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Abstract
We consider minimizing the sum of three convex functions, where the first one F is
smooth, the second one is nonsmooth and proximable and the third one is the com-
position of a nonsmooth proximable function with a linear operator L . This template
problem has many applications, for instance, in image processing and machine learn-
ing. First, we propose a new primal–dual algorithm, which we call PDDY, for this
problem. It is constructed by applying Davis–Yin splitting to a monotone inclusion
in a primal–dual product space, where the operators are monotone under a specific
metric depending on L . We show that three existing algorithms (the two forms of the
Condat–Vũ algorithm and the PD3O algorithm) have the same structure, so that PDDY
is the fourth missing link in this self-consistent class of primal–dual algorithms. This
representation eases the convergence analysis: it allows us to derive sublinear conver-
gence rates in general, and linear convergence results in presence of strong convexity.
Moreover, within our broad and flexible analysis framework, we propose new stochas-
tic generalizations of the algorithms, in which a variance-reduced random estimate of
the gradient of F is used, instead of the true gradient. Furthermore, we obtain, as a spe-
cial case of PDDY, a linearly converging algorithm for the minimization of a strongly
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convex function F under a linear constraint; we discuss its important application to
decentralized optimization.

1 Introduction

Many problems in statistics, machine learning or signal processing can be formulated
as high-dimensional convex optimization problems [3, 12, 56, 59, 68, 69]. They typi-
cally involve a smooth term F and a nonsmooth regularization term G, and F + G is
often minimized using (a variant of) Stochastic Gradient Descent (SGD) [47]. How-
ever, in many cases, G is not proximable; that is, its proximity operator does not admit
a closed-form expression. In particular, structured regularization, like the total varia-
tion or its variants for images or graphs [10, 23, 24, 27, 31, 61, 63], or the overlapping
group lasso [3], is known to have computationally expensive proximity operators.
Also, when G is a sum of several regularizers, G is not proximable, even if the indi-
vidual regularizers are, in general [60]. Thus, in many situations, G is not proximable,
but it takes the form G = R + H ◦ L where R, H are proximable and L is a linear
operator. Therefore, in this paper, we study the problem

Problem (1) : minimize
x∈X

(
F(x) + R(x) + H(Lx)

)
, (1)

where L : X → Y is a linear operator, X and Y are real Hilbert spaces (all spaces are
supposed of finite dimension), F : X → R is a convex function, R : X → R∪{+∞}
and H : Y → R ∪ {+∞} are proper, convex, lower semicontinuous functions; we
refer to textbooks like [5, 9] for standard definitions of convex analysis. F is supposed
to be ν-smooth, for some ν > 0; that is, it is differentiable on X and its gradient ∇F
is ν-Lipschitz continuous: ‖∇F(x) − ∇F(x ′)‖ ≤ ν‖x − x ′‖, for every (x, x ′) ∈ X 2.

Our contributions are the following. We recast Problem (1) as finding a zero of the
sum of three operators, which are monotone in a primal–dual product space, under a
particular metric (Sect. 2). Then, we apply Davis–Yin splitting (DYS) [28], a generic
method for this type of monotone inclusions (Sect. 3). By doing so, we recover the
existing PD3O [77] and two forms of the Condat–Vũ [22, 72] algorithms, but we also
discover a new one, which we call the Primal–Dual Davis–Yin (PDDY) algorithm
(Sect. 4). In other words, we discover PDDY as the fourth “missing link” in a group of
primal–dual algorithms, which is self-consistent, in the sense that by exchanging the
roles of the primal and dual terms R+ H ◦ L and R∗ ◦ (−L∗)+ H∗, or by exchanging
the roles of two monotone operators in the construction, we recover this or that algo-
rithm. Furthermore, the decomposition of the primal–dual monotone inclusion into
three terms allows us to use an important inequality regarding DYS for the analysis of
the algorithms. More precisely, we can apply Lemma 3.2, by instantiating the mono-
tone operators and inner product with the ones at hand. Thanks to this property, we
can easily replace the gradient ∇F by a stochastic variance-reduced (VR) estimator,
which can be much cheaper to evaluate (Sect. 5). Thus, we derive the first VR stochas-
tic algorithms to tackle Problem (1), to the best of our knowledge. We also leverage
the DYS representation of the algorithms to prove convergence rates; our analysis
covers the deterministic and stochastic cases in a unified way (Sect. 5). Moreover, as a
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byproduct of our analysis, we discover the first linearly converging algorithm for the
minimization of a smooth strongly convex function, using its gradient, under a linear
constraint, without projections on it (Sect. 6). Its application to decentralized opti-
mization is discussed in Appendix 1. Finally, numerical experiments illustrating the
performance of the algorithms are presented in Sect. 7. A part of the proofs is deferred
to Appendix 1, and additional linear convergence results are derived in Appendix 1.

1.1 RelatedWork

Splitting Algorithms: Algorithms allowing to solve nonsmooth optimization problem
involving several proximable terms are called proximal splitting algorithms [6, 7, 19,
21, 25, 44, 57]. A classical one is the Douglas–Rachford algorithm [32, 51, 62, 70] (or,
equivalently, the ADMM [8, 34, 35]) to minimize the sum of two nonsmooth functions
R+H . TominimizeG = R+H ◦L , the Douglas–Rachford algorithm can be general-
ized to the Primal–Dual Hybrid Gradient (PDHG) algorithm, a.k.a. Chambolle–Pock
algorithm [11, 55]. Behind its success is the ability to handle the composite term
H ◦ L using separate activation of L , its adjoint operator LT , and the proximity oper-
ator of H . However, in many applications, the objective function involves a smooth
function F , for instance, a least-squares term or a sum of logistic losses composed
with inner products. To cover these applications, proximal splitting algorithms like the
Combettes–Pesquet [20], Condat–Vũ [22, 72] and PD3O [77] algorithms have been
proposed; they can solve the general Problem (1). These algorithms are primal–dual
in nature; that is, they solve not only the primal problem (1), but also the dual problem,
in a joint way. Many other algorithms exist to solve Problem (1), and we refer to [25]
and [21] for an overview of primal–dual proximal splitting algorithms. We can also
mention the class of projective splitting algorithms first proposed in [33] and further
developed in several papers [2, 17, 41–43]. They proceed by building a separating
hyperplane between the current iterate and the solution and then projecting the cur-
rent iterate onto this hyperplane, to get closer to the solution. The projective splitting
algorithms with forward steps [42, 43] are fully split and can solve Problem (1), as
well.

Let us turn our attention to stochastic splitting algorithms. In machine learning
applications, the gradient of F is often much too expensive to evaluate and replaced by
a cheaper stochastic estimate.We can distinguish the two classes of standard stochastic
gradients [36, 37, 47] and variance-reduced (VR) stochastic gradients [29, 36, 38, 40,
74, 79]. VR stochastic gradients are estimators that ensure convergence to an exact
solution of the problem, like with deterministic algorithms; that is, the variance of
the stochastic errors they induce tends to zero. For some problems, VR stochastic
algorithms are significantly faster than their deterministic counterparts. By contrast,
with standard stochastic gradients and constant stepsizes, the algorithms typically do
not converge to a fixed point and continue to fluctuate in a neighborhood of the solution
set; this can be sufficient if the desired accuracy is low and speed is critical. When
L = I , where I denotes the identity, solving Problem (1) with standard and with VR
stochastic gradientswas considered in [78] and in [58], respectively. In the general case
L �= I of interest in this paper, solving the problemwith a standard stochastic gradient
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was considered in [80]. Thus, our proposed method is the first to allow solving the
general Problem (1) in a flexible way, with calls to∇F or to standard or VR stochastic
estimates.

1.2 Mathematical Background

Weintroduce somenotions andnotations of convex analysis andoperator theory, see [5,
9] for more details. LetZ be a real Hilbert space. LetG : Z → R∪{+∞} be a convex
function. The domain of G is the convex set dom(G) = {z ∈ Z : G(z) �= +∞}, its
subdifferential is the set-valued operator ∂G : z ∈ Z 
→ {y ∈ Z : (∀z′ ∈ Z) G(z)+
〈z′ − z, y〉 ≤ G(z′)}, and its conjugate function is G∗ : z 
→ supz′∈Z {〈z, z′〉−G(z′)}.
If G is differentiable at z ∈ Z , ∂G(z) = {∇G(z)}. We define the proximity operator
of G as the operator proxG : z ∈ Z 
→ argminz′∈Z

{
G(z′) + 1

2‖z − z′‖2}. Finally,
given any b ∈ Z , we define the convex indicator function ιb : z 
→ {0 if z = b, +∞
otherwise}.

Let M : Z → 2Z be a set-valued operator. The inverse M−1 of M is defined by
the relation z′ ∈ M(z) ⇔ z ∈ M−1(z′). The set of zeros of M is zer(M) := {z ∈
Z, 0 ∈ M(z)}. M is monotone if 〈w − w′, z − z′〉 ≥ 0 and strongly monotone if
there exists μ > 0 such that 〈w − w′, z − z′〉 ≥ μ‖z − z′‖2, for every (x, x ′) ∈ Z2,
w ∈ M(z), w′ ∈ M(z′). M is maximally monotone if its graph is not contained in the
graph of another monotone operator. The resolvent of M is JM := (I + M)−1. If G is
proper, convex and lower semicontinuous, ∂G is maximally monotone, J∂G = proxG ,
zer(∂G) = argminG and (∂G)−1 = ∂G∗.

