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Abstract
This paper deals with an SOS-convex (sum of squares convex) polynomial optimiza-
tion problem with spectrahedral uncertain data in both the objective and constraints.
By using a robust-type characteristic cone constraint qualification, we first obtain nec-
essary and sufficient conditions for robust weakly efficient solutions of this uncertain
SOS-convex polynomial optimization problem in terms of sum of squares conditions
and linear matrix inequalities. Then, we propose a relaxation dual problem for this
uncertain SOS-convex polynomial optimization problem and explore weak and strong
duality properties between them.Moreover, we give a numerical example to show that
the relaxation dual problem can be reformulated as a semidefinite linear programming
problem.
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1 Introduction

Convex polynomial optimization is a class of convex optimization problems in which
their convex polynomial inequality constraints will constrain convex polynomial
objective functions over the whole region. It has become an active research area,
not only because of its surprising structural aspects, but also due to abundant appli-
cations in a wide range of disciplines, such as automatic control systems [11, 30],
engineering design [5, 19] and transportation [1, 30]. In recent years, a wide variety of
works have been devoted to the investigation of convex polynomial optimization and
its generalizations from different points of view; see, e.g., [1, 7, 11, 16, 30, 33–35]
and the references therein.

Recently, SOS-convex polynomial optimization [3, 22], as a numerically tractable
subclass of convex polynomial optimization problems, has been proposed and attracted
the interest of many researchers. One of the most important reasons to work with SOS-
convex polynomials is that it can be reformulated as a semidefinite linear programming
problem, which can be handled by efficient interior-point methods [22]. Furthermore,
the SOS-convex polynomials cover a rich class of convex polynomials, such as con-
vex separable polynomials and convex quadratic functions [2, 22]. In particular, some
complete characterizations of the gap between SOS-convex polynomials and con-
vex polynomials are obtained in [3]. Moreover, SOS-convex polynomial optimization
enjoys an exact SDP relaxation and zero duality gap between the primal problem and
its dual problem; see, e.g., [26, 29, 31]. Interested readers are referred to [12, 14, 26,
29, 31] for some recent works on SOS-convex polynomial optimization problems and
their applications.

On the other hand, due to prediction error or lack of information, the data are usu-
ally not known precisely for many practical optimization problem involving convex
polynomials, such as lot-sizing problems with uncertain demands [14], support vector
machine classifiers with uncertain knowledge sets [24] and mean–variance portfolio
selection problems with uncertain returns [21]. Therefore, the study of convex polyno-
mial optimization problems with inexact or uncertain data becomes a very interesting
topic. Recently, robust optimization [4, 6], as one of the effective ways for dealing
with uncertain optimization problems, has attracted an increasing attention of many
researchers from different disciplines; see, for example, [9, 10, 18, 20, 23, 27, 39–41,
43–46]. However, in contrast to the deterministic case, there exist only few papers
devoting to the investigation of uncertain SOS-convex polynomial optimization prob-
lemswith special structures of the objective and constraint functions. For example, sum
of squares polynomial representations that characterize robust solutions and exact SDP
relaxations for robust SOS-convex polynomial optimization problems with various
commonly used uncertain sets are investigated in [25]. By using sum of squares con-
ditions and linear matrix inequalities, optimality conditions and duality are obtained in
[13] for a class of uncertain multiobjective SOS-convex polynomial optimization. By
means of scalarization technique, a method to find robust efficient solutions is given
in [28] for an uncertain multiobjective optimization problem where the objective and
constraint functions are SOS-convex polynomials. Optimality conditions for robust
(weakly) Pareto efficient solutions of a convex quadratic multiobjective optimization
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problem are explored in [15] under a robust-type closed convex cone constraint qual-
ification.

Weobserve that there is no results characterizinguncertain vector SOS-convexpoly-
nomial optimization problems where uncertain data are involved in both the objective
and constraints and belong to general spectrahedral uncertain sets [37, 42]. Note that
the spectrahedral uncertain set contains a wide range of commonly used uncertain sets
such as ellipsoids, polyhedra, and boxes, encountered frequently in robust optimiza-
tion problems [4, 5]. The study of such structured polynomial optimization problem is
usually complicated due to the challenges of dealing with uncertain data of the objec-
tive and constraints. Therefore, the research of a tractable equivalent optimization
problem using robust duality for such structured polynomial optimization problem is
of high importance, which contributed the main motivation of this paper.

As was mentioned above, motivated by the works [13, 14, 25], we provide some
new characterizations of vector SOS-convex polynomial optimization problemswhere
both the objective and constraint functions involve spectrahedral uncertain data in this
paper. More precisely, we first give the concept of robust weakly efficient solutions
to this uncertain SOS-convex polynomial optimization problem. Then, by using a
robust-type characteristic cone constraint qualification, we establish necessary and
sufficient optimality conditions for a robust weakly efficient solution of this uncertain
SOS-convex polynomial optimization problem based on the sum of squares conditions
and linear matrix inequalities. The obtained results are corresponding to the results in
[13]. We note that the sum of squares characterizations can be checked for spectrahe-
dral uncertain sets by solving a semidefinite programming problem. Furthermore, we
introduce a relaxation dual problem for this uncertain SOS-convex polynomial opti-
mization problem and investigate weak and strong duality properties between them.
Themain advantage for studying this relaxation dual problem is that it can be reformu-
lated as a semidefinite linear programming problem, which can be done in polynomial
time.

The rest of this paper is organized as follows. In Sect. 2, we give some basic defini-
tions and preliminary results. In Sect. 3, we obtain necessary and sufficient conditions
for robust weakly efficient solutions to the uncertain SOS-convex polynomial opti-
mization problem based on sum of squares conditions and linear matrix inequalities.
In Sect. 4, we establish robust duality properties between this uncertain SOS-convex
polynomial optimization problem and its relaxation dual problem.

2 Preliminaries

In this section, we recall some notations and preliminary results from [30, 38] which
will be used later in this paper. LetRn be the n-dimensional Euclidean space equipped
with the usual Euclidean norm ‖ · ‖. We denote by R

n+ the nonnegative orthant of
R
n . We also denote by intRn+ the topological interior of Rn+. Given a set A ⊂ R

n ,
intA (resp. clA, coA) denotes the interior (resp. closure, convex hull) of A, while
conecoA := R+convA stands for the convex conical hull of A ∪ {0}. The symbol
In ∈ R

n×n stands for the identitymatrix. Let Sn be the space of all symmetricmatrices.
M ∈ Sn is said to be a positive semidefinite matrix, denoted by M � 0, if x�Mx ≥ 0
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for any x ∈ R
n . Let ϕ : Rn → R∪{+∞} be a given real-valued function, the effective

domain and the epigraph of ϕ are defined, respectively, by

domϕ := {x ∈ R
n | ϕ(x) < +∞} and epiϕ := {(x, r) ∈ R

n × R | ϕ(x) ≤ r}.

The conjugate function of ϕ, denoted by ϕ∗ : Rn → R, is defined by

ϕ∗(x∗) := sup{〈x∗, x〉 − ϕ(x) | x ∈ domϕ}, x∗ ∈ R
n .

The following important properties will be used in the sequel.

Lemma 2.1 [8, 17] Let ϕ1, ϕ2 : Rn → R ∪ {+∞} be proper convex functions such
that domϕ1 ∩ domϕ2 �= ∅.
(i) If ϕ1 and ϕ2 are lower semicontinuous, then,

epi(ϕ1 + ϕ2)
∗ = cl(epiϕ∗

1 + epiϕ∗
2 ).

(ii) If one of ϕ1 and ϕ2 is continuous at some x̄ ∈ domϕ1 ∩ domϕ2, then,

epi(ϕ1 + ϕ2)
∗ = epiϕ∗

1 + epiϕ∗
2 .

