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Abstract
This paper investigates the Sobolev-type problems for Hilfer fractional stochastic
evolution equations and optimal controls in Hilbert spaces. With the help of a charac-
teristic solution operator and its properties, we present an existence of mild solutions
to the fractional stochastic evolution equations. Moreover, some sufficient conditions
are established for the existence conditions of optimal state control pairs of the limited
Lagrange optimal systems. Our methods are based on the fractional calculus, Hölder
inequality, stochastic analysis and fixed point theorem.

Keywords Fractional derivative · Stochastic evolution equations · Sobolev type ·
Optimal controls

Mathematics Subject Classification 26A33 · 35R11 · 93E20

1 Introduction

We consider the following nonlinear time-fractional Sobolev-type stochastic evolution
equations:

H Dα,β
0+ (Ex)(t) + Ax(t) = f (t, x) + B(t)u(t) + g(t, x)

d

dt
W (t), t ∈ (0, T ], (1)

and the initial value condition

(I 1−γ
0+ x)(0) = x0, (2)
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where H Dα,β
0+ is the Hilfer fractional derivative of order α ∈ (1/2, 1), with type of

β ∈ [0, 1] and γ = α + β(1 − α), I 1−γ
0+ is the Riemann–Liouville fractional integral

of order 1 − γ . The operators A and E are two linear operators defined on Banach X
with domains D(A) ⊂ X and D(E) ⊂ X , which satisfy the following hypotheses: (i)
Operator A is closed, (ii) D(E) ⊂ D(A) and E is bijective, (iii) E−1 : X → D(E)

is compact. These means that hypotheses (i)–(iii) and the closed graph theorem imply
the boundedness of the linear operator AE−1 : X → X , and it generates a uniformly
continuous semigroup {TE (t), t ≥ 0} from X into X . The state x(·) takes its values
in a separable Hilbert space V with inner product (·, ·)V and norm ‖ · ‖V ; the control
u takes its values in U , a separable Hilbert space of admissible control functions,
x0 ∈ D(E). The term W (t) is an Ft -adapted Wiener process defined on a filtered
probability space (D,F ,P, {Ft }t≥0). Linear operator B : [0, T ] → L(U , V ), where
L(U , V ) stands for space of all bounded linear operators fromU into V . The functions
f and g are given with satisfying some suitable assumptions.
During the past decades, fractional calculus has attracted much attention; since

the nonlocal property of fractional derivatives, a number of phenomena described by
fractional differential equations have been investigated by many researchers in the
fields of mathematics, science and engineering; see the relevant works [1, 13, 17, 26].
A classical example is anomalous diffusion process; the tool of fractional derivatives
has played a decisive role to solve the relevant problems; see, e.g., [10, 12, 19, 20,
28, 33] and the references therein. When the performance index and system dynamics
are described by fractional differential equations, a fractional optimal control problem
will appear very naturally. In particular, a typical case is the fractional optimal control
of a distributed system. For the fractional optimal controls, one sees Wang et al.
[29], Debbouche and Nieto [4], Yan and Jia [30, 31], Liu and Wang [16], Liu [15],
El-Borai et al. [6] and the references therein. Besides, Sobolev-type problems find
a lot of applications in mathematical models, for instance the flow of fluid through
fissured rocks, thermodynamics, propagation of long waves of small amplitude; see,
e.g., [14, 27]. Specially in [3], the authors considered the fractional stochastic evolution
equations of Sobolev type of order α ∈ (1, 2), they showed the existence of solutions
and existence conditions of optimal pairs in optimal control systems. Let us point out
that the problem (1)–(2) without the Sobolev type will reduce to a special fractional
stochastic evolution equation, i.e., E = bI with an identity operator I for some b > 0,
many scholars have considered its existence and optimal control of solutions; see the
papers [7, 22, 23] and the references therein.

We remark that the Hilfer fractional derivative is a generalization of the classical
Riemann–Liouville fractional derivative and Caputo fractional derivative, although
the existence of solution for the case of Caputo fractional derivative to problem (1)–
(2) has already been investigated by [18]; to the best of our knowledge, the optimal
control of fractional stochastic evolution equations with Sobolev type has not been
studied extensively. In particular, the case of Riemann–Liouville fractional derivative
to problem (1)–(2) has not been seen yet. In this paper, we investigate the existence and
optimal controls for this type of a problem in Hilfer’s fractional derivative. Obviously,
the result in the current paper is a natural generalization of the cases of Riemann–
Liouville fractional derivative or the Caputo fractional derivative.
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This paper is organized as follows. Section 2 introduces some useful notations and
preparations. In Sect. 3, the existence of mild solutions of problem (1)–(2) is presented
without the control term. In Sect. 4, we will study the existence of mild solutions for
optimal controls of the Bolza problem. Finally, we get an application to illustrate the
main results.

2 Preliminaries

Throughout this paper, we denote by X a Hilbert space with norm ‖·‖. Let J = [0, T ],
J ′ = (0, T ], and let L(X ,Y ) be the space of all bounded linear operators form X into
Y equipped with the norm ‖ · ‖L(X ,Y ). For the sake of simplicity, we set L(X , X) by
L(X) equipped with the norm ‖ · ‖L(X).

Let X be a real random variable defined on a probability space (D,F ,P), which is
a complete probability space equipped with a normal filtration Ft , t ∈ J . X is called
p-integrable if

∫
D

|X (w)|pP(dw) < ∞, p ≥ 1.

The totality of pth integrable random variables is denoted by L2(D,F ,P; X) (p = 2)
or simply by L2(D, X) with the norm

E‖X‖2 =
∫
D

‖X (w)‖2P(dw),

where the notation E(X ) =
∫
D
X (w)P(dw) is called the expectation of X for any

integrable random variable X .
Let K be a separableHilbert space andW (t) : J×D → K be the Q-Weiner process

on (D,F ,P) with the linear bounded covariance operator Q such that TrQ < ∞,
which is adapted to normal filtration {Ft }t∈J . Assume that there exists a complete
orthonormal system {ek}∞k=1 in K , a bounded sequence of nonnegative real numbers
{λk}∞k=1 such that

Qek = λkek, λk ≥ 0, k = 1, 2, 3, . . . ,

and a sequence of independent real-valued Brownian motions {σk}∞k=1 such that

〈W (t), e〉 =
∞∑
k=1

√
λk〈ek, e〉σk(t), e ∈ K , t ∈ J .