A single-valued operator M onZ is ξ -cocoercive if ξ‖M(z)−M(z′)‖2 ≤ 〈M(z)−
M(z′), z−z′〉, for every (z, z′) ∈ Z2. The resolvent of amaximallymonotone operator
is 1-cocoercive and ∇G is 1/ν-cocoercive, for any ν-smooth function G.

The adjoint of a linear operator P is denoted by P∗ and its operator norm by ‖P‖.
P is self-adjoint if P = P∗. Let P : Z → Z be a self-adjoint linear operator. P
is positive if 〈Pz, z〉 ≥ 0, for every z ∈ Z , and strongly positive if, additionally,
〈Pz, z〉 = 0 implies z = 0. In this latter case, the inner product induced by P is
defined by 〈z, z′〉P := 〈Pz, z′〉 and the norm induced by P by ‖z‖P := 〈z, z〉1/2P .
We denote by ZP the real Hilbert space made from the vector space Z endowed with
〈·, ·〉P .

2 Primal–Dual Formulation and Optimality Conditions

For Problem (1) to be well posed, we suppose that there exists x� ∈ X , such that

0 ∈ ∇F(x�) + ∂R(x�) + L∗∂H(Lx�). (2)

Then, x� is a solution to (1). For instance, a standard qualification constraint for this
assumption to hold is that 0 belongs to the relative interior of dom(H) − L dom(R)

[20]. Then, for every x� satisfying (2), there exists y� ∈ ∂H(Lx�) such that 0 ∈
∇F(x�) + ∂R(x�) + L∗y�; equivalently, (x�, y�) is a zero of the set-valued operator
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M defined by

M : (x, y) ∈ X × Y 
→
(
∇F(x) + ∂R(x) + L∗y,−Lx + ∂H∗(y)

)
. (3)

Conversely, for every (x�, y�) ∈ zer(M), x� is a solution to (1) and y∗ is a solution to
the dual problem

minimize
y∈Y

(
(F + R)∗(−L∗y) + H∗(y)

)
, (4)

see Sect. 15.3 of [5]; moreover, there exist r� ∈ ∂R(x�) and h� ∈ ∂H∗(y�) such that,
using 2-block vector notations in X × Y ,

[
0
0

]
=

[∇F(x�) + r� + L∗y�

−Lx� + h�

]
. (5)

In the sequel, we let (x�, y�) ∈ zer(M) and r�, h� be any elements such that Eq. (5)
holds.

A zero of M is also a saddle point of the convex–concave Lagrangian function,
defined as

L (x, y) := F(x) + R(x) − H∗(y) + 〈Lx, y〉. (6)

For every x ∈ X and y ∈ Y , we define the Lagrangian gap at (x, y) as L (x, y�) −
L (x�, y). The following holds:

Lemma 2.1 (Lagrangian gap) For every x ∈ X and y ∈ Y , we have

L (x, y�) − L (x�, y) = DF (x, x�) + DR(x, x�) + DH∗(y, y�), (7)

where the Bregman divergence of the smooth function F between any two points
x and x ′ is DF (x, x ′) := F(x) − F(x ′) − 〈∇F(x ′), x − x ′〉, and DR(x, x�) :=
R(x) − R(x�) − 〈r�, x − x�〉, DH∗(y, y�) := H∗(y) − H∗(y�) − 〈h�, y − y�〉.
Proof Using the optimality conditions (5), we have

DF (x, x�) + DR(x, x�) = (F + R)(x) − (F + R)(x�) − 〈∇F(x�) + r�, x − x�〉
= (F + R)(x) − (F + R)(x�) + 〈L∗y�, x − x�〉
= (F + R)(x) − (F + R)(x�) + 〈y�, Lx〉 − 〈y�, Lx�〉.

We also have

DH∗(y, y�) = H∗(y) − H∗(y�) − 〈Lx�, y − y�〉
= H∗(y) − H∗(y�) − 〈Lx�, y〉 + 〈y�, Lx�〉.
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Hence,

DF (x, x�) + DR(x, x�) + DH∗(y, y�)

= (F + R)(x) − (F + R)(x�) + H∗(y) − H∗(y�) − 〈Lx�, y〉 + 〈y�, Lx〉
= L (x, y�) − L (x�, y). ��

For every x ∈ X , y ∈ Y , Lemma 2.1 and the convexity of F, R, H∗ imply that
L (x�, y) ≤ L (x�, y�) ≤ L (x, y�). So, the Lagrangian gap L (x, y�) − L (x�, y)
is nonnegative, and it is zero if x is a solution to Problem (1) and y is a solution to the
dual problem (4). The converse is not always true, generally speaking. But in realistic
situations, this is the case, and under mild assumptions, like strict convexity of the
functions around x� and y�, the Lagrangian gap converging to zero is a valid measure
of convergence to a solution.

The operator M defined in (3) can be shown to be maximally monotone. Moreover,
we have

M(x, y) =
[
∂R(x)

0

]
+

[
L∗y

−Lx + ∂H∗(y)

]
+

[∇F(x)
0

]
(8)

=
[

0
∂H∗(y)

]
+

[
∂R(x) + L∗y
−Lx

]
+

[∇F(x)
0

]
, (9)

and each term at the right-hand side of (8) or (9) is maximally monotone, see Corollary
25.5 in [5].

Algorithm 1 *
Davis–Yin Splitting alg.
DYS( Ã, B̃, C̃) [28]
1: Input: v0 ∈ Z , γ > 0
2: for k = 0, 1, 2, . . . do
3: zk = J

γ B̃ (vk )

4: uk+1 = J
γ Ã(2zk − vk − γ C̃(zk ))

5: vk+1 = vk + uk+1 − zk

6: end for

Algorithm 2 *
LiCoSGD (new)
1: Input: x0 ∈ X , y0 ∈ Y , γ > 0, τ > 0
2: for k = 0, 1, 2, . . . do
3: wk = xk − γ gk+1

4: yk+1 = yk + τ L(wk − γ L∗yk ) − τb
5: xk+1 = wk − γ L∗yk+1

6: end for

Note : the deterministic versions of the algorithms are obtained by setting gk+1 =
∇F(xk).
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Algorithm 3 *
Stochastic PDDYalg. (new)
1: Input: p0 ∈ X , y0 ∈ Y , γ > 0, τ > 0
2: for k = 0, 1, 2, . . . do
3: yk+1=proxτH∗

(
yk + τ L(pk − γ L∗yk )

)
4: xk = pk − γ L∗yk+1

5: sk+1 = proxγ R
(
2xk − pk − γ gk+1)

6: pk+1 = pk + sk+1 − xk

7: end for

Algorithm 4 *
Stochastic PD3Oalg. (new)
1: Input: p0 ∈ X , y0 ∈ Y , γ > 0, τ > 0
2: for k = 0, 1, 2, . . . do
3: xk = proxγ R(pk )

4: wk = 2xk − pk − γ gk+1

5: yk+1=proxτH∗
(
yk + τ L(wk − γ L∗yk )

)
6: pk+1 = xk − γ gk+1 − γ L∗yk+1

7: end for

3 Davis–Yin Splitting

Solving Problem (1) boils down to finding a zero (x�, y�) of the monotone operator
M defined in (3), which can be written as the sum of three monotone operators, like
in (8) or (9). The method proposed by Davis and Yin [28], which we call Davis–Yin
splitting (DYS), is dedicated to this problem; that is, find a zero of the sum of three
monotone operators, one of which is cocoercive.

Let Z be a real Hilbert space. Let Ã, B̃, C̃ be maximally monotone operators on
Z . We assume that C̃ is ξ -cocoercive, for some ξ > 0. The DYS algorithm, denoted
by DYS( Ã, B̃, C̃) and shown above, aims at finding an element in zer( Ã + B̃ + C̃),
supposed nonempty. The fixed points of DYS( Ã, B̃, C̃) are the triplets (v�, z�, u�) ∈
Z3, such that

z� = J
γ B̃(v�), u� = J

γ Ã

(
2z� − v� − γ C̃(z�)

)
, u� = z�. (10)

These fixed points are related to the zeros of Ã+ B̃ + C̃ as follows, see Lemma 2.2 in
[28]: for every (v�, z�, u�) ∈ Z3 satisfying (10), z� ∈ zer( Ã+ B̃+C̃). Conversely, for
every z� ∈ zer( Ã+ B̃ + C̃), there exists (v�, u�) ∈ Z2, such that (v�, z�, u�) satisfies
(10). We have [28]:

Lemma 3.1 [Convergence of the DYS algorithm] Suppose that γ ∈ (0, 2ξ). Then,
the sequences (vk)k∈N, (zk)k∈N, (uk)k∈N generated by DYS( Ã, B̃, C̃) converge to
some elements v�, z�, u� in Z , respectively. Moreover, (v�, z�, u�) satisfies (10) and
u� = z� ∈ zer( Ã + B̃ + C̃).