Now,we recall the following basic concepts associatedwith polynomials. The space
of all real polynomials on R

n is denoted by R[x]. We denote by R[x]d the space of
all real polynomials on Rn with degree at most d. We also denote by deg f the degree
of a polynomial f . A real polynomial f is said to be a sum of squares polynomial, if
there exist real polynomials fi , i = 1, . . . , p, such that f = ∑p

i=1 f 2i . The set of all
sum of squares polynomials in x ∈ R

n with degree at most d is denoted by �2
d [x].

Definition 2.1 [2, 3, 22] A real polynomial f on R
n is called SOS-convex iff the

polynomial

f (x) − f (y) − ∇ f (y)�(x − y)

is a sum of squares polynomial in R[x; y] (with respect to variables x and y).

Remark 2.1 Obviously, an SOS-convex polynomial is a convex polynomial, but the
converse is not true, see [2, 3]. Moreover, convex quadratic functions and convex
separable polynomials are also SOS-convex polynomials [2]. Besides, an SOS-convex
polynomial can be neither quadratic nor separable. For example, x81 + x21 + x1x2 + x22
is an SOS-convex polynomial which is neither quadratic nor separable, see [22].

The following property of SOS-convex polynomials plays an important role in
obtaining our results.

Lemma 2.2 [22, Lemma 8] Let f be an SOS-convex polynomial. Suppose that there
exists x̄ ∈ R

n such that f (x̄) = 0 and ∇ f (x̄) = 0. Then, f is a sum of squares
polynomial.
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Now, suppose that Ar
i , r = 0, 1, . . . , s, and Bl

j , l = 0, 1, . . . , k, are given sym-
metric matrices. The sets Ui , i = 1, . . . , p, and V j , j = 1, . . . ,m, are assumed to be
spectrahedra [37, 42] described by

Ui :=
{

ui :=
(
u1i , . . . , u

s
i

)
∈ R

s | A0
i +

s∑

r=1

uri A
r
i � 0

}

(1)

and

V j :=
{

v j :=
(
v1j , . . . , v

k
j

)
∈ R

k | B0
j +

k∑

l=1

vlj B
l
j � 0

}

, (2)

respectively.
In this paper, we consider the following uncertain vector SOS-convex polynomial

optimization problem

(UP) min
x∈Rn

{(
f1(x, u1), . . . , f p(x, u p)

) | g j (x, v j ) ≤ 0, j = 1, . . . ,m
}
,

where ui , i = 1, . . . , p, and v j , j = 1, . . . ,m, are uncertain parameters and they
belong to their respective spectrahedral uncertain sets Ui ⊆ R

s and V j ⊆ R
k . fi :

R
n × Ui → R, i = 1, . . . , p, and g j : R

n × V j → R, j = 1, . . . ,m, are given
functions. In what follows, we assume that, for each ui ∈ Ui and v j ∈ V j , fi (·, ui )
and g j (·, v j ) are SOS-convex polynomials, and for each x ∈ R

n , fi (x, ·) and g j (x, ·)
are affine functions, i.e.,

fi (x, ui ) := f 0i (x) +
s∑

r=1

uri f
r
i (x), ui :=

(
u1i , . . . , u

s
i

)
∈ Ui , (3)

and

g j (x, v j ) := g0j (x) +
k∑

l=1

vlj g
l
j (x), v j :=

(
v1j , . . . , v

k
j

)
∈ V j . (4)

Here f ri : Rn → R, i = 1, . . . , p, r = 0, 1, . . . , s, and glj : Rn → R, j = 1, . . . ,m,
l = 0, 1, . . . , k, are given polynomials.

For (UP), it is usually associated with the so-called minimax-type robust counter-
part

(RP) min
x∈Rn

{(

max
u1∈U1

f1(x, u1), . . . , max
u p∈Up

f p(x, u p)

)

| g j (x, v j )

≤ 0,∀v j ∈ V j , j = 1, . . . ,m
}
.
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This paper is devoted to obtain some characterizations of the robust efficient solu-
tions of (UP). So, we first recall the following important concepts which will be used
later in this paper.

Definition 2.2 [4, 6] The robust feasible set of (UP) is defined by

F := {x ∈ R
n | g j (x, v j ) ≤ 0,∀v j ∈ V j , j = 1, . . . ,m}.

Definition 2.3 [27] A point x̄ ∈ F is said to be a robust weakly efficient solution of
(UP) iff it is a weakly efficient solution of (RP), i.e., there is no point x ∈ F such that

max
ui∈Ui

fi (x, ui ) < max
ui∈Ui

fi (x̄, ui ), i = 1, . . . , p.

Remark 2.2 Note that in this paper, we only deal with robust weakly efficient solutions
of (UP). For other kinds of robust efficient solutions for (UP), they can be handled in
a similar way.

3 Robust Optimality Conditions

This section is devoted to the development of necessary and sufficient optimality
conditions for robust weakly efficient solutions of (UP) based on the sum of squares
conditions and linear matrix inequalities. To do this, we first give the following Farkas-
type Lemmawhich plays a key role for the derivation of our results. For similar results,
please see [23, 39] for more details.

Lemma 3.1 Let γ ∈ R andW j ⊆ R
k , j = 1, . . . ,m. Let φ : Rn → R be a continuous

convex function and let h j : Rn × W j → R, j = 1, . . . ,m, be continuous functions
such that for each w j ∈ W j , h j (·, w j ) is a convex function. Then, the following two
statements are equivalent:

(i) {x ∈ R
n | h j (x, w j ) ≤ 0, ∀w j ∈ W j , j = 1, . . . ,m} ⊆ {x ∈ R

n | φ(x) ≥ γ }.
(ii) (0,−γ ) ∈ epiφ∗ + clco

⋃

λ0j≥0,w j∈W j

epi

(
m∑

j=1
λ0j h j (·, w j )

)∗
.

Proof The proof is similar to the proof given for [23, Theorem 2.4]. ��
The following constraint qualification is a necessary assumption for the investiga-

tion of robust weakly efficient solutions of (UP).

Definition 3.1 [23]We say that robust-type characteristic cone constraint qualification
(RCCCQ) holds, iff

⋃

λ0j≥0,v j∈V j

epi

⎛

⎝
m∑

j=1

λ0j g j (·, v j )

⎞

⎠

∗
is a closed convex cone.
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Remark 3.1 (i) It is worth noting that (RCCCQ) was first introduced in [23] to char-
acterize robust strong duality for uncertain convex programming problems. Some
complete characterizations of (RCCCQ) are also given in [23, Propositions 2.2,
2.3 and 3.2]. The (RCCCQ) has also been used in [26, 31, 41] and the relevant
references cited therein to study optimality conditions, duality results and SDP
relaxations for polynomial optimization problems.

(ii) Note that for each v j ∈ V j , g j (·, v j ) is an SOS-convex polynomial, and for each
x ∈ R

n , g j (x, ·) is an affine function. Thus, the following Slater-type condition,
used in [13],

{
x ∈ R

n | g j (x, v j ) < 0,∀v j ∈ V j , j = 1, . . . ,m
} �= ∅ (5)

is a sufficient condition for (RCCCQ). See [23, Proposition 3.2] for details.

Now, by using the (RCCCQ), we give the following necessary and sufficient opti-
mality conditions for robust weakly efficient solutions of (UP) based on the sum of
squares conditions and linear matrix inequalities.

