
Journal of Optimization Theory and Applications (2022) 194:1107–1140
https://doi.org/10.1007/s10957-022-02072-5

A Quasi-Newton Method with Wolfe Line Searches
for Multiobjective Optimization

L. F. Prudente1 · D. R. Souza1

Received: 10 September 2021 / Accepted: 29 June 2022 / Published online: 20 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Wepropose a BFGSmethodwithWolfe line searches for unconstrainedmultiobjective
optimization problems. The algorithm is well defined even for general nonconvex
problems. Global convergence and R-linear convergence to a Pareto optimal point are
established for strongly convex problems. In the local convergence analysis, if the
objective functions are locally strongly convex with Lipschitz continuous Hessians,
the rate of convergence is Q-superlinear. In this respect, our method exactly mimics
the classical BFGS method for single-criterion optimization.

Keywords Multiobjective optimization · Pareto optimality ·
Quasi-Newton methods · BFGS method · Wolfe line search

Mathematics Subject Classification 49M15 · 65K05 · 90C29 · 90C30

1 Introduction

In multiobjective optimization, we seek to minimize two or more objective functions
simultaneously. Usually, in a problem of this class, there is no single point that mini-
mizes all the functions at once. In that case, the objectives are said to be conflicting and
we use the concept of Pareto optimality to characterize a solution of the problem. A
point is called Pareto optimal if none of the objective functions can be improved with-
out degrading another. Multiobjective optimization problems appear in many fields

Communicated by Nobuo Yamashita.

B L. F. Prudente
lfprudente@ufg.br

D. R. Souza
danilo_souza@discente.ufg.br

1 Instituto de Matemática e Estatística, Universidade Federal de Goiás, Goiânia, GO CEP 74001-970,
Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-022-02072-5&domain=pdf
http://orcid.org/0000-0003-1098-4317

1108 Journal of Optimization Theory and Applications (2022) 194:1107–1140

of science. We refer the reader to [3, 56] and references therein for some interesting
practical applications.

Over the past two decades, several iterative methods for scalar-value optimization
have been extended and analyzed formultiobjective optimization. This line of research
was opened in [25] with the extension of the steepest descent method; see also [24].
Other algorithms include Newton [10, 24, 30, 59], quasi-Newton [1, 36, 42, 47, 49,
52, 53], conjugate gradient [28, 40], projected gradient [2, 22, 26, 27, 29], and prox-
imal methods [5, 7–9, 11]. As a common feature, these methods enjoy convergence
properties and do not transform the problem at hand into a parameterized scalar prob-
lem and then solve it, being attractive alternatives for scalarization [21] and heuristic
approaches [37].

Quasi-Newton algorithms are one of themost popular classes ofmethods for solving
an unconstrained single-objective optimization problem. Its long history began in 1959
with the work of Davidon [16] and was popularized four years later by Fletcher and
Powell [23]. Since then, quasi-Newton algorithms have attracted the attention of the
scientific community primarily because they avoid computations of second derivatives
and perform well in practice. Papers on the subject are too many to list, including
contributions from the most prominent names in the optimization community. In a
quasi-Newton method, the search direction is computed based on a quadratic model
of the objective function, where the true Hessian is replaced by some approximation
which is updated after each iteration. The most effective quasi-Newton update scheme
is the BFGS formula, which was independently discovered by Broyden, Fletcher,
Goldfarb, and Shanno in 1970. Under some proper assumptions, the BFGS algorithm
with an adequate line search is globally and superlinearly convergent on strongly
convex problems [6, 50]. On the other hand, it may not converge for general nonconvex
functions [13, 14, 43].

The BFGS method for multiobjective optimization was first proposed in [49] and
later also studied in [36, 42, 47, 52, 53]. Similarly to the single-criterion case, the
search direction is defined as the solution of a problem involving quadratic models of
the objective functions, where BFGS updates are used in place of the true Hessians.
Despite the aforementioned papers, the convergence theory of the BFGS method for
multiobjective optimization problems can still be considered incomplete. In the fol-
lowing, we highlight some shortcomings of the existing references: (i) the algorithms
are usually designed for strongly convex problems; (ii) the BFGS updates and their
inverses are often assumed to be uniformly bounded (which seems unrealistic, see
[48,Section 6.4]); (iii) some key intermediate steps in convergence analysis are often
stated without proof. The aim of the present paper is to overcome all these drawbacks.

We propose a BFGS algorithm for unconstrained multiobjective optimization prob-
lems, where the step sizes satisfy the standard (vector) Wolfe conditions recently
introduced in [40]. The Wolfe conditions are a key tool to preserve the positive def-
initeness of the Hessian approximations. As a consequence, our algorithm is well
defined even for general nonconvex problems. Global convergence and R-linear con-
vergence to a Pareto optimal point are established for strongly convex problems. In the
local convergence analysis, assuming that the objective functions are locally strongly
convex with Lipschitz continuous Hessians, we prove that the rate of convergence
is Q-superlinear. As an intermediate result, we show that the unit step size eventu-

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1109

ally satisfies the Wolfe conditions. Furthermore, a Dennis–Moré-type condition for
multiobjective optimization problems will appear very clearly. We emphasize that all
assumptions considered are natural extensions of those made for the scalar optimiza-
tion case. Numerical experiments on convex and nonconvex multiobjective problems
illustrating the potential practical advantages of our approach are presented.

The outline of this paper is as follows. Section 2 presents some basic concepts and
results of multiobjective optimization. In Sect. 3, we describe our algorithm and show
that it is well defined even on general nonconvex problems. Global and local conver-
gence results are discussed in Sects. 4 and 5, respectively. Numerical experiments are
presented in Sect. 6, and final remarks are made in Sect. 7.

2 Preliminaries

Notation R and R++ denote the set of real numbers and the set of positive real
numbers, respectively. As usual, Rn and R

n×p denote the set of n-dimensional real
column vectors and the set of n × p real matrices, respectively. The identity matrix of
size n is denoted by In . If u, v ∈ R

n , then u ≤ v is to be understood in a componentwise
sense, i.e., ui ≤ vi for all i = 1, . . . , n. For A ∈ R

n×n , A � 0 (resp. A ≺ 0) means
that A is positive (resp. negative) definite. ‖ · ‖ is the Euclidean norm. The cardinality
of a set C is denoted by |C |. The ceiling and floor functions are denoted by �·� and
	·
, respectively, i.e., if x ∈ R, then �x� is the least integer greater than or equal to
x and 	x
 is the greatest integer less than or equal to x . Given two real sequences
{ak} and {bk} (with bk > 0 for all k), we write ak = o(bk) if limk→∞ ak/bk = 0. If
K = {k1, k2, . . .} ⊆ N, with k j < k j+1 for all j ∈ N, then we denote K ⊂∞N.

Given F : Rn → R
m a continuously differentiable function, we are interested in

finding a Pareto optimal point of F . We denote this problem as

min
x∈Rn

F(x). (1)

A point x∗ ∈ R
n is Pareto optimal (resp. weak Pareto optimal) if there exists no

other x ∈ R
n with F(x) ≤ F(x∗) and F(x) �= F(x∗) (resp. F(x) < F(x∗)). These

concepts are also defined locally: We say that x∗ ∈ R
n is a local Pareto optimal (resp.

local weak Pareto optimal) if there exists a neighborhood U ⊂ R
n of x∗ such that x∗

is Pareto optimal (resp. weak Pareto optimal) for F restricted to U . A necessary (but
in general not sufficient) condition for local weak Pareto-optimality of x∗ is

− (Rm++) ∩ Image(J F(x∗)) = ∅, (2)

where J F(x∗) denotes the image set of the Jacobian of F at x∗. A point x∗ that
satisfies (2) is called a Pareto critical point. Note that if x ∈ R

n is not Pareto critical,
then there exists a direction d ∈ R

n such that ∇Fj (x)T d < 0 for all j = 1, . . . ,m.
This implies that d is a descent direction for F at x , i.e., there exists ε > 0 such that
F(x + αd) < F(x) for all α ∈]0, ε]. We say that F : Rn → R

m is convex (resp.
strongly convex) if its components Fj : Rn → R are convex (resp. strongly convex),

123

1110 Journal of Optimization Theory and Applications (2022) 194:1107–1140

for all j = 1, . . . ,m. The next result relates the concepts of criticality, optimality, and
convexity.

Lemma 2.1 [24,Theorem 3.1] The following statements hold:

(i) if x∗ is local weak Pareto optimal, then x∗ is a critical point for F;
(ii) if F is convex and x∗ is critical for F, then x∗ is weak Pareto optimal;
(iii) if F is twice continuously differentiable, ∇2Fj (x) > 0 for all j ∈ {1, . . . ,m}

and all x ∈ R
n, and if x∗ is critical for F, then x∗ is Pareto optimal.

Define D : Rn × R
n → R by

D(x, d) := max
j=1,...,m

∇Fj (x)
T d.

The functionD characterizes the descent direction for F at x . Indeed, it is easy to see
that if D(x, d) < 0, then d is a descent direction for F at x . Moreover, x is a Pareto
critical point if and only if D(x, d) ≥ 0 for all d ∈ R

n . Next we present other useful
properties of function D that can be trivially obtained from its definition.

Lemma 2.2 The following statements hold:

(i) for any x ∈ R
n and α ≥ 0, we have D(x, αd) = αD(x, d);

(ii) the mapping (x, d) �→ D(x, d) is continuous.

The quasi-Newton methods for solving (1) belong to a class of algorithms in which
the search direction d(x) from a given x ∈ R

n is defined as the solution of

min
d∈Rn

max
j=1,...,m

∇Fj (x)
T d + 1

2
dT B jd, (3)

where Bj ∈ R
n×n is some approximation of ∇2Fj (x) for all j = 1, . . . ,m, see [49].

If Bj � 0 for all j = 1, . . . ,m, then the objective function is strongly convex and
hence (3) has a unique solution. We will denote the optimal value of problem (3) by
θ(x), i.e.,

d(x) := argmin
d∈Rn

max
j=1,...,m

∇Fj (x)
T d + 1

2
dT B jd, (4)

and

θ(x) := max
j=1,...,m

∇Fj (x)
T d(x) + 1

2
d(x)T B jd(x). (5)

In the particular case where Bj = In for all j = 1, . . . ,m, d(x) corresponds to the
steepest descent direction, see [25]. In turn, if Bj = ∇2Fj (x) for all j = 1, . . . ,m,
d(x) turns out to be the Newton direction, see [24].