The following equality is at the heart of the convergence proofs:

Lemma 3.2 [Fundamental equality of the DYS algorithm] Let (vk, zk, uk) ∈ Z3 be
the iterates of the DYS algorithm, and (v�, z�, u�) ∈ Z3 be such that (10) holds. Then,
for every k ≥ 0, there exist bk ∈ B̃(zk), b� ∈ B̃(z�), ak+1 ∈ Ã(uk+1) and a� ∈ Ã(u�),
such that

‖vk+1 − v�‖2 = ‖vk − v�‖2 − 2γ 〈bk − b�, zk − z�〉 − 2γ 〈ak+1 − a�, uk+1 − u�〉
− 2γ 〈C̃(zk) − C̃(z�), zk − z�〉 + γ 2‖C̃(zk) − C̃(z�)‖2 (11)

− γ 2‖ak+1 + bk − a� − b�‖2.
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Proof Since zk = J
γ B̃(vk), zk ∈ vk−γ B̃(zk) by definition of the resolvent. Therefore,

there exists bk ∈ B̃(zk), such that zk = vk − γ bk . Similarly, uk+1 ∈ 2zk − vk −
γ C̃(zk) − γ Ã(uk+1) = vk − 2γ bk − γ C̃(zk) − γ Ã(uk+1). Therefore, there exists
ak+1 ∈ Ã(uk+1), such that

⎧⎨
⎩
zk = vk − γ bk

uk+1 = vk − 2γ bk − γ C̃(zk) − γ ak+1

vk+1 = vk + uk+1 − zk .
(12)

Moreover, vk+1 = vk − γ bk − γ C̃(zk) − γ ak+1. Similarly, there exist a� ∈ Ã(u�)

and b� ∈ B̃(z�), such that

⎧⎨
⎩
z� = v� − γ b�

u� = v� − 2γ b� − γ C̃(z�) − γ a�

v� = v� + u� − z�,
(13)

and
v� = v� − γ b� − γ C̃(z�) − γ a�. Therefore,

‖vk+1 − v�‖2 = ‖vk − v�‖2 − 2γ
〈
ak+1 + bk + C̃(zk) − (

a� + b� + C̃(z�)
)
,

vk − v�
〉
+ γ 2

∥∥ak+1 + bk + C̃(zk) − (
a� + b� + C̃(z�)

)∥∥2.

By expanding the last squared norm and by using (12) and (13) in the inner product,
we get

‖vk+1 − v�‖2 = ‖vk − v�‖2 − 2γ 〈bk + C̃(zk) − (
b� + C̃(z�)

)
, zk − z�〉

− 2γ 〈ak+1 − a�, uk+1 − u�〉
− 2γ 〈bk + C̃(zk) − (

b� + C̃(z�)
)
, γ bk − γ b�〉

− 2γ 〈ak+1 − a�, 2γ bk + γ C̃(zk) + γ ak+1

− (
2γ b� + γ C̃(z�) + γ a�

)〉
+ γ 2‖ak+1 + bk − (

a� + b�
)‖2 + γ 2‖C̃(zk) − C̃(z�)‖2

+ 2γ 2〈ak+1 + bk − (
a� + b�

)
, C̃(zk) − C̃(z�)〉

= ‖vk − v�‖2 − 2γ 〈bk − b�, zk − z�〉 − 2γ 〈ak+1 − a�, uk+1 − u�〉
− 2γ 〈C̃(zk) − C̃(z�), zk − z�〉 + γ 2‖C̃(zk) − C̃(z�)‖2
− 2γ 2‖bk − b�‖2 − 2γ 2〈ak+1 − a�, 2bk + ak+1 − 2b� − a�〉
+ γ 2‖ak+1 + bk − (

a� + b�
)‖2.

After combining the last three terms into −γ 2‖ak+1 + bk − (
a� + b�

)‖2, we obtain
the result. ��
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4 A Class of Four Primal–Dual Optimization Algorithms

We now set Z := X × Y , where X and Y are the spaces defined in Sect. 2. To
solve the primal–dual problem (8) or (9), which consists in finding a zero of the sum
A + B + C of three operators in Z , of which C is cocoercive, a natural idea is to
apply the Davis–Yin algorithm DYS(A, B,C). But the resolvent of A or B is often
intractable. In this section, we show that preconditioning is the solution; that is, we
exhibit a strongly positive linear operator P , such that DYS(P−1A, P−1B, P−1C) is
tractable. Since P−1A, P−1B, P−1C are monotone operators in ZP , the algorithm
will converge to a zero of P−1A + P−1B + P−1C , or, equivalently, of A + B + C .
Let us apply this idea in four different ways.

4.1 A New Primal–Dual Algorithm: The PDDY Algorithm

Let γ > 0 and τ > 0 be real parameters. We introduce the four operators on Z , using
matrix-vector notations:

A(x, y) =
[

L∗y
−Lx + ∂H∗(y)

]
, B(x, y) =

[
∂R(x)

0

]
, C(x, y) =

[∇F(x)
0

]
,

P =
[
I 0
0 γ

τ
I − γ 2LL∗

]
. (14)

P is strongly positive if and only if γ τ‖L‖2 < 1. Since A, B, C are maximally
monotone in Z , P−1A, P−1B, P−1C are maximally monotone in ZP . Moreover,
P−1C is 1/ν-cocoercive in ZP . Importantly, we have:

P−1C : (x, y) 
→ (∇F(x), 0
)
, Jγ P−1B : (x, y) 
→ (

proxγ R(x), y
)
,

Jγ P−1A : (x, y) 
→ (x ′, y′), where

⌊
y′ = proxτH∗

(
y + τ L(x − γ L∗y)

)
x ′ = x − γ L∗y′.

(15)

The form of the last resolvent was shown in [55]; see also [25], where this resolvent
appears as one iteration of the Proximal Method of Multipliers. We plug these explicit
steps into the Davis–Yin algorithm DYS(P−1B, P−1A, P−1C) and we identify the
variables as vk = (pk, qk), zk = (xk, yk+1), uk = (sk, dk), for some variables
(pk, xk, sk) ∈ X 3 and (qk, yk, dk) ∈ Y3. Thus, we do the following substitutions:

• Using (15), the step zk = Jγ P−1A(vk), is equivalent to

⌊
yk+1 = proxτH∗

(
(I − τγ LL∗)qk + τ Lpk

)
xk = pk − γ L∗yk+1.

• The step uk+1 = Jγ P−1B

(
2zk − vk − γ P−1C(zk)

)
is equivalent to

⌊
sk+1 = proxγ R

(
2xk − pk − γ∇F(xk)

)
dk+1 = 2yk+1 − qk .
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• Finally, the step vk+1 = vk + uk+1 − zk is equivalent to

⌊
pk+1 = pk + sk+1 − xk

qk+1 = qk + dk+1 − yk+1.

We can replace qk by yk and discard dk , which is not needed. This yields the new
Primal–Dual Davis–Yin (PDDY) algorithm, shown above (with gk+1 = ∇F(xk)).
Note that it can be written with only one call to L and L∗ per iteration. Also, the PDDY
Algorithm could be overrelaxed [25], since this possibility exists for the Davis–Yin
algorithm. We have:

Theorem 4.1 [Convergence of the PDDY Algorithm] Suppose that γ ∈ (0, 2/ν) and
that τγ ‖L‖2 < 1. Then, the sequences (xk)k∈N and (sk)k∈N generated by the PDDY
Algorithm converge to the same solution x� to Problem (1), and the sequence (yk)k∈N
converges to some dual solution y� of (4).

Proof Under the assumptions of Theorem 4.1, P is strongly positive. Then, the result
follows from Lemma 3.1 applied in ZP and from the analysis in Sect. 2. ��

4.2 The PD3O Algorithm

We consider the same notations as in the previous section.We switch the roles of A and
B and consider DYS(P−1A, P−1B, P−1C). Then, after some substitutions similar
to the ones done to construct the PDDY algorithm, we recover exactly the PD3O
algorithm proposed in [77]. Although it is not derived this way, its interpretation
as a primal–dual Davis–Yin algorithm is mentioned by its author. Its convergence
properties are the same as for the PDDY Algorithm, as stated in Theorem 4.1.

In a recent work [55], the PD3O algorithm has been shown to be an instance of the
Davis–Yin algorithm, with a different reformulation, which does not involve duality.
The authors of the present paper developed this technique further, applied it to the
PDDY algorithm as well and obtained convergence rates and accelerations for both
algorithms [26].