We introduce a subspace X0 = Q1/2K of K endowed with the inner product

〈u, v〉X0 = 〈Q−1/2u, Q−1/2v〉K , for any u, v ∈ X0,
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where Q−1/2 denotes the pseudo-inverse of Q1/2. It is clear that X0 is a Hilbert space.
Let L0

2 = L2(X0, X) be the space of all Hilbert–Schmidt operators from X0 to X
endowed with the inner product 〈ϕ, φ〉L0

2
= Tr [ϕQφ∗] for any ϕ, φ ∈ L0

2. Obviously,
it is also a Hilbert space. Since for each t ≥ 0 the subsigma algebras Ft are complete,
L2(Ft , X) are closed subspaces of L2(D, X) and hence they are also Banach spaces.
Similarly, L2

F (J , X) denotes the closed subspace of L2
F (J ×D, X), consisting of all

measurable and Ft -progressively measurable random processes defined in J , taking
its values in X satisfying E

∫ T
0 ‖x(t)‖2dt < ∞.

Let C(J ,L2(D, X)) be Banach space of continuous maps from J into L2(D, X)

satisfying norm supt∈J e
−LtE‖x(t)‖2P < ∞ for a fixed constant L > 0. Let C(J , X)

be a closed subspace of C(J ,L2(D, X)) consisting of measurable and Ft -adapted
X -valued continuous processes x(·) ∈ C(J ,L2(D, X)) endowed with the norm

‖x‖C =
(
sup
t∈J

e−LtE‖x(t)‖2
)1/2

.

Then, (C(J , X), ‖ · ‖C) is a Banach space.
Let γ = α + β(1 − α), then 1 − γ = (1 − α)(1 − β) ≥ 0, define

Cγ (J , X) = {x ∈ C(J ′, X) : t1−γ x ∈ C(J , X)}.

It is clear that Cγ (J , X) is a Banach space with norm

‖x‖Cγ =
(
sup
t∈J

e−Lt t1−γE‖x(t)‖2
)1/2

.

Let function gγ (·) be given by

gγ (t) = tγ−1/Γ (γ ), for t > 0, γ > 0,

where Γ (·) is the usual gamma function. In case γ = 0, we denote g0(t) = δ(t), the
Dirac measure is concentrated at the origin.

Let us recall the definition of factional derivative. For more detail, we refer to [11,
13, 24].

Definition 2.1 TheRiemann–Liouville fractional integral of orderα > 0 for a function
x : [0,∞) → X is defined by

I α
0+x(t) = 1

Γ (α)

∫ t

0
(t − s)α−1x(s)ds, t > 0,

provided the right side is pointwise defined on [0,∞).
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Definition 2.2 The Hilfer fractional derivative of order 0 < α < 1 and 0 ≤ β ≤ 1 for
a function x : [0,∞) → X is defined as

HDα,β
0+ x(t) = I β(1−α)

0+
(
d

dt
I (1−β)(1−α)
0+ x

)
(t), t > 0.

Remark 2.1 Noting that if β = 0 and 0 < α < 1, the Hilfer fractional derivative is
the Riemann–Liouville fractional derivative. If β = 1 and 0 < α < 1, the Hilfer
fractional derivative is the Caputo fractional derivative.

We firstly introduce the Wright-type function Mς (·); for more details, we refer to
[13, 19], which is defined by

Mς (z) =
∞∑
n=0

(−z)n

n!Γ (1 − ς(n + 1))
, ς ∈ (0, 1), z ∈ C.

Lemma 2.1 [19] For any t > 0, the Wright-type function has the properties

Mς (t) ≥ 0,
∫ ∞

0
θδMς (θ)dθ = Γ (1 + δ)

Γ (1 + ςδ)
, f or − 1 < δ < ∞. (3)

Lemma 2.2 [25, Lemma 7.7] For any r ≥ 1 and for arbitrary L0
2-valued predictable

process Φ(·), there is

sup
s∈[0,t]

E

(∥∥∥∥
∫ s

0
Φ(τ)dW (τ )

∥∥∥∥
2r

)
≤ Lr

(∫ t

0

(
E‖Φ(s)‖2r

L0
2

)1/r
ds

)r

, t ∈ [0, T ],

where Lr = (r(2r − 1))r .

For x ∈ X and 0 < α < 1, we define a family {Sα,E (t) : t ≥ 0} of operator by

Sα,E (t) =
∫ ∞

0
αθMα(θ)TE (tαθ)dθ.

By the similar proofs in Zhou [8, 32] or Gu and Trujillo [9], the following results
can be given.

Lemma 2.3 Assume that supt≥0 ‖TE (t)‖L(X) ≤ M for some M ≥ 1. One has the
following properties:

(i) for any fixed t ≥ 0, Sα,E (t) is linear bounded operator on X with

‖Sα,E (t)‖L(X) ≤ M

Γ (α)
,

(ii) if TE (t) is compact, then Sα,E (t) is compact in X for t > 0,
(iii) Sα,E (t) : [0,∞) → L(X) is continuous.

123



84 Journal of Optimization Theory and Applications (2022) 195:79–101

Lemma 2.4 [21] If μ, ν, τ > 0 and t > 0, then

t1−ν

∫ t

0
(t − s)ν−1sμ−1e−τ sds ≤ Cν,μτ−ν,

where

Cν,μ = max{1, 21−μ}Γ (ν)(1 + ν(ν + 1)/μ) > 0.

