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Abstract
The mathematical study of the growth and treatment of cancer has been of great inter-
est to researchers in the recent past as that can help clinical practitioners in adopting
new treatment strategies to fight effectively against cancer. Although chemotherapy is
the most common method of cancer treatment, the drug-resistant nature of tumor cells
and the toxic effect of chemotherapeutic drugs on normal cells are major threats to the
success of chemotherapy. In this paper, we propose a multi-drug chemotherapy model
combined with an optimal control approach in which the amount of drugs is taken as
control functions. The underlying mathematical model discusses the evolution of a
heterogeneous tumor population and the dynamics of normal cells under chemother-
apy. The model incorporates the pharmacokinetics of the anticancer agents as well.
The proposed optimal control approach ensures maximum decay of the tumor cells
while preserving a sufficient level of normal cells that would help faster recovery.

Keywords Cancer · Chemotherapy · Mathematical modeling · Optimal control

Mathematics Subject Classification 97M60 · 93A30 · 00A71

1 Introduction

Cancer, the abnormal growth of cells, is still one of the most deadly diseases, although
different treatment processes are available. The scientists and medical practitioners

Communicated by Urszula A. Ledzewicz.

B M. P. Rajan
rajanmp@iisertvm.ac.in

C. K. Nanditha
nandithack16@iisertvm.ac.in

1 School of Mathematics, Indian Institute of Science Education and Research Thiruvananthapuram,
Vithura, Thiruvanathapuram 695551, India

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-022-02085-0&domain=pdf
http://orcid.org/0000-0003-2402-0164


Journal of Optimization Theory and Applications (2022) 195:314–333 315

working in these areas are looking for an effective treatment strategy to curtail the
impact of this disease [11, 20]. Though many treatment techniques such as surgery,
chemotherapy, radiation therapy, immunotherapy, targeted therapy, hormone therapy,
stem cell transplant exist, chemotherapy is themost commonly used treatmentmethod.
A combination of chemotherapy with other techniques such as immunotherapy is also
studied [2, 18, 21, 22]. The mathematical approach to studying this disease and the
effectiveness of treatment became important among cancer researchers in the recent
past as mathematical models can give more insight into the preclinical trials. The
models can serve as a leading tool for research in chemotherapy to efficiently search
and identify the most effective drug combinations for cancer patients [5, 12, 16, 24].

While studying the treatment mechanism of cancer, such as chemotherapy, it is
essential to understand the growth of the tumor cells. There are different types of
mathematical models of tumor growth available in the literature. At the earlier stages
of the research, it was assumed that tumor cells are homogeneous, and the models
addressed only a single type of tumor cells [27]. The growth of such cells is assumed
to be either logistic or gomperztian. However, the biological study reveals that there
are different types of tumor cells, and some cells are resistant to the treatment [9].
These drug-resistant tumor cells can be classified into two. Either the cells could be
genetically resistant to a specific drug, or the resistance can be developed or induced
from the interaction with the drug. In addition, there is a possibility of mutation of
different groups of cells to one another [4, 8, 27]. Another significant hurdle to the
success of chemotherapy is that the therapy can also affect the non-tumor normal cells.
Therefore, the drugs should be administered in such a manner that the toxic effect of
the treatment on normal cells is minimal. The success of the treatment depends on all
the factors mentioned above. Hence, these crucial factors must be integrated into the
mathematical model to have a more realistic approach.

Recently, Nanditha and Rajan [17] have proposed a better treatment protocol for
single-drug chemotherapy. Similar works can be found in [3, 11, 12]. The theoretical
and numerical study by [17] revealed that the sensitive tumor cells andmutated cells are
reduced drastically at the end of the treatment. However, the resistant tumor cells are
gradually increased at the end. Hence, it would be meaningful to administer another
drug to destroy these drug-resistant tumor cells and thereby improve the efficiency
of the treatment. The success of the treatment depends on how well we address the
damage to the normal cells due to chemotherapy and the impact of the drug-resistant
nature of tumor cells.

In this paper, we are trying to study the behavior of different types of cells during
chemotherapy with the administration of multiple drugs. The proposed mathematical
model analyzes the evolution of (i) a heterogeneous tumor population with three com-
partments and (ii) normal cells under the action of two different chemotherapeutic
agents. In addition, the pharmacokinetics of the drugs injected into the patient is also
incorporated. Further, we use control theory tools to design an optimal treatment strat-
egy. The objective function of the optimal control problem ensures the minimization
of the total number of tumor cells and the quantity of drugs administered. The goal
of the optimal control problem is to minimize the tumor size and, at the same time,
keep the number of normal cells at a healthy level by controlling the administration
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of the drugs with minimal toxic effects. Thus, our objective is to propose a model that
results in a better treatment protocol.

