.04 1.46

The signifcance in bold fonts means the best performance among the candidates

two vertices i and j that are located in the first and fourth block, respectively, they
do not have a common neighbor vertex. Therefore, the interaction between the two
vertices is extremely weak. Adding valid triangle inequalities on vertices with weak
interaction may lead to marginal improvement in the upper bound. Similarly, for the
sparsity pattern in set D, a vertex in a disk graph is only adjacent to a small number of
nearby vertices. On the other hand, the SCP scheme is less effective for the instances in
Sets B, C, E and F because the vertices in these sets have strong connections with each
other. Consider the block-arrow sparsity pattern in set C, each pair of vertices i and
j in the graph is either adjacent, or has at least 40 common neighbor vertices. Based
on the above analysis, we may conclude that the SCP scheme is effective on instances
whose sparsity pattern is similar to a locally clustering graph. This is true when the
intersections between different pairs of maximal cliques in a tree decomposition have

123

Journal of Optimization Theory and Applications (2023) 197:608–638 631

Table 3 Numerical results for Set C (block-arrow sparsity pattern)

Problem Nodes enumerated Time (s)
Name HB-SCP HB R2 BiqC HB-SCP HB R2 BiqC

Arrow_40_120_1 735 181 1145 1755 1073.92 497.17 2592.19 4729.22

Arrow_40_120_2 625 145 1073 1227 878.24 400.58 2303.16 3409.52

Arrow_40_120_3 1055 211 2295 1839 1278.67 558.61 4764.95 4373.20

Arrow_40_120_4 709 139 1047 869 947.14 427.30 2222.04 2620.58

Arrow_40_120_5 181 53 285 307 270.43 126.64 643.87 922.64

Arrow_40_120_6 157 43 199 175 272.65 162.92 501.30 684.51

Arrow_40_120_7 429 87 627 815 638.44 282.98 1630.72 2857.61

Arrow_40_120_8 1279 291 – – 1719.55 867.58 – –

Arrow_40_120_9 989 219 2159 1453 1419.63 597.99 4956.09 4370.79

Arrow_40_120_10 615 149 731 677 934.17 423.07 1648.75 2227.66

The signifcance in bold fonts means the best performance among the candidates
“–”means that the instance is not solved in 5400s

Table 4 Numerical results for Set D (disk-graph sparsity pattern)

Problem Nodes enumerated Time (s)
Name HB-SCP HB R2 BiqC HB-SCP HB R2 BiqC

DiskGraph_100_1 157 113 511 217 238.56 267.98 724.47 672.88

DiskGraph_100_2 27 25 57 29 43.00 59.54 103.06 110.32

DiskGraph_100_3 101 81 149 71 171.26 192.91 232.24 236.49

DiskGraph_100_4 55 47 137 65 94.93 104.61 181.10 248.73

DiskGraph_100_5 909 549 921 633 1090.99 1178.79 1383.98 1811.57

DiskGraph_100_6 47 39 109 45 73.53 64.49 167.07 165.76

DiskGraph_100_7 113 87 147 99 161.57 190.39 211.00 329.68

DiskGraph_100_8 49 33 91 63 69.00 77.71 140.31 223.34

DiskGraph_100_9 199 155 489 311 256.62 258.00 593.79 898.29

DiskGraph_100_10 123 101 239 165 153.02 168.94 309.67 455.01

The signifcance in bold fonts means the best performance among the candidates

only a few vertices. On the other hand, if the intersections between different pairs of
maximal cliques have many vertices, then the SCP scheme may filter some promising
valid triangle inequalities, thus lead to only a small improvement in upper bounds.