Theorem 3.1 Assume that the (RCCCQ)holds. Then, x̄ ∈ F is a robustweakly efficient

solution of (UP) if and only if there exist α0
i ∈ R+ with

p∑

i=1
α0
i = 1, αr

i ∈ R, i =
1, . . . , p, r = 1, . . . , s, and λ0j ∈ R+, λlj ∈ R, j = 1, . . . ,m, l = 1, . . . , k, such that

p∑

i=1

(

α0
i f

0
i +

s∑

r=1

αr
i f

r
i

)

+
m∑

j=1

(

λ0j g
0
j +

k∑

l=1

λlj g
l
j

)

−
p∑

i=1

α0
i Fi (x̄) ∈ �2

d [x] (6)

and

α0
i A

0
i +

s∑

r=1

αr
i A

r
i � 0, λ0j B

0
j +

k∑

l=1

λlj B
l
j � 0, i = 1, . . . , p, j = 1, . . . ,m, (7)

whered ≥ max

{

max
1≤i≤p

(
deg f 0i

)
, max
1≤i≤p

(
deg f ri

)
, max
1≤ j≤m

(
deg g0j

)
, max
1≤ j≤m

(
deg glj

)}

and Fi (x̄) := max
ui∈Ui

fi (x̄, ui ) for i = 1, . . . , p.

Proof (⇒) Suppose that x̄ ∈ F is a robust weakly efficient solution of (UP). Then,
there is no point x ∈ F such that

Fi (x) < Fi (x̄), i = 1, . . . , p,

where Fi (x) := max
ui∈Ui

fi (x, ui ), i = 1, . . . , p. By [32, Proposition 8.2], there exist

α0
i ∈ R+, i = 1, . . . , p, with

p∑

i=1
α0
i = 1, such that

p∑

i=1

α0
i Fi (x) ≥

p∑

i=1

α0
i Fi (x̄), ∀x ∈ F .
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This means that

{
x ∈ R

n | g j (x, v j ) ≤ 0, ∀v j ∈ V j , j = 1, . . . ,m
}

⊆
{

x ∈ F
∣
∣
∣

p∑

i=1

α0
i Fi (x) ≥

p∑

i=1

α0
i Fi (x̄)

}

.

By Lemma 3.1, we have

(

0,−
p∑

i=1

α0
i Fi (x̄)

)

∈ epi

( p∑

i=1

α0
i Fi

)∗
+ clco

⋃

λ0j≥0,v j∈V j

epi

⎛

⎝
m∑

j=1

λ0j g j (·, v j )

⎞

⎠

∗
.

(8)

Since fi (·, ui ) is an SOS-convex polynomial and fi (x, ·) is an affine function, it
follows from the equality (4) of [39] that

epi

( p∑

i=1

α0
i Fi

)∗
=
⋃

ui∈Ui

epi

( p∑

i=1

α0
i fi (·, ui )

)∗
. (9)

Note that the (RCCCQ) holds. Then, from (8) and (9), we deduce that

(

0,−
p∑

i=1

α0
i Fi (x̄)

)

∈
⋃

ui∈Ui

epi

( p∑

i=1

α0
i fi (·, ui )

)∗

+
⋃

λ0j≥0,v j∈V j

epi

⎛

⎝
m∑

j=1

λ0j g j (·, v j )

⎞

⎠

∗
.

This means that there exist ui ∈ Ui with (ξ∗, η) ∈ epi

( p∑

i=1
α0
i fi (·, ui )

)∗
, v j ∈ V j

with (ω∗, γ ) ∈ epi

(
m∑

j=1
λ0j g j (·, v j )

)∗
and λ0j ≥ 0, such that

(
ξ∗, η

)+ (ω∗, γ
) =

(

0,−
p∑

i=1

α0
i Fi (x̄)

)

.

Therefore, for any x ∈ R
n ,

−
p∑

i=1

α0
i fi (x, ui ) −

m∑

j=1

λ0j g j (x, v j )

= 〈ξ∗, x〉 −
p∑

i=1

α0
i fi (x, ui ) + 〈ω∗, x〉 −

m∑

j=1

λ0j g j (x, v j )

123



Journal of Optimization Theory and Applications (2023) 197:737–764 745

≤
( p∑

i=1

α0
i fi (·, ui )

)∗
(ξ∗) +

⎛

⎝
m∑

j=1

λ0j g j (·, v j )

⎞

⎠

∗
(ω∗)

≤ η + γ

= −
p∑

i=1

α0
i Fi (x̄).

For any x ∈ R
n , set

σ(x) :=
p∑

i=1

α0
i fi (x, ui ) +

m∑

j=1

λ0j g j (x, v j ) −
p∑

i=1

α0
i Fi (x̄). (10)

Clearly, σ(x) ≥ 0. This, together with Fi (x̄) ≥ fi (x̄, ui ), gives
m∑

j=1
λ0j g j (x̄, v j ) ≥ 0.

Note that
m∑

j=1
λ0j g j (x̄, v j ) ≤ 0 due to x̄ ∈ F . Thus,

m∑

j=1
λ0j g j (x̄, v j ) = 0. Together

with Fi (x̄) ≥ fi (x̄, ui ), we have σ(x̄) ≤ 0. Consequently,

σ(x̄) = 0 = inf
x∈Rn

σ(x). (11)

Obviously,∇σ(x̄) = 0. Since fi (·, ui ), i = 1, . . . , p, and g j (·, v j ), j = 1, . . . ,m, are
SOS-convex polynomials, we have σ is an SOS-convex polynomial. Hence, it follows
from Lemma 2.2 that σ is a sum of squares polynomial. Note that the degree of σ is
not larger than d. Then, σ ∈ �2

d [x]. Thus, from (3), (4) and (10), we have

p∑

i=1

α0
i

(

f 0i +
s∑

r=1

uri f
r
i

)

+
m∑

j=1

λ0j

(

g0j +
k∑

l=1

vlj g
l
j

)

−
p∑

i=1

α0
i Fi (x̄) ∈ �2

d [x].

Let αr
i := α0

i u
r
i and λlj := λ0jv

l
j . It follows that (6) holds.

On the other hand, by α0
i ≥ 0, αr

i = α0
i u

r
i and (1), we deduce that

α0
i A

0
i +

s∑

r=1

αr
i A

r
i = α0

i

(

A0
i +

s∑

r=1

uri A
r
i

)

� 0, i = 1, . . . , p.

Similarly, by λ0j ≥ 0, λlj = λ0jv
l
j and (2), we have

λ0j B
0
j +

k∑

l=1

λlj B
l
j = λ0j

(

B0
j +

k∑

l=1

vlj B
l
j

)

� 0, j = 1, . . . ,m.

Thus, (7) holds.
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(⇐) Suppose that there exist α0
i ∈ R+ with

p∑

i=1
α0
i = 1, αr

i ∈ R, i = 1, . . . , p,

r = 1, . . . , s, and λ0j ∈ R+, λlj ∈ R, j = 1, . . . ,m, l = 1, . . . , k, such that (6) and
(7) hold.

Consider any i = 1, . . . , p, and j = 1, . . . ,m. By a similar argument as in [13,
Theorem 2.3], we can show that if α0

i = 0, then, αr
i = 0 for all r = 1, . . . , s. If

λ0j = 0, then, λlj = 0 for all l = 1, . . . , k.

Now, let ûi := (û1i , . . . , û
s
i ) ∈ Ui . Set ũi := (ũ1i , . . . , ũ

s
i ) with

ũri :=

⎧
⎪⎨

⎪⎩

ûri if α0
i = 0,

αr
i

α0
i

if α0
i �= 0,

r = 1, . . . , s.

Obviously, ũi ∈ Ui , and for any x ∈ R
n ,

α0
i f

0
i (x) +

s∑

r=1

αr
i f

r
i (x) = α0

i

(

f 0i (x) +
s∑

r=1

ũri f
r
i (x)

)

= α0
i fi (x, ũi ), i = 1, . . . , p. (12)

Here, note that if α0
i = 0, then, αr

i = 0 for any r = 1, . . . , s.
Similarly, let v̂ j := (v̂1j , . . . , v̂

k
j ) ∈ V j . Set ṽ j := (ṽ1j , . . . , ṽ

k
j ) with

ṽlj :=

⎧
⎪⎪⎨

⎪⎪⎩

v̂lj if λ0j = 0,

λlj

λ0j
if λ0j �= 0,

l = 1, . . . , k.