4.3 The Condat–Vũ Algorithm

Let γ > 0 and τ > 0 be real parameters. We want to study the decomposition (9)
instead of (8). For this, we define the operators

Ā(x, y) =
[
∂R(x) + L∗y
−Lx

]
, B̄(x, y) =

[
0

∂H∗(y)

]
, Q =

[
K 0
0 I

]
, (16)

where K := γ
τ
I −γ 2L∗L , and we define C like in (14). If γ τ‖L‖2 < 1, K and Q are

strongly positive. In that case, since Ā, B̄, C are maximally monotone inZ = X ×Y ,
Q−1 Ā, Q−1 B̄, Q−1C are maximally monotone in ZQ . Moreover, we have:
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Q−1C : (x, y) 
→ (
K−1∇F(x), 0

)
, Jγ Q−1 B̄ : (x, y) 
→ (

x, proxγ H∗(y)
)
, (17)

Jγ Q−1 Ā : (x, y) 
→ (x ′, y′), where
⌊
x ′ = proxτ R

(
(I − τγ L∗L)x − τ L∗y

)
y′ = y + γ Lx ′.

If we plug these explicit steps into the Davis–Yin algorithm DYS(Q−1 Ā,

Q−1 B̄, Q−1C) or DYS(Q−1 B̄, Q−1 Ā, Q−1C), and after straightforward simplifi-
cations, we recover the two forms of the Condat–Vũ algorithm [22, 72]; that is,
Algorithms 3.1 and 3.2 of [22], respectively, see also in [25]. The Condat–Vũ algo-
rithm has the form of a primal–dual forward–backward algorithm [16, 25, 44]. We
have just shown that it can be viewed as a primal–dual Davis–Yin algorithm, with a
different metric, as well. Furthermore, it is easy to show that Q−1C is ξ -cocoercive,
with ξ = (

γ
τ

− γ 2‖L‖2)/ν. Hence, convergence follows from Lemma 3.1, under the
same condition on τ and γ as in Theorem 3.1 of [22], namely ν

2 < 1
τ

− γ ‖L‖2.

5 Stochastic Primal–Dual Algorithms

We now introduce stochastic versions of the PD3O and PDDY algorithms; we omit
the analysis of stochastic versions of the Condat–Vũ algorithm, which is the same,
with added technicalities due to cocoercivity with respect to the metric induced by
Q in (16). Our approach has a ‘plug-and-play’ flavor: we show that we have all the
ingredients to leverage the unified theory of stochastic gradient estimators recently
presented in [36].

In the stochastic versions of the algorithms, the gradient ∇F(xk) is replaced
by a stochastic gradient gk+1. That is, we consider a filtered probability space
(	,F , (Fk)k∈N,P), an (Fk)-adapted stochastic process (gk)k∈N, we denote byE the
expectation and byEk the conditional expectationw.r.t.Fk . The following assumption
is made on the process (gk)k∈N.

Assumption 1 There exist α, β, δ ≥ 0, ρ ∈ (0, 1] and a (Fk)k∈N-adapted stochas-
tic process denoted by (σk)k∈N, such that, for every k ∈ N, Ek(gk+1) = ∇F(xk),
Ek(‖gk+1 − ∇F(x�)‖2) ≤ 2αDF (xk, x�) + βσ 2

k , and Ek(σ
2
k+1) ≤ (1 − ρ)σ 2

k +
2δDF (xk, x�).

Assumption 1 is satisfied by several stochastic gradient estimators used in machine
learning, including some types of coordinate descent [73], variance reduction [38],
and also compressed gradients used to reduce the communication cost in distributed
optimization [4, 65, 75], see Table 1 in [36]. Also, the full gradient estimator defined
by gk+1 = ∇F(xk) satisfies Assumption 1 with α = ν, the smoothness constant of
F , σk ≡ 0, ρ = 1, and δ = β = 0, see Theorem 2.1.5 in [54]. The loopless SVRG
estimator [39, 45] also satisfies Assumption 1:

Proposition 5.1 (Loopless SVRG estimator) Assume that F is written as a sum F =
1
n

∑n
i=1 fi , for some n ≥ 1, where for every i ∈ {1, . . . , n}, fi : X → R is a νi -

smooth convex function. Let p ∈ (0, 1), and (	,F ,P) be a probability space. On
(	,F ,P), consider:
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• a sequence of i.i.d. random variables (θk)k∈N with Bernoulli distribution of param-
eter p,

• a sequence of i.i.d random variables (ζ k)k∈N with uniform distribution over
{1, . . . , n},

• the sigma-field Fk generated by (θk, ζ k)0≤ j≤k and a (Fk)-adapted stochastic
process (xk)k∈N,

• a stochastic process (x̃ k)k∈N defined by x̃k+1 = θk+1xk + (1 − θk+1)x̃ k ,
• a stochastic process (gk)k∈N defined by gk+1 = ∇ fζ k+1(xk) − ∇ fζ k+1(x̃ k) +

∇F(x̃ k).

Then, the process (gk)k∈N satisfies Assumption 1withα = 2maxi∈{1,...,n} νi ,β = 2,
ρ = p, δ = α p/2, and σ 2

k = 1
n

∑n
i=1 Ek‖∇ fi (x̃ k) − ∇ fi (x�)‖2.

Proof The proof is the same as the proof of Lemma A.11 of [36], which is only stated
for (xk)k∈N generated by a specific algorithm, but remains true for any (Fk)-adapted
stochastic process (xk)k∈N. ��

We can now exhibit our main results. In a nutshell, P−1C(zk) is replaced by the
random realization P−1(gk+1, 0) and the last term of Eq. (11), which is nonnegative,
is handled using Assumption 1.

5.1 The Stochastic PD3O Algorithm

The Stochastic PD3O Algorithm, shown above, has O(1/k) ergodic convergence in
the general case. A linear convergence result in the strongly convex setting is derived
in Appendix 1.

Theorem 5.1 [Convergence of the Stochastic PD3OAlgorithm] Suppose that Assump-
tion 1 holds. Let κ := β/ρ, γ, τ > 0 be such that γ ≤ 1/2(α + κδ) and γ τ‖L‖2 < 1.
Set V 0 := ‖v0 − v�‖2P + γ 2κσ 2

0 , where v0 = (p0, y0). Then, for every k ∈ N,

E

(
L (x̄ k, y�) − L (x�, ȳk+1)

)
≤ V 0

kγ
,

where x̄k = 1
k

∑k−1
j=0 x

j and ȳk+1 = 1
k

∑k
j=1 y

j .

Proof Using Lemma A.1, the convexity of F , R, H∗, and Lemma 2.1,

Ek‖vk+1 − v�‖2P + κγ 2
Ekσ

2
k+1 ≤ ‖vk − v�‖2P + κγ 2

(
1 − ρ + β

κ

)
σ 2
k

− 2γ (1 − γ (α + κδ))Ek

(
L (xk, d�) − L (x�, dk+1)

)
.

We have 1 − ρ + β/κ = 1, γ ≤ 1/2(α + κδ). Set V k := ‖vk − v�‖2P + κγ 2σ 2
k , for

every k ∈ N. Then, EkV k+1 ≤ V k − γEk
(
L (xk, d�) − L (x�, dk+1)

)
. Taking the

expectation, γE
(
L (xk, d�) − L (x�, dk+1)

) ≤ EV k − EV k+1. Iterating and using

the nonnegativity of V k , γ
∑k−1

j=0 E
(
L (x j , d�) − L (x�, d j+1)

) ≤ EV 0. Finally,
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note that dk+1 = yk+1 and d� = y�. Indeed, yk = qk and qk+1 = qk + dk+1 − yk =
dk+1. We can conclude using the convex-concavity of L . ��
In the deterministic case gk+1 = ∇F(xk), we recover the same rate as in [77][Theorem
2].

Remark 5.1 (Primal–Dual gap) Deriving a similar bound on the stronger primal–dual
gap (F+R+H◦L)(x̄ k)+(

(F+R)∗◦(−L)+H∗)(ȳk) requires additional assumptions;
for instance, even for the Chambolle–Pock algorithm, which is the particular case of
the PD3O, PPDY and Condat–Vũ algorithms when F = 0, the best available result
[13][Theorem 1] is not stronger than Theorem 5.1

Remark 5.2 (Particular case of SGD) In the case where H = 0 and L = 0, the
Stochastic PD3OAlgorithm boils down to proximal stochastic gradient descent (SGD)
and Theorem 5.1 implies that E

(
(F + R)(x̄ k) − (F + R)(x�)

) ≤ V 0/(γ k).
This O(1/k) ergodic convergence rate unifies known results on SGD in the non-

strongly-convex case, whenever the stochastic gradient satisfies Assumption 1.

5.2 The Stochastic PDDY Algorithm

We now analyze the proposed Stochastic PDDY Algorithm, shown above. For it too,
we haveO(1/k) ergodic convergence in the general case. A linear convergence result
in the strongly convex setting is derived in Appendix 1.

Theorem 5.2 (Convergence of the Stochastic PDDYAlgorithm) Suppose that Assump-
tion 1 holds. Let κ := β/ρ, γ, τ > 0 be such that γ ≤ 1/2(α + κδ) and γ τ‖L‖2 < 1.
Define V 0 := ‖v0 − v�‖2P + γ 2κσ 2

0 , where v0 = (p0, y0). Then, for every k ∈ N,

E

(
DF (x̄ k, x�) + DH∗(ȳk+1, y�) + DR(s̄k+1, s�)

)
≤ V 0

kγ
,

where x̄k = 1
k

∑k−1
j=0 x

j , ȳk+1 = 1
k

∑k
j=1 y

j and s̄k+1 = 1
k

∑k
j=1 s

j .