The paper is organized as follows: In Sect. 2, we discuss the mathematical model
that represents the evolution of different types of cells during chemotherapy. In Sect.
3, we study the tumor-free equilibrium points and their stability. We construct the
optimal control problem and then analyze the existence of optimal control in Sect. 4.
The characterization of optimal control is presented in Sect. 5. We conclude the paper
by giving a numerical validation of the proposed theoretical results in Sect. 6 and with
concluding remarks in Sect. 7.

2 Mathematical Model

In this section, we construct a mathematical model that incorporates the evolution
of a heterogeneous tumor population and that of normal cells under the action of
two different chemotherapeutic agents. Let N and V represent the normal cells and
total volume of tumor cells, respectively. V is divided into three compartments, S1,
S2, and S3, according to its sensitivity toward different administered drugs. Let S1
denote the tumor cell subpopulation that is sensitive to both drugs, S2 be the tumor
cell subpopulation that is resistant to the first drug but sensitive to the second drug,
and S3 be the third compartment of tumor cells which are resistant to the second drug
but sensitive to the first drug. Thus, we have V (t) = S1(t) + S2(t) + S3(t) as the total
number of tumor cells at any time t . Let C1 and C2 represent the concentration of the
first and second drugs, respectively, at the tumor site at a specific time, and λ1 and λ2 be
the clearance rates of the corresponding drugs. We use the logistic equation to model
the growth of all types of cells with growth rates r1, r2, r3, and r4 for S1, S2, S3, and N ,
respectively. Also, K4, K1, K2, and K3 represent the carrying capacity of normal cells
and three types of tumor cells, respectively.We assume that the transition of tumor cells
can occur within the compartments. Accordingly, a portion of the S1 cells may convert
into the other two compartments of cancer cells, S2 and S3, with a conversion rate of
τ1 and τ2, respectively. Due to the drug’s action, drug-induced resistance can occur,
resulting in a transition between S2 and S3 compartments. This is basically a genetic
alteration accrued while developing resistance toward one agent accompanied by the
development of hypersensitivity toward a second agent [19]. Hence, we assume that
during the treatment, a portion of S2 cells will become resistant to the second drug, but
can be killed by the first drug, and a portion of S3 cells will become resistant to the first
drug but can be killed by the second drug. Therefore, the transition from S2 to S3 due
to the action of the second drug is represented by τ23(1 − e−C2)S2 with a conversion
rate of τ23. Similarly, the transition from S3 to S2 due to the action of the first drug
is represented by τ32(1 − e−C1)S3 with a conversion rate of τ32. The toxic effect of
administered drugs leads to the reduction of all types of cells. The killing effect of the
first drug can be expressed as a1(1 − e−C1)S1, a3(1 − e−C1)S3, and aN (1 − e−C1)N
for different types of cells. Similarly, the toxic effect of second chemotherapeutic
agent on S1, S2, and N can be expressed as b1(1 − e−C2)S1, a2(1 − e−C2)S2, and
bN (1−e−C2)N , respectively. It is also assumed that the sum of killing rates of the two
drugs is much less than the natural growth rate of normal cells, i.e., aN + bN < r4.
The interaction between the tumor and normal cells is represented by γ V (1 − V

T ∗ ),
where T ∗ is the critical size of collection of tumor cells, and γ has the unit of t ime−1
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[5]. Let the amount of first and second drugs injected at time t be denoted as u(t) and
v(t), respectively. Hence, the proposed model is given by:

dS1
dt

= r1S1

(
1 − V

K1

)
− τ1S1 − τ2S1 − a1(1 − e−C1 )S1 − b1(1 − e−C2 )S1,

dS2
dt

= r2S2

(
1 − V

K2

)
+ τ1S1 − a2(1 − e−C2 )S2 − τ23(1 − e−C2 )S2 + τ32(1 − e−C1 )S3,

dS3
dt

= r3S3

(
1 − V

K3

)
+ τ2S1 − a3(1 − e−C1 )S3 − τ32(1 − e−C1 )S3 + τ23(1 − e−C2 )S2,

dN

dt
= r4N

(
1 − N

K4

)
+ γ V

(
1 − V

T ∗

)
− aN (1 − e−C1 )N − bN (1 − e−C2 )N ,

dC1

dt
= u − λ1C1,

dC2

dt
= v − λ2C2. (2.1)

The last two equations represent the pharmacokinetics of the two drugs used in therapy.
All parameters in the proposedmodel are taken as positive.We use the following initial
conditions:

S1(0) = S10 , S2(0) = S20 , S3(0) = S30 , N (0) = N0,C1(0) = C1
0 , andC2(0) = C2

0 .

(2.2)

3 Steady States and Stability Analysis

In this section, we study the stability of tumor-free equilibrium points of the system.
The equilibrium points of the system (2.1) are obtained by equating each equation in
(2.1) to zero. Since we are considering tumor-free steady states, let us take S1 = S2 =
S3 = 0.