Obviously, ṽ j ∈ V j , and for any x ∈ R
n ,

λ0j g
0
j (x) +

k∑

l=1

λlj g
l
j (x) = λ0j

(

g0j (x) +
k∑

l=1

ṽlj g
l
j (x)

)

= λ0j g j (x, ṽ j ), j = 1, . . . ,m. (13)

By (6), (12) and (13), we obtain

p∑

i=1

α0
i fi (x, ũi ) +

m∑

j=1

λ0j g j (x, ṽ j ) −
p∑

i=1

α0
i Fi (x̄) ≥ 0, ∀x ∈ R

n . (14)

Note that g j (x, ṽ j ) ≤ 0, ∀x ∈ F . It follows from (14) that

p∑

i=1

α0
i fi (x, ũi ) ≥

p∑

i=1

α0
i Fi (x̄),∀x ∈ F .
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Taking Fi (x) ≥ fi (x, ũi ) into account, we have

p∑

i=1

α0
i Fi (x) ≥

p∑

i=1

α0
i Fi (x̄), ∀x ∈ F . (15)

Note that α0
i ∈ R+ with

p∑

i=1
α0
i = 1. Then, (15) yields that there is no point x ∈ F

such that

Fi (x) < Fi (x̄), i = 1, . . . , p.

Thus, x̄ is a robust weakly efficient solution of (UP). This completes the proof. ��
In the special case, when Ui , i = 1, . . . , p, are singletons, (UP) reduces to the

following polynomial optimization problem

(UP)0 min
x∈Rn

{(
f1(x), . . . , f p(x)

) | g j (x, v j ) ≤ 0, j = 1, . . . ,m
}
.

Here, fi : Rn → R, i = 1, . . . , p, are SOS-convex polynomials, and g j : Rn ×V j →
R, j = 1, . . . ,m, are defined as (4).

The following corollary gives a characterization of robust weakly efficient solutions
of (UP)0 based on (RCCCQ).

Corollary 3.1 Assume that the (RCCCQ) holds. Then, x̄ ∈ F is a robust weakly

efficient solution of (UP)0 if and only if there exist α0
i ∈ R+ with

p∑

i=1
α0
i = 1, i =

1, . . . , p, and λ0j ∈ R+, λlj ∈ R, j = 1, . . . ,m, l = 1, . . . , k, such that

p∑

i=1

α0
i fi +

m∑

j=1

(

λ0j g
0
j +

k∑

l=1

λlj g
l
j

)

−
p∑

i=1

α0
i fi (x̄) ∈ �2

d [x]

and

λ0j B
0
j +

k∑

l=1

λlj B
l
j � 0, j = 1, . . . ,m,

where d ≥ max

{

max
1≤i≤p

(deg fi ) , max
1≤ j≤m

(
deg g0j

)
, max
1≤ j≤m

(
deg glj

)}

.

Remark 3.2 In [13, Theorem 2.3], under the Slater-type condition (5), optimality
conditions similar to the one in Corollary 3.1 have been investigated. Moreover, as
mentioned above, (RCCCQ) is weaker than the Slater-type condition (5). Thus, our
results cover the corresponding results in [13].
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Now, we give an example to explain the case where, for (UP), the (RCCCQ) holds
and optimality conditions obtained in Theorem 3.1 are satisfied, whereas the Slater-
type condition (5) fails.

Example 3.1 For problem (UP). Let m = n = 1 and p = s = k = 2. The uncertain
sets U1 ⊆ R

2, U2 ⊆ R
2 and V1 ⊆ R

2 are defined, respectively, by

U1 : =
{

u1 :=
(
u11, u

2
1

)
∈ R

2 |
(
u11
)2

3
+
(
u21
)2

4
≤ 1

}

,

U2 : =
{

u2 :=
(
u12, u

2
2

)
∈ R

2 |
(
u12
)2

8
+
(
u22
)2

10
≤ 1

}

and

V1 :=
{

v1 :=
(
v11, v

2
1

)
∈ R

2 |
(
v11

)2 +
(
v21

)2 ≤ 1

}

.

Let the polynomials f1 : R × U1 → R, f2 : R × U2 → R and g1 : R × V1 → R be
defined, respectively, by

f1(x, u1) = x4 − u11x + u21, f2(x, u2) = x4 − 2u22x + u12, and

g1(x, v1) = x2 + v11x + v21x .

Obviously, f 01 (x) = x4, f 11 (x) = −x , f 21 (x) = 1, f 02 (x) = x4, f 12 (x) = 1, f 22 (x) =
−2x , g01(x) = x2, g11(x) = x and g21(x) = x . Moreover, by (1) and (2), we have

A0
1 =

⎛

⎝
3 0 0
0 4 0
0 0 1

⎞

⎠ , A1
1 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , A2
1 =

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ,

A0
2 =

⎛

⎝
8 0 0
0 10 0
0 0 1

⎞

⎠ , A1
2 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , A2
2 =

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ,

B0
1 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , B1
1 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , B2
1 =

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ .

Clearly, the Slater-type condition fails for this problem. On the other hand, it is easy
to show that

⋃

λ0j≥0,v j∈V j

epi

⎛

⎝
m∑

j=1

λ0j g j (·, v j )

⎞

⎠

∗

=
⋃

λ01>0,v1∈V1

epi
(
λ01g1(·, v1)

)∗ ∪ ({0} × [0,+∞))
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=
⋃

λ01>0,v1∈V1

λ01

{

(x∗, r) ∈ R × R | r ≥ (x∗ − v11 − v21)
2

4

}

∪ ({0} × [0,+∞))

= R × [0,+∞),

which is a closed and convex cone. Thus, (RCCCQ) holds.Moreover, it can be checked
that x̄ := 0 is a robust weakly efficient solution of (UP). Now, we assert that the
conditions (6) and (7) hold at x̄ . In fact, we only need to show that there exist α0

i ∈ R+

with
p∑

i=1
α0
i = 1, αr

i ∈ R, i = 1, 2, r = 1, 2, and λ01 ∈ R+, λl1 ∈ R, l = 1, 2, such

that
(
α0
1 + α0

2

)
x4 + λ01x

2 −
(
2α2

2 + α1
1 − λ11 − λ21

)
x + α1

2

+α2
1 − 2α0

1 − 2
√
2α0

2 ∈ �2
d [x] (16)

and

(
α1
1

)2

3
+
(
α2
1

)2

4
≤
(
α0
1

)2
,

(
α1
2

)2

8
+
(
α2
2

)2

10
≤
(
α0
2

)2
,
(
λ11

)2 +
(
λ21

)2 ≤
(
λ01

)2
.

(17)

For instance, let α0
1 = α0

2 := 1
2 , α

1
1 := 0, α2

1 := 1, α1
2 := √

2, α2
2 := 0, λ01 := 1 and

λ11 = λ21 := 0. Then, (16) and (17) hold. Thus, Theorem 3.1 is applicable.

The following example shows that the conclusion of Theorem 3.1 may go awry if
the (RCCCQ) fails.

Example 3.2 For problem (UP). Let m = 1 and p = s = k = n = 2. The uncertain
sets U1 ⊆ R

2, U2 ⊆ R
2 and V1 ⊆ R

2 are defined, respectively, by

U1 : =
{

u1 :=
(
u11, u

2
1

)
∈ R

2 |
(
u11
)2

2
+
(
u21
)2

3
≤ 1

}

,

U2 : =
{

u2 :=
(
u12, u

2
2

)
∈ R

2 |
(
u12
)2

4
+
(
u22
)2

5
≤ 1

}

and

V1 :=
{

v1 :=
(
v11, v

2
1

)
∈ R

2 |
(
v11

)2 +
(
v21

)2 ≤ 1

}

.