Proof Using Lemma A.2 and the convexity of F , R, H∗,

Ek‖vk+1 − v�‖2P + κγ 2
Ekσ

2
k+1 ≤ ‖vk − v�‖2P + κγ 2

(
1 − ρ + β

κ

)
σ 2
k

− 2γ
(
1 − γ (α + κδ)

) (
DF (xk, x�) + DH∗(yk, y�) + Ek DR(sk+1, s�)

)
.

Since 1 − ρ + β/κ = 1, γ ≤ 1/2(α + κδ). Set V k := ‖vk − v�‖2P + κγ 2σ 2
k . Then,

EkV
k+1 ≤ V k − γEk

(
DF (xk, x�) + DH∗(yk, y�) + DR(sk+1, s�)

)
.

Taking the expectation, γE
(
DF (xk, x�) + DH∗(yk, y�) + DR(sk+1, s�)

) ≤ EV k −
EV k+1. Iterating and using the nonnegativity of V k , γ

∑k−1
j=0 E

(
DF (xk, x�) +

DH∗(yk, y�) + DR(sk+1, s�)
) ≤ EV 0. We conclude using the convexity of the Breg-

man divergence in its first variable. ��
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6 Linearly Constrained Smooth Optimization

In this section, we consider the problem

minimize
x∈X

F(x) s.t. Lx = b, (18)

where L : X → Y is a linear operator, X and Y are real Hilbert spaces, F is a
ν-smooth convex function, for some ν > 0, and b ∈ ran(L), the range of L . This is a
particular case of Problem (1) with R = 0 and

H = ιb.We suppose that a solution x� exists, satisfying Lx� = b and 0 ∈ ∇F(x�)+
L∗y� for some y� ∈ Y . The stochastic PD3O and PDDY algorithms both revert to the
same algorithm, shown above,whichwe call LinearlyConstrained StochasticGradient
Descent (LiCoSGD). It is fully split: it does not make use of projections onto the affine
space {x ∈ X , Lx = b} and only makes calls to L and L∗.

In the deterministic case gk+1 = ∇F(xk), LiCoSGD reverts to an instance
of the algorithm first proposed by Loris and Verhoeven in [52] and rediscov-
ered independently as the PDFP2O algorithm [15] and the Proximal Alternating
Predictor–Corrector (PAPC) algorithm [30]. Convergence of this algorithm follows
from Theorem 4.1, see other results in [25, 26]. Thus, LiCoSGD is a stochastic exten-
sion of this algorithm, for which Theorem 5.1 becomes:

Theorem 6.1 (Convergence of LiCoSGD) Suppose that Assumption 1 holds. Let κ :=
β/ρ, γ, τ > 0 be such that γ ≤ 1/2(α + κδ) and γ τ‖L‖2 < 1. Set V 0 := ‖v0 −
v�‖2P + γ 2κσ 2

0 , where v0 = (w0, y0). Then, for every k ∈ N,

E

(
F(x̄ k) − F(x�) + 〈Lx̄k − b, y�〉

)
≤ V 0

kγ
, (19)

where x̄k = 1
k

∑k−1
j=0 x

j , x� and y� are some primal and dual solutions.

The convex function x 
→ F(x) − F(x�) + 〈Lx − b, y�〉 is nonnegative and its
minimum is zero, attained at x�. Under additional assumptions, like strict convexity
around x�, this function takes value zero only if F(x) = F(x�) and Lx = b, so that
x is a solution.

We now state an important result: strong convexity of F is sufficient to get lin-
ear convergence. We denote by ω(W ) the smallest positive eigenvalue of a positive
self-adjoint linear operator W . Then, it is easy to show that for every y ∈ ran(L),
ω(LL∗)‖y‖2 ≤ ‖L∗y‖2. Also, ω(LL∗) = ω(L∗L).

Theorem 6.2 (Linear convergence of LiCoSGD with F strongly convex) Suppose
that Assumption 1 holds, that F is μF-strongly convex, for some μF > 0, and that
y0 ∈ ran(L). Let x� be the unique solution of (18), y� be the unique element of
ran(L) such that ∇F(x�) + L∗y� = 0. Suppose that γ > 0 and τ > 0 are such that
γ τ‖L‖2 < 1 and γ ≤ 1/α + κδ, for some κ > β/ρ. Define, for every k ∈ N,

V k := ‖xk − x�‖2 + (
1 + τγω(L∗L)

) ‖yk − y�‖2γ,τ + κγ 2
Eσ 2

k , (20)
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and

r := max

(
1 − γμF , 1 − ρ + β

κ
,

1

1 + τγω(L∗L)

)
< 1. (21)

Then, for every k ∈ N, EV k ≤ rkV 0.

Proof Noting that y� = d� = q� and applying Lemma A.1 with γ ≤ (α + κδ),

Ek‖pk+1 − p�‖2 + Ek‖qk+1 − q�‖2γ,τ + κγ 2
Ekσ

2
k+1 ≤ ‖pk − p�‖2 + ‖qk − q�‖2γ,τ

− γμF‖xk − x�‖2 + κγ 2
(
1 − ρ + β

κ

)
σ 2
k − γ 2‖P−1A(uk+1) − P−1A(u�)‖2P .

Since the component of P−1A(uk+1) − P−1A(u�) in X is L∗dk+1 − L∗d�, we have

Ek‖pk+1 − p�‖2 + Ek‖qk+1 − q�‖2γ,τ + κγ 2
Ekσ

2
k+1 ≤ ‖xk − x�‖2 + ‖qk − q�‖2γ,τ

− γμF‖pk − p�‖2 + κγ 2
(
1 − ρ + β

κ

)
σ 2
k − γ 2‖L∗dk+1 − L∗d�‖2.

Inspecting the iterations of the algorithm, one can see that d0 ∈ ran(L) implies dk+1 ∈
ran(L). Since d� ∈ ran(L), dk+1 − d� ∈ ran(L). Therefore, ω(LL∗)‖dk+1 − d�‖2 ≤
‖L∗dk+1 − L∗d�‖2. Since qk+1 = dk+1 = yk+1 and xk = pk ,

Ek‖xk+1 − x�‖2 + (1 + γ τω(LL∗))Ek‖yk+1 − y�‖2γ,τ + κγ 2
Ekσ

2
k+1

≤ (1 − γμF )‖xk − x�‖2 + ‖yk − y�‖2γ,τ + κγ 2
(
1 − ρ + β

κ

)
σ 2
k .

Thus, by setting V k as in (20) and r as in (21), we have EkV k+1 ≤ rV k . ��
To the best of our knowledge, even in the deterministic case (with α = ν, ρ = 1,

δ = β = 0, κ = 1), this is a first time that a fully split algorithm using ∇F , L and
L∗ is shown to converge linearly to a solution of (18), whenever F is strongly convex.
Also, the knowledge of μF is not needed. We discuss the application of LiCoSGD to
decentralized optimization in Appendix 1.

7 Experiments

We present numerical experiments for the PDDY, PD3O and Condat–Vũ (CV)
[22][Algorithm 3.1] algorithms. We observed that the performance of these algo-
rithms is nearly identical, when the same stepsizes are used, but the PDDY and PD3O
algorithms have a larger range of stepsizes than the CV algorithm, so that they are often
faster after tuning. We used γ τ‖L‖2 = 0.999, which was always the best choice for
these two algorithms. So, we do not provide direct comparisons in the plots. Instead,
we focus on how the choice of the stochastic gradient estimator affects the conver-
gence speed; we compare the true gradient, the standard stochastic gradient estimator
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Fig. 1 Results for the PCA-Lasso experiment. Left: convergence w.r.t. the objective function; right: con-
vergence in norm

Fig. 2 Results for theMNIST experiment. Left: convergencew.r.t. the objective function; right: convergence
in norm

(SGD), the VR estimators SAGA [29] and SVRG [40, 74, 79]. We used closed-form
expressions for ν and tuned the stepsizes for all methods by running logarithmic grid
search with factor 1.5 over multiples of 1

ν
. We used a batch size of 16 for better par-

allelism in the stochastic estimators. For SGD, we used a small value of γ , such as
0.01
ν
.