3 Existence of Mild Solutions

In this section, we study the existence of mild solutions to problem (1)–(2) without the
control term. To do this, we next introduce the following definition of mild solutions
for the problem (1)–(2), similarly in [9]. We first consider the following problem:

H Dα,β
0+ (Ex)(t) + Ax(t) = f (t, x) + g(t, x)

d

dt
W (t), t ∈ (0, T ], (4)

(I 1−γ
0+ x)(0) = x0. (5)

Definition 3.1 A function x ∈ C(J , X) is called a solution of the problem (4)–(5) if it
satisfies the integral equation

x(t) = E−1Pβ
α,E (t)Ex0 +

∫ t

0
E−1Tα,E (t − s) f (s, x(s))ds

+
∫ t

0
E−1Tα,E (t − s)g(s, x(s))dW (s),

for t ∈ J , where

Pβ
α,E (t) = I β(1−α)

0+ Tα,E (t), Tα,E (t) = tα−1Sα,E (t).

In order to explain our theorem, we need the following assumptions:

(Hf) f : J × X → X satisfies the following:

(a) f (t, ·) : X → X is continuous for each t ∈ J and for each x ∈ X , f (·, x) :
J → X is strongly measurable,

(b) there is a positive function h(t) ∈ L∞(J ,R+) such that for every (t, x) ∈
J × X ,

E‖ f (t, x)‖2 ≤ h(t)(1 + E‖x‖2).

(Hg) g : J × X → L2
0 satisfies the following:

(a) g(t, ·) : X → L2
0 is continuous for each t ∈ J and for each x ∈ X , g(·, x) :

J → L2
0 is strongly measurable,
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(b) there is a positive function l ∈ L∞(J ,R+) such that for every (t, x) ∈ J × X ,

E‖g(t, x)‖2
L2
0

≤ l(t)(1 + E‖x‖2).
We note that if x is a solution to problem (4)–(5), there appears a singular point at

t = 0. In order to overcome this difficulty for applying the Ascoli–Arzelà theorem and
the Krasnoselskii fixed point theorem, for any x ∈ Cγ (J , X), we define a mappingQ
by

(Qx)(t) = (Q1x)(t) + (Q2x)(t),
where

(Q1x)(t) = E−1Pβ
α,E (t)Ex0,

(Q2x)(t) =
∫ t

0
E−1Tα,E (t − s) f (s, x(s))ds

+
∫ t

0
E−1Tα,E (t − s)g(s, x(s))dW (s). (6)

Let x(t) = tγ−1y(t) for any y ∈ C(J , X), then x ∈ Cγ (J , X). Define a mapping
S by

(S y)(t) = (S1y)(t) + (S2y)(t),

where

(S1y)(t) = x0
Γ (γ )

, (S2y)(t) = 0, for t = 0,

and

(S1y)(t) = t1−γ (Q1x)(t), (S2y)(t) = t1−γ (Q2x)(t), for t ∈ (0, T ].

For each r > 0, we denote sets Br = {v ∈ C(J , X) : ‖v‖C ≤ r} and Bγ
r = {v ∈

Cγ (J , X) : ‖v‖Cγ ≤ r}. The sets Br and Bγ
r are the bounded, closed and convex in

the spaces C(J , X), Cγ (J , X), respectively.

Lemma 3.1 Let α ∈ (1/2, 1). Assume that (Hf) and (Hg) hold, then S(Br ) ⊂ Br for
some r > 0.

Proof From Lemma 2.3, we know that

‖Pβ
α,E (t)x‖ ≤

∫ t

0
gβ(1−α)(t − s)sα−1‖Sα,E (s)x‖ds

≤ M

Γ (α)

∫ t

0
gβ(1−α)(t − s)sα−1ds‖x‖ = M‖x‖

Γ (γ )
tγ−1, (7)
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for any x ∈ X , t > 0, where γ = α + β(1 − α) and we have used the identity

∫ t

0
(t − s)a−1sb−1ds = Γ (a)Γ (b)

Γ (a + b)
ta+b−1, a, b > 0, t > 0.

For any x ∈ Bγ
r , let y(t) = tγ−1x(t), then y ∈ Br . Since x0 ∈ D(E), clearly, for

the case of t = 0, we have

E‖(S1y)(0)‖2 ≤ �2

(Γ (γ ))2
E‖Ex0‖2 ≤ 2M�2

(Γ (γ ))2
‖x0‖2D(E),

where � = ‖E−1‖L(X). For t > 0, it follows that

E‖(S1y)(t)‖2 = E‖t1−γ (Q1x)(t)‖2 = E‖t1−γ E−1Pβ
α,E (t)Ex0‖2

≤ 2M2�2

(Γ (γ ))2
E‖Ex0‖2.

Therefore, we have

‖F1y‖2C ≤ 2M2�2

(Γ (γ ))2
‖x0‖2D(E).

By applying Hölder inequality, stochastic Fubini theorem and the definition of the
solution operator, for t > 0 we have

E

∥∥∥∥t1−γ

∫ t

0
E−1Tα,E (t − s) f (s, x(s))ds

∥∥∥∥
2

≤ t2(1−γ )

∫ t

0
(t − s)2(α−1)E

∥∥∥E−1Sα,E (t − s) f (s, x(s))
∥∥∥2 ds

≤ M2�2

(Γ (α))2
t2(1−γ )

∫ t

0
(t − s)2(α−1)h(s)(1 + E‖x(s)‖2)ds

≤ M2�2

(2α − 1)(Γ (α))2
t2(1−γ )+2α−1‖h‖∞

+M2�2r2

(Γ (α))2
t2(1−γ )‖h‖∞

∫ t

0
(t − s)2(α−1)eLssγ−1ds,

which shows from Lemma 2.4 that

E

∥∥∥∥t1−γ

∫ t

0
E−1Tα,E (t − s) f (s, x(s))ds

∥∥∥∥
2

≤ M2�2

(2α − 1)(Γ (α))2
t2(1−γ )+2α−1‖h‖∞ + M2�2r2

(Γ (α))2
‖h‖∞Cγ,2α−1t

1−γ eLt L−γ .
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Similarly, by Lemma 2.2 we have

E

∥∥∥∥t1−γ

∫ t

0
E−1Tα,E (t − s)g(s, x(s))dW (s)

∥∥∥∥
2

≤ t2(1−γ )

∫ t

0
(t − s)2(α−1)E

∥∥∥E−1Sα,E (t − s)g(s, x(s))
∥∥∥2
L2
0

ds

≤ M2�2

(Γ (α))2
t2(1−γ )

∫ t

0
(t − s)2(α−1)l(s)(1 + E‖x(s)‖2)ds

≤ M2�2

(2α − 1)(Γ (α))2
t2(1−γ )+2α−1‖l‖∞

+M2�2r2

(Γ (α))2
‖l‖∞t2(1−γ )

∫ t

0
(t − s)2(α−1)eLssγ−1ds.