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1111

In what follows, we assume that Bj � 0 for all j = 1, . . . ,m. In this case, (3) is
equivalent to the following convex quadratic optimization problem:

min
(t,d)∈R×Rn

t

s. t. ∇Fj (x)T d + 1
2d

T B jd ≤ t, ∀ j = 1, . . . ,m.
(6)

The unique solution of (6) is given by (t, d) := (θ(x), d(x)). Since (6) is convex and
has a Slater point (e.g., (1, 0) ∈ R × R

n), there exists a multiplier λ(x) ∈ R
m such

that the triple (t, d, λ) := (θ(x), d(x), λ(x)) ∈ R × R
n × R

m satisfies the Karush–
Kuhn–Tucker system:

m∑

j=1

λ j = 1,
m∑

j=1

λ j
[∇Fj (x) + Bjd

] = 0,

and

λ j ≥ 0, ∇Fj (x)
T d + 1

2
dT B jd ≤ t, λ j

[
∇Fj (x)

T d + 1

2
dT B jd − t

]
= 0,

for all j = 1, . . . ,m. Therefore, some manipulations yield

d(x) = −
⎡

⎣
m∑

j=1

λ j (x)Bj

⎤

⎦
−1

m∑

j=1

λ j (x)∇Fj (x), (7)

m∑

j=1

λ j (x) = 1, λ j (x) ≥ 0, ∀ j = 1, . . . ,m, (8)

and

θ(x) = −1

2
d(x)T

⎡

⎣
m∑

j=1

λ j (x)Bj

⎤

⎦ d(x). (9)

The following lemma shows that direction d(x) and the optimum value θ(x) can be
used to characterize Pareto critical points of problem (1).

Lemma 2.3 Let d : Rn → R
n and θ : Rn → R given by (4) and (5), respectively.

Assume that B j � 0 for all j = 1, . . . ,m. Then, we have:

(i) x is Pareto critical if and only if d(x) = 0 and θ(x) = 0;
(ii) if x is not Pareto critical, then d(x) �= 0 and D(x, d(x)) < θ(x) < 0 (in

particular, d(x) is a descent direction for F at x).

Proof See [24,Lemma 3.2] and [49,Lemma 2]. ��

123

1112 Journal of Optimization Theory and Applications (2022) 194:1107–1140

As mentioned, if Bj = In for all j = 1, . . . ,m, the solution of (3) corresponds to
the steepest descent direction, which will be denoted by dSD(x), i.e.,

dSD(x) := argmin
d∈Rn

max
j=1,...,m

∇Fj (x)
T d + 1

2
‖d‖2. (10)

Taking into account the previous discussion, it follows that there exists λSD(x) ∈ R
m

such that

m∑

j=1

λSD
j (x) = 1, λSD

j (x) ≥ 0, ∀ j = 1, . . . ,m, (11)

and

dSD(x) = −
m∑

j=1

λSD
j (x)∇Fj (x). (12)

In the following, we revise some useful properties related to dSD(·).
Lemma 2.4 Let dSD : Rn → R

n be given by (10). Then,

(i) x is Pareto critical if and only if dSD(x) = 0;
(ii) if x is not Pareto critical, then we have dSD(x) �= 0 and D(x, dSD(x)) <

−(1/2)‖dSD(x)‖2 < 0 (in particular, dSD(x) is a descent direction for F at x);
(iii) the mapping dSD(·) is continuous;
(iv) for any x ∈ R

n, −dSD(x) is the minimal norm element of the set

⎧
⎨

⎩u ∈ R
n | u =

m∑

j=1

λ j∇Fj (x),
m∑

j=1

λ j = 1, λ j ≥ 0 for all j = 1, . . . ,m

⎫
⎬

⎭ ,

i.e., in the convex hull of {∇F1(x), . . . ,∇Fm(x)}.
Proof For items (i), (ii), and (iii), see [31,Lemma 3.3]. For item (iv), see [57,Corollary
2.3]. ��

3 Algorithm

This section provides a detailed description of the main algorithm. At each iteration k
and for each j = 1, . . . ,m, the true Hessian ∇2Fj (xk) is approximated by a matrix
Bk
j using a BFGS-type updating, see (15). The algorithm uses a line search procedure

satisfying the (vector) Wolfe conditions. As we will see, this will be essential to obtain
positive definite updates Bk

j ’s for nonconvex problems.

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1113

Algorithm 1 A BFGS algorithm with Wolfe line searches
Let c1 ∈]0, 1/2[, c2 ∈]c1, 1[, x0 ∈ R

n , and B0
j � 0 for all j = 1, . . . ,m be given.

Initialize k ← 0.

Step 1. Compute the search direction
Compute dk := d(xk) and θ(xk) as in (4) and (5), respectively.

Step 2. Stopping criterion
If θ(xk) = 0, then STOP.

Step 3. Line search procedure
Compute a step size αk > 0 (trying first αk = 1) such that

Fj (x
k + αkd

k) ≤ Fj (x
k) + c1αkD(xk, dk), ∀ j = 1, . . . ,m, (13)

D(xk + αkd
k, dk) ≥ c2D(xk, dk), (14)

and set xk+1 := xk + αkdk .
Step 4. Prepare the next iteration

For each j = 1, . . . ,m, define

Bk+1
j :=Bk

j − (ρk
j)

−1Bk
j sks

T
k Bk

j
(
(ρk

j)
−1 − sTk ykj

)2 + (ρk
j)

−1sTk Bk
j sk

+ (sTk Bk
j sk)y

k
j (y

k
j)
T

(
(ρk

j)
−1 − sTk ykj

)2 + (ρk
j)

−1sTk Bk
j sk

+
(
(ρk

j)
−1 − sTk ykj

) ykj s
T
k Bk

j + Bk
j sk(y

k
j)
T

(
(ρk

j)
−1 − sTk ykj

)2 + (ρk
j)

−1sTk Bk
j sk

,

(15)

where ykj := ∇Fj (xk+1) − ∇Fj (xk), sk := xk+1 − xk , and

ρk
j :=

{
1/sTk ykj , if sTk ykj > 0
1/

(D(xk+1, sk) − ∇Fj (xk)T sk
)
, otherwise.

(16)

Set k ← k + 1 and go to Step 1.

Remark 3.1 (i) In practice, at Step 1, dk and θ(xk) are calculated by solving the scalar
convex quadratic optimization problem (6). Thus, there are many algorithms capa-
ble of effectively dealing with this subproblem. (ii) At Step 2, from Lemma 2.3(i),
Algorithm 1 stops at iteration k if and only if xk is Pareto critical. (iii) At Step 3, we
always try the step size αk = 1 first. This detail turns out to be crucial in obtaining a
fast convergence rate. Conditions (13)–(14) correspond to the (vector) standardWolfe
conditions recently introduced in [40]. It is possible to show that if dk is a descent

123

1114 Journal of Optimization Theory and Applications (2022) 194:1107–1140

direction of F at xk and F is bounded below along dk , then there exist intervals of pos-
itive step sizes satisfying these conditions, see [40,Proposition 3.2]. Them inequalities
in (13) stipulate that αk must give a sufficient decrease, proportional to both αk and
D(xk, dk), in each objective function. In turn, the curvature condition (14) consists
of a single inequality involving information from all objective functions. Let αt > 0
be a trial step size that satisfies (13). If αt > 0 is such that ∇Fj (xk + αt dk)T dk is
strongly negative for all j = 1, . . . ,m (and hence also D(xk + αt dk, dk)), it is a sign
that we can simultaneously reduce all objectives by moving further along dk and then
αt is ruled out by condition (14). On the other hand, if there exists j ∈ {1, . . . ,m}
for which ∇Fj (xk + αt dk)T dk is only slightly negative or even positive (more pre-
cisely, greater than or equal to the right hand side of (14)), we suspect that we cannot
expect much more decrease in the objective Fj along direction dk , so it makes sense
to end the line search by accepting αt as the step size, i.e., αk := αt . Note that, in the
latter case, we have D(xk + αt dk, dk) ≥ ∇Fj (xk + αt dk)T dk ≥ c2D(xk, dk) and
therefore condition (14) is satisfied for αt . In particular, we observe that (14) rules out
unacceptably short step sizes that satisfy (13). We refer the reader to [48,Section 3.1]
for a careful discussion about this issue in the scalar optimization approach. (iv) At
Step 4, if ρk

j = 1/sTk ykj , then (15) reduces to the classical BFGS update for function
Fj . This is certainly the case when Fj is strictly convex. Furthermore, in the scalar
optimization case (m = 1), the curvature condition (14) implies sTk yk1 > 0 and hence
we have ρk

1 = 1/sTk yk1 and Algorithm 1 becomes the classical scalar BFGS algorithm
with standard Wolfe line searches.

Let us provide a motivation for our choice of Bk+1
j in (15). The classical BFGS

updating formula is commonly derived by working with the inverse Hessian approxi-
mation. For each j = 1, . . . ,m, denote by Hk

j the approximation for [∇2Fj (xk)]−1.

The updated BFGS approximation Hk+1
j is then naturally defined as

Hk+1
j :=

(
I − ρk

j sk(y
k
j)
T
)
Hk

j

(
I − ρk

j y
k
j s

T
k

)
+ ρk

j sks
T
k , (17)

with ρk
j given by (16); see, for example, [48]. Now, by taking the inverse of Hk+1

j in
(17) (which can be easily done using the Sherman–Morrison formula), we obtain the
update formula for Bk+1

j in (15).
The next theorem shows that Algorithm 1 is well defined without imposing any

convexity assumptions on the objectives. Its proof basically consists in showing that
Bk+1
j will be positive definite whenever Bk

j is positive definite, for each j = 1, . . . ,m.

From now on, we denote by L(x0) the level set {x ∈ R
n | F(x) ≤ F(x0)}.

Theorem 3.2 Suppose that F is bounded below in L(x0). Then, Algorithm 1 is well-
defined.

Proof The proof is by induction. Assume that Bk
j is positive definite for all j =

1, . . . ,m (which trivially holds for k = 0). Therefore, the subproblem in Step 1 is
solvable. If xk is Pareto critical, then by Lemma 2.3(i), Algorithm 1 stops at Step 2.
Thus, let us assume that xk is not Pareto critical. In this case, Lemma 2.3(ii) implies
that dk is a descent direction of F at xk . Since F is bounded below in L(x0), by

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1115

[40,Proposition 3.2], there exist intervals of positive step sizes satisfying conditions
(13)–(14) in Step 3 and hence xk+1 can be properly defined. We now show that Bk+1

j
in (15) remain definite positive for all j = 1, . . . ,m. This will be done by showing
that Hk+1

j in (17) is definite positive for all j = 1, . . . ,m. Since sk = αkdk , by the
definition of D, Lemma 2.2(i), and (14), we have

D(xk+1, sk) − ∇Fj (x
k)T sk ≥ αk[D(xk+1, dk) − D(xk, dk)]

≥ −αk(1 − c2)D(xk, dk) > 0,

and hence ρk
j defined in (16) is positive for all j = 1, . . . ,m. Let j ∈ {1, . . . ,m} and

0 �= z ∈ R
n . Then, by (17),

zT Hk+1
j z =

(
z − ρk

j z
T sk y

k
j

)T
Hk

j

(
z − ρk

j z
T sk y

k
j

)
+ ρk

j (z
T sk)

2 ≥ 0,

where the inequality follows from the fact that Hk
j � 0 and ρk

j > 0. If zT Hk+1
j z = 0,

then z − ρk
j z

T sk ykj = 0 and zT sk = 0, which imply that z = 0, giving a contradiction

with the definition of z. Therefore, zT Hk+1
j z > 0 and hence Hk+1

j is definite positive
for each j = 1, . . . ,m. ��

The following example illustrates that, in multicriteria optimization, in contrast to
the scalar case, sTk ykj can be nonpositive for some j ∈ {1, . . . ,m} even when a Wolfe

line search is used. This justifies our choice for ρk
j in (16), since a key condition

for the well-definedness of Algorithm 1 is that ρk
j > 0 for all j = 1, . . . ,m (see

Theorem 3.2).