7.1 PCA-Lasso

In a recent work [71], the difficult PCA-based Lasso problem was considered:
minx 1

2‖Wx − a‖2 + λ‖x‖1 + λ1
∑m

i=1 ‖Li x‖, where W ∈ R
n×p, a ∈ R

n , λ, λ1 > 0
are given. We generated 10 matrices Li randomly with standard normal i.i.d. entries,
each with 20 rows. W and y were taken from the ‘mushrooms’ dataset in the libSVM
base [14]. We chose λ = ν

10n and λ1 = 2ν
nm , where ν is needed to compensate for

the fact that we do not normalize the objective. The results are shown in Fig. 1. The
advantage of using a VR stochastic gradient estimate is clear, with SAGA and SVRG
being very similar.
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7.2 MNIST with Overlapping Group Lasso

We consider the problem where F is the �2-regularized logistic loss and a group
Lasso penalty. Given the data matrix W ∈ R

n×p and vector of labels a ∈ {0, 1}n ,
F(x) = 1

n

∑n
i=1 fi (x)+ λ

2‖x‖2, where fi (x) = −(
ai log

(
h(w�

i x)
)+(1−ai ) log

(
1−

h(w�
i x)

))
, λ = 2ν

n , wi ∈ R
p is the i-th row of W , and h : t → 1/(1 + e−t ). The

nonsmooth regularizer is given by λ1
∑m

j=1 ‖x‖G j , where λ1 = ν
5n , G j ⊂ {1, . . . , p}

is a given subset of coordinates and ‖x‖G j is the �2-norm of the corresponding block
of x . To apply splitting methods, we use L = (I�

G1
, . . . , I�

Gm
)�, where IG j is the

operator that takes x ∈ R
p and returns only the entries from block G j . Then, we can

use H(y) = λ1
∑m

j=1 ‖y‖G j , which is separable in y and, thus, proximable. We use
the MNIST dataset [48] of 70000 black and white 28 × 28 images. For each pixel,
we add a group of pixels G j adjacent to it, including the pixel itself. Since there
are some border pixels, groups consist of 3, 4 or 5 coordinates, and there are 784
penalty terms in total. The results are shown in Fig. 2. Here SAGA is a bit better than
SVRG.

7.3 Fused Lasso Experiment

In the Fused Lasso problem, we are given a feature matrix W ∈ R
n×p and an output

vector a, which define the least-squares function F(x) = 1
2‖Wx − a‖2. It is regu-

larized with λ
2‖x‖2 and λ1‖Dx‖1, where λ = ν

n , λ1 = ν
10n and D ∈ R

(p−1)×p has
entries Di,i = 1, Di,i+1 = −1, for i = 1, . . . , p − 1, and Di j = 0 otherwise. We
used again the ‘mushrooms’ dataset. The plots look very similar to the ones in Fig. 1,
so we omit them.

8 Conclusion

We proposed a new primal–dual proximal splitting algorithm, the Primal–Dual
Davis–Yin (PDDY) algorithm, to minimize a sum of three functions, one of which
is composed with a linear operator. It is an alternative to the PD3O algorithm;
they often perform similarly, but one or the other may be preferable for the prob-
lem at hand, depending on the implementation details. In particular, their memory
requirements can be different. Furthermore, we proposed stochastic variants of
both algorithms, studied their convergence rates, and showed by experiments that
they can be much faster than their deterministic counterparts. We also showed that
for linearly-constrained minimization of a strongly convex function, an instance
of the stochastic PDDY algorithm, called LiCoSGD, converges linearly. We stud-
ied all algorithms within the unified framework of a stochastic generalization of
Davis–Yin splitting for monotone inclusions. Our machinery opens the door to a
promising class of new randomized proximal algorithms for large-scale optimiza-
tion.
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Appendix

A Lemmas A.1 and A.2

We state Lemma A.1 and Lemma A.2, which are used in the proofs of Theorem 5.1
and Theorem 5.2, respectively.

To simplify the notations, we use the following convention: when a set appears
in an equation while a single element is expected, e.g. ∂R(xk), this means that the
equation holds for some element in this nonempty set.

Lemma A.1 Assume that F isμF -strongly convex, for someμF ≥ 0, and that (gk)k∈N
satisfies Assumption 1. Then, the iterates of the Stochastic PD3O Algorithm satisfy

Ek‖vk+1 − v�‖2P + κγ 2
Ekσ

2
k+1 ≤ ‖vk − v�‖2P + κγ 2

(
1 − ρ + β

κ

)
σ 2
k

− 2γ (1 − γ (α + κδ))DF (xk, x�) − γμF‖xk − x�‖2
− 2γ 〈∂R(xk) − ∂R(x�), xk − x�〉
− 2γEk〈∂H∗(dk+1) − ∂H∗(d�), dk+1 − d�〉
− γ 2

Ek
∥∥P−1A(uk+1) + P−1B(zk) −

(
P−1A(u�) + P−1B(z�)

) ∥∥2
P . (22)

Proof Applying Lemma 3.2 for DYS(P−1A, P−1B, P−1C) using the norm induced
by P , we have

‖vk+1 − v�‖2P = ‖vk − v�‖2P − 2γ 〈P−1B(zk) − P−1B(z�), zk − z�〉P
− 2γ 〈P−1C(zk) − P−1C(z�), zk − z�〉P
+ γ 2‖P−1C(zk) − P−1C(z�)‖2P
− 2γ 〈P−1A(uk+1) − P−1A(u�), uk+1 − u�〉P
− γ 2‖P−1A(uk+1) + P−1B(zk) −

(
P−1A(u�) + P−1B(z�)

)
‖2P

= ‖vk − v�‖2P − 2γ 〈B(zk) − B(z�), zk − z�〉
+ γ 2‖P−1C(zk) − P−1C(z�)‖2P
− 2γ 〈C(zk) − C(z�), zk − z�〉 − 2γ 〈A(uk+1) − A(u�), uk+1 − u�〉
− γ 2‖P−1A(uk+1) + P−1B(zk) −

(
P−1A(u�) + P−1B(z�)

)
‖2P .

Using A(uk+1) = (
L∗dk+1,−Lsk+1 + ∂H∗(dk+1)

)
, B(zk) = (

∂R(xk), 0
)
,C(zk) =(

gk+1, 0
)
and A(u�) = (

L∗d�,−Ls� + ∂H∗(d�)
)
, B(z�) = (

∂R(x�), 0
)
,C(z�) =(∇F(x�), 0

)
, we have

‖vk+1 − v�‖2P = ‖vk − v�‖2P − 2γ 〈∂R(xk) − ∂R(x�), xk − x�〉
+ γ 2‖gk+1 − ∇F(x�)‖2
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− 2γ 〈gk+1 − ∇F(x�), xk − x�〉 − 2γ 〈∂H∗(dk+1)

− ∂H∗(d�), dk+1 − d�〉
− γ 2‖P−1A(uk+1) + P−1B(zk) −

(
P−1A(u�) + P−1B(z�)

)
‖2P .

Taking conditional expectation w.r.t. Fk and using Assumption 1,

Ek‖vk+1 − v�‖2P ≤ ‖vk − v�‖2P − 2γ 〈∂R(xk) − ∂R(x�), xk − x�〉
− 2γ 〈∇F(xk) − ∇F(x�), xk − x�〉
− 2γEk〈∂H∗(dk+1) − ∂H∗(d�), dk+1 − d�〉
+ γ 2

(
2αDF (xk, x�) + βσ 2

k

)

− γ 2
Ek‖P−1A(uk+1) + P−1B(zk)

−
(
P−1A(u�) + P−1B(z�)

)
‖2P .

Using strong convexity of F ,

Ek‖vk+1 − v�‖2P ≤ ‖vk − v�‖2P − γμF‖xk − x�‖2 − 2γ DF (xk, x�)

+ γ 2
(
2αDF (xk, x�) + βσ 2

k

)

− 2γ 〈∂R(xk) − ∂R(x�), xk − x�〉
− 2γEk〈∂H∗(dk+1) − ∂H∗(d�), dk+1 − d�〉
− γ 2

Ek‖P−1A(uk+1) + P−1B(zk)

−
(
P−1A(u�) + P−1B(z�)

)
‖2P .

Using Assumption 1,

Ek‖vk+1 − v�‖2P + κγ 2
Ekσ

2
k+1 ≤ ‖vk − v�‖2P + κγ 2

(
1 − ρ + β

κ

)
σ 2
k

− γμF‖xk − x�‖2
− 2γ (1 − γ (α + κδ))DF (xk, x�) − 2γ 〈∂R(xk)

− ∂R(x�), xk − x�〉
− 2γEk〈∂H∗(dk+1) − ∂H∗(d�), dk+1 − d�〉
− γ 2

Ek
∥∥P−1A(uk+1) + P−1B(zk)

−
(
P−1A(u�) + P−1B(z�)

) ∥∥2
P .

��
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Lemma A.2 Suppose that (gk)k∈N satisfies Assumption 1. Then, the iterates of the
Stochastic PDDY Algorithm satisfy

Ek‖vk+1 − v�‖2P + κγ 2
Ekσ

2
k+1 ≤ ‖vk − v�‖2P + κγ 2

(
1 − ρ + β

κ

)
σ 2
k

− 2γ (1 − γ (α + κδ))DF (xk, x�) − 2γ 〈∂H∗(yk)
− ∂H∗(y�), yk − y�〉
− 2γEk〈∂R(sk+1) − ∂R(s�), sk+1 − s�〉.