Hence, Lemma 2.4 shows that

E

∥∥∥∥t1−γ

∫ t

0
E−1Tα,E (t − s)g(s, x(s))dW (s)

∥∥∥∥
2

≤ M2�2

(2α − 1)(Γ (α))2
t2(1−γ )+2α−1‖l‖∞ + M2�2r2

(Γ (α))2
‖l‖∞Cγ,2α−1t

1−γ eLt L−γ .

Combining the above arguments, we have

‖S2y‖2C ≤ sup
t∈J

M2�2

(2α − 1)(Γ (α))2
(‖h‖∞ + ‖l‖∞)t2(1−γ )+2α−1e−Lt

+ sup
t∈J

M2�2r2

(Γ (α))2
(‖h‖∞ + ‖l‖∞)Cγ,2α−1t

1−γ L−γ .

Since continuous function n(t) = tae−Lt has a maximum value at t = a/L for a ≥ 0,
t ≥ 0, that is n∗ = maxt≥0 n(t) = aaL−ae−a and n∗ ≤ 5L−a for 0 ≤ a ≤ 4, it
follows that

‖S2y‖2C ≤ 5M2�2

(2α − 1)(Γ (α))2
(‖h‖∞ + ‖l‖∞)L−(2(1−γ )+2α−1)

+M2�2r2

(Γ (α))2
(‖h‖∞ + ‖l‖∞)Cγ,2α−1T

1−γ L−γ .

Hence, we obtain

‖F y‖2C ≤ ρ2 + η2r2,

where we have chosen L > 0 large enough such that

η2 : = M2�2

(Γ (α))2
(‖h‖∞ + ‖l‖∞)Cγ,2α−1T

1−γ L−γ < 1,
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and we set

ρ2 : = 2M2�2

(Γ (γ ))2
‖x0‖2D(E) + 5M2�2

(2α − 1)(Γ (α))2
(‖h‖∞ + ‖l‖∞)L−(2(1−γ )+2α−1).

Consequently, for any r ≥ ρ/(1−η), by the elementary inequality
√
a2 + b2 ≤ a+b

for a, b ≥ 0, we get that ‖Sx‖C ≤ r . Hence, S(Br ) ⊂ Br for some r > 0. The proof
is completed. ��
Lemma 3.2 Let α ∈ (1/2, 1). Assume that (Hf) and (Hg) hold, then the set {S y : y ∈
Br } is equicontinuous on J .

Proof For any x ∈ Bγ
r , let x(t) = tγ−1y(t), then y ∈ Br for r > 0 given inLemma3.1.

We next prove this lemma dividing into two steps.
Step1. The set {S1y : y ∈ Br } is equicontinuous. Since limt→0 Sβ

α,E (t)x = x/Γ (α)

for any x ∈ X , we know that

lim
t→0

tγ−1E−1Pβ
α,E (t)Ex0 = lim

t→0
tγ−1E−1

∫ t

0
gβ(1−α)(t − s)sα−1Sβ

α,E (s)Ex0ds

= lim
t→0

∫ 1

0
gβ(1−α)(1 − s)α−1E−1Sβ

α,E (ts)Ex0ds

= x0
Γ (γ )

.

For t1 = 0, 0 < t2 ≤ T , it follows that

E‖e−Lt2/2(S1y)(t2) − (S1y)(0)‖2 = E

∥∥∥∥e−Lt2/2t1−γ
2 (Q1x)(t2) − x0

Γ (γ )

∥∥∥∥
2

= E

∥∥∥∥e−Lt2/2t1−γ
2 E−1Pβ

α,E (t2)Ex0 − x0
Γ (γ )

∥∥∥∥
2

→ 0, as t2 → 0.

For 0 < t1 < t2 ≤ T , we have

E‖e−Lt2/2(S1y)(t2) − e−Lt1/2(S1y)(t1)‖2
= E‖(e−Lt2/2 − e−Lt1/2)(S1y)(t2)‖2 + e−Lt1E‖(S1y)(t2) − (S1y)(t1)‖2, (8)

which shows from the continuity of e−at for a > 0 and the proof in Lemma 3.1 that

E‖(e−Lt2/2 − e−Lt1/2)(S1y)(t2)‖2 = (e−Lt2/2 − e−Lt1/2)2E‖(S1y)(t2)‖2

≤ (e−Lt2/2 − e−Lt1/2)2
2M2�2

(Γ (γ ))2
‖x0‖2D(E)

→ 0, as t2 → t1.

123



Journal of Optimization Theory and Applications (2022) 195:79–101 89

From the definition of operator S1, similarly, we have

(t1−γ
2 − t1−γ

1 )2E‖(Q1x)(t2)‖2 → 0, as t2 → t1.

This means that we just need to prove

t2(1−γ )
1 E‖(Q1x)(t2) − (Q1x)(t1)‖2 → 0, as t2 → t1.

In fact, it is clear from Lemma 2.3 (iii) that

E‖(Q1x)(t2) − (Q1x)(t1)‖2 = E‖E−1Pβ
α,E (t2)Ex0 − E−1Pβ

α,E (t1)Ex0‖2
→ 0, as t2 → t1.

Hence, this means that {S1y : y ∈ Br } is equicontinuous.
Step 2. The set {S2y : y ∈ Br } is equicontinuous.
For t1 = 0, 0 < t2 ≤ T , from the proof in Lemma 3.1, we obtain

E‖e−Lt2/2(S2y)(t)‖2 = E‖e−Lt2/2t1−γ
2 (Q2x)(t2)‖2

≤ M2�2

(2α − 1)(Γ (α))2
(‖h‖∞ + ‖l‖∞)t2(1−γ )+2α−1

2 e−Lt2

M2�2r2

(Γ (α))2
(‖h‖∞ + ‖l‖∞)Cγ,2α−1t

1−γ
2 L−γ → 0,

as t2 → 0.