Let the polynomials f1 : R2 × U1 → R, f2 : R2 × U2 → R and g1 : R2 × V1 → R

be defined, respectively, by

f1(x, u1) = x41 + 2x2 − u11, f2(x, u2) = x41 − x2 + u22 and
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g1(x, v1) = (v11 + 1)x1 + v21x2.

Obviously, f 01 (x) = x41 +2x2, f 11 (x) = −1, f 21 (x) = 0, f 02 (x) = x41 −x2, f 12 (x) = 0,
f 22 (x) = 1, g01(x) = x1, g11(x) = x1 and g21(x) = x2. Moreover, by (1) and (2), we
have

A0
1 =

⎛

⎝
2 0 0
0 3 0
0 0 1

⎞

⎠ , A1
1 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , A2
1 =

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ,

A0
2 =

⎛

⎝
4 0 0
0 5 0
0 0 1

⎞

⎠ , A1
2 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , A2
2 =

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ,

B0
1 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , B1
1 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , B2
1 =

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ .

Clearly, x̄ := (0, 0) is a robust weakly efficient solution of (UP) and

⋃

λ0j≥0,v j∈V j

epi

⎛

⎝
m∑

j=1

λ0j g j (·, v j )

⎞

⎠

∗

=
⋃

λ01>0,v1∈V1

epi
(
λ01g1(·, v1)

)∗ ∪ ({(0, 0)} × [0,+∞))

=
⋃

λ01>0

λ01

{
(x∗

1 , x
∗
2 , r) ∈ R

2 × R | (x∗
1 − 1)2 + (x∗

2 )
2 ≤ 1, r ≥ 0

}

∪ ({(0, 0)} × [0,+∞)) ,

which is not closed. Indeed, take a sequence sn := ( 1n , 1, 0), ∀n ∈ N. Obviously,

sn = n

(
1

n2
,
1

n
, 0

)

∈
⋃

λ0j≥0,v j∈V j

epi

⎛

⎝
m∑

j=1

λ0j g j (·, v j )

⎞

⎠

∗
,∀n ∈ N.

Note that sn → (0, 1, 0) as n → ∞. However, (0, 1, 0) /∈ ⋃

λ0j≥0,v j∈V j

epi

(
m∑

j=1
λ0j g j (·,

v j )

)∗
. Thus, (RCCCQ) fails.

Now, we assert that the conclusion of Theorem 3.1 is not satisfied at x̄ . Otherwise,

there exist α0
i ∈ R+ with

2∑

i=1
α0
i = 1, αr

i ∈ R, i = 1, 2, r = 1, 2, and λ01 ∈ R+,
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λl1 ∈ R, l = 1, 2, such that (6) and (7) hold. Note that F1(x̄) = √
2 and F2(x̄) = √

5.
For any x := (x1, x2) ∈ R

2, it follows from (6) that

(
α0
1 + α0

2

)
x41 + (λ01 + λ11

)
x1 + (2α0

1 − α0
2 + λ21

)
x2 − α1

1 + α2
2 − √

2α0
1 − √

5α0
2 ≥ 0.

Then,

(
α0
1 + α0

2

)
x41 +

(
λ01 + λ11

)
x1 − α1

1 + α2
2 − √

2α0
1 − √

5α0
2 ≥ 0,∀x1 ∈ R, (18)

and

(
2α0

1 − α0
2 + λ21

)
x2 − α1

1 + α2
2 − √

2α0
1 − √

5α0
2 ≥ 0,∀x2 ∈ R. (19)

Furthermore, from (7), we have

(
α1
1

)2

2
+
(
α2
1

)2

3
≤
(
α0
1

)2
,

(
α1
2

)2

4
+
(
α2
2

)2

5
≤
(
α0
2

)2
and

(
λ11

)2 +
(
λ21

)2≤
(
λ01

)2
.

Then, −α1
1 − √

2α0
1 ≤ |α1

1 | − √
2α0

1 ≤ 0 and α2
2 − √

5α0
2 ≤ |α2

2 | − √
5α0

2 ≤ 0.
Consequently,

− α1
1 + α2

2 − √
2α0

1 − √
5α0

2 ≤ 0. (20)

From (19), we have

2α0
1 − α0

2 + λ21 = 0, (21)

and

− α1
1 + α2

2 − √
2α0

1 − √
5α0

2 ≥ 0. (22)

Then, by (20) and (22), we have

−α1
1 + α2

2 − √
2α0

1 − √
5α0

2 = 0.

Moreover, from (18), it holds that λ01 + λ11 = 0. This, together with (λ11)
2 + (λ21)

2 ≤
(λ01)

2 and (21), yields that

(
2α0

1 − α0
2

)2 ≤ 0.

Thus, we arrive at a contradiction due to α0
1, α

0
2 ∈ R+ with α0

1 + α0
2 = 1. This means

that Theorem 3.1 is not applicable.
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Next, we consider the problem (UP) with the functions fi and g j being convex
quadratic functions defined by

fi (x, ui ) := x�Qi x + (ξi )
�x + βi +

s∑

r=1

uri

(
(ξ ri )�x + βr

i

)
, x ∈ R

n, (23)

and

g j (x, v j ) := x�Mj x + (θ j )
�x + γ j +

k∑

l=1

vlj

((
θ lj

)�
x + γ l

j

)

, x ∈ R
n . (24)

here Qi � 0, ξi ∈ R
n , ξ ri ∈ R

n , βi ∈ R, βr
i ∈ R, r = 1, . . . , s, and Mj � 0, θ j ∈ R

n ,
θ lj ∈ R

n , γ j ∈ R, γ l
j ∈ R, l = 1, . . . , k.

In this case, we obtain the following optimality conditions for robust weakly effi-
cient solutions of (UP), which have been considered in [15, Theorem 3.1].

Corollary 3.2 Consider the problem (UP)with the functions fi and g j givenby (23) and
(24). Assume that the (RCCCQ) holds. Then, x̄ ∈ F is a robustweakly efficient solution

of (UP) if and only if there exist α0
i ∈ R+ with

p∑

i=1
α0
i = 1, αr

i ∈ R, i = 1, . . . , p,

r = 1, . . . , s, and λ0j ∈ R+, λlj ∈ R, j = 1, . . . ,m, l = 1, . . . , k, such that

⎛

⎜
⎜
⎜
⎜
⎝

p∑

i=1
α0
i Qi +

m∑

j=1
λ0j M j

1
2

(
p∑

i=1

(

α0
i ξi +

s∑

r=1
αr
i ξ

r
i

)

+
m∑

j=1

(

λ0j θ j +
k∑

l=1
λlj θ

l
j

))

1
2

(
p∑

i=1

(

α0
i ξi +

s∑

r=1
αr
i ξ

r
i

)

+
m∑

j=1

(

λ0j θ j +
k∑

l=1
λlj θ

l
j

))�
p∑

i=1

(

α0
i β j +

s∑

r=1
αr
i β

r
i

)

+
m∑

j=1

(

λ0j γ j +
k∑

l=1
λlj γ

l
j

)

−
p∑

i=1
α0
i Fi (x̄)

⎞

⎟
⎟
⎟
⎟
⎠

� 0

and

α0
i A

0
i +

s∑

r=1

αr
i A

r
i � 0, λ0j B

0
j +

k∑

l=1

λlj B
l
j � 0, i = 1, . . . , p, j = 1, . . . ,m,

where Fi (x̄) := max
ui∈Ui

fi (x̄, ui ) for i = 1, . . . , p.