Proof Applying Lemma 3.2 for DYS(P−1B, P−1A, P−1C) using the norm induced
by P , we have

‖vk+1 − v�‖2P = ‖vk − v�‖2P − 2γ 〈P−1A(zk) − P−1A(z�), zk − z�〉P
− 2γ 〈P−1C(zk) − P−1C(z�), zk − z�〉P
+ γ 2‖P−1C(zk) − P−1C(z�)‖2P
− 2γ 〈P−1B(uk+1) − P−1B(u�), uk+1 − u�〉P
− γ 2‖P−1B(uk+1) + P−1A(zk) −

(
P−1B(u�) + P−1A(z�)

)
‖2P

= ‖vk − v�‖2P − 2γ 〈A(zk) − A(z�), zk − z�〉 − 2γ 〈C(zk)

− C(z�), zk − z�〉
− 2γ 〈B(uk+1) − B(u�), uk+1 − u�〉
+ γ 2‖P−1C(zk) − P−1C(z�)‖2P
− γ 2‖P−1B(uk+1) + P−1A(zk) −

(
P−1B(u�) + P−1A(z�)

)
‖2P .

Using A(zk) = (
L∗yk,−Lxk + ∂H∗(yk)

)
, B(uk+1) = (

∂R(sk+1), 0
)
,C(zk) =(

gk+1, 0
)
and A(z�) = (

L∗y�,−Lx� + ∂H∗(y�)
)
, B(u�) = (

∂R(s�), 0
)
,C(z�) =(∇F(x�), 0

)
, we have,

‖vk+1 − v�‖2P ≤ ‖vk − v�‖2P − 2γ 〈∂H∗(yk) − ∂H∗(y�), yk − y�〉
+ γ 2‖gk+1 − ∇F(x�)‖2
− 2γ 〈gk+1 − ∇F(x�), xk − x�〉 − 2γ 〈∂R(sk+1)

− ∂R(s�), sk+1 − s�〉.

Applying the conditional expectation w.r.t. Fk and using Assumption 1,

Ek‖vk+1 − v�‖2P ≤ ‖vk − v�‖2P − 2γ 〈∂H∗(yk) − ∂H∗(y�), yk − y�〉
− 2γ 〈∇F(xk) − ∇F(x�), xk − x�〉
+ γ 2

(
2αDF (xk, x�) + βσ 2

k

)
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− 2γEk〈∂R(sk+1) − ∂R(s�), sk+1 − s�〉.

Using the convexity of F ,

Ek‖vk+1 − v�‖2P ≤ ‖vk − v�‖2P − 2γ 〈∂H∗(yk) − ∂H∗(y�), yk − y�〉
− 2γ DF (xk, x�)

− 2γEk〈∂R(sk+1) − ∂R(s�), sk+1 − s�〉
+ γ 2

(
2αDF (xk, x�) + βσ 2

k

)
.

Using Assumption 1,

Ek‖vk+1 − v�‖2P + κγ 2
Ekσ

2
k+1 ≤ ‖vk − v�‖2P + κγ 2

(
1 − ρ + β

κ

)
σ 2
k

− 2γ (1 − γ (α + κδ))DF (xk, x�)

− 2γ 〈∂H∗(yk) − ∂H∗(y�), yk − y�〉
− 2γEk〈∂R(sk+1) − ∂R(s�), sk+1 − s�〉. ��

B Linear Convergence Results

In this section, we provide linear convergence results for the stochastic PD3O and
the stochastic PDDY algorithms, in addition to Theorem 6.2. For an operator splitting
method like DYS( Ã, B̃, C̃) to converge linearly, it is necessary that Ã + B̃ + C̃ is
strongly monotone. But this is not sufficient, and in general,

to converge linearly, DYS( Ã, B̃, C̃) requires the stronger assumption that Ã or B̃
or C̃ is strongly monotone, and in addition that Ã or B̃ is cocoercive [28]. The PDDY
algorithm is equivalent to DYS(P−1B, P−1A, P−1C) and the PD3O algorithm is
equivalent to DYS(P−1A, P−1B, P−1C), see Sect. 4. However, P−1A, P−1B and
P−1C are not strongly monotone. In spite of this, we will prove linear convergence
of the (stochastic) PDDY and PD3O algorithms.

Thus, for both algorithms,wewillmake the assumption that P−1A+P−1B+P−1C
is strongly monotone. This is equivalent to assuming that M = A+ B +C is strongly
monotone; that is, that F + R is strongly convex and H is smooth. For instance, the
Chambolle–Pock algorithm [11, 13], which is a particular case of the PD3O and the
PDDY algorithms, requires R strongly convex and H smooth to converge linearly,
in general. In fact, for primal–dual algorithms to converge linearly on Problem (1),
for any L , it seems unavoidable that F + R is strongly convex and that the dual
term H∗ is strongly convex too, because the algorithm needs to be contractive in
both the primal and the dual spaces. This means that H must be smooth. We can
remark that if H is smooth, it is tempting to use its gradient instead of its proximity
operator. We can then use the proximal gradient algorithm to solve Problem (1) with
∇(F + H ◦ L)(x) = ∇F(x) + L∗∇H(Lx). However, in practice, it is often faster to
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use the proximity operator instead of the gradient, see a recent analysis of this topic
in [18].

For the PD3O algorithm, we will add a cocoercivity assumption, as suggested by
the general linear convergence theory of DYS. More precisely, we will assume that
R is smooth, so that P−1B is cocoercive. Our result on the PD3O is therefore an
extension of [77][Theorem 3] to the stochastic setting. For the PDDY algorithm, this
assumption is not needed to prove linear convergence, which is an advantage over the
PD3O algorithm.

We denote by ‖ · ‖γ,τ the norm induced by γ
τ
I − γ 2LL∗ on Y .

Theorem B.1 (Linear convergence of the Stochastic PD3O Algorithm) Suppose that
Assumption 1 holds. Suppose that H is 1/μH∗ -smooth, for some μH∗ > 0, F is μF-
strongly convex, for some μF ≥ 0, and R is μR-strongly convex, for some μR ≥ 0,
withμ := μF +2μR > 0. Also, suppose that R is λ-smooth, for some λ > 0. Suppose
that the parameters γ > 0 and τ > 0 satisfy γ ≤ 1/(α + κδ), for some κ > β/ρ, and
γ τ‖L‖2 < 1. Define, for every k ∈ N,

V k := ‖pk − p�‖2 + (1 + 2τμH∗) ‖yk − y�‖2γ,τ + κγ 2σ 2
k , (23)

and

r := max

(
1 − γμ

(1 + γ λ)2
,

(
1 − ρ + β

κ

)
,

1

1 + 2τμH∗

)
. (24)

Then, for every k ∈ N, EV k ≤ rkV 0.

Proof We first use Lemma A.1 along with the strong convexity of R, H∗. Note that
yk = qk and therefore qk+1 = qk + dk+1 − qk = dk+1. We have

Ek‖pk+1 − p�‖2 + Ek‖qk+1 − q�‖2γ,τ + 2γμH∗Ek‖qk+1 − q�‖2 + κγ 2
Ekσ

2
k+1

≤ ‖pk − p�‖2 + ‖qk − q�‖2γ,τ − γμ‖xk − x�‖2 + κγ 2
(
1 − ρ + β

κ

)
σ 2
k

− 2γ (1 − γ (α + κδ))DF (xk, x�).

Noting that for every q ∈ Y , ‖q‖2γ,τ = γ
τ
‖q‖2 − γ 2‖L∗q‖2 ≤ γ

τ
‖q‖2, and taking

γ ≤ 1/(α + κδ), we have

Ek‖pk+1 − p�‖2 + (1 + 2τμH∗)Ek‖qk+1 − q�‖2γ,τ + κγ 2
Ekσ

2
k+1

≤ ‖pk − p�‖2 + ‖qk − q�‖2γ,τ − γμ‖xk − x�‖2 + κγ 2
(
1 − ρ + β

κ

)
σ 2
k .

Finally, since R is λ-smooth, ‖pk − p�‖2 ≤ (1 + 2γ λ + γ 2λ2)‖xk − x�‖2. Indeed,
in this case, applying Lemma 3.2 with Ã = 0, C̃ = 0 and B̃ = ∇R, we obtain that if
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xk = proxγ R(pk) and x� = proxγ R(p�), then

‖xk − x�‖2 = ‖pk − p�‖2 − 2γ 〈∇R(xk) − ∇R(x�), xk − x�〉
− γ 2‖∇R(xk) − ∇R(x�)‖2

≥ ‖pk − p�‖2 − 2γ λ‖xk − x�‖2 − γ 2λ2‖xk − x�‖2.

Hence,

Ek‖pk+1 − p�‖2 + (1 + 2τμH∗)Ek‖qk+1 − q�‖2γ,τ + κγ 2
Ekσ

2
k+1

≤ ‖pk − p�‖2 + ‖qk − q�‖2γ,τ − γμ

(1 + γ λ)2
‖pk − p�‖2

+ κγ 2
(
1 − ρ + β

κ

)
σ 2
k .