1. Drug-free, tumor-free equilibrium points:
In the absence of chemotherapy drugs, we have C1 = 0 and C2 = 0. Then,
we can see that E1 = (0, 0, 0, 0) and E2 = (0, 0, 0, K4) are two equilibrium
points. Here, the trivial equilibrium point E1 is biologically insignificant. Some
eigenvalues of the Jacobian matrix of the system at the point E2 are positive. This
means that point E2 is unstable. It suggests that without any drug administration,
the tumor size cannot be diminished to zero.

2. Tumor-free equilibrium points with the administration of a single drug:
In this case, we examine the stability of the tumor-free equilibrium points in the
presence of the first drug but in the absence of the second drug. Therefore, we have
C1 �= 0 andC2 = 0 in this scenario. Then, we can see that E3 = (0, 0, 0, N∗

2 ,C∗
1 )

is the only non-trivial steady state. Here, N∗
2 = K4(1 − (

aN
r4

(1 − e−C∗
1 )) and

C∗
1 = u

λ1
. It can be easily computed that r3 is a positive eigenvalue of the Jacobian

matrix of the system at the point E3. This indicates that the point E3 could be
unstable. In other words, it implies that the administration of a single drug might
not be enough to curtail the growth of the tumor.
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3. Tumor-free equilibrium points with the administration of multiple drugs: In this
case, we try to analyze the stability of the equilibrium points under the action
of multiple drugs, i.e., both C1 and C2 are nonzero. Apart from the trivial point,
E4 = (0, 0, 0, N∗

3 ,C∗
1 ,C

∗
2 ) is the only steady state in this case. Here, N∗

3 =
K4(1− 1

r4
(aN (1− e−C∗

1 ) + bN (1− e−C∗
2 ))), C∗

2 = v
λ2
, and C∗

1 is same as above.
It can be easily seen that the equilibrium point E4 can bemade stable if we impose
some conditions on the drug administration rates u and v.

4 Optimal Control Problem

In this section, we pose the optimal control problem that minimizes the tumor growth
and the toxic effect of anticancer agentswhile keeping the normal cells at a healthy level
by controlling the administration of drugs. Let [0, t f ] be the chemotherapy interval.
Let us assume that the control functions u(t) and v(t) satisfy the following:

0 ≤ u(t) ≤ umax < ∞, 0 ≤ v(t) ≤ vmax < ∞, ∀t ∈ [0, t f ]. (4.1)

The function u(t) and v(t) are called admissible controls if they satisfy (4.1). The set
of all admissible controls forms an admissible set U , i.e.,

U = {(u, v) ∈ L∞([0, t f ],R2) : u(t), v(t)satisfy(4.3)}. (4.2)

We consider the following functional as the objective function of the control problem:

J (x, u, v) =
∫ t f

0
(qZ(t) + β1u(t) + β2v(t))dt, (4.3)

where Z(t) = (S1(t), S2(t), S3(t))T and q = (q1, q2, q3), β1, and β2 are positive
weights. Hence, our objective function is of the form

J (x, u, v) =
∫ t f

0
(q1S1(t) + q2S2(t) + q3S3(t) + β1u(t) + β2v(t))dt . (4.4)

We now introduce a new constraint to the problem that ensures the patient’s wellness
by limiting the toxicity of the injected drugs. The new constraint is that the total drug
administered is limited by a constant c, i.e.,

∫ t f

0
(u + v)dt ≤ c. (4.5)

The above integral constraint can be incorporated into the model by introducing a new
state variable M . Then, the constraint (4.5) can be expressed equivalently as

dM

dt
= u + v (4.6)
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with the boundary conditions M(0) = 0 and M(t f ) ≤ c. This modification produces
a terminal inequality constraint.

In addition to (4.5), we impose another constraint that the chemotherapy does not
kill too many healthy cells, i.e., we require that the number of normal cells stays above
75% of the carrying capacity throughout the treatment. Thus, the state constraint is
given by

N (t) − 0.75K4 ≥ 0. (4.7)

We reformulate (2.1) by incorporating the additional state Eq. (4.6) as,

x ′(t) = f (t, x(t), u(t), v(t)), t ∈ [0, t f ],
x(0) = x0,

M(t f ) ≤ c,

(4.8)

where x = (S1, S2, S3, N ,C1,C2, M) ∈ R
7 and x0 = (S10 , S

2
0 , S

3
0 , N0,C1

0 ,C
2
0 , 0).

We can easily see that Theorems 4.1 and 4.2 are true for system (4.8).

Theorem 4.1 Solution of the system (4.8) is nonnegative for all t ∈ [0, t f ] if the initial
values are nonnegative.

Theorem 4.2 Every solution of model (4.8) is bounded for all t in [0, t f ].
Now, our problem is to find a control (u∗, v∗) inU such that it minimizes the objective
functional J (x, u, v) in (4.3) subject to the constraints (4.8), (4.1), and (4.7). Then
(u∗, v∗) is referred to as optimal control. In the following section, we discuss the
existence of an optimal control, (u∗, v∗).