Example 3.3 Let β ≥ 1, c1 = 10−4, c2 = 0.9, x0 = 0, and B0
1 = B0

2 = 1 be given and
consider the application of Algorithm 1 to the problem (1) with F : R → R

2 defined
by

F1(x) := x2

3
− x and F2(x) :=

⎧
⎪⎪⎨

⎪⎪⎩

−x, if x < 0
(1 − β)x3 + (β − 1)x2 − x, if 0 ≤ x < 1,
−βx + β − 1, if 1 ≤ x < 2,
βx2 − 5βx + 5β − 1, if x ≥ 2.

We note that F is continuously differentiable and bounded below in R. Direct cal-
culation show that d0 = 1 and α0 = 1 satisfies the Wolfe conditions (13)–(14),
implying that x1 = 1. Then, we have sT0 y01 = 2/3 and sT0 y02 = 1 − β ≤ 0. If we take
ρk
j = 1/sTk ykj in (15), the algorithm breaks down by trying to divide by zero, in the

case where β = 1. For β > 1, we would have B1
2 = 1 − β ≺ 0.

We end this section by establishing that Algorithm 1 satisfies the Zoutendijk-type
condition introduced in [40]. This will be an important result for the convergence
analysis.

Proposition 3.4 Suppose that F is bounded below in L(x0) and the Jacobian J F is
Lipschitz continuous in an open setN containing the level set L(x0), i.e., there exists

123

1116 Journal of Optimization Theory and Applications (2022) 194:1107–1140

L > 0 such that ‖J F(x) − J F(y)‖ ≤ L‖x − y‖ for all x, y ∈ N . Assume that
Algorithm 1 generates an infinite sequence {xk, dk}. Then,

∑

k≥0

D(xk, dk)2

‖dk‖2 < ∞.

Proof See [40,Proposition 3.3]. ��

4 Global Convergence

In this section, we present global convergence results for Algorithm 1. As is usual in
the scalar case, we assume that the objective functions are strongly convex, as formally
stated below.

Assumption 4.1 (i) F is twice continuously differentiable. (ii) The level set L(x0) is
convex and there exist constants a, b > 0 such that

a‖z‖2 ≤ zT∇2Fj (x)z ≤ b‖z‖2, ∀ j = 1, . . . ,m, (18)

for all z ∈ R
n and x ∈ L(x0).

Note that, under Assumption 4.1, sTk ykj > 0 and hence ρk
j = 1/sTk ykj for all

j = 1, . . . ,m and k ≥ 0. In this case, (15) always reduces to the classical BFGS
update for Fj . Furthermore, the assumptions of Theorem 3.2 and Proposition 3.4 are
trivially satisfied.

Hereafter, for all k ≥ 1 and j = 1, . . . ,m, we denote by βk
j the angle between sk

and Bk
j sk , i.e.,

cosβk
j := sTk Bk

j sk

‖sk‖‖Bk
j sk‖

, ∀k ≥ 1, ∀ j = 1, . . . ,m.

The following lemma presents a key result: we prove that cosβk
j stays away from

0, simultaneously for all objectives, for an arbitrary fraction p of the iterates. As
far as we know, in the single-criterion optimization, this result was first shown in
[6,Theorem 2.1]; see also [50,Lemma 4].

Lemma 4.2 Suppose that Assumption 4.1 holds and that {xk} is a sequence generated
by Algorithm 1. Then, for any p ∈]0, 1[, there exists a constant δ > 0 such that, for
any k ≥ 1, the relation

cosβ	
j ≥ δ, ∀ j = 1, . . . ,m,

holds for at least �p(k + 1)� values of 	 ∈ {0, 1, . . . , k}.

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1117

Proof Let k ≥ 1 and p ∈]0, 1[be given and set ε := 1 − p and p̄ := 1 − ε/m. For
each j = 1, . . . ,m, we can proceed as in [6,Theorem 2.1] with p̄ ∈]0, 1[to show
that there exists δ j > 0 such that cosβ	

j ≥ δ j for at least � p̄(k + 1)� values of 	 ∈
{0, 1, . . . , k}. Define δ := min j=1,...,m δ j , Gk

j := {	 ∈ {0, 1, . . . , k} | cosβ	
j ≥ δ}, and

Bk
j := {	 ∈ {0, 1, . . . , k} | cosβ	

j < δ} for all j = 1, . . . ,m. Note that Gk
j ∩ Bk

j = ∅
and k + 1 = |Gk

j | + |Bk
j | for all j = 1, . . . ,m. Therefore, by the definition of p̄ and

using some properties of the ceiling and floor functions, we have

|Gk
j | ≥ � p̄(k + 1)� = (k + 1) + �− ε

m
(k + 1)� = (k + 1) − 	 ε

m
(k + 1)
,

and

|Bk
j | ≤ 	 ε

m
(k + 1)
,

for all j = 1, . . . ,m. Thus, | ∪m
j=1 Bk

j | ≤ m	 ε
m (k + 1)
 ≤ ε(k + 1). As consequence,

since we also have k + 1 = |∩m
j=1 Gk

j | + | ∪m
j=1 Bk

j |, by the definition of ε, it follows
that

| m∩
j=1

Gk
j | ≥ (k + 1) − ε(k + 1) = (1 − ε)(k + 1) = p(k + 1),

completing the proof. ��
The next lemma presents a useful technical result.

Lemma 4.3 Suppose that Assumption 4.1 holds and that {xk} is a sequence generated
by Algorithm 1. Then, for all k ≥ 0,

D(xk, dk) ≤ −δk

2
‖dk‖‖dSD(xk)‖,

where δk := min j=1,...,m cosβk
j .

Proof Let k ≥ 0 be given. By the definitions of δk , cosβk
j , and sk , we have

δk ≤ cosβk
j = sTk Bk

j sk

‖sk‖‖Bk
j sk‖

= (dk)T Bk
j d

k

‖dk‖‖Bk
j d

k‖ , ∀ j = 1, . . . ,m.

Therefore,

(dk)T Bk
j d

k ≥ δk‖dk‖‖Bk
j d

k‖, ∀ j = 1, . . . ,m.

Hence, from Lemma 2.3(ii) and (9), we obtain

−D(xk, dk) > −θ(xk) = 1

2

m∑

j=1

λkj (d
k)T Bk

j d
k ≥ δk

2
‖dk‖

m∑

j=1

λkj‖Bk
j d

k‖.

123

1118 Journal of Optimization Theory and Applications (2022) 194:1107–1140

Thus, the triangle inequality, together with (7), (8), and Lemma 2.4(iv), implies

−D(xk, dk) ≥ δk

2
‖dk‖‖

m∑

j=1

λkj B
k
j d

k‖ = δk

2
‖dk‖‖

m∑

j=1

λkj∇Fj (x
k)‖

≥ δk

2
‖dk‖‖dSD(xk)‖,

obtaining the desired result. ��
We are now ready to present the main convergence result of this section.

Theorem 4.4 Suppose that Assumption 4.1 holds and that {xk} is a sequence generated
by Algorithm 1. Then, {xk} converges to a Pareto optimal point x∗ of F.

Proof By Lemma 4.2, there exist a constant δ > 0 and K ⊂∞N such that

cosβk
j ≥ δ, ∀k ∈ K and ∀ j = 1, . . . ,m.

Therefore, Lemma 4.3 implies that

D(xk, dk) ≤ − δ

2
‖dk‖‖dSD(xk)‖, ∀k ∈ K .

Thus, from Proposition 3.4, we have

∞ >
∑

k≥0

D(xk, dk)2

‖dk‖2 ≥
∑

k∈K

D(xk, dk)2

‖dk‖2 ≥
∑

k∈K

δ4

4
‖dSD(xk)‖2,

and hence

lim
k∈K dSD(xk) = 0. (19)

Now, since L is compact and xk ∈ L for all k ∈ K , there exist K1 ⊂∞ K and x∗ ∈ L
such that limk∈K1 x

k = x∗. Thus, by (19) and Lemma 2.4(iii), we obtain dSD(x∗) = 0.
Hence, by Lemma 2.1(iii), we conclude that x∗ is Pareto optimal.

Let us show that limk→∞ xk = x∗. Suppose for contradiction that there exist x̄ ∈ L
with x̄ �= x∗ and K2 ⊂∞N such that limk∈K2 x

k = x̄ . We first claim that F(x̄) �= F(x∗).
Indeed, if F(x̄) = F(x∗), by Assumption 4.1, for all t ∈ [0, 1], we have

Fj (t x̄ + (1 − t)x∗) < t Fj (x̄) + (1 − t)Fj (x
∗) = Fj (x

∗), ∀ j = 1, . . . ,m,

contradicting the fact that x∗ is a Pareto optimal point. Hence, F(x̄) �= F(x∗) holds,
as claimed. Now, since x∗ is Pareto optimal, there exists j0 ∈ {1, . . . ,m} such that
Fj0(x

∗) < Fj0(x̄). Therefore, remembering that limk∈K1 x
k = x∗ and limk∈K2 x

k =

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1119

x̄ , we can choose k1 ∈ K1 and k2 ∈ K2 with k1 < k2 so that Fj0(x
k1) < Fj0(x

k2).
This contradicts the sufficient decrease condition (13) which, in particular, implies
that {Fj (xk)} is a decreasing sequence for all j = 1, . . . ,m. Thus, limk→∞ xk = x∗
and the proof is complete. ��

In the remainder of this section, our aim is to show that {xk} converges to x∗ rapidly
enough that

∑

k≥0

‖xk − x∗‖ < ∞. (20)

To the best of our knowledge, this is the first work to establish this result for multi-
objective optimization. As we will see, (20) plays an important role in the superlinear
convergence. We start with some technical results.

Lemma 4.5 Suppose that Assumption 4.1 holds and that {xk} is a sequence generated
by Algorithm 1. Let x∗ be as in Theorem 4.4. Then, for all k ≥ 0, we have

(i) ‖xk − x∗‖ ≤ 2

a
‖dSD(xk)‖;

(ii) ‖sk‖ ≥ (1 − c2)

2b
δk‖dSD(xk)‖, where δk is given as in Lemma 4.3.