By the same way as in (8) for 0 < t1 < t2 ≤ T , it remains to check

E‖(Q2x)(t2) − (Q2x)(t1)‖2 → 0, as t2 → t1.

In fact, by Hölder inequality and Lemma 2.2, we have

E‖(Q2x)(t2) − (Q2x)(t1)‖2

≤ 4
√
t2

∫ t2

t1
E‖E−1Tα,E (t2 − s) f (s, x(s))‖2ds

+ 4
√
t1

∫ t1

0
E‖E−1(Tα,E (t2 − s) − Tα,E (t1 − s)) f (s, x(s))‖2ds

+ 4
√
t2

∫ t2

t1
E‖E−1Tα,E (t2 − s)g(s, x(s))‖2

L2
0
ds

+ 4
√
t1

∫ t2

t1
E‖E−1(Tα,E (t2 − s) − Tα,E (t1 − s))g(s, x(s))‖2

L2
0
ds,
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which shows that for any ε ∈ (0, t1)

E‖(Q2x)(t2) − (Q2x)(t1)‖2

≤ 4M2�2√t2
(Γ (α))2

∫ t2

t1
(t2 − s)2(α−1)h(s)(1 + E‖x(s)‖2)ds

+4�2√t1

∫ t1−ε

0
h(s)(1 + E‖x(s)‖2)ds

× sup
s∈[0,t1−ε]

‖Tα,E (t2 − s) − Tα,E (t1 − s)‖L(X)

+8M2�2√t1
(Γ (α))2

∫ t1

t1−ε

(t1 − s)2(α−1)h(s)(1 + E‖x(s)‖2)ds

+4M2�2√t2
(Γ (α))2

∫ t2

t1
(t2 − s)2(α−1)l(s)(1 + E‖x(s)‖2)ds

+4�2√t1

∫ t1−ε

0
l(s)(1 + E‖x(s)‖2)ds

× sup
s∈[0,t1−ε]

‖Tα,E (t2 − s) − Tα,E (t1 − s)‖L(X)

+8M2�2√t1
(Γ (α))2

∫ t1

t1−ε

(t1 − s)2(α−1)l(s)(1 + E‖x(s)‖2)ds.

By the similar way in Lemma 3.1, repeating the proof in Step 1, we obtain

E‖(Q2x)(t2) − (Q2x)(t1)‖2

≤ 4M2�2√t2
(2α − 1)(Γ (α))2

(t2 − t1)
2α−1(‖h‖∞ + ‖l‖∞)(1 + r2eLt2 tγ−1

1 )

+4�2√t1(‖h‖∞ + ‖l‖∞)(t1 + r2eLt1 tγ1 /γ )

× sup
s∈[0,t1−ε]

‖Tα,E (t2 − s) − Tα,E (t1 − s)‖L(X)

+8M2�2√t1
(Γ (α))2

(‖h‖∞ + ‖l‖∞)ε2α−1(1 + r2eLt2(t1 − ε)γ−1)

→ 0, as t2 → t1, ε → 0.

Therefore, the set {S2y : x ∈ Br } is equicontinuous. Combining the above two steps,
we obtain that the set {S y : y ∈ Br } is equicontinuous. This completes the proof. ��
Lemma 3.3 Let α ∈ (1/2, 1). Assume that (Hf) and (Hg) hold, then S2 is a completely
continuous operator.

Proof We divide this proof into two steps.
Step 1. S2 is a continuous operator.
The case of t = 0 is trivial. For t ∈ (0, T ] and any xn, x ∈ Bγ

r , with satisfying
limn→∞ xn = x for some r > 0 given in Lemma 3.1. Let x(t) = tγ−1y(t) and
xn(t) = tγ−1yn(t), n = 1, 2 . . . , then y, yn ∈ Br .
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Hence, it follows from the hypothesis of f that

f (t, xn(t)) → f (t, x(t)), g(t, xn(t)) → g(t, x(t)), as n → ∞, a.e. t ∈ J .

In addition, by the proof as in Lemma 3.1, we know that

(t − s)2(α−1)E‖ f (s, xn(s)) − f (s, x(s))‖2 ≤ 2(t − s)2(α−1)r2eLssγ−1,

and

(t − s)2(α−1)E‖g(s, xn(s)) − g(s, x(s))‖2
L2
0

≤ 2(t − s)2(α−1)r2eLssγ−1,

are L1-integral for a.e. s ∈ (0, t) and t ∈ J ′. Therefore, it yields by the dominated
convergence theorem and Lemma 2.2 that

E
∥∥(S2yn)(t) − (S2y)(t)

∥∥2

≤ 2t2(1−γ )E

∥∥∥∥
∫ t

0
E−1Tα,E (t2 − s)( f (s, xn(s)) − f (s, x(s)))ds

∥∥∥∥
2

+ 2t2(1−γ )E

∥∥∥∥
∫ t

0
E−1Tα,E (t2 − s)(g(s, xn(s)) − g(s, x(s)))dW (s)

∥∥∥∥
2

≤ 2�2M2

(Γ (α))2
t2(1−γ )

∫ t

0
(t − s)2(α−1)E‖ f (s, xn(s)) − f (s, x(s))‖2ds

+ 2�2M2

(Γ (α))2
t2(1−γ )

∫ t

0
(t − s)2(α−1)E‖g(s, xn(s)) − g(s, x(s))‖2

L2
0
ds → 0,

as n → ∞,

which deduce that ‖S2yn −S2y‖C → 0 pointwise on J ′ as n → ∞. Hence, ‖S2yn −
S2y‖C → 0 pointwise on J as n → ∞. From Step 2 in Lemma 3.2, it yields that
S2yn → S2y uniformly on J as n → ∞. Thus, S2 is a continuous operator.