4.1 Existence of Optimal Control

Let us recall the optimal control problem for the sake of convenience:

minimizeJ (x, u, v) =
∫ t f

0
(qZ(t) + β1u(t) + β2v(t))dt (4.9)

subject to

x ′(t) = f (t, x(t), u(t), v(t)), t ∈ [0, t f ],
x(0) = x0,

M(t f ) ≤ c,

(4.10)

with control constraints

0 ≤ u(t) ≤ umax < ∞, 0 ≤ v(t) ≤ vmax < ∞, ∀t ∈ [0, t f ], (4.11)

and the state constraint

N (t) − 0.75K4 ≥ 0. (4.12)
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The following theorem establishes the existence of optimal control for the problem
(4.9) to (4.12). We use some results from [1, 6] for this purpose.

Theorem 4.3 Suppose that we have an optimal control problem of the form (4.9)–
(4.12). Then, there exists an optimal solution (x∗, u∗, v∗) ∈ W 1,∞([0, t f ],R7) ×
L∞([0, t f ],R2) such that

J (u∗, v∗) = min{J (u, v) : (u, v) ∈ U }. (4.13)

Proof In order to prove Theorem 4.3, we make use of Theorem 1 [6] or Theorem 4.1
[1], and accordingly, we need to prove that the following conditions must be satisfied
for the existence of (x∗, u∗, v∗):
1. There exists an admissible solution pair.
2. If N (x,U , t) = {(qZ(t) + β1u(t) + β2v(t) + γ, f (t, x, u, v)) : γ ≤ 0, (u, v) ∈

U }, then N (x,U , t) is convex in U for each (x, t).
3. U is closed and bounded.
4. There exists a number θ such that ‖x(t)‖ ≤ θ for all t ∈ [0, t f ] and for all

admissible solutions.

However, to prove the first condition, we need to prove the following result [23]:

(a) f (., u, v) is continuous for all (u, v) ∈ U .

(b) There exists positive constants K1 and K2 such that for all (x, y, u, v) ∈ (R7+)2 ×
U ,

| f (x, u, v)| ≤ K1(1 + |x | + |u| + |v|) (4.14)

and

| f (y, u, v) − f (x, u, v)| ≤ K2|y − x |(1 + |u| + |v|). (4.15)

(c) U is non-empty.

It can be easily seen from (2.1) that f (., u, v) is continuous. We further note that the
continuity of the function f and the conditions (4.14) and (4.15) assure the existence
of a solution of the system (2.1) [23].

Consider,

| f (x, u, v)| ≤ (r1 + 2τ1 + 2τ2 + a1 + b1 + γ )|S1| + (r2 + γ + a2 + 2τ23)

|S2| + (2τ32 + r3 + a3 + γ )|S3| + (r4 + aN + bN )|N |

+ λ1|C1| + λ2|C2| + γ
|Vmax|2
T ∗ + 2(|u| + |v|),

where |V | = |S1 + S2 + S3| ≤ M1 + M2 + M3 = Vmax, and M1, M2, and M3 are
bounds of S1, S2, and S3, respectively.

Thus, we have

| f (x, u, v)| ≤ K1(1 + |x | + |u| + |v|), (4.16)
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where

K1 = max{r1 + 2τ1 + 2τ2 + a1 + b1 + γ, r2 + a2 + γ + 2τ23, 2τ32 + r3

+ a3 + γ, r4 + aN + bN , λ1, λ2, γ
|Vmax|2
T ∗ , 2}.

Let (x = [S1, S2, S3, N ,C1,C2, M], y = [S′
1, S

′
2, S

′
3, N

′,C ′
1,C

′
2, M

′]) ∈ (R7+)2,
and (u, v) ∈ U . Then from (2.1), we can write

| f (y, u, v) − f (x, u, v)| ≤
[r1 + 2τ1 + 2τ2 + 2a1 + 2b1 + r1

K1
(2M1 + M2 + M3)

+ γ + 2γ
|Vmax|
T ∗ ]|S′

1 − S1| + [r2 + 2τ23 + γ

+ r2
K2

(2M2 + M1 + M2) + 2γ
|Vmax|
T ∗ ) + 2a2]|S′

2 − S2|

+ [r3 + 2τ32 + 2a3 + γ + r3
K3

(2M3 + M2 + M1)

+ 2γ
|Vmax|
T ∗ ]|S′

3 − S3| + [r4 + 2aN + 2bN ]|N ′ − N |
+ [λ1 + a1|M1| + a3|M3| + 2τ32|M3|
+ aN |M4|]|C ′