Proof Let k ≥ 0 be given and consider λSD(xk) ∈ R
m as in (11)–(12), i.e., λSD(xk)

is such that dSD(xk) = − ∑m
j=1 λSD

j (xk)∇Fj (xk). Define the scalar-valued function
FSD : Rn → R by

FSD(x) :=
m∑

j=1

λSD
j (xk)Fj (x).

Therefore, by (11) and (18), it is easy to see that

∫ 1

0
(1 − τ)zT∇2FSD(xk + τ z)zdτ ≥ a

2
‖z‖2, ∀z ∈ R

n .

Thus, by evaluating the above integral (which can be done by integration by parts),
taking z := x∗ − xk , and considering that dSD(xk) = −∇FSD(xk), we obtain

FSD(x∗) − FSD(xk) + dSD(xk)T (x∗ − xk) ≥ a

2
‖x∗ − xk‖2.

Since Fj (x∗) ≤ Fj (xk) for all j = 1, . . . ,m, we have FSD(x∗) − FSD(xk) ≤ 0 and
hence

a

2
‖x∗ − xk‖2 ≤ dSD(xk)T (x∗ − xk) ≤ ‖dSD(xk)‖‖x∗ − xk‖,

proving part (i).

123

1120 Journal of Optimization Theory and Applications (2022) 194:1107–1140

Let us consider part (ii). Let k ≥ 0 be given and define

Ḡk
j :=

∫ 1

0
∇2Fj (x

k + τ sk)dτ, ∀ j = 1, . . . ,m.

Then,

Ḡk
j sk = ykj , ∀ j = 1, . . . ,m. (21)

Now, by (14) and the definition of D, it follows that

(c2 − 1)D(xk, dk) ≤ D(xk+1, dk) − D(xk, dk)

≤ max
j=1,...,m

(∇Fj (x
k+1) − ∇Fj (x

k))T dk = max
j=1,...,m

(ykj)
T dk,

where the second inequality follows from the fact that, for any u, v ∈ R
m , we have

max j (u j − v j) ≥ max j u j − max j v j . Therefore, by (21), we obtain

(c2 − 1)D(xk, dk) ≤ max
j=1,...,m

sTk Ḡ
k
j d

k = αk max
j=1,...,m

(dk)T Ḡk
j d

k

≤ bαk‖dk‖2 = b‖sk‖‖dk‖,
where the second inequality comes from (18). Hence, using Lemma 4.3 and taking
into account that c2 < 1, we have

−(c2 − 1)
δk

2
‖dk‖‖dSD(xk)‖ ≤ b‖sk‖‖dk‖,

concluding the proof. ��
Theorem 4.6 Suppose that Assumption 4.1 holds and that {xk} is a sequence generated
by Algorithm 1. Let x∗ be as in Theorem 4.4. Then, {xk} converges R-linearly to x∗.
As a consequence, (20) holds.

Proof Let λSD(x∗) ∈ R
m be a steepest descent multiplier associated with x∗ as in

(11)–(12), i.e., dSD(x∗) = − ∑m
j=1 λSD

j (x∗)∇Fj (x∗). Let us define the scalar-valued
function F∗ : Rn → R given by

F∗(x) :=
m∑

j=1

λSD
j (x∗)Fj (x).

Note that

∇F∗(x∗) =
m∑

j=1

λSD
j (x∗)∇Fj (x

∗) = −dSD(x∗) = 0, (22)

where the last equality comes from Lemma 2.4(i). Now, by doing a second-order
Taylor series expansion of Fj around x∗ and using (18), we obtain

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1121

∇Fj (x
∗)T (xk − x∗) + a

2
‖xk − x∗‖2 ≤ Fj (x

k) − Fj (x
∗)

≤ ∇Fj (x
∗)T (xk − x∗) + b

2
‖xk − x∗‖2,

for all j = 1, . . . ,m and for all k ≥ 0. By multiplying this expression by λSD
j (x∗),

summing over all indices j = 1, . . . ,m, and taking into account (11) and (22), we
obtain

a

2
‖xk − x∗‖2 ≤ F∗(xk) − F∗(x∗) ≤ b

2
‖xk − x∗‖2, ∀k ≥ 0. (23)

From the right hand side of (23) and Lemma 4.5(i), we obtain

F∗(xk) − F∗(x∗) ≤ 2b

a2
‖dSD(xk)‖2, ∀k ≥ 0. (24)

On the other hand, similarly to (23), the sufficient descent condition (13) implies

F∗(xk+1) ≤ F∗(xk) + c1αkD(xk, dk), ∀k ≥ 0.

By subtracting the term F∗(x∗) in both sides of this inequality and using Lemma 4.3,
we have

F∗(xk+1) − F∗(x∗) ≤ F∗(xk) − F∗(x∗) − c1
2

δk‖sk‖‖dSD(xk)‖,

for all k ≥ 0, where δk = min j=1,...,m cosβk
j . Therefore, by Lemma 4.5(ii), it follows

that

F∗(xk+1) − F∗(x∗) ≤ F∗(xk) − F∗(x∗) − c1(1 − c2)

4b
δ2k‖dSD(xk)‖2, ∀k ≥ 0.

Hence, by (24), we have

F∗(xk+1) − F∗(x∗) ≤
(
1 − c1(1 − c2)a2

8b2
δ2k

) (
F∗(xk) − F∗(x∗)

)
, ∀k ≥ 0. (25)

For each k ≥ 0, define r̄k := 1−c1(1−c2)a2δ2k/(8b
2). It is easy to see that r̄k ∈]0, 1],

for all k ≥ 0.
Now, let p ∈]0, 1[be given. Then, by Lemma 4.2, there exists a constant δ > 0

such that, for any k ≥ 1, the number of elements 	 ∈ {0, 1, . . . , k} for which δ	 ≥ δ

is at least �p(k + 1)�. Hence, by defining Gk := {	 ∈ {0, 1, . . . , k} | δ	 ≥ δ}, we have
|Gk | ≥ �p(k + 1)� and

r̄	 ≤ 1 − c1(1 − c2)a2δ2

8b2
:= r̄ < 1, ∀	 ∈ Gk .

123

1122 Journal of Optimization Theory and Applications (2022) 194:1107–1140

Therefore, by (25) and taking into account that F∗(x0) − F∗(x∗) > 0, we obtain,
for all k ≥ 1,

F∗(xk+1) − F∗(x∗) ≤
[

k∏

	=0

r̄	

] (
F∗(x0) − F∗(x∗)

)

≤
⎡

⎣
∏

	∈Gk

r̄	

⎤

⎦
(
F∗(x0) − F∗(x∗)

)

≤
⎡

⎣
∏

	∈Gk

r̄

⎤

⎦
(
F∗(x0) − F∗(x∗)

)

≤ r̄ �p(k+1)� (
F∗(x0) − F∗(x∗)

)
,

where the second inequality follows from the fact that r̄	 ≤ 1 for all 	 /∈ Gk . Thus, by
defining r1/p := r̄ , we have

F∗(xk+1) − F∗(x∗) ≤ rk+1
(
F∗(x0) − F∗(x∗)

)
, ∀k ≥ 1. (26)

By combining the left hand side of (23) with the above inequality, we find that

‖xk+1 − x∗‖ ≤
[
2

a

(
F∗(x0) − F∗(x∗)

)]1/2
(r1/2)k+1,

and hence {xk} converges R-linearly to x∗. Finally, by summing this expression and
taking into account that r < 1, we conclude that (20) holds. ��
Remark 4.7 Note that (26) implies that {F∗(xk)} is R-linearly convergent to F∗(x∗). It
is worth mentioning that Theorem 4.6 can be seen as the extension of [6,Theorem 3.1]
for multiobjective optimization; see also [50,Lemma 5].

5 Superlinear Local Convergence

Now we study the local convergence properties of Algorithm 1. The results of this
section also apply to nonconvex problems, although it is not possible to establish
global convergence in this general case.Wewill assume that {xk} converges to a Pareto
optimal point x∗ and prove, under suitable assumptions, that the rate of convergence
is Q-superlinear.

Assumption 5.1 (i) F is twice continuously differentiable. (ii) The sequence {xk}
generated by Algorithm 1 converges to a Pareto optimal point x∗. (iii) For each j =
1, . . . ,m, ∇2Fj (x∗) is positive definite and L-Lipschitz continuous at x∗. Thus, there
exist a neighborhood U of x∗ and positive constants a, b, and L such that

a‖z‖2 ≤ zT∇2Fj (x)z ≤ b‖z‖2, ∀ j = 1, . . . ,m, (27)

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1123

and

‖∇2Fj (x) − ∇2Fj (x
∗)‖ ≤ L‖x − x∗‖, ∀ j = 1, . . . ,m, (28)

for all z ∈ R
n and x ∈ U .

Essentially, Assumption 5.1 says that, in a neighborhoodU of x∗, F is strongly con-
vex and theHessians∇2Fj (j = 1, . . . ,m) are Lipschitz continuous at x∗. Throughout
this section, we assume, without loss of generality, that {xk} ⊂ U , i.e., (27) and (28)
hold at xk for all k ≥ 0. Since Assumption 5.1 is more restrictive than Assumption 4.1,
the results of the previous section remain true and will be used here without further
explanation.

The next theorem establishes that the Dennis–Moré condition [18] holds individu-
ally for each objective function Fj (see (30) below). The proof of this result is quite
straightforward from the scalar case, and its details will therefore be omitted. We
emphasize, however, that (20) plays an essential role in this task. We also include in
the statement of the theorem an intermediate step (see (29) below) that will be evoked
in forthcoming results.

Theorem 5.2 Suppose that Assumption 5.1 holds. Then,

lim
k→∞

sTk Bk
j sk

sTk ∇2Fj (x∗)sk
∀ j = 1, . . . ,m. (29)

and

lim
k→∞

‖(Bk
j − ∇2Fj (x∗))dk‖

‖dk‖ = 0, ∀ j = 1, . . . ,m, (30)

or, equivalently,

lim
k→∞

‖(Bk
j − ∇2Fj (xk))dk‖

‖dk‖ = 0, ∀ j = 1, . . . ,m. (31)

Proof Using (20), the proof follows similarly to [48,Theorem 6.6] (see also
[6,Theorem 3.2]). ��

Let λk := λ(xk) ∈ R
m be the Lagrange multiplier associated with xk of problem

(6) fulfilling (7)–(9). From now on, we define, for all k ≥ 0,

Fk
λ (x) :=

m∑

j=1

λkj Fj (x) and Bk
λ :=

m∑

j=1

λkj B
k
j . (32)

In the following, we show that the family of functions {Fk
λ (x)}k≥0 satisfies a Dennis–

Moré-type condition.