Second, we study the effects of the new branching rule by comparing the HB
algorithmwith R2 algorithm. Note that both HB and R2 algorithms use the same upper
bound scheme, the only difference between the two algorithms is the branching rule.
Hence, the comparison shows the effects of different branching rules. We first analyze
the results for Sets A-C, whose instances have deterministic sparsity patterns. From
Tables 1, 2 and 3, we can see that HB runs faster than R2 onmost test instances, except
two easy instances in Set B that can be solved within no more than 10 enumerations.
Particularly, HB runs at least five times faster than R2 for the instances with the
block-arrow sparsity pattern in Set C. These results show that, by exploiting the clique

123

632 Journal of Optimization Theory and Applications (2023) 197:608–638

Table 5 Numerical results for Set E (generic random-graph sparsity pattern)

Problem Nodes enumerated Time (s)
Name HB-SCP HB R2 BiqC HB-SCP HB R2 BiqC

Rand_100_30_1 31 21 31 15 46.04 47.26 42.06 39.02

Rand_100_30_2 39 27 47 25 63.41 51.28 79.15 68.67

Rand_100_30_3 49 31 71 98.31 87.49 65.65 97.08 98.31

Rand_100_30_4 59 47 97 61 86.87 63.93 133.55 138.87

Rand_100_30_5 143 91 181 107 208.80 213.42 254.34 265.01

Rand_100_30_6 37 27 45 31 66.12 39.25 83.31 94.77

Rand_100_30_7 137 99 135 127 210.52 172.90 201.38 317.68

Rand_100_30_8 107 79 117 67 173.05 155.23 162.35 203.78

Rand_100_30_9 381 253 697 327 598.83 383.47 894.54 695.65

Rand_100_30_10 97 73 105 63 139.63 126.93 178.03 172.06

The signifcance in bold fonts means the best performance among the candidates

Table 6 Numerical results for Set F (random-graph sparsity pattern generated by RUDY)

Problem Nodes enumerated Time (s)
Name HB-SCP HB R2 BiqC HB-SCP HB R2 BiqC

Rudy_120_20_0 161 87 107 109 343.61 193.90 268.24 329.62

Rudy_120_20_1 205 101 173 85 613.53 381.47 319.17 386.47

Rudy_120_20_2 121 65 101 77 308.05 201.25 235.48 305.94

Rudy_120_20_3 307 149 231 113 658.90 456.95 518.60 361.18

Rudy_120_20_4 829 381 1371 581 1646.84 1142.69 2962.26 1631.47

Rudy_120_50_0 311 269 411 267 855.52 830.62 886.35 898.62

Rudy_120_50_1 423 349 571 395 1497.86 1494.57 1185.30 1694.03

Rudy_120_50_2 405 343 381 323 1022.64 971.03 856.76 1126.33

Rudy_120_50_3 95 75 103 65 241.70 220.18 203.93 219.56

Rudy_120_50_4 – – – – – – – –

The signifcance in bold fonts means the best performance among the candidates
“–”means that the instance is not solved in 5400s

decomposition of sparsity pattern with a deterministic structure, the new branching
rule could be very effective in improving the overall performance of a branch-and-
bound algorithm. We then analyze the results of Sets D-F, whose sparsity patterns are
random. In Table 4, we discover that HB performs better than R2 on all test instances,
and the dominance is significant on several instances (including instances 1, 9 and 10
in set D). This result shows that rule HB is effective for test instances with disk-graph
sparsity pattern. For the instances in Sets E and F, we observe from Tables 5 and 6 that
HB runs faster than R2 on 9 out of 10 test instances in Set E, and 4 out of 5 instances
with density 20% in Set F. This result indicates that rule HB is effective when the
density of the random graph is relatively low. However, as shown in Table 6, HB
performs worse than R2 for most of the instances with a density of 50%. The reason
is that when the density of a random graph becomes high, after the chordal extension,

123

Journal of Optimization Theory and Applications (2023) 197:608–638 633

the graph is close to a complete graph, and rule HB becomes almost equivalent to rule
R3 in this case. Since R3 performs worse than R2 in general, the proposed rule HB is
dominant by rule R2 for the dense random sparsity patterns. Lastly, for all instances
in Tables 1, 2, 3, 4, 5 and 6, HB enumerates fewer nodes than R2. This is reasonable
because rule HB makes the sparsity pattern in the child nodes more likely to satisfy
the sufficient conditions in Theorem 3.1 and Corollary 3.1. Consequently, the bounds
of child nodes under rule HB are more likely to be tight, and the nodes can be pruned
earlier under rule HB.

