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Abstract
This paper studies the risk-sensitive first passage discounted cost criterion for
continuous-time Markov decision processes with the Borel state and action spaces.
The cost and transition rates are allowed to be unbounded. We introduce a new value
iteration to establish the existence of a solution to the risk-sensitive first passage dis-
counted cost optimality equation. Then applying the Feynman–Kac formula, we show
that the risk-sensitive first passage discounted cost optimal value function is a unique
solution to the risk-sensitive first passage discounted cost optimality equation. More-
over, we derive the existence of a deterministic Markov optimal policy in the class of
randomized history-dependent policies. Finally, a cash flowmodel is given to illustrate
the results.

Keywords Continuous-time Markov decision processes · Risk-sensitive first passage
discounted cost criterion · Optimal policies · Value iteration.

Mathematics Subject Classification 90C40 · 60J27

1 Introduction

Markov decision processes have been widely applied to the queueing system, power-
managed systems, inventory control, telecommunication, infrastructure surveillance
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models, preventive maintenance, and epidemic control, etc. (see [11, 18, 20, 21]). In
the standard expected discounted cost criterion, the decision horizon is infinite and
the decision-maker is assumed to be risk-neutral (see [11, 14, 18, 20, 21]). From the
viewpoint of the risk preference, the decision-maker may be risk-sensitive rather than
risk-neutral; see, for instance, [2, 4–10, 15–17, 22, 24–28]. The exponential utility
function is a common way of characterizing the risk-sensitivity of the decision-maker
in Markov decision processes; see, for instance, [8, 10, 16, 25] for the finite-horizon
risk-sensitive cost criterion, [5, 8, 15] for the infinite-horizon risk-sensitive discounted
cost criterion and [4–9, 22, 24, 26, 27] for the infinite-horizon risk-sensitive average
cost criterion. On the other hand, the decision horizon in [4–10, 15, 16, 22, 24–27] is
either finite or infinite. But in the practical applications, the decision-maker may be
concerned with the costs before the state of the controlled stochastic system falls into
some target set. Thus, the decision horizon is uncertain; see, for instance, [12, 19]. The
first passage time to some target set is used to describe the uncertainty of the decision
horizon in [12, 19]. More precisely, Guo et al. [12] studied the first passage mean-
variance criterion for discounted continuous-timeMarkov decision processes and [19]
investigated the nonzero-sumgames under thefirst passage expected discounted payoff
criterion for continuous-time jump processes. Hence, it is meaningful for us to take the
risk-sensitivity of the decision-maker and the uncertainty of the decision horizon into
consideration. In this paper we intend to investigate continuous-timeMarkov decision
processes under the risk-sensitive first passage discounted cost criterion, which has
not been studied yet.

The state and action spaces are Borel spaces, and the cost and transition rates can
be possibly unbounded in this paper. In order to ensure the finiteness of the risk-
sensitive first passage discounted cost criterion and the existence of optimal policies,
we require the drift condition on the transition rate, the growth condition on the cost
rate, and the continuity and compactness conditions. First, we derive the bounds on the
risk-sensitive first passage discounted cost criterion and the Feynman–Kac formula
which is applicable to a class of unbounded functions (see Lemmas 3.1 and 3.3). Then,
we construct an approximating sequence of bounded cost rates and introduce a new
value iteration [see (4.1)]. Employing the results on the approximating sequence, we
obtain the existence of a solution to the risk-sensitive first passage discounted cost
optimality equation for the case of the Borel state space and unbounded transition
and cost rates. Moreover, using the Feynman–Kac formula, we prove that the risk-
sensitive first passage discounted cost optimal value function is a unique solution to the
risk-sensitive first passage discounted cost optimality equation. In addition, from the
optimality equation we derive the existence of a deterministic Markov optimal policy
in the class of randomized history-dependent policies (see Theorem 4.1). Finally, we
provide a cash flow model to illustrate the optimality conditions of our results.

Compared with the existing literature on the risk-sensitive discounted continuous-
time Markov decision processes, the main contributions of this paper are as follows.

(I) (New method). The existence of a solution to the infinite-horizon risk-sensitive
discounted cost optimality equation is obtained in [5] with the Borel state space
and bounded cost and transition rates, [8] with the denumerable state space and
bounded cost and transition rates, and [15] with the denumerable state space and
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unbounded cost and transition rates. The extension of the results in [5, 8, 15]
to the case of the Borel state space and unbounded cost and transition rates is
nontrivial. We establish the existence of a solution to the optimality equation via
introducing a new value iteration, which is different from themethods in [5, 8, 15].
More precisely, the existence of a solution to the infinite-horizon risk-sensitive
discounted cost optimality equation is obtained in [5, 8, 15] via the fixed point
technique. Since the function 1

λ
is singular at the point λ = 0, the integral in the

construction of the fixed point mapping needs to start from some ε > 0 in [5, 8,
15]. Then letting ε → 0, the existence of a solution to the infinite-horizon risk-
sensitive discounted cost optimality equation for the case of bounded cost and
transition rates can be derived. The fixed point method requires the boundedness
assumption on the cost and transition rates. Thus, the approach in [5, 8] cannot deal
with the unbounded cost and transition rates. To investigate the unbounded case,
[15] first constructs an approximating sequence of bounded cost and transition
rates via the truncation method and then applying the fixed point technique to the
approximating sequence. The existence of a solution to the infinite-horizon risk-
sensitive discounted cost optimality equation for a denumerable state space and
unbounded cost and transition rates is established in [15] by an approximation
approach. Because the diagonalization arguments in [15] require the assumption
that the state space is a denumerable set, the method in [15] is inapplicable to the
case of the Borel state space. To deal with the Borel state space and unbounded
cost and transition rates, we introduce a new value iteration [see (4.1)]. Our
value iteration approach has the following two advantages. On the one hand,
we overcome the singular issue from the fixed point method in [5, 8, 15]. The
approximation ε → 0 in [5, 8, 15] is not required for the value iteration method.
On the other hand, the value iteration can treat the case of the Borel state space and
unbounded transition rates directly without the boundedness assumption as in [5,
8] and the diagonalization arguments and the construction of an approximating
sequence of bounded transition rates as in [15].

(II) (Weaker conditions). We obtain the existence result under the conditions weaker
than those in [5, 8, 15]. More specifically, we remove the boundedness condition
on the cost and transition rates in [5, 8] and the uniform convergence condition
of the solution in [8]. We do not require the denumerability assumption on the
state space, the uniformly conservative condition on the transition rates, and the
additional condition that the constant in the second-order drift condition is less
than the discount factor in [15].

The remainder of the paper is organized as follows. In Sect. 2, we introduce the
decision model and the risk-sensitive first passage discounted cost criterion. In Sect. 3,
we provide the optimality conditions for the existence of optimal policies and prove
the Feynman–Kac formula which is applicable to a class of unbounded functions. In
Sect. 4, we employ a new value iteration to establish the risk-sensitive first passage
discounted cost optimality equation and show the existence of optimal policies. In
Sect. 5, we use a cash flow model to illustrate the main results. In Sect. 6, we give the
conclusions.
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2 The DecisionModel

We first give a description of the decision model and then introduce the definition of
the policy and the risk-sensitive first passage discounted cost criterion in this section.
The decision model contains the following components:

{X , A, (A(x) ⊆ A, x ∈ X), q(·|x, a), c(x, a)}.

The state space X and action space A are assumed to be Borel spaces endowedwith the
Borel σ -algebrasB(X) andB(A), respectively. For each x ∈ X , A(x) ∈ B(A) denotes
the set of all admissible actions at state x . Let K := {(x, a) : x ∈ X , a ∈ A(x)}which
is supposed to be a Borel measurable subset of X × A. The transition rate q satisfies
the following properties: (i) for any (x, a) ∈ K , q(·|x, a) is a signed measure on
B(X) and for any D ∈ B(X), q(D|·) is a real-valued measurable function on K ; (ii)
0 ≤ q(D|x, a) < ∞ for all (x, a) ∈ K and x /∈ D ∈ B(X); (iii) q(X |x, a) = 0 for all
(x, a) ∈ K ; and (iv) q∗(x) := supa∈A(x) |q({x}|x, a)| < ∞ for all x ∈ X . The cost
rate c is a nonnegative real-valued measurable function on K .