123

1124 Journal of Optimization Theory and Applications (2022) 194:1107–1140

Theorem 5.3 Suppose that Assumption5.1holds. For each k ≥ 0, consider Fk
λ : Rn →

R and Bk
λ as in (32). Then,

lim
k→∞

‖(Bk
λ − ∇2Fk

λ (x∗))dk‖
‖dk‖ = 0 (33)

or, equivalently,

lim
k→∞

‖∇Fk
λ (xk) + ∇2Fk

λ (xk)dk‖
‖dk‖ = 0. (34)

Proof From the definitions of Bk
λ and Fk

λ , using the triangle inequality, and taking into
account (8), we have

lim
k→∞

‖(Bk
λ − ∇2Fk

λ (x∗))dk‖
‖dk‖ = lim

k→∞
‖ ∑m

j=1 λkj (B
k
j − ∇2Fj (x∗))dk‖
‖dk‖

≤ lim
k→∞

m∑

j=1

λkj

‖(Bk
j − ∇2Fj (x∗))dk‖

‖dk‖

≤ lim
k→∞ max

j=1,...,m

‖(Bk
j − ∇2Fj (x∗))dk‖

‖dk‖ .

This inequality, together with (30), yields (33). Let us prove that (33) implies (34).
First, note that, by (7), we have Bk

λd
k = −∇Fk

λ (xk) and hence (34) is equivalent to

lim
k→∞

‖(Bk
λ − ∇2Fk

λ (xk))dk‖
‖dk‖ = 0. (35)

Now, it is easy to see that

lim
k→∞

‖(Bk
λ − ∇2Fk

λ (xk))dk‖
‖dk‖ ≤ lim

k→∞
‖(Bk

λ − ∇2Fk
λ (x∗))dk‖

‖dk‖
+ lim

k→∞ ‖∇2Fk
λ (x∗) − ∇2Fk

λ (xk)‖
(36)

and

lim
k→∞ ‖∇2Fk

λ (x∗) − ∇2Fk
λ (xk)‖ = lim

k→∞ ‖
m∑

j=1

λkj (∇2Fj (x
∗) − ∇2Fj (x

k))‖

≤ lim
k→∞

m∑

j=1

λkj‖∇2Fj (x
∗) − ∇2Fj (x

k)‖

≤ lim
k→∞ max

j=1,...,m
‖∇2Fj (x

∗) − ∇2Fj (x
k)‖ = 0,

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1125

because ∇2Fj (·) is continuous for every j = 1, . . . ,m. Therefore, (35) follows from
(36) and (33). The proof that (34) implies (33) can be obtained similarly. ��

The following auxiliary result provides some properties related to the length of
direction dk and the optimal value θ(xk).

Lemma 5.4 Suppose that Assumption 5.1 holds. Then, there exist positive constants ā
and b̄ such that, for all k sufficiently large, we have:

ā‖dk‖2 ≤ |θ(xk)| ≤ b̄‖dk‖2. (37)

Moreover,

lim
k→∞ ‖dk‖ = 0. (38)

Proof By (29), taking γ ∈]0, 1[, we obtain

1 − γ ≤ sTk Bk
j sk

sTk ∇2Fj (x∗)sk
≤ 1 + γ, ∀ j = 1, . . . ,m, (39)

for all k sufficiently large. On the other hand, by (27), it follows that

1

b

sTk Bk
j sk

‖sk‖2 ≤ sTk Bk
j sk

sTk ∇2Fj (x∗)sk
≤ 1

a

sTk Bk
j sk

‖sk‖2 , ∀k ≥ 0, ∀ j = 1, . . . ,m.

Therefore, by using (39) and recalling that sk = αkdk , we have

a(1 − γ) ≤ sTk Bk
j sk

‖sk‖2 = (dk)T Bk
j d

k

‖dk‖2 ≤ b(1 + γ), ∀ j = 1, . . . ,m,

for all k sufficiently large. Hence, by (8) and (9), we obtain

a(1 − γ)

2
‖dk‖2 ≤ |θ(x)| = 1

2

m∑

j=1

λkj (d
k)T Bk

j d
k ≤ b(1 + γ)

2
‖dk‖2,

for all k sufficiently large. By defining ā := a(1 − γ)/2 and b̄ := b(1 + γ)/2, we
prove (37).

Finally, by (37), we have

0 ≤ lim
k→∞ ā‖dk‖ ≤ lim

k→∞
|θ(x)|
‖dk‖ ≤ lim

k→∞
|D(xk, dk)|

‖dk‖ = 0,

where the second inequality follows from the fact that D(xk, dk) < θ(x) < 0 (see
Lemma 2.3(ii)) and the final equality is a consequence of Proposition 3.4. This con-
cludes the proof. ��

123

1126 Journal of Optimization Theory and Applications (2022) 194:1107–1140

The following result shows that the unit step size satisfies the Wolfe conditions
(13)–(14) as the iterates converge to x∗.

Theorem 5.5 Suppose that Assumption 5.1 holds. Then, the step size αk = 1 is admis-
sible for all k sufficiently large.

Proof Let j ∈ {1, . . . ,m} be an arbitrary index. By Taylor’s formula, we have

Fj (x
k + dk) =Fj (x

k) + ∇Fj (x
k)T dk + 1

2
(dk)T∇2Fj (x

k)dk + o(‖dk‖2)

=Fj (x
k) + ∇Fj (x

k)T dk + 1

2
(dk)T Bk

j d
k

+ 1

2
(dk)T

(
∇2Fj (x

k) − Bk
j

)
dk + o(‖dk‖2)

=Fj (x
k) + ∇Fj (x

k)T dk + 1

2
(dk)T Bk

j d
k + o(‖dk‖2),

where the last equality is a consequence of (31). Therefore, by (5),

Fj (x
k + dk) ≤ Fj (x

k) + tθ(xk) + (1 − t)θ(xk) + o(‖dk‖2),

where t := 2c1 < 1. Thus, by (37), we have, for all k sufficiently large,

Fj (x
k + dk) ≤ Fj (x

k) + tθ(xk) − ā(1 − t)‖dk‖2 + o(‖dk‖2),
= Fj (x

k) + tθ(xk) +
[
−ā(1 − t) + o(‖dk‖2)

‖dk‖2
]

‖dk‖2.

For k large enough, the term in square brackets is negative and then

Fj (x
k + dk) ≤ Fj (x

k) + tθ(xk).

On the other hand, combining (7)–(9), we obtain

θ(xk) = 1

2

m∑

j=1

λkj∇Fj (x
k)T dk ≤ 1

2
D(xk, dk).

It follows that from the last two inequalities and the definition of t that

Fj (x
k + dk) ≤ Fj (x

k) + c1D(xk, dk),

for all k sufficiently large. Since j ∈ {1, . . . ,m} was arbitrary, we conclude that the
step size αk = 1 satisfies (13) for all k sufficiently large.

Consider now the curvature condition (14). From the definition of Fk
λ in (32), we

have

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1127

−
m∑

j=1

λkj∇Fj (x
k)T dk = (dk)T

m∑

j=1

λkj∇2Fj (x
k)dk

−
m∑

j=1

λkj

[
∇2Fj (x

k)dk + ∇Fj (x
k)

]T
dk

= (dk)T
m∑

j=1

λkj∇2Fj (x
k)dk

−
[
∇Fk

λ (xk) + ∇2Fk
λ (xk)dk

]T
dk .

Therefore, by (27), (8), and (34), we obtain

−
m∑

j=1

λkj∇Fj (x
k)T dk ≥ a‖dk‖2 + o(‖dk‖2) = ‖dk‖2

[
a + o(‖dk‖2)

‖dk‖2
]

.

Hence, by (38), for k sufficiently large, it follows that

−
m∑

j=1

λkj∇Fj (x
k)T dk ≥ a

2
‖dk‖2. (40)

On the other hand, by the mean value theorem, there exists vk := xk + tkdk for some
tk ∈]0, 1[such that

∇Fk
λ (xk + dk) = ∇Fk

λ (xk) + ∇2Fk
λ (vk)dk .

Therefore,

|∇Fk
λ (xk + dk)T dk |

‖dk‖2 ≤ ‖∇Fk
λ (xk) + ∇2Fk

λ (xk)dk‖
‖dk‖ + ‖∇2Fk

λ (vk) − ∇2Fk
λ (xk)‖.

(41)

Now, by the definitions of Fk
λ and vk , and taking into account (8) and (38), we obtain

lim
k→∞ ‖∇2Fk

λ (vk) − ∇2Fk
λ (xk)‖ = lim

k→∞ ‖
m∑

j=1

λkj (∇2Fj (x
k + tkd

k) − ∇2Fj (x
k))‖

≤ lim
k→∞

m∑

j=1

λkj‖∇2Fj (x
k + tkd

k) − ∇2Fj (x
k)‖

≤ lim
k→∞ max

j=1,...,m
‖∇2Fj (x

k + tkd
k) − ∇2Fj (x

k)‖ = 0.

123

1128 Journal of Optimization Theory and Applications (2022) 194:1107–1140

Hence, it follows from (34) and (41) that

lim
k→∞

|∇Fk
λ (xk + dk)T dk |

‖dk‖2 = 0.

Thus, for k large enough, we have

|∇Fk
λ (xk + dk)T dk | ≤ c2

a

4
‖dk‖2,

which, together with (40), yields

m∑

j=1

λkj∇Fj (x
k + dk)T dk = ∇Fk

λ (xk + dk)T dk ≥ −c2
a

4
‖dk‖2

≥ c2
2

m∑

j=1

λkj∇Fj (x
k)T dk .

Finally, remembering that θ(xk) = (1/2)
∑m

j=1 λkj∇Fj (xk)T dk , if follows from the
last inequality and Lemma 2.3(ii) that

D(xk + dk, dk) ≥
m∑

j=1

λkj∇Fj (x
k + dk)T dk ≥ c2θ(xk) ≥ c2D(xk, dk),

for all k sufficiently large, concluding the proof. ��
The next lemma presents a useful inequality that will be used in our main result.

Its proof can be found in [19,Lemma 4.1.15] and will therefore be omitted here.

Lemma 5.6 Suppose that Assumption 5.1 holds. Then, for all j = 1, . . . ,m, there
holds:

‖∇Fj (x
k+1) − ∇Fj (x

k) − ∇2Fj (x
∗)(xk+1 − xk)‖

≤ L
‖xk+1 − x∗‖ + ‖xk − x∗‖

2
‖xk+1 − xk‖,

where L is given in (28).

We are now able to prove the superlinear convergence of Algorithm 1. This result
is based on [18,Theorem 2.2].

Theorem 5.7 Suppose that Assumption 5.1 holds. Then, {xk} converges to x∗ Q-
superlinearly.