Finally, we compare HB-SCP and HB with BiqCrunch. By comparing the compu-
tational time in Tables 1, 2, 3, 4, 5 and 6, we discover that HB-SCP might be the best
choice for Sets A and D, and HB performs best on most test instances in Sets B, C and
E, and the instances with density 20% in Set F. Since HB-SCP, HB and BiqCrunch
use different methods to solve their semidefinite relaxations, and these algorithms are
implemented in different programming language, it might be hard to conclude that our
new branching rule is the key factor that leads to the better performance. However,
by comparing the computational time of the proposed algorithms with BiqCrunch, we
may conclude that HB-SCP and HB algorithms do perform better than BiqCrunch on
randomly generated test instances that have certain types of sparsity patterns.

Although we listed the number of nodes enumerated by all algorithms in the tables,
it is not a major indicator of algorithmic performance in this case. It is quite possible
that an algorithm runs faster, but needs more enumerations than another algorithm,
because the time for computing upper bounds depends on the number of iterations
when using the iterative upper bound scheme. One branching rule may generate nodes
that can be easily pruned while others branching rules lead to vast nodes to explore.
Therefore, the number of nodes does not reflect the overall performanceof the proposed
algorithm. Instead, we compare the computational time, which is directly related to
the efficiency of every algorithm.

6.3 Larger Instances with Sparsity Patterns

According to the numerical results in Sect. 6.2, we see that HB algorithm performs
best for the banded and block-arrow sparsity patterns, and HB-SCP algorithm is the
best one for the overlapping block diagonal and disk-graph sparsity patterns. In this
subsection, we further evaluate the proposed algorithms by stress testing them on
“hard” instances with the above four sparsity patterns. That is, we generate largest
random instances that can be solved by HB-SCP or HB within 3h. The two sets of
instances used in this subsection are as follows.

Set G: This set includes five instances of the banded sparsity pattern and five
instances of the block-arrow sparsity pattern. For the instances of banded sparsity
pattern indexed by “Band_n_w_id,” we set n = 120 and w = 40. For the instances of
block-arrow sparsity pattern indexed by “Arrow_n_k_id,” we set n = 180 and k = 5.
This set is used for testing algorithms HB, R2 and BiqCrunch.

Set H: This set includes five instances of the overlapping block diagonal sparsity
pattern and five instances of the disk-graph sparsity pattern. For the instances of
overlapping block diagonal sparsity pattern that are indexed by “Block_w_s_k_id,”

123

634 Journal of Optimization Theory and Applications (2023) 197:608–638

Table 7 Numerical results for Set G

Problem Nodes Enumerated Time (s)
Name HB R2 BiqC HB R2 BiqC

Band_120_40_1 709 1283 935 2559.75 2757.74 3654.07

Band_120_40_2 43 133 99 164.86 245.62 533.10

Band_120_40_3 1607 2755 1791 3743.70 5437.97 5282.84

Band_120_40_4 199 385 343 728.31 848.29 1401.64

Band_120_40_5 53 103 65 156.41 261.33 287.43

Arrow_180_50_1 1049 – – 4595.36 – –

Arrow_180_50_2 173 731 – 757.06 2585.72 –

Arrow_180_50_3 75 281 – 406.25 1059.44 –

Arrow_180_50_4 1777 – – 9290.92 – –

Arrow_180_50_5 225 1059 – 1266.86 3860.91 –

The signifcance in bold fonts means the best performance among the candidates
“–”means that the instance is not solved in 10,800s

we set w = 30, s = 10 and k = 8.5 For the instances of disk-graph sparsity pattern
indexed by “DiskGraph_n_id,” we set n = 160.6 This set is used for testing algorithms
HB-TIP, R2 and BiqCrunch.