Step 2. S2 is a compact operator.
The case t = 0 is trivial. Now, let t ∈ J ′ be fixed, for any ε ∈ (0, t), δ > 0, define

the operator by

(Sε,δ y)(t) = t1−γ (Qε,δx)(t)

= t1−γ

∫ t−ε

0

∫ ∞

δ

E−1(t − s)α−1αθMα(θ)TE ((t − s)αθ) f (s, x(s))dθds

+t1−γ

∫ t−ε

0

∫ ∞

δ

E−1(t − s)α−1αθMα(θ)TE ((t − s)αθ)g(s, x(s))dθdW (s).

Therefore, it follows that

(Sε,δ y)(t) = TE (εαθ)S f g(t)

= t1−γ TE (εαθ)
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×
∫ t−ε

0

∫ ∞

δ

E−1(t − s)α−1αθMα(θ)TE ((t − s)αθ − εαθ) f (s, x(s))dθds

+t1−γ TE (εαθ)

×
∫ t−ε

0

∫ ∞

δ

E−1(t − s)α−1αθMα(θ)TE ((t − s)αθ − εαθ)g(s, x(s))dθdW (s).

From Lemma 3.1, we know that S f g(t) is bounded for all t ∈ J ′ in L2(D, X),
hence form the compactness of TE (εαθ) for each ε > 0, δ > 0; we get that (Sε,δ y)(t)
are compact for every t ∈ J . This means that the set {Sε,δ y : y ∈ Br } is compact in
L2(D, X). On the other hand, we know

(Sε,δ y)(t) − (S2y)(t)

= t1−γ

∫ t

t−ε

∫ ∞

δ

E−1(t − s)α−1αθMα(θ)TE ((t − s)αθ) f (s, x(s))dθds

+t1−γ

∫ t−ε

0

∫ δ

0
E−1(t − s)α−1αθMα(θ)TE ((t − s)αθ) f (s, x(s))dθds

+t1−γ

∫ t

t−ε

∫ ∞

δ

E−1(t − s)α−1αθMα(θ)TE ((t − s)αθ)g(s, x(s))dθdW (s)

+t1−γ

∫ t−ε

0

∫ δ

0
E−1(t − s)α−1αθMα(θ)TE ((t − s)αθ)g(s, x(s))dθdW (s).

Clearly, from the assumption (Hf), let M(δ) = ∫ δ

0 αθMα(θ)dθ , clearly M(δ) → 0
as δ → 0. Hence, we have

t2(1−γ )E

∥∥∥∥
∫ t

t−ε

∫ ∞

δ

E−1(t − s)α−1αθMα(θ)TE ((t − s)αθ) f (s, x(s))dθds

∥∥∥∥
2

+t2(1−γ )E

∥∥∥∥
∫ t−ε

0

∫ δ

0
E−1(t − s)α−1αθMα(θ)TE ((t − s)αθ) f (s, x(s))dθds

∥∥∥∥
2

≤
(

M�

Γ (α)
‖h‖∞

)2

t2(1−γ )

∫ t

t−ε

(t − s)2(α−1)(1 + eLssγ−1r2)ds

+ (M�‖h‖∞M(δ))2 t2(1−γ )

∫ t−ε

0
(t − s)2(α−1)(1 + eLssγ−1r2)ds

≤
(

M�

Γ (α)
‖h‖∞

)2

t2(1−γ )ε2α−1(1 + eLt (t − ε)γ−1r2)/(2α − 1)

+ (M�‖h‖∞M(δ))2 (t2(1−γ )+2α−1/(2α − 1) + eLt t1−γCγ,2α−1L
−γ r2)

→ 0, as ε → 0, δ → 0.
Similarly, from the assumption (Hg) and Lemma 2.2, we get

+t1−γ

∫ t

t−ε

∫ ∞

δ

E−1(t − s)α−1αθMα(θ)TE ((t − s)αθ)g(s, x(s))dθdW (s)

+t1−γ

∫ t−ε

0

∫ δ

0
E−1(t − s)α−1αθMα(θ)TE ((t − s)αθ)g(s, x(s))dθdW (s)

→ 0, as ε → 0, δ → 0.
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Consequently, we deduce that

‖Sε,δ y − S2y‖C → 0, as ε → 0, δ → 0.

This means that {S2y : y ∈ Br } is a relatively compact set in C(J , X). Hence, S2
is a compact operator. This completes the proof. ��

We next use the following Krasnoselskii fixed point theorem (see, e.g., [32]) to
obtain the existence of solution to problem (4)–(5).

Lemma 3.4 Let X be a Banach space, let Ω be a bounded closed convex subset of
X, and let T , F be mappings of Ω into X such that T x + Fy ∈ Ω for every pair
x, y ∈ Ω . If T is a contraction and F is completely continuous, then the equation
T z + Fz = z has a solution on Ω .

Lemma 3.5 Let α ∈ (1/2, 1). Assume that (Hf) and (Hg) hold, then there exists at
least one mild solution x ∈ Bγ

r of the problem (4)–(5) for some r > 0.

Proof Obviously, fromLemma3.1, it follows that for everypairu, v ∈ Br ,S1u+S2v ∈
Br . Lemma 3.3 shows that S2 is completely continuous. Hence, it remains to prove
that S1 is a contraction. Clearly, for t ∈ J , S1 is a contraction. Hence, Lemma 3.4
shows that there exists at least one fixed point y∗ ∈ Br such that S y∗ = y∗ holds. Let
x∗(t) = tγ−1y∗(t) then x∗ ∈ Bγ

r . Thus, x∗ is the mild solution of problem (4)–(5).
The proof is completed. ��
Remark 3.1 Note that the author [18] showed an existence result for fractional stochas-
tic evolution equations when B(t) reduces to B (independently to t) and β = 0 in
Hilfer fractional derivative, where a more general nonlinear functions f and g are
proposed. However, for β = 1, since the Hilfer fractional derivative corresponds to
the Riemann–Liouville fractional derivative, this result in Lemma 3.5 seems to be new
without the control term.