Proof By Theorem 5.5, we may assume, without loss of generality, that αk = 1 and
hence dk = xk+1 − xk , for all k. Thus, by (7), we have Bk

λ(xk+1 − xk) = −∇Fk
λ (xk)

and then

(Bk
λ − ∇2Fk

λ (x∗))(xk+1 − xk) =∇Fk
λ (xk+1) − ∇Fk

λ (xk)

− ∇2Fk
λ (x∗)(xk+1 − xk) − ∇Fk

λ (xk+1).

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1129

Therefore,

‖∇Fk
λ (xk+1)‖

‖xk+1 − xk‖ ≤‖(Bk
λ − ∇2Fk

λ (x∗))(xk+1 − xk)‖
‖xk+1 − xk‖

+ ‖∇Fk
λ (xk+1) − ∇Fk

λ (xk) − ∇2Fk
λ (x∗)(xk+1 − xk)‖

‖xk+1 − xk‖ .

(42)

Note that the second term on the right hand side of this inequality is less than or equal
to

max
j=1,...,m

‖∇Fj (xk+1) − ∇Fj (xk) − ∇2Fj (x∗)(xk+1 − xk)‖
‖xk+1 − xk‖

and, by Lemma 5.6, this last expression is less than or equal to

L
‖xk+1 − x∗‖ + ‖xk − x∗‖

2
.

Hence, taking limits on both sides of (42) and using (33), we get

lim
k→∞

‖∇Fk
λ (xk+1)‖

‖xk+1 − xk‖ = 0. (43)

On the other hand, by the definition of Fk
λ , Lemma 2.4(iv), and Lemma 4.5(i), we find

that

‖∇Fk
λ (xk+1)‖

‖xk+1 − xk‖ ≥ ‖ ∑m
j=1 λkj∇Fj (xk+1)‖

‖xk+1 − x∗‖ + ‖xk − x∗‖ ≥ ‖dSD(xk+1)‖
‖xk+1 − x∗‖ + ‖xk − x∗‖

≥ a

2

‖xk+1 − x∗‖
‖xk+1 − x∗‖ + ‖xk − x∗‖ = a

2

1

1 + ‖xk−x∗‖
‖xk+1−x∗‖

.

Therefore, by using (43), we obtain

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0,

and hence that the rate of convergence is Q-superlinear. ��

6 Numerical Experiments

This section presents some numerical results in order to illustrate the potential practical
advantages of Algorithm 1. We are mainly interested in verifying the effectiveness of
using a Wolfe line search procedure and updating the Hessian approximations at each

123

1130 Journal of Optimization Theory and Applications (2022) 194:1107–1140

iteration in a BFGS scheme. For this purpose, we considered the following methods
in the reported tests:

– Algorithm 1 (BFGS-Wolfe): our proposed scheme in which the Hessian approx-
imations are updated at each iteration by (15) and the step sizes are calculated
satisfying the Wolfe conditions (13)–(14).

– Standard BFGS-Armijo: a BFGS algorithm in which the Hessian approximations
are updated, for each j = 1, . . . ,m, by

Bk+1
j :=

⎧
⎪⎨

⎪⎩
Bk
j −

Bk
j sks

T
k Bk

j

sTk Bk
j sk

+ ykj (y
k
j)
T

sTk ykj
, if sTk ykj ≥ εmin{1, |θ(xk)|},

Bk
j , otherwise,

(44)

where ε > 0 is an algorithmic parameter and the step sizes are calculated satisfying
the Armijo-type condition (13). In our experiments, we used ε = 10−6.

– Standard BFGS-Wolfe: a BFGS algorithm in which the Hessian approximations
are updated by (44) and the step sizes are calculated satisfying theWolfe conditions
(13)–(14).

To the best of our knowledge, until the present work, cautious updates as in (44)
were the only alternatives toBFGSmethodswhen applied to nonconvexmultiobjective
problems. The update scheme (44) was proposed in [52] and is similar to the one used
in [38] for scalar optimization.

We implemented the algorithms in Fortran 90. The search directions d(xk) and the
optimal values θ(xk) were calculated by solving subproblem (6) using Algencan [4],
an augmented Lagrangian code for general nonlinear programming. For computing a
step size satisfying theWolfe conditions (13)–(14), we used the algorithm proposed in
[41]. This algorithm involves several quadratic/cubic polynomial interpolations of the
objective functions, combines backtracking and extrapolation strategies, and is capable
of calculating the step size in a finite number of (inner) iterations. Interpolations
techniques were also used to compute step sizes that satisfy only the Armijo-type
condition (13). We used c1 = 10−4, c2 = 0.1, and set B0

j = In for all j = 1, . . . ,m.

We stopped the algorithms at xk reporting convergence when
∣∣θ(xk)

∣∣ ≤ 5× eps1/2,

where eps = 2−52 ≈ 2.22× 10−16 is the machine precision. The maximum number
of allowed iterations was set to 2000. Our codes are freely available at https://github.
com/lfprudente/bfgsMOP.

Although the BFGS method enjoys global convergence only under convexity
assumptions, favorable numerical experiences are also commonly observed for non-
convex problems. Thus, the set of test problems chosen includes convex and nonconvex
problems commonly found in themultiobjective optimization literature. Table 1 shows
their main characteristics. The first two columns contain the problem name and the
corresponding reference. Columns “n" and “m" give the number of variables and the
number of objectives, respectively. “Conv." indicates whether the problem is convex
or not. Many problems have box constraints in their original definitions. In some of
them, the objectives are unbounded outside the box. In these cases, we added a term
that penalizes the lack of fulfillment of the constraints to each objective. If we denote

123

https://github.com/lfprudente/bfgsMOP
https://github.com/lfprudente/bfgsMOP

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1131

the box by {x ∈ R
n | l ≤ x ≤ u} where l, u ∈ R

n , the penalty term is defined
by μ

3

[‖max{0, x − u}‖33 + ‖max{0,−x + l}‖33
]
, where μ = 1010 and the maximum

is taken componentwise. This forces the iterates to remain inside the box. Column
“Penal.” reports whether a given problem was penalized or not. The starting points
were taken belonging to the corresponding boxes. We point out that the boxes are not
considered by the algorithms themselves.

Given a multiobjective optimization problem, we are especially interested in esti-
mating its Pareto frontier. Toward this goal, a strategy often used is to run the algorithm
at hand from several different starting points. In view of this application, we consid-
ered 300 random starting points for each problem in Table 1. Each instance was seen
as an independent problem and was solved by all algorithms. Figure 1 shows the
results using performance profiles [20]. We compared the algorithms with respect to:
(a) number of iterations; (b) CPU time; (c) number of objective function evaluations;
(d) number of derivative evaluations.

We start our analysis by noting that all algorithms proved to be robust on the cho-
sen set of test problems, which illustrates the practical capability of the BFGS method
even for nonconvex problems. Algorithm 1, Standard BFGS-Armijo and Standard
BFGS-Wolfe algorithms successfully solved 99.8%, 99.7%, and 98.6% of the prob-
lem instances. Regarding efficiency, taking into account the number of iterations,
Algorithm 1 (86.2%) had the best performance followed by Standard BFGS-Wolfe
(76.5%) andStandardBFGS-Armijo (27.3%) algorithms, see Fig. 1a. Thiswas directly
reflected in CPU time (efficiency of 68.7%, 61.6%, and 22.6% for Algorithm 1, Stan-
dard BFGS-Wolfe algorithm, and Standard BFGS-Armijo algorithm, respectively), as
seen in Fig. 1b. Concerning the number of function and derivative evaluations, the
Standard BFGS-Armijo algorithm was the most efficient, see Fig. 1c, d. This was
somewhat expected as the Wolfe line search uses more information from the objec-
tives than the Armijo line search. Even so, the Standard BFGS-Armijo algorithm was
quickly outperformed by the other algorithms in terms of the number of function eval-
uations. The strong correlation between the number of iterations and CPU time can
be explained by the fact that, in our experiments, the computational cost is largely
dominated by the solutions of the subproblems to calculate the search directions. In
fact, Algorithm 1 and the Standard BFGS-Armijo algorithm spent, on average, 93.2%
and 94.5% of the total CPU time on solving the subproblems, and only 2.0% and 0.7%
on calculating the step sizes, respectively. Therefore, at least in our tests, the compu-
tational effort in the line searches can be neglected and the use of Wolfe step sizes is
justified due to its impact on decreasing the number of iterations and, consequently,
the CPU time. Another issue of interest concerns the length of step sizes calculated
by the Wolfe and Armijo line search procedures. Figure 2 shows the histograms (nor-
malized by relative probability) containing the frequency distribution of all step sizes
calculated by Algorithm 1 and the Standard BFGS-Armijo algorithm. As can be seen,
in 83.61% of the iterations, the Wolfe step size was greater than or equal to one. We
point out that, due to the use of extrapolation strategies, even step sizes larger than one
can be considered in the Wolfe line search procedure. A similar frequency (78.18%)
for the unit step was observed for the Armijo step sizes. In contrast, step sizes smaller
than 0.1 were observed in 8.66% and 18.28% for the Wolfe and Armijo line searches,
respectively. This corroborates the discussion in Remark 3.1 about the Wolfe condi-

123

1132 Journal of Optimization Theory and Applications (2022) 194:1107–1140

Table 1 List of test problems Problem Ref. n m Conv. Penal.

AP1 [1] 2 3 Y N

AP2 [1] 1 2 Y N

AP3 [1] 2 2 N N

AP4 [1] 3 3 Y N

BK1 [33] 2 2 Y N

DD1 [15] 5 2 N Y

DGO1 [33] 1 2 N N

DGO2 [33] 1 2 Y Y

DTLZ1 [17] 7 3 N Y

DTLZ2 [17] 7 3 N Y

DTLZ3 [17] 7 3 N Y

DTLZ4 [17] 7 3 N Y

FA1 [33] 3 3 N Y

Far1 [33] 2 2 N N

FDS [24] 5 3 Y N

FF1 [33] 2 2 N N

Hil1 [32] 2 2 N N

IKK1 [33] 2 3 Y N

IM1 [33] 2 2 N Y

JOS1 [34] 2 2 Y N

JOS4 [34] 20 2 N Y

KW2 [35] 2 2 N Y

LE1 [33] 2 2 N N

Lov1 [39] 2 2 Y N

Lov2 [39] 2 2 N Y

Lov3 [39] 2 2 N N

Lov4 [39] 2 2 N N

Lov5 [39] 3 2 N N

Lov6 [39] 6 2 N Y

LTDZ [33] 3 3 N Y

MGH9a [46] 3 15 N Y

MGH16a [46] 4 5 N N

MGH26a [46] 4 4 N N

MGH33a [46] 10 10 Y N

MHHM2 [33] 2 3 Y N

MLF1 [33] 1 2 N Y

MLF2 [33] 2 2 N N

MMR1 [44] 2 2 N Y

MMR2 [44] 2 2 N Y

MMR3 [44] 2 2 N Y

aThis is an adaptation of a single-objective optimization problem to
the multiobjective setting that can be found in [45]

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1133

Table 1 continued Problem Ref. n m Conv. Penal.