The numerical results for Sets G and H are reported in Tables 7 and 8, respectively.
We have the following two observations in this experiment:

(i) Same as the results in Tables 1, 2, 3 and 4, HB and HB-SCP are still more efficient
than R2 and BiqCrunch on all, except two, test instances. Especially for the block-
arrow sparsity pattern, HB solves all the five instances while BiqCrunch fails to
solve any.

(ii) The efficiency of the proposed algorithms strongly depends on the types of sparsity
patterns. The same observation also holds for BiqCrunch.

The reason for the second observation deserves a further explanation. For the
instances of banded and block-arrow sparsity patterns, Table 7 shows that HB can
only solve up to 120 and 180 dimensions within 3h, respectively. In contrast, HB-SCP
can easily solve the 180-dimensional instances of overlapping block diagonal sparsity
pattern within 7min as shown in Table 8. Similarly, BiqCrunch solves the instances
of overlapping block diagonal sparsity pattern in at most 1308s but fails to solve any
instance of block-arrow sparsity pattern within 3h. By comparing the structure of the
above three sparsity patterns, we can see that the overlapping block diagonal sparsity
pattern has two distinct features: the size of maximal clique is small (i.e., small cluster)
and the intersection set between every pair of maximal clique has only a few vertices
(i.e., small cluster intersection). These two features make the sufficient conditions in

5 We generated instances with different k = 5, 6, 7, 8 for the given w and s and found that the proposed
algorithm can solve the largest instance for k = 8 within 7min, while the benchmark algorithm R2 already
ran out of time limit. Hence, we did not try to find the largest possible instances that can be solved within
3h by our algorithm for this type of sparsity pattern.
6 We found that, even for n = 120, some instances can not be solved by any of the algorithm within 3h.
Hence, the step of graph augmentation is skipped in generating disk graphs in this set.

123

Journal of Optimization Theory and Applications (2023) 197:608–638 635

Table 8 Numerical results for Set H

Problem Nodes Enumerated Time (s)
Name HB-SCP R2 BiqC HB-SCP R2 BiqC

Block_30_10_8_1 15 377 21 61.01 1399.29 254.02

Block_30_10_8_2 111 – 139 365.24 – 1307.81

Block_30_10_8_3 75 – 93 352.31 – 957.70

Block_30_10_8_4 45 1275 65 234.05 5075.66 684.36

Block_30_10_8_5 13 231 3 47.65 823.45 42.14

DiskGraph_160_1 127 379 93 676.65 1774.17 766.25

DiskGraph_160_2 955 967 343 4161.82 4053.51 2775.07

DiskGraph_160_3 1417 – 1205 6093.02 – 8019.06

DiskGraph_160_4 337 1021 311 1466.23 4372.86 2370.96

DiskGraph_160_5 177 913 111 742.03 4042.55 933.00

The signifcance in bold fonts means the best performance among the candidates
“–”means that the instance is not solved in 10,800s

Theorem 3.1 and Corollary 3.1 easy to be satisfied; thus, the semidefinite relaxations
provide tight bounds for problem (MC). In this case, both HB-SCP and BiqCrunch
are efficient to solve the instances of overlapping block diagonal sparsity pattern. In
comparison, for the banded and block-arrow sparsity patterns, the intersection sets
between two cliques could have many vertices (up to the same size of the treewidth),
thus the instances of these two sparsity patterns are relatively hard to solve for those
algorithms.