Proof By using a similar approach as that given to establish Theorem 3.1, it follows
that

p∑

i=1

α0
i fi (x, ui ) +

m∑

j=1

λ0j g j (x, v j ) −
p∑

i=1

α0
i Fi (x̄) ≥ 0 (25)

and

α0
i A

0
i +

s∑

r=1

αr
i A

r
i � 0, λ0j B

0
j +

k∑

l=1

λlj B
l
j � 0, i = 1, . . . , p, j = 1, . . . ,m.
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Then, by (25), we have, for any x ∈ R
n ,

x�
⎛

⎝
p∑

i=1

α0
i Qi +

m∑

j=1

λ0j M j

⎞

⎠ x +
⎛

⎜
⎝

p∑

i=1

(

α0
i ξi +

s∑

r=1

αr
i ξ

r
i

)

+
m∑

j=1

(

λ0jθ j +
k∑

l=1

λljθ
l
j

)⎞

⎠

�
x +

p∑

i=1

(

α0
i β j +

s∑

r=1

αr
i β

r
i

)

+
m∑

j=1

(

λ0jγ j +
k∑

l=1

λljγ
l
j

)

−
p∑

i=1

α0
i Fi (x̄) ≥ 0.

This, together with the Simple Lemma in [5, p. 163], leads to the desired conclusion.
The proof is complete. ��
Remark 3.3 With minor modifications of the proof given for Proposition 2.2 in [41],
we can show that

coneco
{
(0, 1) ∪ epig∗

j (·, v j ) | ∀v j ∈ V j , j = 1, . . . ,m
}

=
⋃

λ0j≥0,v j∈V j

epi

⎛

⎝
m∑

j=1

λ0j g j (·, v j )

⎞

⎠

∗
.

Then, in Corollary 3.2, the (RCCCQ) can be replaced by the closeness of
coneco{(0, 1)∪ epig∗

j (·, v j ) | ∀v j ∈ V j , j = 1, . . . ,m}. Clearly, the result obtained
in Corollary 3.2 coincides with [15, Theorem 3.1].

At the end of this section, we show how the optimality conditions obtained in (6)
and (7) can be checked by a robust Karush–Kuhn–Tucker (KKT) condition. Note
that the robust KKT condition of (UP) holds at x̄ ∈ F iff there exist α0

i ∈ R+ with
p∑

i=1
α0
i = 1, ūi ∈ Ui , i = 1, . . . , p, and λ0j ∈ R+, v̄ j ∈ V j , j = 1, . . . ,m, such that

p∑

i=1

α0
i ∇1 fi (x̄, ūi ) +

m∑

j=1

λ0j∇1g j (x̄, v̄ j ) = 0, λ0j g j (x̄, v̄ j ) = 0, j = 1, . . . ,m,

(26)

and

p∑

i=1

α0
i fi (x̄, ūi ) =

p∑

i=1

α0
i Fi (x̄). (27)

Here∇1 fi and∇1g j denote the derivative of fi and g j with respect to the first variable,
respectively.
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Now, we give the following proposition which describes the relation between opti-
mality conditions obtained in (6) and (7) and the robust KKT condition. It is worth
noticing that the proof of Proposition 3.1, which is similar to the proof of [13, Propo-
sition 2.10] and [41, Proposition 3.4], is included here for the sake of completeness.

Proposition 3.1 Let x̄ ∈ F . Then, the following statements are equivalent:
(i) The robust KKT condition holds at x̄ ∈ F .

(ii) There exist α0
i ∈ R+ with

p∑

i=1
α0
i = 1, αr

i ∈ R, i = 1, . . . , p, r = 1, . . . , s, and

λ0j ∈ R+, λlj ∈ R, j = 1, . . . ,m, l = 1, . . . , k, such that

p∑

i=1

(

α0
i ∇ f 0i (x̄) +

s∑

r=1

αr
i ∇ f ri (x̄)

)

+
m∑

j=1

(

λ0j∇g0j (x̄) +
k∑

l=1

λlj∇glj (x̄)

)

= 0,

(28)

λ0j g
0
j (x̄) +

k∑

l=1

λlj g
l
j (x̄) = 0, (29)

p∑

i=1

(

α0
i f

0
i (x̄) +

s∑

r=1

αr
i f

r
i (x̄)

)

= max
ui∈Ui

p∑

i=1

α0
i

(

f 0i (x̄) +
s∑

r=1

uri f
r
i (x̄)

)

, (30)

α0
i A

0
i +

s∑

r=1

αr
i A

r
i � 0, λ0j B

0
j +

k∑

l=1

λlj B
l
j � 0. (31)

(iii) The optimality conditions given by (6) and (7) hold.

Proof (i)⇒(ii) Assume that the robust KKT condition of (UP) holds at x̄ ∈ F . Then,

there exist α0
i ∈ R+ with

p∑

i=1
α0
i = 1, ūi ∈ Ui , i = 1, . . . , p and λ0j ∈ R+, v̄ j ∈ V j ,

j = 1, . . . ,m such that (26) and (27) hold. By ūi = (ū1i , . . . , ū
s
i ) ∈ Ui , we get

A0
i +

s∑

r=1

ūri A
r
i � 0, i = 1, . . . , p.

Let αr
i := α0

i ū
r
i , i = 1, . . . , p, r = 1, . . . , s. Then, for any i = 1, . . . , p,

α0
i A

0
i +

s∑

r=1

αr
i A

r
i = α0

i

(

A0
i +

s∑

r=1

ūri A
r
i

)

� 0 (32)

and

α0
i fi (x̄, ūi ) = α0

i f
0
i (x̄) +

s∑

r=1

αr
i f

r
i (x̄). (33)
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Similarly, let λlj := λ0j v̄
l
j , j = 1, . . . ,m, l = 1, . . . , k. Then, for any j = 1, . . . ,m,

we have

λ0j B
0
j +

k∑

l=1

λlj B
l
j = λ0j

(

B0
j +

k∑

l=1

v̄lj B
l
j

)

� 0 (34)

and

λ0j g j (x̄, v̄ j ) = λ0j g
0
j (x̄) +

k∑

l=1

λlj g
l
j (x̄). (35)

Together with (26), (27), (32), (33), (34) and (35), it follows that (ii) holds.

(ii)⇒(iii) Assume that there exist α0
i ∈ R+ with

p∑

i=1
α0
i = 1, αr

i ∈ R, i = 1, . . . , p,

r = 1, . . . , s, and λ0j ∈ R+, λlj ∈ R, j = 1, . . . ,m, l = 1, . . . , k, such that (28), (29),
(30) and (31) hold. Using similar arguments as those given for (12) and (13), it is easy
to show that there exist ũi ∈ Ui , i = 1, . . . , p, and ṽ j ∈ V j , j = 1, . . . ,m, such that
for any x ∈ R

n ,

α0
i f

0
i (x) +

s∑

r=1

αr
i f

r
i (x) = α0

i fi (x, ũi ) (36)

and

λ0j g
0
j (x) +

k∑

l=1

λlj g
l
j (x) = λ0j g j (x, ṽ j ). (37)

Let

φ(x) :=
p∑

i=1

α0
i fi (x, ũi ) +

m∑

j=1

λ0j g j (x, ṽ j ) −
p∑

i=1

α0
i Fi (x̄), ∀x ∈ R

n .

By (28), (36) and (37), we deduce that

∇φ(x̄) = 0.

Moreover, from (29) and (37), we get

λ0j g j (x̄, ṽ j ) = 0, j = 1, . . . ,m.

This, together with (30) and (36), gives

φ(x̄) = 0.
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On the other hand, φ is an SOS-convex polynomial. Therefore, from Lemma 2.2, we
have φ ∈ �2

d [x]. This means that

p∑

i=1

(

α0
i f

0
i +

s∑

r=1

αr
i f

r
i

)

+
m∑

j=1

(

λ0j g
0
j +

k∑

l=1

λlj g
l
j

)

−
p∑

i=1

α0
i Fi (x̄) ∈ �2

d [x].