1 − C1| + [b1|M1| + a2|M2| + 2τ23|M2|
+ bN |M4| + λ2]|C ′

2 − C2|
≤K2(|y − x |)
≤K2|y − x |(1 + |u| + |v|),

(4.17)

where K2 is the maximum value of the coefficients and N is bounded by M4.
Clearly, U is non-empty. Hence, there exists an admissible pair for the control

problem.
Also, from the definition of the admissible control set U in (4.2), it can be easily

shown that U is closed, bounded, and convex. The convexity of N (x,U , t) follows
directly from the fact that U is convex. Moreover, from Theorem 4.2, we see that the
fourth condition holds as well. This completes the proof of the theorem. ��

5 Characterization of Optimal Control

In the previous section, we discussed the existence of optimal control for the problem
(4.9)–(4.12). Now, we derive the representations of the optimal control. In order to do
this, we need to discuss certain necessary conditions for optimality. We make use of
the Pontryagin’s minimum principle [1, 7, 13, 26], conditions from S.P. Sethi et al.
[25] and Kamien et al. [10], and the generalized Legendre–Clebsch conditions [1, 14]
for this purpose.
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Theorem 5.1 Let (u∗, v∗) be an optimal control of (4.9)– (4.12), and x∗ =
[S∗

1 , S
∗
2 , S

∗
3 , N

∗,C∗
1 ,C

∗
2 , M

∗] be the corresponding state vector. Then, there exist an
adjoint state p ∈ W 1,∞([0, t f ],R7) and a multiplier function η ∈ L∞([0, t f ],R)

satisfying the following:

ṗ1 = −
[
q1 + p1

[
r1

(
1 − V

K1
− S1

K1

)
− τ1 − τ2 − a1(1 − e−C1 ) − b1(1 − e−C2 )

]

+p2

(
−r2S2

K2
+ τ1

)
+ p3

(
−r3S3

K3
+ τ2

)
+ p4γ

(
1 − 2V

T ∗
)]

,

ṗ2 = −
[
q2 + p1

(
−r1S1

K1

)
+ p2

[
r2

(
1 − V

K2
− S2

K2

)
− a2(1 − e−C2 )

−τ23(1 − e−C2 )
]

+ p3

(
−r3S3

K3
+ τ23(1 − e−C2 )

)
+ p4γ

(
1 − 2V

T ∗
)]

,

ṗ3 = −
[
q3 + p1

(
−r1S1

K1

)
+ p2

(
−r2S2

K2
+ τ32(1 − e−C1 )

)

+p3[r3
(
1 − V

K3
− S3

K3

)
− a3(1 − e−C1 ) − τ32(1 − e−C1 )] + p4γ

(
1 − 2V

T ∗
)]

,

ṗ4 = −p4(r4

(
1 − 2N

K4

)
− aN (1 − e−C1 ) − bN (1 − e−C2 )) + η,

ṗ5 = p1a1e
−C1 S1 − p2τ32e

−C1 S3 + p3(a3e
−C1 S3 + τ32e

−C1 S3)

+p4aN e
−C1N + p5λ1,

ṗ6 = p1b1e
−C2 S1 + p2(a2e

−C2 S2 + τ23e
−C2 S2) − p3τ23e

−C2 S2
+p4bN e

−C2N + p6λ2,

ṗ7 = 0, (5.1)

where pi (t f ) = 0 for i = 1, 2, . . . , 6,

p7(t f ) = −α, α ≤ 0 and α(c − M(t f )) = 0. (5.2)

Furthermore, u∗ and v∗ are given by

u∗ =

⎧⎪⎨
⎪⎩
0 ψ1 > 0

umax ψ1 < 0

singular/boundary ψ1 = 0,

and

v∗ =

⎧⎪⎨
⎪⎩
0 ψ2 > 0

vmax ψ2 < 0

singular/boundary ψ2 = 0,

where ψ1 = p5 + p7 + β1 and ψ2 = p6 + p7 + β2 .
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Proof We have a pure state constraint, namely S := N (t) − 0.75K4 ≥ 0, and the
control functions satisfy the inequalities 0 ≤ u(t) ≤ umax, and 0 ≤ v(t) ≤ vmax for
all t ∈ [0, t f ]. Let us take umax = 1 = vmax for simplicity. Then, the Lagrangian
associated with this problem is:

L = H − w1u − w2(1 − u) − w3v − w4(1 − v) − ηS, (5.3)

where H is the Hamiltonian defined by

H = qZ + β1u + β2v + p1(r1S1(1 − V

K1
) − τ1S1 − τ2S1 − a1(1 − e−C1)S1

− b1(1 − e−C2)S1) + p2(r2S2(1 − V

K2
) + τ1S1 + τ32(1 − e−C1)S3

− a2(1 − e−C2)S2 − τ23(1 − e−C2)S2) + p3(r3S3(1 − V

K3
) + τ2S1

− a3(1 − e−C1)S3 − τ32(1 − e−C1)S3 + τ23(1 − e−C2)S2)+
p4(r4N (1 − N

K4
) + γ V (1 − V

T ∗ ) − aN (1 − e−C1)N − bN (1 − e−C2)N )

+ p5(u − λ1C1) + p6(v − λ2C2) + p7(u + v).