Next, we describe the construction of the state process. To this end, set X∞ :=
X ∪ {x∞} with an isolated point x∞ /∈ X , R+ := (0,∞), �0 := (X × R+)∞
and � := �0 ∪ {(x0, θ1, x1, . . . , θn, xn,∞, x∞,∞, x∞, . . .)|x0 ∈ X , xl ∈ X , θl ∈
R+ for each 1 ≤ l ≤ n, n ≥ 1}. Denote by F the Borel σ -algebra of �. For any
ω = (x0, θ1, x1, . . .) ∈ �, define S0(ω) := x0, T0(ω) := 0, Sn(ω) := xn , Tn(ω) :=∑n

i=1 θi for all n ≥ 1, T∞(ω) := limn→∞ Tn(ω) and the state process

ξt (ω) :=
∑

n≥0

I{Tn≤t<Tn+1}xn + I{t≥T∞}x∞

for t ≥ 0, where ID stands for the indicator function of a set D. Moreover, let
A(x∞) := a∞ with an isolated point a∞ /∈ A, A∞ := A ∪ {a∞}, c(x∞, a∞) := 0,
q(x∞|x∞, a∞) := 0, Ft := σ({Tn ≤ s, Sn ∈ D} : s ≤ t, D ∈ B(X), n ≥ 0) for
all t ≥ 0, Fs− := ∨

0≤t<s Ft , and P := σ({D × {0}, D ∈ F0} ∪ {D × (s,∞), D ∈
Fs−, s > 0}) which presents the σ -algebra of predictable sets on � × [0,∞) with
respect to {Ft }t≥0.

Now we give the definition of a policy.

Definition 2.1 A transition probability π(·|·) on A∞ given � × [0,∞) is called a
randomized history-dependent policy if for any (ω, t) ∈ � × [0,∞), π(·|ω, t) is
a probability measure supported on A(ξt−(ω)) and for any D ∈ B(A∞), π(D|·) is
P-measurable, where ξt− = lims↑t ξs . The set of all randomized history-dependent
policies is denoted by 
. A policy π ∈ 
 is said to be deterministic Markov if there
exists a measurable mapping f : [0,∞) × X∞ → A∞ with f (t, x) ∈ A(x) for all
(t, x) ∈ [0,∞)×X∞ such thatπ(·|ω, t) is theDiracmeasure at the point f (t, ξt−(ω))

for all (ω, t) ∈ � × [0,∞). The set of all deterministic Markov policies is denoted
by 
M .
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For any initial state x ∈ X and an arbitrary policy π ∈ 
, by Theorem 4.27 in [20]
there exists a unique probability measure Pπ

x on (�,F). The expectation operator
with respect to Pπ

x is denoted by Eπ
x .

Finally, we introduce the risk-sensitive first passage discounted cost criterion. Fix
the target set B ∈ B(X) and the discount factor α > 0. The first passage time to the
target set B is given by

τB := inf{t ≥ 0 : ξt ∈ B} with the convention that inf ∅ := ∞.

For any risk-sensitivity coefficient λ > 0, the risk-sensitive first passage discounted
cost criterion is defined as follows:

J (λ, x, π) := 1

λ
ln Eπ

x

[
eλ

∫ τB
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dt

]
(2.1)

for all x ∈ X and π ∈ 
. Taking B = ∅, we can see that the risk-sensitive first passage
discounted cost criterion given by (2.1) reduces to the infinite-horizon risk-sensitive
discounted cost criterion in [5, 8, 15]. Let

Ĵ (λ, x, π) := Eπ
x

[
eλ

∫ τB
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dt

]

for all x ∈ X and π ∈ 
. Then we have J (λ, x, π) = 0 and Ĵ (λ, x, π) = 1 for all
x ∈ B and π ∈ 
.

Definition 2.2 A policy π∗ ∈ 
 is said to be optimal if J (λ, x, π∗) =
infπ∈
 J (λ, x, π) =: J ∗(λ, x) for all x ∈ X . The function J ∗ is called the
risk-sensitive first passage discounted cost optimal value function.

3 Preliminaries

In this section, we give the optimality conditions for the existence of optimal poli-
cies. To investigate the possibly unbounded cost and transition rates, we require the
following assumption.

Assumption 3.1 There exist a real-valued measurable functionw ≥ 1 on X , constants

ρ > 0, d ≥ 0, L > 0, b ≥ 0 and 0 ≤ M < min
{

α2

ρλ
, α
2λ

}
such that

(i)
∫
X w(y)q(dy|x, a) ≤ ρw(x) + d for all (x, a) ∈ K ;

(ii) q∗(x) ≤ Lw(x) for all x ∈ X ;
(iii) c(x, a) ≤ M lnw(x) + b for all (x, a) ∈ K .

Remark 3.1 Assumptions 3.1(i) and (ii) are used to ensure the non-explosion of the
state process; see, for example, [9–12, 14–16, 19, 25, 27]. Assumption 3.1(iii) is used
to guarantee the finiteness of the risk-sensitive first passage discounted cost criterion.

Under Assumption 3.1, we have the following result.
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Lemma 3.1 Under Assumption 3.1, the following assertions hold.

(a) Eπ
x [w(ξt )] ≤ eρtw(x) + d

ρ
eρt ≤ eρt

(
1 + d

ρ

)
w(x) for all x ∈ X and π ∈ 
.

(b) Ĵ (λ, x, π) ≤ Rλw
λM
α (x) for all x ∈ X and π ∈ 
, where the constant Rλ =

α2e
λb
α

α2−ρλM

(
1 + d

ρ

) λM
α
.

(c) J (λ, x, π) ≤ 1
λ
ln Rλ + M

α
lnw(x) for all x ∈ X and π ∈ 
.

Proof (a) The assertion follows from Theorem 3.1 in [14].
(b) Direct computations yield

Ĵ (λ, x, π) ≤ Eπ
x

[
eλ

∫∞
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dt

]

≤ Eπ
x

[∫ ∞

0
e

λ
α

∫
A c(ξt ,a)π(da|ω,t)αe−αtdt

]

≤ αe
λb
α Eπ

x

[∫ ∞

0
e−αtw

λM
α (ξt )dt

]

≤ αe
λb
α

∫ ∞

0
e−αt (Eπ

x [w(ξt )]) λM
α dt

≤ αe
λb
α

(

1 + d

ρ

) λM
α

w
λM
α (x)

∫ ∞

0
e−αte

ρλMt
α dt

= α2e
λb
α

α2 − ρλM

(

1 + d

ρ

) λM
α

w
λM
α (x)

for all x ∈ X and π ∈ 
, where the second and fourth inequalities are due to the
Jensen inequality, the third one follows from Assumption 3.1(iii), and the fifth one is
due to part (a).

(c) From part (b), we can directly obtain part (c). �

To obtain the existence of optimal policies, we also need the following assumption.

Assumption 3.2 (i) For each x ∈ X , the set A(x) is compact.
(ii) For each x ∈ X , c(x, a) is lower semi-continuous in a ∈ A(x) and∫

X v(y)q(dy|x, a) is continuous in a ∈ A(x) for any bounded measurable
function v on X .

(iii) There exist constantsρ > 0 andd ≥ 0 such that
∫
X w2(y)q(dy|x, a) ≤ ρw2(x)+

d for all (x, a) ∈ K , where the function w on X comes from Assumption 3.1.

Remark 3.2 The continuity and compactness conditions in Assumptions 3.2(i) and (ii)
are used to obtain the existence of optimal policies; see, for example, [9–12, 14–16,
19, 25–27]. Assumption 3.2(iii) has been widely used in continuous-time Markov
decision processes; see, for example, [9–12, 14–16, 19, 25, 27]. Here, we use it to
ensure the integrability in obtaining the Feynman–Kac formula in Lemma 3.3.
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Lemma 3.2 Under Assumptions 3.2(i) and (ii), the following statements are true.

(a) For any nonnegative real-valued measurable function v on X,
∫
X v(y)q(dy|x, a)

is lower semi-continuous in a ∈ A(x) for all x ∈ X.
(b) Let {vn, n ≥ 1} be a sequence of nonnegative real-valued measurable functions

on X with limn→∞ vn = v. Then, for any x ∈ X and any sequence {an, n ≥ 1} ⊆
A(x) satisfying an → a as n → ∞, we have

lim inf
n→∞

∫

X
vn(y)q(dy|x, an) ≥

∫

X
v(y)q(dy|x, a).