So, (iii) holds.
(iii)⇒(i)Assume that there exist ũi ∈ Ui , i = 1, . . . , p, and ṽ j ∈ V j , j = 1, . . . ,m,

such that (6) and (7) hold. By (6), we have

φ(x) :=
p∑

i=1

α0
i fi (x, ũi ) +

m∑

j=1

λ0j g j (x, ṽ j ) −
p∑

i=1

α0
i Fi (x̄) ≥ 0, ∀x ∈ R

n . (38)

Then, for x̄ ∈ F ,

p∑

i=1

α0
i fi (x̄, ũi ) +

m∑

j=1

λ0j g j (x̄, ṽ j ) ≥
p∑

i=1

α0
i Fi (x̄). (39)

Note that λ0j g j (x̄, ṽ j ) ≤ 0 due to x̄ ∈ F . Hence,

p∑

i=1

α0
i fi (x̄, ũi ) +

m∑

j=1

λ0j g j (x̄, ṽ j ) ≤
p∑

i=1

α0
i fi (x̄, ũi ) ≤

p∑

i=1

α0
i Fi (x̄). (40)

Combining (39) and (40), we obtain

p∑

i=1

α0
i fi (x̄, ũi ) =

p∑

i=1

α0
i Fi (x̄) and

m∑

j=1

λ0j g j (x̄, ṽ j ) = 0.

Clearly, φ(x̄) = 0. Consequently, from (38), we have φ(x) ≥ φ(x̄), ∀x ∈ R
n . Thus,

∇φ(x̄) = 0, which means that

p∑

i=1

α0
i ∇1 fi (x̄, ũi ) +

m∑

j=1

λ0j∇1g j (x̄, ṽ j ) = 0.

Thus, the robust KKT condition holds at x̄ . The proof is complete. ��
Remark 3.4 Proposition 3.1 encompasses [15, Proposition 3.4], where the objective
and constraint functions are convex quadratic functions. Proposition 3.1 also improves
[13, Proposition 2.10], where there were no uncertain data in the objective functions
fi , i = 1, . . . , p, of (UP).
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4 SDP Relaxation Dual Problem

In this section, we first introduce the sum of squares relaxation dual problem for (UP)

from the perspective of sum of squares conditions and linear matrix inequalities and
then discuss weak and strong duality properties between them. Moreover, we give a
numerical example to illustrate that the relaxation problem can be formulated as a
semidefinite linear programming problem.

Let ω := (ω1, . . . , ωp) ∈ R
p, α := (α0

1, . . . , α
0
p, α

1
1, . . . , α

1
p, α

2
1, . . . , α

2
p, . . . ,

αs
1, . . . , α

s
p) ∈ R

p
+ × R

ps , and λ := (λ01, . . . , λ
0
m, λ11, . . . , λ

1
m, λ21, . . . , λ

2
m, . . . ,

λk1, . . . , λ
k
m) ∈ R

m+ × R
mk . Now, we propose the sum of squares relaxation dual

problem of (UP) as follows:

(RD)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
ω∈Rp,α∈Rp

+×Rps ,

λ∈Rm+×Rmk

(ω1, . . . , ωp)

s.t .
p∑

i=1

(

α0
i f

0
i +

s∑

r=1
αr
i f

r
i

)

+
m∑

j=1

(

λ0j g
0
j +

k∑

l=1
λlj g

l
j

)

−
p∑

i=1
α0
i ωi ∈ �2

d [x],

α0
i A

0
i +

s∑

r=1
αr
i A

r
i � 0, λ0j B

0
j +

k∑

l=1
λlj B

l
j � 0,

i = 1, . . . , p, j = 1, . . . ,m,
p∑

i=1
α0
i = 1.

Here the feasible set of (RD) is denoted by FD .

Remark 4.1 In the special case when there is no uncertainty in the objective functions,
(UP) becomes (UP)0, and (RD) collapses to

max
(ωi ,αi ,λ

0
j ,λ

l
j )

(ω1, . . . , ωp)

s.t .
p∑

i=1
αi fi +

m∑

j=1

(

λ0j g
0
j +

k∑

l=1
λlj g

l
j

)

−
p∑

i=1
αiωi ∈ �2

d [x],

λ0j B
0
j +

k∑

l=1
λlj B

l
j � 0,

αi ∈ R+,
p∑

i=1
αi = 1, λ0j ∈ R+, λlj ∈ R, ωi ∈ R,

i = 1, . . . , p, j = 1, . . . ,m, l = 1, . . . , k.

Note that related results on the characterization of sum of squares relaxation problem
for different kinds of polynomial optimization problems can be found in [12–14, 25]
and the references therein.

Now, similar to the concept of robust weakly efficient solutions of (UP) in Defini-
tion 2.3, we give the definition of weakly efficient solutions of (RD).
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Definition 4.1 Apoint (ω̄, ᾱ, λ̄) ∈ FD is said to be a weakly efficient solution of (RD)

iff there is no point (ω, α, λ) ∈ FD such that

(ω1, . . . , ωp) − (ω̄1, . . . , ω̄p) ∈ intRp
+.

The following theorem gives a weak duality relation between (UP) and (RD).

Theorem 4.1 For any x ∈ F and (ω, α, λ) ∈ FD. We have

(F1(x), . . . , Fp(x)) − (ω1, . . . , ωp) /∈ −intRp
+,

where Fi (x) := max
ui∈Ui

fi (x, ui ), i = 1, . . . , p.

Proof Since (ω, α, λ) ∈ FD , we have ωi ∈ R, α0
i ∈ R+ with

p∑

i=1
α0
i = 1, αr

i ∈ R,

i = 1, . . . , p, r = 1, . . . , s, λ0j ∈ R+, λlj ∈ R, j = 1, . . . ,m, l = 1, . . . , k, and

p∑

i=1

(

α0
i f

0
i +

s∑

r=1

αr
i f

r
i

)

+
m∑

j=1

(

λ0j g
0
j +

k∑

l=1

λlj g
l
j

)

−
p∑

i=1

α0
i ωi ∈ �2

d [x].

This means that there exists σ ∈ �2
d [x] such that

p∑

i=1

(

α0
i f

0
i +

s∑

r=1

αr
i f

r
i

)

+
m∑

j=1

(

λ0j g
0
j +

k∑

l=1

λlj g
l
j

)

−
p∑

i=1

α0
i ωi = σ. (41)

Using a similar argument as that given for the proof of Theorem 3.1, we can show
that there exist ũi ∈ Ui , i = 1, . . . , p, and ṽ j ∈ V j , j = 1, . . . ,m, such that for any
x ∈ R

n ,

α0
i f

0
i (x) +

s∑

r=1

αr
i f

r
i (x) = α0

i fi (x, ũi )

and

λ0j g
0
j (x) +

k∑

l=1

λlj g
l
j (x) = λ0j g j (x, ṽ j ).

Hence, (41) can be equivalently written as

p∑

i=1

α0
i fi (x, ũi ) = σ(x) −

m∑

j=1

λ0j g j (x, ṽ j ) +
p∑

i=1

α0
i ωi , ∀x ∈ R

n . (42)
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Note that for any x ∈ F , we have g j (x, ṽ j ) ≤ 0, j = 1, . . . ,m. This, together with
(42) and σ(x) ≥ 0, gives

p∑

i=1

α0
i fi (x, ũi ) ≥

p∑

i=1

α0
i ωi ,∀x ∈ F . (43)

Note that Fi (x) ≥ fi (x, ũi ), i = 1, . . . , p. Thus, it follows from (43), α0
i ∈ R+ and

p∑

i=1
α0
i = 1 that

(F1(x), . . . , Fp(x)) − (ω1, . . . , ωp) /∈ −intRp
+.

The proof is complete. ��

The next theorem describes strong duality properties for weakly efficient solutions
between (UP) and (RD).

Theorem 4.2 Assume that the (RCCCQ) holds. If x̄ ∈ F is a robust weakly efficient

solution of (UP), then, there exist ω̄i ∈ R, ᾱ0
i ∈ R+ with

p∑

i=1
ᾱ0
i = 1, ᾱr

i ∈ R,

i = 1, . . . , p, r = 1, . . . , s, and λ̄0j ∈ R+, λ̄lj ∈ R, j = 1, . . . ,m, l = 1, . . . , k,

such that (ω̄, ᾱ, λ̄) is a weakly efficient solution of (RD), where ω̄i := max
ui∈Ui

fi (x̄, ui ),

i = 1, . . . , p.