MMR4 [44] 3 2 N Y

MOP2 [33] 2 2 N N

MOP3 [33] 2 2 N N

MOP5 [33] 2 3 N N

MOP6 [33] 2 2 N Y

MOP7 [33] 2 3 Y N

PNR [51] 2 2 Y N

QV1 [33] 10 2 N N

SD [55] 4 2 Y Y

SK1 [33] 1 2 N N

SK2 [33] 4 2 N N

SLCDT1 [54] 2 2 N N

SLCDT2 [54] 10 3 Y N

SP1 [33] 2 2 Y N

SSFYY2 [33] 1 2 N N

TKLY1 [33] 4 2 N Y

Toi4a [58] 4 2 Y N

Toi8a [58] 3 3 Y N

Toi9a [58] 4 4 N N

Toi10a [58] 4 3 N N

VU1 [33] 2 2 N N

VU2 [33] 2 2 Y Y

ZDT1 [60] 30 2 Y Y

ZDT2 [60] 30 2 N Y

ZDT3 [60] 30 2 N Y

ZDT4 [60] 30 2 N Y

ZDT6 [60] 10 2 N Y

ZLT1 [33] 10 5 Y N

aThis is an adaptation of a single-objective optimization problem to
the multiobjective setting that can be found in [45]

tions preventing the method from taking excessively small step sizes when larger step
sizes are possible.

We now compare the ability of the solvers to properly generate Pareto frontiers. For
that, we use the well-known Purity and (� and) Spreadmetrics. Roughly speaking,
given a solver and a problem, the Puritymetric measures the ability of the solver to find
points on the Pareto frontier of the problem, while a Spread metric seeks to measure
the ability of the solver to obtain well-distributed points along the Pareto frontier.
We refer the reader to [12] for a detailed explanation of these metrics and their uses
along with performance profiles. The results in Fig. 3 show that Algorithm 1 and the
Standard BFGS-Wolfe algorithm outperformed the Standard BFGS-Armijo algorithm

123

1134 Journal of Optimization Theory and Applications (2022) 194:1107–1140

100 101 102
0

0.2

0.4

0.6

0.8

1

Algorithm 1 (BFGS-Wolfe)
Standard BFGS-Wolfe
Standard BFGS-Armijo

100 101 102
0

0.2

0.4

0.6

0.8

1

Algorithm 1 (BFGS-Wolfe)
Standard BFGS-Wolfe
Standard BFGS-Armijo

(a) Iterations (b) CPU time

(c) Function eval. (d) Derivative eval.

100 101 102
0

0.2

0.4

0.6

0.8

1

Algorithm 1 (BFGS-Wolfe)
Standard BFGS-Wolfe
Standard BFGS-Armijo

100 101 102
0

0.2

0.4

0.6

0.8

1

Algorithm 1 (BFGS-Wolfe)
Standard BFGS-Wolfe
Standard BFGS-Armijo

Fig. 1 Performance profiles considering 300 starting points for each test problem using as the performance
measurement: a number of iterations;bCPU time; c number of functions evaluations;d number of derivative
evaluations

Fig. 2 Histograms (normalized by relative probability) containing the frequency distribution of all step
sizes calculated by: a Algorithm 1 (Wolfe step sizes); b standard BFGS-Armijo algorithm (Armijo step
sizes)

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1135

daerpS)b(ytiruP)a(Γ

(c) Spread Δ

100 101
0

0.2

0.4

0.6

0.8

1

Algorithm 1 (BFGS-Wolfe)
Standard BFGS-Wolfe
Standard BFGS-Armijo

100 101
0

0.2

0.4

0.6

0.8

1

Algorithm 1 (BFGS-Wolfe)
Standard BFGS-Wolfe
Standard BFGS-Armijo

1 1.05 1.1 1.15 1.2 1.25 1.3
0

0.2

0.4

0.6

0.8

1

Algorithm 1 (BFGS-Wolfe)
Standard BFGS-Wolfe
Standard BFGS-Armijo

Fig. 3 Metric performance profiles

in relation to the Purity metric, while no significant difference was observed for the
Spread metrics.

Figure 4 shows the outline of the Image sets and Pareto frontiers obtained by
Algorithm 1 for problems Hil1, KW2, MMR3, and MOP6. In the graphics, a full
point represents a final iterate while the beginning of a straight segment represents
the corresponding starting point. Pareto optimal points also have a square marker.
As expected, since these problems are nonconvex, Algorithm 1 converges to some
nonoptimal Pareto critical points.

Finally, we check the behavior of the methods as the number of objective functions
increases. For this, we compare the performance of Algorithm 1 and the Standard
BFGS-Armijo algorithm in larger instances of problems DTLZ1, DTLZ2, DTLZ3,
DTLZ4, MGH26, Toi9, and Toi10. These are the customizable problems in dimension
m of Table 1. MGH26, Toi9, and Toi10 are extensions of scalar optimization problems
also known as Trigonometric, Shifted TRIDIA, and Rosenbrock, respectively. The
first three columns of Table 2 identify the problem and the considered dimensions.
For each instance, we ran both algorithms from 10 different random starting points.
We emphasize that the algorithms reported convergence in all cases. The table gives
the averages of: number of iterations (it), CPU time in seconds (time), number of

123

1136 Journal of Optimization Theory and Applications (2022) 194:1107–1140

6POM3RMM

2WK1liH

-0.5 0 0.5 1 1.5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

-1 -0.5 0 0.5 1
-8

-6

-4

-2

0

2

4

6

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

8

10

12

-0.5 0 0.5 1 1.5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-10 -5 0 5 10
-10

-8

-6

-4

-2

0

2

4

6

8

-1 -0.5 0 0.5 1
-8

-6

-4

-2

0

2

4

6

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

8

10

12

Fig. 4 Image sets and Pareto frontiers obtained by Algorithm 1 for the nonconvex problems Hil1, KW2,
MMR3, and MOP6

123

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1137

Table 2 Performance of Algorithm 1 (BFGS-Wolfe) and Standard BFGS-Armijo algorithm on larger
instances of problems DTLZ1, DTLZ2, DTLZ3, DTLZ4, MGH26, Toi9, and Toi10

Problem n m Algorithm 1 (BFGS-Wolfe) Standard BFGS-Armijo

It Time nfev ngev It Time nfev ngev

DTLZ1 500 5 6.5 31.1 84.1 71.7 30.0 118.9 244.4 155.0

500 8 5.2 37.5 93.0 86.1 10.7 57.3 134.4 93.6

500 10 2.9 14.4 73.0 68.2 7.8 32.9 131.2 88.0

DTLZ2 500 5 2.7 6.8 49.6 44.8 10.9 36.2 123.8 59.5

500 8 3.1 11.0 84.0 73.6 8.9 55.5 129.5 79.2

500 10 3.1 13.5 94.8 87.4 9.1 68.2 167.9 101.0

DTLZ3 500 5 4.7 6.7 57.4 50.1 33.7 53.0 208.0 173.5

500 8 7.6 21.1 116.9 108.5 81.0 287.1 719.4 656.0

500 10 5.8 17.6 113.6 105.9 23.5 160.3 326.0 245.0

DTLZ4 500 5 2.4 8.4 54.1 48.7 4.2 14.2 30.4 26.0

500 8 2.9 13.4 89.8 81.5 5.0 23.5 58.2 48.0

500 10 2.4 13.5 84.8 76.0 6.0 33.5 98.5 70.0

MGH26 100 100 14.8 4.4 3714.3 3339.6 36.5 9.5 3750.0 3750.0

200 200 16.3 42.3 9739.5 8056.8 49.1 122.9 10,020.0 10,020.0

400 400 21.6 480.2 26,987.7 22,211.8 59.3 1298.9 24,120.0 24,120.0

Toi9 100 100 4.5 2.7 1014.5 868.8 5.4 2.4 640.2 640.0

300 300 4.2 63.4 2387.2 2165.4 4.6 71.7 1765.1 1680.0

400 400 3.8 119.9 2628.4 2442.9 4.7 134.2 2370.4 2280.0

Toi10 100 99 11.3 9.1 1895.7 1733.9 12.3 11.2 1333.3 1316.7

200 199 8.7 85.8 3269.6 2937.9 10.8 70.3 2421.6 2348.2

300 299 10.2 282.9 5357.8 4796.8 15.6 336.4 4992.0 4963.4

function (nfev) and derivative (ngev) evaluations. The smallest reported data for each
instance is highlighted in bold. We point out that we considered each evaluation of
an objective (resp. objective gradient) in the calculation of nfev (resp. ngev). As can
be seen, for MGH26 and DTLZ problems, Algorithm 1 strongly outperformed the
Standard BFGS-Armijo algorithm with respect to the number of iterations and CPU
time. Typically, taking into account these performance measures, Algorithm 1 uses
less than half of the computational resources required by the Standard BFGS-Armijo
algorithm in this group of problems. Even with respect to the number of function
and derivative evaluations, an advantage for Algorithm 1 was, in general, observed.
Regarding Toi9 and Toi10 problems, the algorithms presented more homogeneous
performances. While the Standard BFGS-Armijo algorithm was the most efficient
in terms of function and derivative evaluations, Algorithm 1 always required fewer
iterations, resulting in CPU time savings in four of the six instances.

123

1138 Journal of Optimization Theory and Applications (2022) 194:1107–1140

7 Conclusions

In this work, we proposed a newBFGS update scheme for multiobjective optimization
problems. This scheme generates positive definite Hessian approximations whenever
the initial approximations are positive definite and the step sizes satisfy the Wolfe
conditions. As a result, Algorithm 1 is well defined even for general nonconvex prob-
lems. As far as we know, this is the first BFGS-type algorithm designed to nonconvex
multiobjective problems that updates the Hessian approximations at each iteration.We
provided a comprehensive study of the main global and local convergence properties
of the method, using assumptions that are natural extensions of those made for the
scalar minimization case. Our numerical experiments suggest that the techniques used
here potentially provide a nonnegligible acceleration of the BFGS method. We hope
that these techniques can also be useful for other variants of quasi-Newton methods
for multiobjective optimization.

Acknowledgements This work was funded by FAPEG (Grants PPP03/15-201810267001725) and CNPq
(Grants 424860/2018-0, 309628/2020-2, 405349/2021-1).

Data Availability Codes supporting the numerical results are freely available in the GitHub repository,
https://github.com/lfprudente/bfgsMOP.

Declarations

Conflict of interest The authors declare no conflicts of interest.