Thus, by setting V k as in (23) and r as in (24), we have EkV k+1 ≤ rV k . ��

Thus, under smoothness and strong convexity assumptions, Theorem B.1 implies
linear convergence of the dual variable yk to y�, with convergence rate given by r .
Since ‖xk − x�‖ ≤ ‖pk − p�‖, it also implies linear convergence of the variable xk

to x�, with same rate.
If gk+1 = ∇F(xk), the Stochastic PD3OAlgorithm reverts to the PD3OAlgorithm

and Theorem B.1 provides a convergence rate similar to Theorem 3 in [77]. In this
case, by taking κ = 1, we obtain

r = max

(
1 − γ

μF + 2μR

(1 + γ λ)2
,

1

1 + 2τμH∗

)
,

whereas Theorem 3 in [77] provides the rate

max

(
1 − γ

2(μF + μR) − γαμF

(1 + γ λ)2
,

1

1 + 2τμH∗

)

(the reader might not recognize the rate given in Theorem 3 of [77] because of some
typos in Eqn. 39 of [77]).

Theorem B.2 (Linear convergence of the Stochastic PDDY Algorithm) Suppose that
Assumption 1 holds. Also, suppose that H is 1/μH∗ -smooth and R is μR-strongly
convex, for some μR > 0 and μH∗ > 0. Suppose that the parameters γ > 0 and
τ > 0 satisfy γ ≤ 1/(α + κδ), for some κ > β/ρ, γ τ‖L‖2 < 1, and γ 2 ≤ μH∗

‖L‖2μR
.

Define η := 2
(
μH∗ − γ 2‖L‖2μR

) ≥ 0 and, for every k ∈ N,

V k := (1 + γμR)‖pk − p�‖2 + (1 + τη)‖yk − y�‖2γ,τ + κγ 2σ 2
k , (25)

123



Journal of Optimization Theory and Applications (2022) 195:102–130 125

and

r := max

(
1

1 + γμR
, 1 − ρ + β

κ
,

1

1 + τη

)
. (26)

Then, for every k ∈ N, EV k ≤ rkV 0.

Proof We first use Lemma A.2 along with the strong convexity of R and H∗. Note
that yk = qk+1. We have

Ek‖vk+1 − v�‖2P + κγ 2
Ekσ

2
k+1 ≤ ‖vk − v�‖2P + κγ 2

(
1 − ρ + β

κ

)
σ 2
k

− 2γμH∗Ek‖qk+1 − q�‖2
− 2γμREk‖sk+1 − s�‖2.

Note that sk+1 = pk+1−γ L∗yk . Therefore, sk+1−s� = (pk+1− p�)−γ L∗(yk−y�).
Using Young’s inequality−‖a+b‖2 ≤ − 1

2‖a‖2+‖b‖2, we have−Ek‖sk+1−s�‖2 ≤
− 1

2Ek‖pk+1 − p�‖2 + γ 2‖L‖2Ek‖qk+1 − q�‖2. Hence, using τ‖q‖2γ,τ ≤ γ ‖q‖2,

Ek‖vk+1 − v�‖2P + κγ 2
Ekσ

2
k+1 ≤ ‖vk − v�‖2P + κγ 2

(
1 − ρ + β

κ

)
σ 2
k

− 2γ
(
μH∗ − γ 2‖L‖2μR

)
Ek‖qk+1 − q�‖2

− γμREk‖pk+1 − p�‖2

≤ ‖vk − v�‖2P + κγ 2
(
1 − ρ + β

κ

)
σ 2
k

− 2τEk‖qk+1 − q�‖2γ,τ

(
μH∗ − γ 2‖L‖2μR

)

− γμREk‖pk+1 − p�‖2.

Set η := 2
(
μH∗ − γ 2‖L‖2μR

) ≥ 0. Then,

(1 + γμR)Ek‖pk+1 − p�‖2 + (1 + τη)Ek‖qk+1 − q�‖2γ,τ + κγ 2
Ekσ

2
k+1

≤ ‖vk − v�‖2P + κγ 2
(
1 − ρ + β

κ

)
σ 2
k .

Thus, by setting V k as in (25) and r as in (26), we have EkV k+1 ≤ rV k . ��
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C PriLiCoSGD and Application to Decentralized Optimization

Algorithm 5 *
PriLiCoSGD (new)
1: Input: x0 ∈ X , a0 ∈ ran(W ), γ > 0, τ > 0
2: for k = 0, 1, 2, . . . do
3: tk+1 = xk − γ gk+1

4: ak+1 = ak + τW (tk+1 − γ ak) − τc
5: xk+1 = tk+1 − γ ak+1

6: end for

Algorithm 6 *
DESTROY (new)
1: Input: x0i ∈ X and a0i ∈ X , ∀i ∈ V , such that∑

i∈V a0i = 0, γ > 0, τ > 0
2: for k = 0, 1, 2, . . . do
3: for all i ∈ V in parallel do
4: tk+1

i = xki − γ gk+1
i

5: ak+1
i = (1 − τγ Ŵi,i )a

k
i + τ Ŵi,i t

k+1
i

6: + τ
∑

j �=i :{i, j}∈V Ŵi, j (t
k+1
j − γ akj )

7: xk+1
i = tk+1

i − γ ak+1
i .

8: end for
9: end for

In decentralized optimization, a network of computing agents aims at jointly min-
imizing an objective function by performing local computations and exchanging
information along the edges [1, 46, 66, 67]. It is a particular case of linearly con-
strained optimization, as detailed below.

First, let us setW := L∗L and c := L∗b. Replacing the variable yk by the variable
ak := L∗yk in LiCoSGD, we can write the algorithm using W and c instead of L , L∗
and b, with primal variables in X only. This yields the new algorithm PriLiCoSGD,
shown above, to minimize F(x) subject to Wx = c. The convergence results for
LiCoSGD apply to PriLiCoSGD, with (ak)k∈N converging to a� = −∇F(x�).

We can apply PriLiCoSGD to decentralized optimization as follows. Consider a
connected undirected graph G = (V , E), where V = {1, . . . , N } is the set of nodes
and E the set of edges. Consider a family ( fi )i∈V of μ-strongly convex and ν-smooth
functions fi , for some μ ≥ 0 and ν > 0. The problem is:

min
x∈X

∑
i∈V

fi (x). (27)

Consider a gossip matrix of the graph G; that is, a N ×N symmetric positive semidef-
inite matrix Ŵ = (Ŵi, j )i, j∈V , such that ker(Ŵ ) = span([1 · · · 1]T) and Ŵi, j �= 0
if and only if i = j or {i, j} ∈ E is an edge of the graph. Ŵ can be the Laplacian
matrix of G, for instance. Set W := Ŵ ⊗ I , where ⊗ is the Kronecker product; then
decentralized communication in the network G is modeled by an application of the
positive self-adjoint linear operator W on X V . Moreover, W (x1, . . . , xN ) = 0 if and
only if x1 = . . . = xN . Therefore, Problem (27) is equivalent to the lifted problem

min
x̃∈X V

F(x̃) such that Wx̃ = 0, (28)

where for every x̃ = (x1, . . . , xN ) ∈ X V , F(x̃) = ∑N
i=1 fi (xi ). Let us apply

PriLiCoSGD to Problem (28); we obtain the Decentralized Stochastic Optimiza-
tion Algorithm (DESTROY). It generates the sequence (x̃ k)k∈N, where x̃ k =
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(xk1 , . . . , x
k
N ) ∈ X V . The update of each xki consists in evaluating gk+1

i , an estimate
of ∇ fi (xki ) satisfying Assumption 1,

and communication steps involving xkj , for every neighbor j of i . For instance, the

variance-reduced estimator gki can be the loopless SVRG estimator seen in Proposi-
tion 5.1, when fi is itself a sum of functions, or a compressed version of ∇ fi [4, 50,
65, 75].

As an application of the convergence results for LiCoSGD, we obtain the following
results for DESTROY. Theorem 4.1 becomes:

Theorem C.1 (Convergence of DESTROY, deterministic case gk+1
i = ∇ fi (xki )) Sup-

pose that γ ∈ (0, 2/ν) and that τγ ‖Ŵ‖ < 1. Then, in DESTROY, each (xki )k∈N
converges to the same solution x� to the problem (27) and each (aki )k∈N converges to
a�
i = −∇ fi (x�).

Theorem 6.1 can be applied to the stochastic case, stating O(1/k) convergence of
the Lagrangian gap, by setting Y = X and L = L∗ = W 1/2. Similarly, Theorem 6.2
yields linear convergence of DESTROY in the strongly convex case μ > 0, with L∗L
replaced by W and ‖L‖2 replaced by ‖W‖ = ‖Ŵ‖. In particular, in the deterministic
case, with γ = 1/ν and τγ = ℵ/‖W‖ for some fixed ℵ ∈ (0, 1), ε-accuracy is

reached after O
(
max

(
ν
μ
,

‖W‖
ω(W )

)
log

( 1
ε

))
iterations. This rate is better or equivalent

to the one of recently proposed decentralized algorithms, like EXTRA,DIGing, NIDS,
NEXT, Harness, Exact Diffusion, see Table 1 of [76], [49][Theorem 1] and [1]. With
a stochastic gradient, the rate of our algorithm is also better than [53][Equation 99].

In follow-up papers, the authors used Nesterov acceleration to propose accelerated
versions of DESTROY [46] and PriLiCoSGD [64].
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