Proof Let x̄ ∈ F be a robust weakly efficient solution of (UP). By Theorem 3.1, there

exist ᾱ0
i ∈ R+ with

p∑

i=1
ᾱ0
i = 1, ᾱr

i ∈ R, i = 1, . . . , p, r = 1, . . . , s, and λ̄0j ∈ R+,

λ̄lj ∈ R, j = 1, . . . ,m, l = 1, . . . , k, such that

p∑

i=1

(

ᾱ0
i f

0
i +

s∑

r=1

ᾱr
i f

r
i

)

+
m∑

j=1

(

λ̄0j g
0
j +

k∑

l=1

λ̄lj g
l
j

)

−
p∑

i=1

ᾱ0
i ω̄i ∈ �2

d [x]

and

ᾱ0
i A

0
i +

s∑

r=1

ᾱr
i A

r
i � 0, λ̄0j B

0
j +

k∑

l=1

λ̄lj B
l
j � 0, i = 1, . . . , p, j = 1, . . . ,m,

where ω̄i := max
ui∈Ui

fi (x̄, ui ). Clearly,

(ω̄, ᾱ, λ̄) ∈ FD.
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We claim that (ω̄, ᾱ, λ̄) ∈ FD is a weakly efficient solution of (RD). On the contrary,
there exists (ω̃, α̃, λ̃) ∈ FD such that

(ω̃1, . . . , ω̃p) − (ω̄1, . . . , ω̄p) ∈ intRp
+.

This, together with ω̄i = max
ui∈Ui

fi (x̄, ui ), i = 1, . . . , p, implies that

(F1(x̄), . . . , Fp(x̄)) − (ω̃1, . . . , ω̃p) ∈ −intRp
+,

which contradicts Theorem 4.1. The proof is complete. ��
Note that the sum of squares conditions can be equivalently expressed as linear

matrix inequalities. Then, we give a numerical example to show that (RD) can be
formulated as a semidefinite linear programming problem.

Example 4.1 For problem (UP), let m = n = 1 and p = s = k = 2. The uncertain
sets U1 ⊆ R

2, U2 ⊆ R
2 and V1 ⊆ R

2 are defined, respectively, by

U1 : =
{

u1 :=
(
u11, u

2
1

)
∈ R

2 |
(
u11
)2

2
+
(
u21
)2

3
≤ 1

}

,

U2 : =
{

u2 :=
(
u12, u

2
2

)
∈ R

2 |
(
u12
)2

4
+
(
u22
)2

5
≤ 1

}

and

V1 :=
{
v1 := (v11, v

2
1) ∈ R

2 | (v11)
2 + (v21)

2 ≤ 1
}

.

Let the polynomials f1 : R × U1 → R, f2 : R × U2 → R and g1 : R × V1 → R be
defined, respectively, by

f1(x, u1) = x4 + u11x + u21, f2(x, u2) = x4 − 2u22x + 3u12, and

g1(x, v1) = v11x + v21x − 1.

Obviously, f 01 (x) = x4, f 11 (x) = x , f 21 (x) = 1, f 02 (x) = x4, f 12 (x) = 3, f 22 (x) =
−2x , g01(x) = −1, g11(x) = x and g21(x) = x . Moreover, by (1) and (2), we have

A0
1 =

⎛

⎝
2 0 0
0 3 0
0 0 1

⎞

⎠ , A0
2 =

⎛

⎝
4 0 0
0 5 0
0 0 1

⎞

⎠ , A1
1 = A1

2 =
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ ,

A2
1 = A2

2 =
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ ,
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B0
1 =

⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ , B1
1 =

⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , B2
1 =

⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ .

The sum of squares relaxation dual problem of (UP) becomes

max
ω∈R2,α∈R2+×R4,

λ∈R+×R2

(ω1, ω2)

s.t .
2∑

i=1

(

α0
i f

0
i +

2∑

r=1
αr
i f

r
i

)

+
(

λ01g
0
1 +

2∑

l=1
λl1g

l
1

)

−
2∑

i=1
α0
i ωi ∈ 62d [x],

α0
i A

0
i +

2∑

r=1
αr
i A

r
i � 0, i = 1, 2, λ01B

0
1 +

2∑

l=1
λl1B

l
1 � 0,

2∑

i=1
α0
i = 1.

Let

σ : =
2∑

i=1

(

α0
i f

0
i +

2∑

r=1

αr
i f

r
i

)

+
(

λ01g
0
1 +

2∑

l=1

λl1g
l
1

)

−
2∑

i=1

α0
i ωi .

Clearly,

σ(x) =
(
α0
1 + α0

2

)
x4 +

(
α1
1 − 2α2

2 + λ11 + λ21

)
x + α2

1 + 3α1
2 − α0

1ω1 − α0
2ω2.

By σ ∈ �2
d [x] and [36, Lemma 3.33], there exists a symmetric (3× 3) matrix C such

that

σ = X�WX and W � 0, (44)

where X := (1, x, x2). Let

W :=
⎛

⎝
W1 W2 W3
W2 W4 W5
W3 W5 W6

⎞

⎠ .

By (44), we have W1 = α2
1 + 3α1

2 − α0
1ω1 − α0

2ω2, 2W2 = α1
1 − 2α2

2 + λ11 + λ21,

2W3 + W4 = 0, W5 = 0 and W6 = α0
1 + α0

2 . Let W3 := μ ∈ R. Then, W4 = −2μ.
Thus, the relaxation dual problem becomes the following semidefinite programming
problem
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max
ω∈R2,μ∈R,α∈R2+×R4,

λ∈R+×R2

(ω1, ω2)

s.t .

⎛

⎜
⎝

α2
1 + 3α1

2 − α0
1ω1 − α0

2ω2
α1
1
2 − α2

2 + λ11
2 + λ21

2 μ
α1
1
2 − α2

2 + λ11
2 + λ21

2 −2μ 0
μ 0 α0

1 + α0
2

⎞

⎟
⎠ � 0,

⎛

⎝
2α0

1 0 α1
1

0 3α0
1 α2

1
α1
1 α2

1 α0
1

⎞

⎠ � 0,

⎛

⎝
4α0

2 0 α1
2

0 5α0
2 α2

2
α1
2 α2

2 α0
2

⎞

⎠ � 0,

⎛

⎝
λ01 0 λ11
0 λ01 λ21
λ11 λ21 λ01

⎞

⎠ � 0,

2∑

i=1
α0
i = 1.

Therefore, (RD) canbeverifiedby solving a semidefinite linear programmingproblem.

5 Conclusions

In this paper, a class of SOS-convex polynomial optimization problems under uncer-
tain data in both the objective and constraints is considered. By using a new robust-type
characteristic cone constraint qualification, we obtain optimality conditions for robust
weakly efficient solutions to this uncertain SOS-convex optimization problembased on
the sum of squares conditions and linear matrix inequalities.We also introduce a relax-
ation dual problem for this uncertain SOS-convex optimization problem and establish
its robust duality properties. Furthermore, we give a numerical example to illustrate
that the relaxation problem can be formulated as a semidefinite programming problem.

Although some new results of robust weakly efficient solutions have been estab-
lished for SOS-convex polynomial optimization problems with uncertain data, there
are remaining questions to be addressed in the future. For instance, similar to [16, 41],
whether we can investigate second-order cone programming dual relaxations for more
general classes of convex polynomial optimization problem. Two-stage SOS-convex
polynomial optimization is an interesting model for polynomial optimization prob-
lems. It is also of importance to consider how the proposed approach can be extended
to handle affinely adjustable robust two-stage SOS-convex polynomial optimization
problems.
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