Moreover, for the block-arrow sparsity pattern, we discover that all the intersection
sets of any two different maximal cliques are the same, i.e., all the maximal cliques
share the common intersection set. Then, according to the rule HB, the edge that
connects twovertices in this common intersection set has a highpriority.By contracting
the two vertices in the common intersection set, all the maximal cliques will have
one less vertex in the child nodes. Therefore, rule HB reduces the treewidth of the
sparsity pattern and the number of vertices in the intersection set. As shown in Table 7,
HB successfully solves all the five instances with block-arrow sparsity pattern while
BiqCrunch fails to solve any of them within the time limit. In comparison, in the
banded sparsity pattern, each pair of maximal cliques has a different intersection set,
so the rule HB is not so effective as in the case of block-arrow sparsity pattern.

7 Conclusions

In this paper, we design a new semidefinite relaxation-based branch-and-bound algo-
rithm for solving the classic max-cut problem. The main feature of the proposed
algorithm lies in the utilization of the chordal sparsity patterns embedded in the max-
cut problem. We first develop a polyhedral relaxation from the clique decomposition
of the sparsity pattern and then derive two sufficient conditions for the tightness of the
polyhedral relaxation. Then, based on the discussions on the relation between (PR),

123

636 Journal of Optimization Theory and Applications (2023) 197:608–638

(CSDR) and (SDR), we investigate how the chordal sparsity pattern affects the tight-
ness of a semidefinite relaxation of the max-cut problem. Motivated by the theoretical
results, a hierarchy branching rule is proposed to manipulate the sparsity pattern of
the problem in order to reduce the treewidth of the sparsity pattern and the number of
elements in the intersections of different cliques.

The computational results show that the proposed hierarchy branching rule is more
effective than the conventional numerical-driven rule R2 on test instances with var-
ious chordal sparsity patterns. The proposed algorithm also outperforms BiqCrunch
in terms of computational time on most tested instances with sparsity patterns. Mean-
while, the sparsity-pattern-driven cutting-plane scheme is effective in improving the
overall efficiency of the proposed algorithm when the instances have certain types of
chordal sparsity patterns. These results indicate that the chordal sparsity pattern of
the problem may provide important information that can be utilized to improve the
efficiency of a branch-and-bound algorithm.

Acknowledgements Lu’s research has been supported by theNationalNatural Science Foundation ofChina
Grant No. 12171151. Deng’s research has been supported by the National Natural Science Foundation of
China Grant No. T2293774, by the Fundamental Research Funds for the Central Universities E2ET0808X2,
and by a grant from MOE Social Science Laboratory of Digital Economic Forecast and Policy Simulation
at UCAS. Fang’s research has been supported by theWalter Clark Endowment at NC State. Xing’s research
has been supported by the National Natural Science Foundation of China Grant No. 11771243.

Data availability statement The datasets generated during the computational experiments are available in
the Github repository: https://github.com/zhibindeng/Personal/blob/gh-pages/TestSet.zip.

References

1. Andersen, M., Vandenberghe, L., Dahl, J.: Linear matrix inequalities with chordal sparsity patterns and
applications to robust quadratic optimization. In: 2010 IEEE International Symposium on Computer-
Aided Control System Design (CACSD), pp. 7–12 (2010)

2. Arnborg, S., Corneil, D., Proskurowski, A.: Complexity of finding embeddings in a k-tree. SIAM. J.
Alg. Disc. Meth. 8(2), 277–284 (1987)

3. Barahona, F., Grötschel, M., Mahjoub, A.R.: Facets of the bipartite subgraph polytope. Math. Oper.
Res. 10(2), 340–358 (1985)