(5.4)

The penalty multipliers w1, w2, w3, w4, and η satisfy the following complementary
slackness conditions:

w1 ≥ 0, w1u = 0,

w2 ≥ 0, w2(1 − u) = 0,
(5.5)

at the optimal u∗,

w3 ≥ 0, w3v = 0,

w4 ≥ 0, w4(1 − v) = 0,
(5.6)

at the optimal v∗, and

η ≥ 0, ηS = 0 at N∗. (5.7)

The adjoint Eq. (5.1) are formed from differentiating the Lagrangian, that is,

p′(t) = −∂L

∂x
(t). (5.8)

In addition, the final conditions are free for all state variables except M . Thus, we
have pi (t f ) = 0 for i = 1, 2, . . . , 6. The terminal inequality constraint imposes an
additional transversality condition given by (5.2) [1, 10].
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Since the Lagrangian is linear in both u and v, the representations of the optimal
controls can be determined from the sign of switching functions, ∂L

∂u and ∂L
∂v
.

∂L

∂u
= ∂H

∂u
− w1 + w2 = p5 + p7 + β1 − w1 + w2, (5.9)

and

∂L

∂v
= ∂H

∂v
− w3 + w4 = p6 + p7 + β2 − w3 + w4. (5.10)

Equivalently, we can consider the sign of ψ1 = ∂H
∂u and ψ2 = ∂H

∂v
to determine the

values of optimal controls u∗ and v∗ [10]. Hence, we characterize the optimal controls
as:

u∗ =

⎧⎪⎨
⎪⎩
0 ψ1 > 0

umax ψ1 < 0

singular/boundary ψ1 = 0,

and

v∗ =

⎧⎪⎨
⎪⎩
0 ψ2 > 0

vmax ψ2 < 0

singular/boundary ψ2 = 0.

The proof is complete. ��
In the following section, we present a detailed analysis of both singular and bound-

ary controls.

5.1 Singular Controls and Boundary Controls

In our problem, the Hamiltonian is linear in the control functions u and v. The coeffi-
cient of u and v in H could be equal to zero only for isolated instants. In such a case,
the control is bang-bang. In other words, the control is a piecewise constant function,
switching between its upper and lower bounds. Let

ψ1 := p5 + p7 + β1andψ2 := p6 + p7 + β2. (5.11)

If the switching functions are zero on a subinterval of [0, t f ], then the control is
singular on that interval. Investigating the possibility of a singular subarc, ψi = 0
for i = 1, 2, with the state constraint S results in two possible solutions, an interior
subarc and a boundary subarc (cf. [25]). We note that a solution is an interior subarc
if S > 0, and is a boundary subarc if S = 0. We will examine the representations of
singular controls and the conditions necessary for the controls to be minimizing in the
singular region, provided that the representations of the singular controls satisfy the
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control bounds. Note that each interval of singularity is a subinterval of [0, t f ]. In the
following, we claim that the control in the interior is bang-bang control.

Theorem 5.2 Suppose that (u, v) be an optimal control of (4.9)–(4.12), then both u
and v are bang-bang in the interior.

Proof We prove the theorem by contradiction. We consider three different cases of
control functions on a subinterval of [0, t f ]; namely, u is singular and v is bang-bang;
u is bang-bang and v is singular, and both u and v are simultaneously singular.

Let u be a singular subarc on the interval [t1u, t2u] ⊆ [0, t f ] and v be bang-bang. For
the interior subarc u, the switching function ψ1 = 0 and the state constraint S > 0. In
this case, the characterization of the control in singular region is determined by taking
the time derivatives of switching function (cf. [14, 25]). On the interval [t1u, t2u], the
time derivatives of ψ1 is zero. Thus,

dψ1

dt
= p′

5 = 0. (5.12)

Taking the second derivative will give,

d2ψ1

dt2
= p′′

5 = A1 − (u − λ1C1)B1, (5.13)

where
A1 = a1 p1e

−C1 S′
1 + a1 p

′
1e

−C1 S1 − τ32 p2e
−C1 S′

3 − τ32 p
′
2e

−C1 S3
+a3 p3e

−C1 S′
3 + a3 p

′
3e

−C1 S3 + τ32 p3e
−C1 S′

3 + τ32 p
′
3e

−C1 S3
+aN p4e

−C1N ′ + aN p′
4e

−C1N + p′
5λ1, (5.14)

B1 = a1 p1e
−C1 S1 − τ32 p2e

−C1 S3 + a3 p3e
−C1 S3 + τ32 p3e

−C1 S3
+aN p4e

−C1N . (5.15)

Hence, the control function u appears explicitly in the second derivative of the switch-
ing function. Therefore, the singularity is of order one. Since the control v is assumed
to be bang-bang on the interval [t1u, t2u], the Legendre–Clebsch condition for the
control to be minimizing is,