4 Existence of Optimal Controls

In this section, we suppose that U is another Hilbert space from which the control
u ∈ U . We denote a class of nonempty closed and convex subsets of U by W f (U ).
Themultifunctionω : J �→ W f (U ) ismeasurable andw(·) ⊂ V whereV is a bounded
set of U , the admissible control set Uad = {u ∈ L2

F (J , V ) : u(t) ∈ w(t) a.e. t ∈ J }.
Then, Uad �= ∅.

We consider a stochastic optimal control problem (1)–(2).We next use the following
definition of mild solutions.

Definition 4.1 For any u ∈ Uad , a function x ∈ C(J , X) is called a solution of the
problem (1)–(2) if it satisfies the integral equation

x(t) = E−1Pβ
α,E (t)Ex0 +

∫ t

0
E−1Tα,E (t − s) f (s, x(s))ds

+
∫ t

0
E−1Tα,E (t − s)B(s)u(s)ds +

∫ t

0
E−1Tα,E (t − s)g(s, x(s))dW (s).
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In order to obtain the existence of mild solutions to problem (1)–(2), we need the
assumption of operator B(·).
(Hb) B : J → L(U , X) is essentially bounded, i.e., B ∈ L∞(J ,L(U , X)).

Theorem 4.1 Let α ∈ (1/2, 1). Assume that (Hf), (Hg) and (Hb) hold, then for every
u ∈ Uad, there exists at least one mild solution x ∈ Bγ

r of the problem (1)–(2) for
some r > 0.

Proof We set

(Q̂1x)(t) = E−1Pβ
α,E (t)Ex0 +

∫ t

0
E−1Tα,E (t − s)B(s)u(s)ds,

replaced Q1 in (6). Therefore, it needs to prove that S1y ∈ Br for any y ∈ Br with
some r > 0. In fact, since x0 ∈ D(E), for t > 0 by applying Hölder inequality, it
follows that

E‖(S1y)(t)‖2 = ‖t1−γ (Q̂1x)(t)‖2
≤ 2E‖t1−γ E−1Pβ

α,E (t)Ex0‖2

+2t2(1−γ )E
(∫ t

0
‖E−1Tα,E (t − s)B(s)u(s)‖ds

)2

≤ 2E‖t1−γ E−1Pβ
α,E (t)Ex0‖2

+2t2(1−γ )E
(∫ t

0
(t − s)α−1‖E−1Sα,E (t − s)B(s)u(s)‖ds

)2

≤ 2M2�2

(Γ (γ ))2
E‖Ex0‖2 + 2M2�2

(Γ (α))2
t2(1−γ )E

(∫ t

0
(t − s)α−1‖u(s)‖ds

)2

‖B‖2∞,

where we set the norm of operator B(·) in L∞(J ,L(U , X)) by ‖B‖∞. Since Hölder
inequality shows

E
(∫ t

0
(t − s)α−1‖u(s)‖ds

)2

≤
∫ t

0
(t − s)2(α−1)ds‖u‖2

L2
F (J ,U )

≤ 1

2α − 1
t2α−1‖u‖2

L2
F (J ,U )

,

it follows that

E‖(S1y)(t)‖2 ≤ 2M2�2

(Γ (γ ))2
E‖Ex0‖2

+ 2M2�2

(2α − 1)(Γ (α))2
‖u‖2

L2
F (J ,U )

‖B‖2∞t2(1−γ )+2α−1.
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Therefore, we have

‖S1y‖2C ≤ 2M2�2

(Γ (γ ))2
‖x0‖2D(E) + 2M2�2

(2α − 1)(Γ (α))2
‖u‖2

L2
F (J ,U )

‖B‖2∞T 2(1−γ )+2α−1.

Clearly, for the case of t = 0, we have

‖S1x‖2C ≤ �2

(Γ (γ ))2
E‖Ex0‖2 ≤ 2M�2

(Γ (γ ))2
‖x0‖2D(E).

From the proof in Lemma 3.1, choosing the same L > 0 such that η2 < 1 where η

is defined in Lemma 3.1. Let

ρ̂2 : = 2M2�2

(Γ (γ ))2
‖x0‖2D(E) + 2M2�2

(2α − 1)(Γ (α))2
‖u‖2

L2
F (J ,U )

‖B‖2∞T 2(1−γ )+2α−1

+ 5M2�2

(2α − 1)(Γ (α))2
(‖h‖∞ + ‖l‖∞)L−(2(1−γ )+2α−1).

Therefore, for some fixed r ≥ ρ̂/(1 − η), we obtain

‖S y‖2C ≤ 2M2�2

(Γ (γ ))2
‖x0‖2D(E) + 2M2�2

(2α − 1)(Γ (α))2
‖u‖2

L2
F (J ,U )

‖B‖2∞T 2(1−γ )+2α−1

+ 5M2�2

(2α − 1)(Γ (α))2
(‖h‖∞ + ‖l‖∞)L−(2(1−γ )+2α−1)

≤ ρ̂2 + η2r2,

which means that ‖S y‖C ≤ r . Obviously, from Lemma 3.1, it follows that for every
pair u, v ∈ Br , S1u + S2v ∈ Br . Lemma 3.3 shows that S2 is completely continuous.
Hence, it remains to prove that S1 is a contraction. In fact, for t ∈ J , and any u ∈ Uad

it is obvious that S1 is a contraction. Hence, Lemma 3.4 shows that there exists at
least one fixed point y∗ ∈ Br such that S y∗ = y∗ holds. Let x∗(t) = tγ−1y∗(t) then
x∗ ∈ Bγ

r . Thus, x∗ is the mild solution of problem (1)–(2). The proof is completed.
��

Following Theorem 4.1, for any u ∈ Uad , let Bγ
r be defined as before and let S(u)

be the mild solution set. A pair (x, u) is feasible if it satisfies problem (1)–(2) for
x ∈ Bγ

r , and if (x, u) is feasible, then S(u) ⊂ Bγ
r .