4. Barahona, F., Mahjoub, A.R.: On the cut polytope. Math. Program. Ser. A 36(2), 157–173 (1986)
5. Benati, S., Ponce, D., Puerto, J., Rodriguez-Chia, A.: A branch-and-price procedure for clustering data

that are graph connected. Euro. J. Oper. Res. 297(3), 817–830 (2021)
6. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained

quadratic 0–1 problem. Math. Program. Ser. A 109(1), 55–68 (2007)
7. Burer, S., Monteiro, R.D.C., Zhang, Y.: Rank-two relaxation heuristics for max-cut and other binary

quadratic programs. SIAM J. Optim. 12(2), 503–521 (2002)
8. Diestel, R.: Graph Theory, 5th edn. Springer (2017)
9. Dunning, I., Gupta, S., Silberholz, J.: What works best when? A systematic evaluation of heuristics

for max-cut and QUBO. INFORMS J. Comput. 30(3), 608–624 (2018)
10. Fairbrother, J., Letchford, A.N., Briggs, K.: A two-level graph partitioning problem arising in mobile

wireless communications. Comput. Optim. Appl. 69(3), 653–676 (2018)
11. Festa, P., Pardalos, P., Resende, M., Ribeiro, C.: Randomized heuristics for the max-cut problem.

Optim. Methods Softw. 17(6), 1033–1058 (2002)
12. Fukuda, M., Kojima, M., Murota, K., Nakata, K.: Exploiting sparsity in semidefinite programming via

matrix completion I: General framework. SIAM J. Optim. 11(3), 647–674 (2001)
13. Gaar, E., Rendl, F.: A computational study of exact subgraph based SDP bounds for Max-Cut, stable

set and coloring. Math. Program. Ser. B 183(1–2), 283–308 (2020)

123

https://github.com/zhibindeng/Personal/blob/gh-pages/TestSet.zip

Journal of Optimization Theory and Applications (2023) 197:608–638 637

14. Garey,M.R., Johnson, D.S.: Computers and Intractability: AGuide to the Theory of NP-Completeness.
W. H. Freeman & Co., New York (1979)

15. Garstka, M., Cannon, M., Goulart, P.: Cosmo: a conic operator splitting method for convex conic
problems. J. Optim. Theory App. 190(3), 779–810 (2021)

16. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfi-
ability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

17. Gosz, M.: Finite Element Method: Applications in Solids, Structures, and Heat Transfer. CRC Press,
Boca Raton (2017)

18. Grone, R., Johnson, C.R., Sá, E.M., Wolkowicz, H.: Positive definite completions of partial Hermitian
matrices. Linear Algebra Appl. 58, 109–124 (1984)

19. Heggernes, P.: Minimal triangulation of graphs: a survey. Discrete Math. 306(3), 297–317 (2006)
20. Helmberg, C., Rendl, F.: Solving quadratic (0,1)-problems by semidefinite programs and cutting planes.

Math. Program. Ser. A 82(3), 291–315 (1998)
21. Jarre, F., Lieder, F., Liu, Y., Lu, C.: Set-completely-positive representations and cuts for the max-cut

polytope and the unit modulus lifting. J. Glob. Optim. 76(4), 913–932 (2020)
22. Jünger, M., Mallach, S.: Exact facetial odd-cycle separation for maximum cut and binary quadratic

optimization. INFORMS J. Comput. 33(4), 1419–1430 (2021)
23. Kim, S., Kojima, M.: Second order cone programming relaxation of nonconvex quadratic optimization

problems. Optim. Methods Softw. 15(3–4), 201–224 (2001)
24. Koster, A.C., Bodlaender, H.L., van Hoesel, S.P.: Treewidth: computational experiments. Electron.

Notes Discrete Math. 8, 54–57 (2001)
25. Krislock, N., Malick, J., Roupin, F.: Improved semidefinite bounding procedure for solving max-cut

problems to optimality. Math. Program. Ser. A 143(1), 62–86 (2014)
26. Krislock, N., Malick, J., Roupin, F.: Biqcrunch: a semidefinite branch-and-bound method for solving

binary quadratic problems. ACM T. Math. Softw. 43(4), 1–23 (2017)
27. Lasserre, J.B.: A MAX-CUT formulation of 0/1 programs. Oper. Res. Lett. 44(2), 158–164 (2016)
28. Madani, R., Sojoudi, S., Fazelnia, G., Lavaei, J.: Finding low-rank solutions of sparse linear matrix

inequalities using convex optimization. SIAM J. Optim. 27(2), 725–758 (2017)
29. Martí, R., Duarte, A., Laguna, M.: Advanced scatter search for the max-cut problem. INFORMS J.