Proof (a) Define vm(x) := min{v(x),m} for all x ∈ X and m ≥ 1. Fix any x ∈ X .
Let {an, n ≥ 1} ⊆ A(x) be a sequence satisfying an → a as n → ∞. Employing
Assumption 3.2(ii), we can get

lim
n→∞ q({x}|x, an) = lim

n→∞

∫

X
I{x}(y)q(dy|x, an)

=
∫

X
I{x}(y)q(dy|x, a) = q({x}|x, a). (3.1)

For each m ≥ 1, we have

lim inf
n→∞

∫

X\{x}
v(y)q(dy|x, an) ≥ lim inf

n→∞

∫

X\{x}
vm(y)q(dy|x, an)

= lim inf
n→∞

[∫

X
vm(y)q(dy|x, an) − vm(x)q({x}|x, an)

]

=
∫

X\{x}
vm(y)q(dy|x, a), (3.2)

where the last equality follows from Assumption 3.2(ii) and (3.1). Thus, let-
ting m → ∞ in (3.2) and using the monotone convergence theorem,
we derive lim infn→∞

∫
X\{x} v(y)q(dy|x, an) ≥ ∫

X\{x} v(y)q(dy|x, a). Observe
that limn→∞ v(x)q({x}|x, an) = v(x)q({x}|x, a). Hence, we can obtain
lim infn→∞

∫
X v(y)q(dy|x, an) ≥ ∫

X v(y)q(dy|x, a). Therefore,
∫
X v(y)q(dy|x, a)

is lower semi-continuous in a ∈ A(x).
(b) For each m ≥ 1, define ṽm := infn≥m vn . Then, we have

lim inf
n→∞

∫

X\{x}
vn(y)q(dy|x, an) ≥ lim inf

n→∞

∫

X\{x}
ṽm(y)q(dy|x, an)

= lim inf
n→∞

[∫

X
ṽm(y)q(dy|x, an) − ṽm(x)q({x}|x, an)

]

≥
∫

X\{x}
ṽm(y)q(dy|x, a),

(3.3)

where the last inequality is due to part (a). Letting m → ∞ in (3.3) and using the
monotone convergence theorem and (3.1), we can get the statement. �
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Let Λ := min
{

α2

ρM , α
2M

}
and the function w on X be as in Assumption 3.1. The

notationUw((0,Λ) × X) denotes the set of all real-valued measurable functions v on
(0,Λ) × X which satisfy the following properties:

(i) sup(λ,x)∈(0,Λ)×X
|v(λ,x)|
w(x) < ∞;

(ii) for any x ∈ X and [γ , γ ] ⊂ (0,Λ), v(·, x) is absolutely continuous on [γ , γ ]
(this implies that the partial derivative of v(·, x) with respect to the variable
λ exists almost everywhere (a.e.) λ ∈ (0,Λ); see Remark 3.3 for details)
and λ

∣
∣ ∂v
∂λ

(λ, x)
∣
∣ ≤ Rvw

2(x) a.e. λ ∈ (0,Λ) for some positive constant Rv

independent of λ and x .

Remark 3.3 Let v ∈ Uw((0,Λ) × X) and fix any x ∈ X . Note that (0,Λ) =⋃∞
n=1

[ 1
n ,Λ − 1

n

]
. For each n ≥ 1, since v(·, x) is absolutely continuous on

[ 1
n ,Λ − 1

n

]
, there exists Ox,n ⊂ (0,Λ) with Lebesgue measure zero such that

the partial derivative of v(·, x) with respect to the variable λ exists for all λ ∈[ 1
n ,Λ − 1

n

] \Ox,n . Set Ox := ⋃∞
n=1 Ox,n . Then, the Lebesgue measure of Ox is

zero. Moreover, the partial derivative of v(·, x)with respect to the variable λ exists for
all λ ∈ (0,Λ)\Ox . Hence, the partial derivative of v(·, x) with respect to the variable
λ exists a.e. λ ∈ (0,Λ).

Inspired by Theorem 3.1 in [10] and Lemma 3.2 in [16], we have the following
Feynman–Kac formula which plays a key role in proving the existence of optimal
policies.

Lemma 3.3 Suppose that Assumptions 3.1(i), (ii) and 3.2(iii) hold. Then, for any
bounded measurable function r on K , v ∈ Uw((0,Λ) × X), T ≥ 0, λ ∈ (0,Λ),
π ∈ 
 and stopping time η, we have

Eπ
x

[
eλ

∫ T∧η
0

∫
A e−αt r(ξt ,a)π(da|ω,t)dtv(λe−α(T∧η), ξT∧η)

]
− v(λ, x)

= Eπ
x

[ ∫ T∧η

0
eλ

∫ s
0

∫
A e−αur(ξu ,a)π(da|ω,u)du

(

λe−αs
∫

A
r(ξs, a)π(da|ω, s)v(λe−αs, ξs) − αλe−αs ∂v

∂λ
(λe−αs, ξs)

+
∫

X

∫

A
v(λe−αs, y)q(dy|ξs, a)π(da|ω, s)

)

ds

]

for all x ∈ X, where T ∧ η := min{T , η}.
Proof Fix any x ∈ X , π ∈ 
, T ≥ 0, λ ∈ (0,Λ) and v ∈ Uw((0,Λ) × X). Let
‖r‖ := sup(x,a)∈K |r(x, a)|, ‖v‖w := sup(λ,x)∈(0,Λ)×X

|v(λ,x)|
w(x) and G(ω, t, x) :=

eλ
∫ t
0

∫
A e−αsr(ξs ,a)π(da|ω,s)dsv(λe−αt , x) for all t ∈ [0, T ]. By the Dynkin formula, we

have

Eπ
x [w(ξT∧η)] = w(x) + Eπ

x

[∫ T∧η

0

∫

X

∫

A
w(y)q(dy|ξt , a)π(da|ω, t)dt

]

. (3.4)
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Employing Assumptions 3.1(i), (ii), 3.2(iii), (3.4) and Lemma 3.1(a), we can derive

Eπ
x

[|G(ω, T ∧ η, ξT∧η)|
] ≤ ‖v‖we

λ‖r‖
α Eπ

x [w(ξT∧η)]

≤ ‖v‖we
λ‖r‖

α w(x) + ‖v‖we
λ‖r‖

α Eπ
x

[∫ T

0

∫

X

∫

A
w(y)|q(dy|ξt , a)|π(da|ω, t)dt

]

≤ ‖v‖we
λ‖r‖

α w(x) + ‖v‖we
λ‖r‖

α

∫ T

0
Eπ
x

[∫

X

∫

A
w(y)q(dy|ξt , a)π(da|ω, t) + 2q∗(ξt )w(ξt )

]

dt

≤ ‖v‖we
λ‖r‖

α w(x) + ‖v‖we
λ‖r‖

α

∫ T

0
Eπ
x

[
ρw(ξt ) + d + 2Lw2(ξt )

]
dt

≤ ‖v‖we
λ‖r‖

α w(x) + ‖v‖we
λ‖r‖

α T

[

ρeρT
(

1 + d

ρ

)

w(x) + d + 2L

(

eρTw2(x) + d

ρ
eρT

)]

,

Eπ
x

[∫ T∧η

0
eλ

∫ s
0

∫
A e−αur(ξu ,a)π(da|ω,u)due−αs

∫

A
|r(ξs , a)|π(da|ω, s)|v(λe−αs , ξs)|ds

]

≤ ‖v‖we
λ‖r‖

α ‖r‖
∫ T

0
Eπ
x [w(ξs)]ds ≤ ‖v‖we

λ‖r‖
α ‖r‖T eρT

(

1 + d

ρ

)

w(x),

Eπ
x

[∫ T∧η

0
eλ

∫ s
0

∫
A e−αur(ξu ,a)π(da|ω,u)due−αsλ

∣
∣
∣
∣
∂v

∂λ
(λe−αs , ξs)

∣
∣
∣
∣ ds

]

≤ Rve
λ‖r‖

α

∫ T

0
Eπ
x [w2(ξs)]ds ≤ Rve

λ‖r‖
α T

[

eρTw2(x) + d

ρ
eρT

]

,

and

Eπ
x

[∫ T∧η

0
eλ

∫ s
0

∫
A e−αur(ξu ,a)π(da|ω,u)du

∫

X

∫

A
|v(λe−αs , y)||q(dy|ξs , a)|π(da|ω, s)ds

]

≤ ‖v‖we
λ‖r‖

α

∫ T

0
Eπ
x

[∫

X

∫

A
w(y)q(dy|ξs , a)π(da|ω, s) + 2q∗(ξs)w(ξs)

]

ds

≤ |v‖we
λ‖r‖

α T

[

ρeρT
(

1 + d

ρ

)

w(x) + d + 2L

(

eρTw2(x) + d

ρ
eρT

)]

.