(−1)
∂

∂u

d2ψ1

dt2
≥ 0. (5.16)

Thus, B1 ≥ 0. Now, from the expression of p′
5 in (5.1) and that of B1 in (5.15), it is

clear that

p′
5 = B1 + p5λ1 ≥ p5λ1. (5.17)

In other words,

p5 ≥ eλ1t > 0for allt ∈ [t1u, t2u]. (5.18)
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This is a contradiction to the fact that p5 + β1 + p7 = 0 throughout the interval
since β1 and p7 are nonnegative. Hence, the singular control u is not optimal on any
subinterval of [0, t f ] if the control v is assumed to be bang-bang on that interval. Now,
we consider the case of v being singular and u being bang-bang on some subinterval
[t1v, t2v]. We can see in the following equation that the control v is explicitly present
in the second derivative of ψ2:

d2ψ2

dt2
= p′′

6 = A3 − (v − λ2C2)B3, (5.19)

where

A3 = b1 p1e
−C2 S′

1 + b1 p
′
1e

−C2 S1 + a2 p2e
−C2 S′

2 + a2 p
′
2e

−C2 S2

+ τ23 p2e
−C2 S′

2 + τ23 p
′
2e

−C2 S2 − τ23 p3e
−C2 S′

2 − τ23 p
′
3e

−C2 S2

+ bN p4e
−C2N ′ + bN p′

4e
−C2N + p′

6λ2,

(5.20)

and

B3 = b1 p1e
−C2 S1 + a2 p2e

−C2 S2 + τ23 p2e
−C2 S2 − τ23 p3e

−C2 S2

+ bN p4e
−C2N .

(5.21)

On applying the Legendre–Clebsch condition, we get B3 ≥ 0. From (5.1) and (5.21),
one can see that

p′
6 = B3 + p6λ2 ≥ p6λ2, (5.22)

that is,

p6 ≥ eλ2t > 0for allt ∈ [t1v, t2v]. (5.23)

This is a contradiction to the fact that p6+β2+ p7 = 0 throughout the interval. Hence,
the singular control v cannot be optimal on any subinterval of [0, t f ] if the control u
is assumed to be bang-bang on that interval.

Now we derive the necessary conditions when both the controls are simultaneously
singular on the same interval, [t1, t2] ⊆ [0, t f ]. Then, by generalized Legendre–
Clebsch condition, for the control u and v to be minimizing on the interval [t1, t2], the
following matrix should be symmetric and nonnegative definite [1]:

A =
⎛
⎝(−1) ∂

∂u
d2

ψ1
dt2 (−1) ∂

∂v
d2

ψ1
dt2

(−1) ∂
∂u

d2
ψ2

dt2 (−1) ∂
∂v

d2ψ2
dt2

⎞
⎠ .

Here, the matrix A can be computed as

A =
(
B1 0
0 B3

)
.
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Clearly, the matrix is symmetric. Also, A is nonnegative definite if all the principle
minors of A are nonnegative, that is, if B1 ≥ 0andB3 ≥ 0. Now, these two conditions
will lead to the conclusion that p5 > 0 and p6 > 0, as in (5.18) and (5.23), respectively.
Hence, both the controls must be bang-bang for it to be optimal. ��

The following results provide the expression of the controls on the boundary.

Theorem 5.3 If u is a boundary subarc on the interval [t1u, t2u] ⊆ [0, t f ], then the
representation of the control is given by

ub = A2

aNe−C1N
+ λ1C1, (5.24)

where

A2 = r4N
′(1 − 2N

K4
) + γ V ′(1 − 2V

T ∗ ) − aN (1 − e−C1)N ′

− bN (1 − e−C2)N ′ − bNe
−C2NC ′

2.

(5.25)

Proof For boundary subarc, the state constraint S = 0. Taking a first time derivative
of S yields

dS

dt
= dN

dt
= r4N (1 − N

K4
) + γ V (1 − V

T ∗ ) − aN (1 − e−C1)N

− bN (1 − e−C2)N .

Notice that the first derivative does not contain the control term explicitly. Hence, we
will compute the second time derivative of S.

d2S

dt2
= d2N

dt2
= A2 − aNe

−C1N (u − λ1C1), (5.26)

where A2 is defined in (5.25). The state constraint S is of order two since the control
u is explicitly present in the second derivative of S [14, 25]. Now, equating (5.26) to
zero gives

u = ub = A2

aNe−C1N
+ λ1C1. (5.27)

Moreover, the regularity condition of state constraint is satisfied [14, 15] since

∂

∂u

d2S

dt2
= −aNe

−C1N �= 0 (5.28)

on every boundary arc with S = 0. Also, the value of the multiplier η can be computed
by equating (5.19) to zero. ��
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Fig. 1 Optimal state and control trajectories. The first row illustrates the variation of the drug dose rates.
The second and third rows display the time dynamics of different cell populations during chemotherapy

Theorem 5.4 If v is a boundary subarc on the interval [t1v, t2v] ⊆ [0, t f ], then the
representation of the control is given by,

vb = A4

bNe−C2N
+ λ2C2, (5.29)

where

A4 =r4N
′(1 − 2N

K4
) + γ V ′(1 − 2V

T ∗ ) − aN (1 − e−C1)N ′ − bN (1 − e−C2)N ′

− aNe
−C1NC ′

1.