References

1. Ansary, M.A., Panda, G.: A modified quasi-Newton method for vector optimization problem. Opti-
mization 64(11), 2289–2306 (2015)

2. Bello Cruz, J., Lucambio Pérez, L., Melo, J.: Convergence of the projected gradient method for qua-
siconvex multiobjective optimization. Nonlinear Anal. 74(16), 5268–5273 (2011)

3. Bhaskar, V., Gupta, S.K., Ray, A.K.: Applications of multiobjective optimization in chemical engi-
neering. Rev. Chem. Eng. 16(1), 1–54 (2000)

4. Birgin, E., Martinez, J.: Practical Augmented Lagrangian Methods for Constrained Optimization.
SIAM, Philadelphia (2014)

5. Bonnel, H., Iusem, A.N., Svaiter, B.F.: Proximal methods in vector optimization. SIAM J. Optim.
15(4), 953–970 (2005)

6. Byrd, R.H., Nocedal, J.: A tool for the analysis of quasi-Newton methods with application to uncon-
strained minimization. SIAM J. Numer. Anal. 26(3), 727–739 (1989)

7. Ceng, L.C., Mordukhovich, B.S., Yao, J.C.: Hybrid approximate proximal method with auxiliary
variational inequality for vector optimization. J. Optim. Theory Appl. 146(2), 267–303 (2010)

8. Ceng, L.C., Yao, J.C.: Approximate proximalmethods in vector optimization. Eur. J. Oper. Res. 183(1),
1–19 (2007)

9. Chuong, T.D.: Generalized proximal method for efficient solutions in vector optimization. Numer.
Funct. Anal. Optim. 32(8), 843–857 (2011)

10. Chuong, T.D.: Newton-like methods for efficient solutions in vector optimization. Comput. Optim.
Appl. 54(3), 495–516 (2013)

11. Chuong, T.D., Mordukhovich, B.S., Yao, J.C.: Hybrid approximate proximal algorithms for efficient
solutions in vector optimization. J. Nonlinear Convex Anal. 12(2), 257–285 (2011)

123

https://github.com/lfprudente/bfgsMOP

Journal of Optimization Theory and Applications (2022) 194:1107–1140 1139

12. Custódio, A.L., Madeira, J.F.A., Vaz, A.I.F., Vicente, L.N.: Direct multisearch for multiobjective opti-
mization. SIAM J. Optim. 21(3), 1109–1140 (2011)

13. Dai, Y.-H.: Convergence properties of the BFGS algorithm. SIAM J. Optim. 13(3), 693–701 (2002)
14. Dai, Y.-H.: A perfect example for the BFGS method. Math. Program. 138(1–2), 501–530 (2013)
15. Das, I., Dennis, J.: Normal-boundary intersection: a new method for generating the Pareto surface in

nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)
16. Davidon, W.C.: Variable metric methods for minimization, aec. Research and Development Report,

No. ANL-5990, Argonne Nat’l Lab., Argonne, Illinois (1959)
17. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective

optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) EvolutionaryMultiobjective Optimization:
Theoretical Advances and Applications, pp. 105–145. Springer, London (2005)

18. Dennis, J.E., Moré, J.J.: A characterization of superlinear convergence and its application to quasi-
Newton methods. Math. Comput. 28(126), 549–560 (1974)

19. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear
Equations. SIAM, Philadelphia (1996)

20. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-
gram. 91(2), 201–213 (2002)

21. Eichfelder,G.:AdaptiveScalarizationMethods inMultiobjectiveOptimization. Springer,Berlin (2008)
22. Fazzio, N.S., Schuverdt, M.L.: Convergence analysis of a nonmonotone projected gradient method for

multiobjective optimization problems. Optim. Lett. 13(6), 1365–1379 (2019)
23. Fletcher, R., Powell, M.J.D.: A Rapidly Convergent Descent Method for Minimization. Comput. J.

6(2), 163–168 (1963)
24. Fliege, J., Graña Drummond, L.M., Svaiter, B.F.: Newton’s method for multiobjective optimization.

SIAM J. Optim. 20(2), 602–626 (2009)
25. Fliege, J., Svaiter, B.F.: Steepest descent methods for multicriteria optimization. Math. Methods Oper.

Res. 51(3), 479–494 (2000)
26. Fukuda, E.H., GrañaDrummond, L.M.: On the convergence of the projected gradientmethod for vector

optimization. Optimization 60(8–9), 1009–1021 (2011)
27. Fukuda, E.H., Graña Drummond, L.M.: Inexact projected gradient method for vector optimization.

Comput. Optim. Appl. 54(3), 473–493 (2013)
28. Gonçalves, M.L.N., Prudente, L.F.: On the extension of the Hager–Zhang conjugate gradient method

for vector optimization. Comput. Optim. Appl. 76(3), 889–916 (2020)
29. Graña Drummond, L.M., Iusem, A.N.: A projected gradient method for vector optimization problems.

Comput. Optim. Appl. 28(1), 5–29 (2004)
30. Graña Drummond, L.M., Raupp, F.M.P., Svaiter, B.F.: A quadratically convergent Newton method for

vector optimization. Optimization 63(5), 661–677 (2014)
31. Graña Drummond, L.M., Svaiter, B.F.: A steepest descent method for vector optimization. J. Comput.

Appl. Math. 175(2), 395–414 (2005)
32. Hillermeier, C.: Generalized homotopy approach to multiobjective optimization. J. Optim. Theory

Appl. 110(3), 557–583 (2001)
33. Huband, S., Hingston, P., Barone, L.,While, L.: A review ofmultiobjective test problems and a scalable

test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)
34. Jin, Y., Olhofer, M., Sendhoff, B.: Dynamic weighted aggregation for evolutionary multi-objective

optimization: why does it work and how? In: Spector, L.A., Goodman, E.D., Wu, A., Langdon, W.B.,
Voigt, H.M. (eds.) Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computa-
tion, GECCO’01, pp. 1042–1049. Morgan Kaufmann Publishers Inc, San Francisco (2001)

35. Kim, I., de Weck, O.: Adaptive weighted-sum method for bi-objective optimization: Pareto front
generation. Struct. Multidiscip. Optim. 29(2), 149–158 (2005)

36. Lai, K.K., Mishra, S.K., Ram, B.: On q-quasi-Newton’s method for unconstrained multiobjective
optimization problems. Mathematics 8(4), 616 (2020)

37. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary
multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)

38. Li,D.-H., Fukushima,M.:On the global convergence of theBFGSmethod for nonconvexunconstrained
optimization problems. SIAM J. Optim. 11(4), 1054–1064 (2001)

39. Lovison, A.: Singular continuation: generating piecewise linear approximations to Pareto sets via
global analysis. SIAM J. Optim. 21(2), 463–490 (2011)

123

1140 Journal of Optimization Theory and Applications (2022) 194:1107–1140

40. Lucambio Pérez, L.R., Prudente, L.F.: Nonlinear conjugate gradient methods for vector optimization.
SIAM J. Optim. 28(3), 2690–2720 (2018)

41. Lucambio Pérez, L.R., Prudente, L.F.: A Wolfe line search algorithm for vector optimization. ACM
Trans. Math. Softw. 45(4), 23 (2019)

42. Mahdavi-Amiri, N., Salehi Sadaghiani, F.: A superlinearly convergent nonmonotone quasi-Newton
method for unconstrainedmultiobjective optimization.Optim.MethodSoftw.35(6), 1223–1247 (2020)

43. Mascarenhas,W.F.: TheBFGSmethodwith exact line searches fails for non-convexobjective functions.
Math. Program. 99(1), 49–61 (2004)

44. Miglierina, E.,Molho, E., Recchioni,M.:Box-constrainedmulti-objective optimization: a gradient-like
method without a priori scalarization. Eur. J. Oper. Res. 188(3), 662–682 (2008)

45. Mita, K., Fukuda, E.H., Yamashita, N.: Nonmonotone line searches for unconstrained multiobjective
optimization problems. J. Glob. Optim. 75, 63–90 (2019)

46. Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans.
Math. Softw. 7(1), 17–41 (1981)

47. Morovati, V., Basirzadeh, H., Pourkarimi, L.: Quasi-Newton methods for multiobjective optimization
problems. 4OR 16(3), 261–294 (2017)

48. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006)
49. Povalej, Z.: Quasi-Newton method for multiobjective optimization. J. Comput. Appl. Math. 255, 765–

777 (2014)
50. Powell, M.J.: Some global convergence properties of a variable metric algorithm for minimization

without exact line searches. In: Cottle, R.W., Lemke, C.E. (eds.) Nonlinear Programming, SIAM-
AMS Proceedings, vol. 9 (1976)

51. Preuss, M., Naujoks, B., Rudolph, G.: Pareto set and EMOA behavior for simple multimodal multi-
objective functions. In: Runarsson, T.P., Beyer, H.-G., Burke, E., Merelo-Guervós, J.J., Whitley, L.D.,
Yao, X. (eds.) Parallel Problem Solving from Nature—PPSN IX, pp. 513–522. Springer, Berlin (2006)

52. Qu, S., Goh, M., Chan, F.T.: Quasi-Newton methods for solving multiobjective optimization. Oper.
Res. Lett. 39(5), 397–399 (2011)

53. Qu, S., Liu, C., Goh, M., Li, Y., Ji, Y.: Nonsmooth multiobjective programming with quasi-Newton
methods. Eur. J. Oper. Res. 235(3), 503–510 (2014)

54. Schütze, O., Laumanns, M., Coello Coello, C.A., Dellnitz, M., Talbi, E.-G.: Convergence of stochastic
search algorithms to finite size Pareto set approximations. J. Glob. Optim. 41(4), 559–577 (2008)

55. Stadler, W., Dauer, J.: Multicriteria optimization in engineering: A tutorial and survey. In: Kamat, M.P.
(ed.) Structural Optimization: Status And Promise, chapter 10, pp. 209–249. American Institute of
Aeronautics and Astronautics (1992)

56. Stewart, T., Bandte, O., Braun, H., Chakraborti, N., Ehrgott, M., Göbelt, M., Jin, Y., Nakayama,
H., Poles, S., Di Stefano, D.: Real-world applications of multiobjective optimization. In: Branke, J.,
Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization: Interactive and Evolutionary
Approaches, pp. 285–327. Springer, Berlin (2008)

57. Svaiter, B.F.: The multiobjective steepest descent direction is not Lipschitz continuous, but is Hölder
continuous. Oper. Res. Lett. 46(4), 430–433 (2018)

58. Toint, P.L.: Test problems for partially separable optimization and results for the routine PSPMIN.
Tech. Rep., The University of Namur, Department of Mathematics, Belgium (1983)

59. Wang, J., Hu, Y., Wai Yu, C.K., Li, C., Yang, X.: Extended Newton methods for multiobjective opti-
mization: majorizing function technique and convergence analysis. SIAM J. Optim. 29(3), 2388–2421
(2019)

60. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical
results. Evol. Comput. 8(2), 173–195 (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization
	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithm
	4 Global Convergence
	5 Superlinear Local Convergence
	6 Numerical Experiments
	7 Conclusions
	Acknowledgements
	References