Because v(·, x) is absolutely continuous on [λe−αT , λ], we can obtain

G(ω, T ∧ η, ξT∧η) = v(λ, x) +
∫ T∧η

0
G′(ω, t, ξt )dt +

∑

k≥1

∫

(0,T∧η]
�G(ω, t, ξt )δTk (dt),

(3.5)

where �G(ω, t, ξt ) := G(ω, t, ξt ) − G(ω, t−, ξt−), G ′ denotes the derivative of G
with respect to the variable t and δs(·) represents the Dirac measure concentrated at
s. Hence, using (3.5) and following the similar arguments of Theorem 3.1 in [10] or
Lemma 3.2 in [16], we can get the assertion. �
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4 TheMain Results

In this section, we show the existence of a unique solution to the risk-sensitive first
passage discounted cost optimality equation and the existence of optimal policies. To
this end, we introduce the following new value iteration.

Let m(x) := Lw(x) for all x ∈ X , where the constant L and the function w on X
are as in Assumption 3.1. Set

cn(x, a) := min{c(x, a), n} and Q(dy|x, a) := q(dy|x, a)

m(x)
+ δx (dy)

for all (x, a) ∈ K and n ≥ 1. For each n ≥ 1, define v
(0)
n (λ, x) := 1 for all (λ, x) ∈

(0,Λ) × X and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v
(k+1)
n (λ, x) := (αλ)−

m(x)
α

∫ λ

0 (αt)
m(x)

α infa∈A(x)

{
1
α
cn(x, a)v

(k)
n (t, x)

+m(x)
αt

∫
X v

(k)
n (t, y)Q(dy|x, a)

}

dt for all (λ, x) ∈ (0,Λ) × Bc

v
(k+1)
n (λ, x) := 1 for all (λ, x) ∈ (0,Λ) × B.

(4.1)

for all k ≥ 0, where Bc stands for the complement of B with respect to X .
We have the following lemma which plays a key role in obtaining the existence of a

unique solution to the risk-sensitive first passage discounted cost optimality equation.

Lemma 4.1 Suppose that Assumptions 3.1 and 3.2 are satisfied. Then, the following
statements hold for all n ≥ 1.

(a) There exists a bounded measurable function v∗
n on (0,Λ) × X satisfying the

following equation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v∗
n(λ, x) = (αλ)−

m(x)
α

∫ λ

0 (αt)
m(x)

α infa∈A(x)

{
1
α
cn(x, a)v∗

n(t, x)

+m(x)
αt

∫
X v∗

n(t, y)Q(dy|x, a)

}

dt f or all (λ, x) ∈ (0,Λ) × Bc

v∗
n(λ, x) = 1 f or all (λ, x) ∈ (0,Λ) × B.

Moreover, we have 1 ≤ v∗
n(λ, x) ≤ e

λ‖cn‖
α ≤ e

Λ‖cn‖
α for all (λ, x) ∈ (0,Λ) × X,

where ‖cn‖ := max(x,a)∈K cn(x, a).

(b) v∗
n(λ, x) = infπ∈
 Eπ

x

[
eλ

∫ τB
0

∫
A e−αt cn(ξt ,a)π(da|ω,t)dt

]
for all (λ, x) ∈ (0,Λ) ×

X.

Proof (a) Fix any n ≥ 1. By (4.1), Assumption 3.2, Lemma 3.2, Lemma 8.3.8 in [18]
and an induction argument, we see that v(k)

n is measurable on (0,Λ)× X for all k ≥ 0.
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Below, we prove the following fact that

v(k)
n ≤ v(k+1)

n for all k ≥ 0. (4.2)

Indeed, by (4.1) direct computations imply

v(1)
n (λ, x) ≥ (αλ)−

m(x)
α

∫ λ

0
(αt)

m(x)
α

m(x)

αt
dt = v(0)

n (λ, x)

for all (λ, x) ∈ (0,Λ) × Bc. Thus, (4.2) is true for k = 0. Suppose that (4.2) holds
for some k0 ≥ 0. Then, it follows from (4.1) and the induction hypothesis that

v(k0+2)
n (λ, x) ≥ (αλ)−

m(x)
α

∫ λ

0
(αt)

m(x)
α inf

a∈A(x)

{
1

α
cn(x, a)v(k0)

n (t, x)

+m(x)

αt

∫

X
v(k0)
n (t, y)Q(dy|x, a)

}

dt

= v(k0+1)
n (λ, x)

for all (λ, x) ∈ (0,Λ) × Bc. Hence, (4.2) holds for k = k0 + 1. Therefore, we can
derive (4.2) from the induction argument. Let v∗

n(λ, x) := limk→∞ v
(k)
n (λ, x) for all

(λ, x) ∈ (0,Λ) × X . Then, we have v∗
n(λ, x) = 1 for all (λ, x) ∈ (0,Λ) × B. For

each k ≥ 0 and (t, x) ∈ (0,Λ) × Bc, by Assumption 3.2, Lemma 3.2 and Theorem
2.43 in [1], there exists a(k)

t,x ∈ A(x) such that

inf
a∈A(x)

{
1

α
cn(x, a)v(k)

n (t, x) + m(x)

αt

∫

X
v(k)
n (t, y)Q(dy|x, a)

}

= 1

α
cn(x, a

(k)
t,x )v

(k)
n (t, x) + m(x)

αt

∫

X
v(k)
n (t, y)Q(dy|x, a(k)

t,x ). (4.3)

Because A(x) is compact, there exists a subsequence of {a(k)
t,x , k ≥ 0} (denoted by the

same sequence) such that a(k)
t,x converges to some ãt,x ∈ A(x). Employing (4.1) and

an induction argument, we see that

1 ≤ v(k)
n (t, x) ≤ e

λ‖cn‖
α (4.4)

for all (t, x) ∈ (0,Λ) × Bc and k ≥ 0. Then, it follows from (4.3), (4.4), Assumption
3.2 and Lemma 3.2 that

lim
k→∞ inf

a∈A(x)

{
1

α
cn(x, a)v(k)

n (t, x) + m(x)

αt

∫

X
v(k)
n (t, y)Q(dy|x, a)

}

≥ 1

α
cn(x, ãt,x )v

∗
n(t, x) + m(x)

αt

∫

X
v∗
n(t, y)Q(dy|x, ãt,x )

≥ inf
a∈A(x)

{
1

α
cn(x, a)v∗

n(t, x) + m(x)

αt

∫

X
v∗
n(t, y)Q(dy|x, a)

}

(4.5)
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for all (t, x) ∈ (0,Λ) × Bc. Moreover, we have

inf
a∈A(x)

{
1

α
cn(x, a)v(k)

n (t, x) + m(x)

αt

∫

X
v(k)
n (t, y)Q(dy|x, a)

}

≤ 1

α
cn(x, a)v(k)

n (t, x) + m(x)

αt

∫

X
v(k)
n (t, y)Q(dy|x, a)

for all k ≥ 0, which yields

lim
k→∞ inf

a∈A(x)

{
1

α
cn(x, a)v(k)

n (t, x) + m(x)

αt

∫

X
v(k)
n (t, y)Q(dy|x, a)

}

≤ 1

α
cn(x, a)v∗

n(t, x) + m(x)

αt

∫

X
v∗
n(t, y)Q(dy|x, a)

for all (t, x) ∈ (0,Λ) × Bc and a ∈ A(x). Thus, from the last inequality and (4.5),
we get

lim
k→∞ inf

a∈A(x)

{
1

α
cn(x, a)v(k)

n (t, x) + m(x)

αt

∫

X
v(k)
n (t, y)Q(dy|x, a)

}

= inf
a∈A(x)

{
1

α
cn(x, a)v∗

n(t, x) + m(x)

αt

∫

X
v∗
n(t, y)Q(dy|x, a)

}

(4.6)

for all (t, x) ∈ (0,Λ) × Bc. Hence, using (4.1), (4.4), (4.6) and the monotone
convergence theorem, we derive

v∗
n(λ, x) = (αλ)−

m(x)
α

∫ λ

0
(αt)

m(x)
α inf

a∈A(x)
{
1

α
cn(x, a)v∗

n(t, x) + m(x)

αt

∫

X
v∗
n(t, y)Q(dy|x, a)

}

dt

for all (λ, x) ∈ (0,Λ) × Bc. Furthermore, by (4.4) we can obtain 1 ≤ v∗
n(λ, x) ≤

e
λ‖cn‖

α ≤ e
Λ‖cn‖

α for all (λ, x) ∈ (0,Λ) × Bc.
(b) The assertion is obviously true for all (λ, x) ∈ (0,Λ)× B. Below, we show that

the assertion is true for all (λ, x) ∈ (0,Λ) × Bc. Fix any n ≥ 1. For each x ∈ Bc, by
part (a) we have

(αλ)
m(x)

α v∗
n(λ, x) =

∫ λ

0
(αt)

m(x)
α inf

a∈A(x)
{
1

α
cn(x, a)v∗

n(t, x) + m(x)