(5.30)

Proof The proof is similar to the proof of Theorem 5.3. ��

6 Numerical Solution

In this section, we numerically examine whether the model meets the objective of the
problem. The optimal control problem (4.9)–(4.12) is solved usingMATLAB coupled
with APMonitor modeling language with the help of IPOPT solver. For the simulation
of the model, we have used the parameters which have been taken from literature
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Fig. 2 Behavior of switching functions ψ1 and ψ2. The top right corner of each subfigure is a zoomed-in
plot of the same subfigure over the time interval [9.5, 30] for the first graph, ψ1 and [8, 30] for the second
graph, ψ2

Fig. 3 Total tumor cells during therapy
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[3–5, 21]. The parameter values used for the computational purpose are given in the
following table:

Parameter Value

r1 0.25 time−1

r2 0.15 time−1

r3 0.15 time−1

r4 1.2 time−1

K1 106 cells
K2 106 cells
K3 106 cells
K4 106 cells
τ1 0.001 time−1

τ2 0.001 time−1

a1 0.45 time−1

b1 0.15 time−1

a2 0.45 time−1

a3 0.45 time−1

τ23 0.0001 time−1

τ32 0.0001 time−1

aN 0.02 time−1

bN 0.02 time−1

γ 0.028 time−1

T ∗ 3 ∗ 105 cells
λ1 0.01 time−1

λ2 0.01 time−1

Figure 1 shows the corresponding solution trajectories and control trajectories for
β1 = 1 and β2 = 3 with t f = 30 and q := (q1, q2, q3) = (1, 1, 1). The constant c in
the integral constraint in (4.5) is taken as 40.

It clearly demonstrates that the number of different subpopulations of tumor cells
is decreasing to zero. Also, more than 95% of the normal cells are present throughout
the treatment. Although there is a slight decline in normal cells at the beginning of
the treatment, it maintains a healthy level throughout the therapy. This means that
the toxicity of the drug is also minimized. Moreover, one can see that the pure state
constraint S = N (t)−0.75K4 is never zero throughout the therapy interval, and hence,
there are no boundary controls. Also, we can observe that the control is bang-bang,
switching between 0 and 1. The behavior of the switching functions is plotted in Fig. 2.

It is clear from these graphs that switching and control functions obey the control
law that we established theoretically. Figure 3 illustrates the reduction of the total
number of cancer cells throughout the chemotherapy interval. We can see that the
total tumor size is reduced to zero at the end of the therapy.
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Fig. 4 Behavior of cells during therapy

6.1 Comparison Analysis

In [17], authors studied a single-drug optimal control chemotherapy model and illus-
trated that the model performs better than the model proposed by Mithra Shojania
Feizabadi [4]. In single-drug chemotherapy, the drug injection rate is taken as a control
function. Figure 4 illustrates the numerical result obtained from single-drug therapy.

Even though both drug-sensitive cells and mutated cells are reduced to zero at the
end of the treatment, the increasing number of drug-resistant cells remains a threat.
However, in the proposed multi-drug model ( see Figs. 1, 3), these limitations are
addressed, and the proposed model ensures that cancer cells are destroyed during the
treatment bymaintaining the normal cells at a healthy level, which would lead to faster
recovery of the patient.

7 Conclusions

In this paper, we proposed a model that examined the behavior of normal cells and
different types of tumor cells during multi-drug chemotherapy. The pharmacokinetics
of both drugs were incorporated into the model. The existence and the properties of
solutions of the proposed models were analyzed. The resistant nature of tumor cells
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toward the injected drug is a known fact. We implemented a multi-drug chemotherapy
approach to overcome this issue. It is also known that chemotherapeutic drugs can kill
both the tumor and normal cells. Therefore, to assure the healthy recovery of patients,
the toxic effect of drugs on normal cells, which is a significant obstacle to the success
of therapy, should be addressed. We used tools of control theory to formulate a better
treatment protocol. We designed a treatment strategy that minimizes the total tumor
cells and the total drug toxicity. In the meantime, it maintained the normal cells at
a healthy level throughout the treatment period. Moreover, we validated the theoret-
ical results numerically. The numerical results confirmed that the proposed optimal
treatment strategies reduced the total tumor size while preserving more than 95% of
healthy normal cells during and at the end of the therapy with minimal administration
of chemotherapeutic drugs.
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and valuable suggestions that significantly improved the presentation of the paper as well.
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