Comput. 21(1), 26–38 (2009)
30. Mosek: Mosek aps. http://www.mosek.com (2020)
31. Muramatsu, M., Suzuki, T.: A new second-order cone programming relaxation for max-cut problems.

J. Oper. Res. Soc. Jpn. 46(2), 164–177 (2003)
32. Poljak, S., Rendl, F.: Solving the max-cut problem using eigenvalues. Discrete Appl. Math. 62(1–3),

249–278 (1995)
33. Rendl, F., Rinaldi, G., Wiegele, A.: Solving max-cut to optimality by intersecting semidefinite and

polyhedral relaxations. Math. Program. Ser. A 121(2), 307–335 (2010)
34. Rinaldi, G.: Rudy. http://www-user.tu-chemnitz.de/ (1998)
35. Sliwak, J., Andersen, E.D., Anjos, M.F., Létocart, L., Traversi, E.: A clique merging algorithm to solve

semidefinite relaxations of optimal power flow problems. IEEE Trans. Power Syst. 36(2), 1641–1644
(2021)

36. Tarjan, R., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity
of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–579 (1984)

37. Teng, J., Jakeman, A., Vaze, J., Croke, B., Dutta, D., Kim, S.: Flood inundation modelling: A review
of methods, recent advances and uncertainty analysis. Environ. Modell. Softw. 90, 201–216 (2017)

38. Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization. Found. Trends
Optim. 1(4), 241–443 (2014)

39. Waki, H., Kim, S., Kojima, M., Muramatsu, M.: Sums of squares and semidefinite program relaxations
for polynomial optimization problems with structured sparsity. SIAM J. Optim. 17(1), 218–242 (2006)

40. Wang, J., Magron, V.: Exploiting sparsity in complex polynomial optimization. J. Optim. Theory App.
192(1), 335–359 (2022)

41. Wang, J., Magron, V., Lasserre, J.B.: Chordal-TSSOS: a moment-SOS hierarchy that exploits term
sparsity with chordal extension. SIAM J. Optim. 31(1), 114–141 (2021)

42. Wang, J., Magron, V., Lasserre, J.B., Mai, N.H.A.: CS-TSSOS: Correlative and term sparsity for large
scale polynomial optimization. arXiv:2005.02828 (2021)

43. Zhang, R.Y., Lavaei, J.: Sparse semidefinite programs with guaranteed near-linear time complexity via
dualized clique tree conversion. Math. Program. Ser. A 188(1), 351–393 (2021)

123

http://www.mosek.com
http://www-user.tu-chemnitz.de/
http://arxiv.org/abs/2005.02828

638 Journal of Optimization Theory and Applications (2023) 197:608–638

44. Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P., Wynn, A.: Chordal decomposition in
operator-splitting methods for sparse semidefinite programs. Math. Program. Ser. A 180(1), 489–532
(2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	A New Global Algorithm for Max-Cut Problem with Chordal Sparsity
	Abstract
	1 Introduction
	2 Preliminary Results in Graph Theory
	3 A Sparse Polyhedral Relaxation of the Max-Cut Problem
	4 The Hierarchy Branching Strategy
	4.1 Semidefinite Relaxations
	4.2 A Hierarchy Branching Rule
	4.3 A Sparsity-Pattern-Driven Cutting-Plane Scheme

	5 A New Branch-and-Bound Algorithm
	6 Computational Experiments
	6.1 Experiment Settings and Datasets
	6.2 Numerical Results
	6.3 Larger Instances with Sparsity Patterns

	7 Conclusions
	Acknowledgements
	References