αt

∫

X
v∗
n(t, y)Q(dy|x, a)

}

dt (4.7)

for all λ ∈ (0,Λ). For any x ∈ Bc and [γ , γ ] ⊂ (0,Λ), employing Theorem 3.11,
Exercise 22 in [23, p. 130, 149] and (4.7), we see that v∗

n(·, x) is absolutely continuous
on [γ , γ ]. Thus, for each x ∈ Bc, the partial derivative of v∗

n(·, x) with respect to the
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variable λ exists a.e. λ ∈ (0,Λ). Calculating the derivative with respect to the variable
λ in (4.7), for each x ∈ Bc, we derive

(αλ)
m(x)

α
m(x)

αλ
v∗
n (λ, x) + (αλ)

m(x)
α

∂v∗
n

∂λ
(λ, x)

= (αλ)
m(x)

α inf
a∈A(x)

{
1

α
cn(x, a)v∗

n (λ, x) + m(x)

αλ

∫

X
v∗
n (λ, y)Q(dy|x, a)

}

= (αλ)
m(x)

α inf
a∈A(x)

{
1

α
cn(x, a)v∗

n (λ, x) + m(x)

αλ

(
1

m(x)

∫

X
v∗
n (λ, y)q(dy|x, a) + v∗

n (λ, x)

)}

(4.8)

a.e. λ ∈ (0,Λ). Then, using (4.8), for each x ∈ Bc, there exists Ox ⊂ (0,Λ) with
Lebesgue measure zero such that

∂v∗
n

∂λ
(λ, x) = inf

a∈A(x)

{
1

α
cn(x, a)v∗

n(λ, x) + 1

αλ

∫

X
v∗
n(λ, y)q(dy|x, a)

}

(4.9)

for all λ ∈ Oc
x , where O

c
x denotes the complement of Ox with respect to (0,Λ). Thus,

it follows from (4.9), Assumption 3.1 and part (a) that

λ

∣
∣
∣
∣
∂v∗

n

∂λ
(λ, x)

∣
∣
∣
∣ ≤ Λ

α
‖cn‖eΛ‖cn‖

α + 2

α
e

Λ‖cn‖
α q∗(x) ≤

(
Λ

α
‖cn‖eΛ‖cn‖

α + 2

α
e

Λ‖cn‖
α L

)

w(x)

for all x ∈ X and λ ∈ Oc
x . Hence, employing Lemma 3.3 we can get

Eπ
x

[

eλ
∫ T∧τB
0

∫
A e−αt cn (ξt ,a)π(da|ω,t)dtv∗

n (λe
−α(T∧τB ), ξT∧τB )

]

− v∗
n (λ, x)

= Eπ
x

[ ∫ T∧τB

0
eλ

∫ s
0

∫
A e−αucn (ξu ,a)π(da|ω,u)du

(

λe−αs
∫

A
cn(ξs , a)π(da|ω, s)v∗

n (λe
−αs , ξs)

− αλe−αs ∂v∗
n

∂λ
(λe−αs , ξs) +

∫

X

∫

A
v∗
n (λe

−αs , y)q(dy|ξs , a)π(da|ω, s)

)

ds

]

(4.10)

for all x ∈ X , λ ∈ (0,Λ), T ≥ 0 and π ∈ 
. By Assumption 3.2, Lemma 3.2 and
Lemma 8.3.8 in [18], there exists a measurable mapping f ∗

n : (0,Λ) × X → A with
f ∗
n (λ, x) ∈ A(x) for all (λ, x) ∈ (0,Λ) × X such that

inf
a∈A(x)

{
1

α
cn(x, a)v∗

n(λ, x) + 1

αλ

∫

X
v∗
n(λ, y)q(dy|x, a)

}

= 1

α
cn(x, f ∗

n (λ, x))v∗
n(λ, x) + 1

αλ

∫

X
v∗
n(λ, y)q(dy|x, f ∗

n (λ, x)) (4.11)

for all (λ, x) ∈ (0,Λ) × X . Let π∗
n (·|ω, t) := δ f ∗

n (λe−αt ,ξt−)(·) for all t ≥ 0. Using
(4.9)–(4.11) we can obtain

v∗
n(λ, x) = E

π∗
n

x

[

eλ
∫ T∧τB
0 e−αt cn(ξt , f ∗

n (λe−αt ,ξt ))dtv∗
n(λe

−α(T∧τB ), ξT∧τB )

]

(4.12)

123



322 Journal of Optimization Theory and Applications (2023) 197:309–333

for all x ∈ Bc, λ ∈ (0,Λ) and T ≥ 0. Note that part (a) implies v∗
n(0, x) = 1 for all

x ∈ X . Employing (4.12) we have

v∗
n(λ, x) = E

π∗
n

x

[

eλ
∫ T∧τB
0 e−αt cn(ξt , f ∗

n (λe−αt ,ξt ))dtv∗
n(λe

−α(T∧τB ), ξT∧τB )I{τB<∞}
]

+ E
π∗
n

x

[
eλ

∫ T
0 e−αt cn(ξt , f ∗

n (λe−αt ,ξt ))dtv∗
n(λe

−αT , ξT )I{τB=∞}
]

(4.13)

for all x ∈ Bc, λ ∈ (0,Λ) and T ≥ 0. Therefore, letting T → ∞ in (4.13), by part
(a) and the dominated convergence theorem, we can derive

v∗
n(λ, x) = E

π∗
n

x

[
eλ

∫ τB
0 e−αt cn(ξt , f ∗

n (λe−αt ,ξt ))dt I{τB<∞}
]

+ E
π∗
n

x

[
eλ

∫∞
0 e−αt cn(ξt , f ∗

n (λe−αt ,ξt ))dt I{τB=∞}
]

= E
π∗
n

x

[
eλ

∫ τB
0 e−αt cn(ξt , f ∗

n (λe−αt ,ξt ))dt
]

≥ inf
π∈


Eπ
x

[
eλ

∫ τB
0

∫
A e−αt cn(ξt ,a)π(da|ω,t)dt

]
(4.14)

for all x ∈ Bc and λ ∈ (0,Λ). On the other hand, it follows from (4.9) and (4.11) that

v∗
n(λ, x) ≤ Eπ

x

[

eλ
∫ T∧τB
0

∫
A e−αt cn(ξt ,a)π(da|ω,t)dtv∗

n(λe
−α(T∧τB ), ξT∧τB )

]

for all x ∈ Bc, λ ∈ (0,Λ), T ≥ 0 and π ∈ 
. Thus, using the last inequality and the
similar arguments as (4.14), we can get

v∗
n(λ, x) ≤ Eπ

x

[
eλ

∫ τB
0

∫
A e−αt cn(ξt ,a)π(da|ω,t)dt

]
(4.15)

for all x ∈ Bc, λ ∈ (0,Λ) and π ∈ 
. Hence, the assertion follows from (4.14) and
(4.15). �


Denote by Vw((0,Λ) × X) the set of all nonnegative real-valued measurable func-

tions v ∈ Uw((0,Λ) × X) and v(λ, x) ≤ Rλw
λM
α (x) for all (λ, x) ∈ (0,Λ) × X ,

where the constant Rλ is as in Lemma 3.1. Employing Lemma 4.1, we can derive the
existence of a unique solution in Vw((0,Λ)× X) to the risk-sensitive first passage dis-
counted cost optimality equation and the existence of optimal policies in the following
theorem.

Theorem 4.1 Under Assumptions 3.1 and 3.2, the following assertions are true.

(a) There exists a measurable function v∗ ∈ Vw((0,Λ)× X) satisfying v∗(λ, x) = 1
for all (λ, x) ∈ (0,Λ) × B and

∂v∗

∂λ
(λ, x) = inf

a∈A(x)

{
1

α
c(x, a)v∗(λ, x) + 1

αλ

∫

X
v∗(λ, y)q(dy|x, a)

}

(4.16)

for all x ∈ Bc and a.e. λ ∈ (0,Λ).
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(b) There exists a measurable mapping f ∗ : (0,Λ)× X → A with f ∗(λ, x) ∈ A(x)
for all (λ, x) ∈ (0,Λ) × X such that

inf
a∈A(x)

{
1

α
c(x, a)v∗(λ, x) + 1

αλ

∫

X
v∗(λ, y)q(dy|x, a)

}

= 1

α
c(x, f ∗(λ, x))v∗(λ, x) + 1

αλ

∫

X
v∗(λ, y)q(dy|x, f ∗(λ, x))

for all (λ, x) ∈ (0,Λ)× X. Let π∗(·|ω, t) := δ f ∗(λe−αt ,ξt−)(·) for all t ≥ 0. Then,
we have v∗(λ, x) = Ĵ (λ, x, π∗) = infπ∈
 Ĵ (λ, x, π) for all (λ, x) ∈ (0,Λ)×X.
Hence, there exists a deterministicMarkov optimal policy under the risk-sensitive
first passage discounted cost criterion.

(c) If there exists a measurable function v ∈ Vw((0,Λ) × X) satisfying v(λ, x) = 1
for all (λ, x) ∈ (0,Λ)×B and (4.16), then we have v(λ, x) = infπ∈
 Ĵ (λ, x, π)

for all (λ, x) ∈ (0,Λ) × X.

Proof (a) By Lemmas 3.1 and 4.1, we can obtain

1 ≤ v∗
n(λ, x) ≤ inf

π∈

Eπ
x

[
eλ

∫ τB
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dt

]
≤ Rλw

λM
α (x) (4.17)

for all (λ, x) ∈ (0,Λ) × X and n ≥ 1. From Lemma 4.1(b), we see that v∗
n is

nondecreasing in n. Let v∗(λ, x) := limn→∞ v∗
n(λ, x) for all (λ, x) ∈ (0,Λ) × X .

Lemma 4.1(a) gives v∗(λ, x) = 1 for all (λ, x) ∈ (0,Λ) × B. Employing the similar
arguments as (4.6), we can get

lim
n→∞ inf

a∈A(x)

{
1

α
cn(x, a)v∗

n(t, x) + m(x)

αt

∫

X
v∗
n(t, y)Q(dy|x, a)

}

= inf
a∈A(x)

{
1

α
c(x, a)v∗(t, x) + m(x)

αt

∫

X
v∗(t, y)Q(dy|x, a)

}

(4.18)

for all (t, x) ∈ (0,Λ) × Bc. Moreover, using Lemma 4.1(a), (4.18) and the monotone
convergence theorem, we derive

v∗(λ, x) = (αλ)−
m(x)

α

∫ λ

0
(αt)

m(x)
α inf

a∈A(x)
{
1

α
c(x, a)v∗(t, x) + m(x)

αt

∫

X
v∗(t, y)Q(dy|x, a)

}

dt (4.19)

for all (t, x) ∈ (0,Λ)× Bc. Below, we show that v∗ ∈ Vw((0,Λ)× X). In fact, (4.17)
implies

1 ≤ v∗(λ, x) ≤ Rλw
λM
α (x) (4.20)
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for all (λ, x) ∈ (0,Λ) × X . For each x ∈ Bc, by (4.19) we get

(αλ)
m(x)

α v∗(λ, x) =
∫ λ

0
(αt)

m(x)
α inf

a∈A(x)
{
1

α
c(x, a)v∗(t, x) + m(x)

αt

∫

X
v∗(t, y)Q(dy|x, a)

}

dt (4.21)

for all λ ∈ (0,Λ). For any x ∈ Bc and [γ , γ ] ⊂ (0,Λ), using Theorem 3.11, Exercise
22 in [23, p.130, 149] and (4.21), we have that v∗(·, x) is absolutely continuous on
[γ , γ ]. Similar to the calculations as (4.9), employing (4.21) we can obtain

∂v∗

∂λ
(λ, x) = inf

a∈A(x)

{
1

α
c(x, a)v∗(λ, x) + 1

αλ

∫

X
v∗(λ, y)q(dy|x, a)

}

(4.22)

a.e. λ ∈ (0,Λ). Thus, by (4.22) and Assumption 3.1, for any x ∈ Bc, we have

λ

∣
∣
∣
∣
∂v∗

∂λ
(λ, x)

∣
∣
∣
∣ ≤ Λ

α
(M lnw(x) + b)Rλw(x) + Rλ

α

∫

X
w(y)|q(dy|x, a)|

≤ Λ

α
(M + b)Rλw

2(x) + Rλ

α

[∫

X
w(y)q(dy|x, a) + 2q∗(x)w(x)

]

≤
[
Λ

α
(M + b)RΛ + RΛ

α
(ρ + d + 2L)

]

w2(x)

a.e. λ ∈ (0,Λ). Note that v∗(λ, x) = 1 and ∂v∗
∂λ

(λ, x) = 0 for all (λ, x) ∈ (0,Λ)× B.
Hence, we get v∗ ∈ Vw((0,Λ) × X).

(b) ByAssumption 3.2(ii) and Lemma 3.2, we see that for each (λ, x) ∈ (0,Λ)×X ,
1
α
c(x, a)v∗(λ, x) + 1

αλ

∫
X v∗(λ, y)q(dy|x, a) is lower semi-continuous in a ∈ A(x).

Then, using Assumption 3.2(i) and Lemma 8.3.8 in [18], we can derive the existence
of a measurable mapping f ∗ : (0,Λ) × X → A with f ∗(λ, x) ∈ A(x) for all
(λ, x) ∈ (0,Λ) × X which satisfies

inf
a∈A(x)

{
1

α
c(x, a)v∗(λ, x) + 1

αλ

∫

X
v∗(λ, y)q(dy|x, a)

}

= 1

α
c(x, f ∗(λ, x))v∗(λ, x) + 1

αλ

∫

X
v∗(λ, y)q(dy|x, f ∗(λ, x)) (4.23)

for all (λ, x) ∈ (0,Λ) × X . Let π∗(·|ω, t) := δ f ∗(λe−αt ,ξt−)(·) for all t ≥ 0. Part (a)
and Lemma 3.3 give

Eπ∗
x

[

eλ
∫ T∧τB
0 e−αt cn (ξt , f ∗(λe−αt ,ξt ))dtv∗(λe−α(T∧τB ), ξT∧τB )

]

− v∗(λ, x)

= Eπ∗
x

[ ∫ T∧τB

0
eλ

∫ s
0 e−αucn (ξu , f ∗(λe−αu ,ξu ))du

(

λe−αscn(ξs , f ∗(λe−αs , ξs))v
∗(λe−αs , ξs)

− αλe−αs ∂v∗

∂λ
(λe−αs , ξs) +

∫

X
v∗(λe−αs , y)q(dy|ξs , f ∗(λe−αs , ξs))

)

ds

]

(4.24)
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for all x ∈ X , λ ∈ (0,Λ), T ≥ 0 and n ≥ 1. From part (a) and (4.23), for each x ∈ Bc,
we have

∂v∗

∂λ
(λ, x) ≥ 1

α
cn(x, f ∗(λ, x))v∗(λ, x) + 1

αλ

∫

X
v∗(λ, y)q(dy|x, f ∗(λ, x))

a.e. λ ∈ (0,Λ). Thus, it follows from (4.20), (4.24) and the last inequality that

v∗(λ, x) ≥ Eπ∗
x

[

eλ
∫ T∧τB
0 e−αt cn(ξt , f ∗(λe−αt ,ξt ))dtv∗(λe−α(T∧τB ), ξT∧τB )

]

≥ Eπ∗
x

[

eλ
∫ T∧τB
0 e−αt cn(ξt , f ∗(λe−αt ,ξt ))dt

]

(4.25)

for all x ∈ X , λ ∈ (0,Λ), T ≥ 0 and n ≥ 1. Letting n → ∞ in (4.25), we get

v∗(λ, x) ≥ Eπ∗
x

[

eλ
∫ T∧τB
0 e−αt c(ξt , f ∗(λe−αt ,ξt ))dt

]

for all x ∈ X , λ ∈ (0,Λ) and T ≥ 0. Moreover, letting T → ∞ in the last inequality,
the monotone convergence theorem implies

v∗(λ, x) ≥ Eπ∗
x

[
eλ

∫ τB
0 e−αt c(ξt , f ∗(λe−αt ,ξt ))dt

]
≥ inf

π∈

Ĵ (λ, x, π) (4.26)

for all x ∈ X and λ ∈ (0,Λ).
Below, we show that

v∗(λ, x) ≤ inf
π∈


Ĵ (λ, x, π) for all x ∈ X and λ ∈ (0,Λ). (4.27)

Let ĉ(x) := maxa∈A(x) c(x, a) for all x ∈ X , Yk := {x : ĉ(x) > k} and ηYk := inf{t ≥
0 : ξt ∈ Yk} for all k ≥ 1. Then, for any n > k, we can obtain

Eπ
x

[

eλ
∫ T∧τB∧ηYk
0

∫
A e−αt cn (ξt ,a)π(da|ω,t)dtv∗(λe−α(T∧τB∧ηYk ), ξT∧τB∧ηYk

)

]

− v∗(λ, x)

= Eπ
x

[ ∫ T∧τB∧ηYk

0
eλ

∫ s
0

∫
A e−αucn (ξu ,a)π(da|ω,u)du

(

λe−αs
∫

A
cn(ξs , a)π(da|ω, s)v∗(λe−αs , ξs)

− αλe−αs ∂v∗

∂λ
(λe−αs , ξs) +

∫

X

∫

A
v∗(λe−αs , y)q(dy|ξs , a)π(da|ω, s)

)

ds

]

= Eπ
x

[ ∫ T∧τB∧ηYk

0
eλ

∫ s
0

∫
A e−αuc(ξu ,a)π(da|ω,u)du

(

λe−αs
∫

A
c(ξs , a)π(da|ω, s)v∗(λe−αs , ξs)

− αλe−αs ∂v∗

∂λ
(λe−αs , ξs) +

∫

X

∫

A
v∗(λe−αs , y)q(dy|ξs , a)π(da|ω, s)

)

ds

]

≥ 0 (4.28)

for all x ∈ X , λ ∈ (0,Λ), T ≥ 0, k ≥ 1 and π ∈ 
, where the first equality follows
from part (a) and Lemma 3.3, and the inequality is due to part (a). Employing (4.28)
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we derive

v∗(λ, x) ≤ Eπ
x

[

eλ
∫ T∧τB∧ηYk
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dtv∗(λe−α(T∧τB∧ηYk ), ξT∧τB∧ηYk

)

]

(4.29)

for all x ∈ X , λ ∈ (0,Λ), T ≥ 0, k ≥ 1 and π ∈ 
. By Lemma 4.1(b), we see that
v∗(λ, x) is nondecreasing in λ for all x ∈ X . Moreover, we have

eλ
∫ T∧τB∧ηYk
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dtv∗(λe−α(T∧τB∧ηYk ), ξT∧τB∧ηYk

)

≤eλ
∫ T
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dtv∗(λ, ξT∧τB∧ηYk

)

≤Rλe
λ
∫ T
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dtw

λM
α (ξT∧τB∧ηYk

)

≤R2
λe

2λ
∫ T
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dt + w

2λM
α (ξT∧τB∧ηYk

)

≤R2
λe

2λ
∫ T
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dt + w(ξT∧τB∧ηYk

) (4.30)

for all λ ∈ (0,Λ), T ≥ 0 and k ≥ 1, where the second inequality follows from (4.20).
From the Dynkin formula, we can get

Eπ
x [w(ξT∧τB∧ηYk

)] = w(x) + Eπ
x

[∫ T∧τB∧ηYk

0

∫

X

∫

A
w(y)q(dy|ξt , a)π(da|ω, t)dt

]

(4.31)

for all x ∈ X , π ∈ 
, T ≥ 0 and k ≥ 1. Using Assumptions 3.1, 3.2 and Lemma
3.1(a), we obtain

Eπ
x

[∫ T

0

∫

X

∫

A
w(y)|q(dy|ξt , a)|π(da|ω, t)dt

]

≤
∫ T

0
Eπ
x [ρw(ξt ) + d + 2q∗(ξt )w(ξt )]dt

≤ (ρ + d + 2L)

∫ T

0
Eπ
x [w2(ξt )]dt ≤ (ρ + d + 2L)T

[

eρTw2(x) + d

ρ
eρT

]

(4.32)

for all x ∈ X , π ∈ 
 and T ≥ 0. Thus, we can derive

lim
k→∞ Eπ

x [w(ξT∧τB∧ηYk
)] = w(x) + Eπ

x

[∫ T∧τB

0

∫

X

∫

A
w(y)q(dy|ξt , a)π(da|ω, t)dt

]

= Eπ
x [w(ξT∧τB )] (4.33)
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for all x ∈ X , π ∈ 
 and T ≥ 0, where the first equality follows from (4.31) and the
dominated convergence theorem, and the second one is due to the Dynkin formula.
Direct calculations give

Eπ
x

[
R2

λe
2λ
∫ T
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dt + w(ξT∧τB )

]

≤ R2
λE

π
x

[∫ T

0
e
2λ
α

(1−e−αT )
∫
A c(ξt ,a)π(da|ω,t) αe−αt

1 − e−αT
dt

]

+ w(x)

+ Eπ
x

[∫ T

0

∫

X

∫

A
w(y)|q(dy|ξt , a)|π(da|ω, t)dt

]

≤ R2
λαe

2λb
α

1 − e−αT

∫ T

0
e−αt Eπ

x [w(ξt )]dt + w(x) + (ρ + d + 2L)T

[

eρTw2(x) + d

ρ
eρT

]

≤ R2
λαe

2λb
α (e(ρ−α)T − 1)

(1 − e−αT )(ρ − α)

(

1 + d

ρ

)

w(x) + w(x) + (ρ + d + 2L)T

[

eρTw2(x) + d

ρ
eρT

]

for all x ∈ X , λ ∈ (0,Λ), π ∈ 
 and T ≥ 0, where the first inequality follows
from the Jensen inequality and (4.33), the second one is due to Assumption 3.1 and
(4.32), and the last one follows from Lemma 3.1(a). Hence, by (4.30)–(4.33), the last
inequality and the generalized dominated convergence theorem (see Theorem 2.88 in
[3]), we have

lim
k→∞ Eπ

x

[

eλ
∫ T∧τB∧ηYk
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dtv∗(λe−α(T∧τB∧ηYk ), ξT∧τB∧ηYk

)

]

= Eπ
x

[

eλ
∫ T∧τB
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dtv∗(λe−α(T∧τB ), ξT∧τB )

]

,

which together with (4.29) implies

v∗(λ, x) ≤ Eπ
x

[

eλ
∫ T∧τB
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dtv∗(λe−α(T∧τB ), ξT∧τB )

]

(4.34)

for all x ∈ X , λ ∈ (0,Λ), π ∈ 
 and T ≥ 0. Let p be an arbitrary constant satisfying
p > 1, λMp

α
< 1 and λMρ p

α2 < 1. Employing the Hölder inequality, we can derive

Eπ
x

[

eλ
∫ T∧τB
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dtv∗(λe−α(T∧τB ), ξT∧τB )

]

≤
(

Eπ
x

[

eλp
∫ T∧τB
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dt

]) 1
p (

Eπ
x

[
v

∗ p
p−1 (λe−α(T∧τB ), ξT∧τB )

]) p−1
p

(4.35)

for all x ∈ X , λ ∈ (0,Λ), π ∈ 
 and T ≥ 0. Moreover, by part (a) we obtain

Eπ
x

[
v

∗ p
p−1 (λe−α(T∧τB ), ξT∧τB )

]
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= Eπ
x

[
v

∗ p
p−1 (λe−α(T∧τB ), ξT∧τB )

(
I{τB≥T } + I{τB<T } I{τB<∞}

)]

≤ Eπ
x

[
v

∗ p
p−1 (λe−αT , ξT )

]
+ Eπ

x

[
v

∗ p
p−1 (λe−ατB , ξτB )I{τB<∞}

]

≤
⎛

⎝ α2e
λe−αT

α

α2 − ρλe−αT M

⎞

⎠

p
p−1 (

1 + d

ρ

) λe−αT Mp
α(p−1)

Eπ
x

[

w
λe−αT Mp

α(p−1) (ξT )

]

+ 1 (4.36)

for all x ∈ X , λ ∈ (0,Λ), π ∈ 
 and T ≥ 0. Observe that there exists a constant

T̂ > 0 satisfying λe−αT Mp
α(p−1) < 1 for all T ≥ T̂ . Thus, using Lemma 3.1(a), (4.36) and

the Jensen inequality, we get

Eπ
x

[
v

∗ p
p−1 (λe−α(T∧τB ), ξT∧τB )

]

≤
⎛

⎝ α2e
λe−αT

α

α2 − ρλe−αT M

⎞

⎠

p
p−1 (

1 + d

ρ

) λe−αT Mp
α(p−1)

(Eπ
x [w(ξT )])

λe−αT Mp
α(p−1) + 1

≤
⎛

⎝ α2e
λe−αT

α

α2 − ρλe−αT M

⎞

⎠

p
p−1 (

1 + d

ρ

) 2λe−αT Mp
α(p−1)

e
λe−αT MρT p

α(p−1) w
λe−αT Mp

α(p−1) (x) + 1,

which together with (4.35) yields

Eπ
x

[

eλ
∫ T∧τB
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dtv∗(λe−α(T∧τB ), ξT∧τB )

]

≤
(

Eπ
x

[

eλp
∫ T∧τB
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dt

]) 1
p

×
⎡

⎢
⎣

⎛

⎝ α2e
λe−αT

α

α2 − ρλe−αT M

⎞

⎠

p
p−1 (

1 + d

ρ

) 2λe−αT Mp
α(p−1)

e
λe−αT MρT p

α(p−1) w
λe−αT Mp

α(p−1) (x) + 1

⎤

⎥
⎦

p−1
p

(4.37)

for all x ∈ X , λ ∈ (0,Λ), π ∈ 
 and T ≥ T̂ . Direct calculations give

eλp
∫ T∧τB
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dt ≤ eλp

∫∞
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dt

≤
∫ ∞

0
e

λp
α

∫
A c(ξt ,a)π(da|ω,t)αe−αtdt

≤ αe
λbp
α

∫ ∞

0
e−αtw

λMp
α (ξt )dt

for all T ≥ 0, where the second inequality is due to the Jensen inequality and the
third one follows from Assumption 3.1. Moreover, by Lemma 3.1(a) and the Jensen
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inequality, we have

Eπ
x

[∫ ∞

0
e−αtw

λMp
α (ξt )dt

]

≤
∫ ∞

0
e−αt (Eπ

x [w(ξt )]) λMp
α dt ≤

(

1 + d

ρ

) λMp
α
∫ ∞

0
e−αte

ρλMpt
α w

λMp
α (x)dt

=
(

1 + d

ρ

) λMp
α α

α2 − ρλMp
w

λMp
α (x)

for all x ∈ X and π ∈ 
. Hence, letting T → ∞ in (4.37) and using (4.34) and the
dominated convergence theorem, we can derive

v∗(λ, x) ≤ 2
p−1
p

(
Eπ
x

[
eλp

∫ τB
0

∫
A e−αt c(ξt ,a)π(da|ω,t)dt

]) 1
p

for all x ∈ X , λ ∈ (0,Λ) and π ∈ 
. Furthermore, letting p ↓ 1 in the last inequality,
by the dominated convergence theoremwe obtain v∗(λ, x) ≤ Ĵ (λ, x, π) for all x ∈ X ,
λ ∈ (0,Λ) andπ ∈ 
. Therefore, we can get (4.27).Moreover, from (4.26) and (4.27),
we have v∗(λ, x) = Ĵ (λ, x, π∗) = infπ∈
 Ĵ (λ, x, π) for all (λ, x) ∈ (0,Λ) × X .
Hence, we see that π∗ ∈ 
M is an optimal policy.

(c) The assertion follows from the same arguments as (4.26) and (4.27). �

Remark 4.1 (a) Theorem 4.1 establishes the existence of a unique solution in
Vw((0,Λ)× X) to the risk-sensitive first passage discounted cost optimality equation
given by (4.16) and the existence of a deterministic Markov optimal policy for the
Borel state space and unbounded cost and transition rates, which extends the exis-
tence results of the infinite-horizon risk-sensitive discounted cost criterion in [5] with
the Borel state space and bounded cost and transition rates, [8] with the denumerable
state space and bounded cost and transition rates, and [15] with the denumerable state
space and unbounded cost and transition rates.

(b) In [5, 8, 15] the existence of a solution to the infinite-horizon risk-sensitive
discounted cost optimality equation is derived by the fixed point technique. The fixed
point approach needs the boundedness assumption on the cost and transition rates.
Thus, the method in [5, 8] cannot be applied to the case of unbounded cost and
transition rates. To deal with the unbounded case, [15] constructs an approximating
sequence of bounded cost and transition rates and applies the fixed point technique
to the approximating sequence. The diagonalization arguments in [15] require the
assumption that the state space is a denumerable set. Thus, the method in [15] is
inapplicable to the case of the Borel state space. We introduce a new value iteration
given by (4.1) to deal with the Borel state space and unbounded transition rates directly
without the boundedness assumption as in [5, 8] and the diagonalization arguments
and the construction of an approximating sequence of bounded transition rates as in
[15].

(c) We obtain the existence result in Theorem 4.1 under the conditions weaker
than those in [5, 8, 15]. More precisely, we remove the boundedness condition on
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the cost and transition rates in [5, 8] and the uniform convergence condition of the
solution (i.e., limλ→0 v∗(λ, x) = 1 uniformly in x ∈ X ) in [8]. We do not require the
denumerability assumption on the state space, the uniformly conservative condition
on the transition rates (i.e., for any i ∈ X ,

∑
j∈X q( j |i, a) = 0 uniformly in a ∈ A(i))

and the additional condition that the constant ρ < α in [15].

5 An Example

In this section, a cash flow model is given to illustrate the main results.

Example 5.1 (A cash flowmodel in [13]) The amount of the cash in the cash flowmodel
is regarded as the state variable and all the possible states are given by X = (−∞,∞).
The action a denotes the withdrawal rate of money in cash (if a < 0) or the supply
rate (if a > 0). When the amount of the cash is x ∈ X , the decision-maker takes
an action from a given set A(x) = [ζ1(x), ζ2(x)], where ζ1 and ζ2 are measurable
functions on X and satisfy ζ1(x) < 0 and ζ2(x) > 0 for all x ∈ X . The amount of
the cash x and the action a chosen by the decision-maker incur a nonnegative cost
c(x, a). Moreover, when the amount of the cash equals x and the action a ∈ A(x)
is taken by the decision-maker, after an exponentially distributed random time with
the rate κ(x, a) > 0, the amount of the cash is changed to a new state following the
normal distribution with the mean x and the variance β2. So the transition rate can be
given by

q(D|x, a) = κ(x, a)

[∫

D\{x}
1√
2πβ

e
− (y−x)2

2β2 dy − δx (D)

]

(5.1)

for all (x, a) ∈ K and D ∈ B(X). Assume that the risk-sensitivity coefficient of
the decision-maker is given by λ > 0. The decision-maker wishes to minimize the
risk-sensitive discounted cost before the amount of the cash falls into the target set
B = (−∞, 0).

We consider the following conditions to guarantee the existence of optimal policies
for the cash flow model.

(E1) There exists a constant L̂ > 0 such that κ(x, a) ≤ L̂(x2 + 1) for all (x, a) ∈ K .

(E2) There exist constants 0 ≤ M̂ < min
{

α2

L̂β2λ
, α
2λ

}
and b̂ ≥ 0 such that c(x, a) ≤

M̂ ln(x2 + 1) + b̂ for all (x, a) ∈ K .
(E3) The function κ(x, a) is measurable on K and continuous in a ∈ A(x), and the

function c(x, a) is measurable on K and lower semi-continuous in a ∈ A(x) for
all x ∈ X .

Proposition 5.1 Under conditions (E1)–(E3), Example 5.1 satisfies Assumptions 3.1
and 3.2. Therefore, by Theorem 4.1 there exists a deterministic Markov optimal policy
for the cash flowmodel under the risk-sensitive first passage discounted cost criterion.
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Proof Take w(x) = x2 + 1 for all x ∈ X . By (5.1) and condition (E1), we obtain

∫

X
w(y)q(dy|x, a) = β2κ(x, a) ≤ L̂β2w(x) and q∗(x) = sup

a∈A(x)
κ(x, a) ≤ L̂w(x)

(5.2)

for all x ∈ X and a ∈ A(x). Thus, it follows from (5.2) and condition (E2) that
Assumption 3.1 is satisfied with ρ = L̂β2, d = 0, L = L̂ , M = M̂ and b = b̂.
Moreover, from the description of the model and condition (E3), we see that Assump-
tions 3.2(i) and (ii) hold. Finally, we verify Assumption 3.2(iii). Employing (5.1) and
condition (E1), we can derive

∫

X
w2(y)q(dy|x, a) = κ(x, a)(3β4 + 6β2x2 + 2β2) ≤ L̂(3β4 + 6β2)w2(x)

for all (x, a) ∈ K . Hence, Assumption 3.2(iii) holds with ρ = L̂(3β4 + 6β2) and
d = 0. �


Remark 5.1 The state space is a Borel space and the transition and cost rates are
allowed to be unbounded in Example 5.1. Hence, the conditions in [5, 8, 15] fail to
hold because the cost and transition rates are bounded in [5, 8] and the state space is
a denumerable set in [15].

6 Conclusions

In this paper, we have investigated continuous-time Markov decision processes under
the risk-sensitive first passage discounted cost criterion. The state and action spaces are
Borel spaces, and the cost and transition rates can be unbounded. We have introduced
a new value iteration to derive the existence of a solution to the risk-sensitive first
passage discounted cost optimality equation under the suitable conditions. Moreover,
employing the Feynman–Kac formula, we have proved that the risk-sensitive first
passage discounted cost optimal value function is a unique solution to the risk-sensitive
first passage discounted cost optimality equation. In addition, we have obtained the
existence of a deterministic Markov optimal policy in the class of randomized history-
dependent policies.
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