The following Bolza problem (P) is expressed by:
Find an x0 ∈ Bγ

r ⊂ C(J , X) and u0 ∈ Uad such that

J (x0, u0) ≤ J (x, u), for all u ∈ Uad ,

where

J (xu, u) = E
∫ T

0
L(t, xu(t), u(t))dt .
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We make some assumptions on L:
(L1) The functional L : J × X ×U → R ∪ {∞} is Borel measurable,
(L2) L(t, ·, ·) is sequentially lower semicontinuous on X × U for almost all

t ∈ J ,
(L3) L(t, x, ·) is convex on U for each x ∈ X and almost all t ∈ J ,
(L4) there exist constants c ≥ 0, d > 0, and nonnegative function ψ(·) and

ψ ∈ L1(J , X) such that

L(t, x, u) ≥ ψ(t) + c‖x‖2 + d‖u‖2U .

Theorem 4.2 Assume that the hypotheses in Theorem 4.1 and assumptions on L hold.
Then, Bolza problem (P) possesses at least one optimal control pair.

Proof Let Θu denotes the set of all solutions to the problem (1)–(2) in Bγ
r for each

control u ∈ Uad . If inf xu∈Θ J (xu, u) = +∞, there is nothing to prove. Now, we
assume that J (u) = infxu∈Θu J (xu, u) = m < +∞. By hypothesis L4, we have

J (x, u) ≥
∫ T

0
ψ(t)dt + cE

∫ T

0
‖x(t)‖2dt + dE

∫ T

0
‖u(t)‖2Udt > −κ,

where κ > 0 is a constant. Hence, m ≥ −κ > −∞. We now divide the proof into
three steps.

Step 1. By the definition of the infimum, there exists a sequence {xuk } ⊂ Θu satis-
fying J (xuk , u) → m as k → ∞. Considering {xuk , u} as a sequence of feasible pairs,
we have

xuk (t) = E−1Pβ
α,E (t)Ex0 +

∫ t

0
E−1Tα,E (t − s)[ f (s, xuk (s)) + B(s)u(s)]ds

+
∫ t

0
E−1Tα,E (t − s)g(s, xuk (s))dW (s)

=: I1xuk + I2x
u
k + I3x

u
k . (9)

Step 2. Let us prove that there exists some x̃u ∈ Θu such that J (x̃u, u) = m. Next,
we show that for each u ∈ Uad , the set {xuk } is relatively compact in C(J , X).

By analogous to Lemma 3.5, one has that {Ii xuk }, i = 1, 2, 3 are precompact subsets
of C(J , X). This means that the set {xuk } is relatively compact in Bγ

r for each u ∈ Uad .
From this aspect, we may assume that xuk → x̃u in Bγ

r as k → ∞. Thus, by the
Lebesgue dominated convergence theorem, we obtain as k → ∞ in (9) that

x̃u(t) = E−1Pβ
α,E (t)Ex0 +

∫ t

0
E−1Tα,E (t − s)[ f (s, x̃u(s)) + B(s)u(s)]ds

+
∫ t

0
E−1Tα,E (t − s)(t − s)g(s, x̃u(s))dW (s),

which deduces that x̃u ∈ Θu . Thus, we have J (x̃u, uk) = m for each u ∈ Uad .
Indeed, according to C(J , X) ↪→ L1(J , X), here L1(J , X) is the closed subspace of
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L1(D,F ,P; X), through the definition of a feasible pair, the assumption on L and
Balder theorem (see, e.g., [2]) implies

m = J (u) = lim
k→∞E

∫ T

0
L(t, xuk (t), u(t))dt ≥ E

∫ T

0
L(t, x̃u(t), u(t))dt

= J (x̃u, u) ≥ J (u) = m,

which means that J (xu, u) = m. This shows that J (u) attains its minimum at xu ∈
C(J , X) for each control u ∈ Uad .

Step 3. In the sequel, we shall show that there exists u0 ∈ Uad such thatJ (u0) ≤ m.
In fact, if infu∈Uad J (u) = +∞, then there is nothing to prove. Now, we assume that
infu∈Uad J (u) < +∞. Similarly to Step 1, one can check that infu∈Uad J (u) > −∞,
and there exists a sequence {uk} ⊂ Uad such thatJ (uk) → infu∈Uad J (u) as k → ∞.
Since {uk} ⊂ Uad , {uk} is bounded in L2

F (J ,U ) and L2
F (J ,U ) is a reflexive Hilbert

space, there exists a subsequence, relabeled as {uk}, weakly convergent to some u0 ∈
L2
F (J ,U ) as k → ∞. Note that Uad is closed and convex, using the fact that the

closure and weak closure of a convex subset of a normed space are the same by [5];
it follows that u0 ∈ Uad .

Suppose x̃uk is the mild solution to the problem (1)–(2) related to uk by the proof
of Theorem 4.1, where J (uk) attains its minimum. Then, (x̃uk , uk) is a feasible pair
and verifies the following integral equation for t ∈ J :

x̃uk (t) = E−1Pβ
α,E (t)Ex0 +

∫ t

0
E−1Tα,E (t − s) f (s, x̃uk )ds

+
∫ t

0
E−1Tα,E (t − s)B(s)uk(s)ds +

∫ t

0
E−1Tα,E (t − s)g(s, x̃uk )dW (s)

=: L1x
u
k + L2x

u
k + L3x

u
k + L4uk .

(10)

Byanalogous toLemma3.5 again, onehas similarly that the sets {Li x̃uk }, i = 1, 2, 3
are relatively compact subsets of C(J , X). Furthermore, we have L4uk → L4u0 in
C(J , X) as k → ∞ and L4 is compact. Thus, the set {x̃uk } ⊂ C(J , X) is relatively
compact, and there exists a subsequence still denoted by {x̃uk }, and x̃u

0 ∈ C(J , X)

such that x̃uk → x̃u
0
in C(J , X) as k → ∞. Thus, by the Lebesgue dominated

convergence theorem, we obtain as k → ∞ in (10) that have

x̃u
0
(t) = E−1Pβ

α,E (t)Ex0 +
∫ t

0
E−1Tα,E (t − s) f (s, x̃u

0
)ds

+
∫ t

0
E−1Tα,E (t − s)B(s)u0(s)ds

+
∫ t

0
E−1Tα,E (t − s)g(s, x̃u

0
)dW (s),
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which deduces that (x̃u
0
, u0) is a feasible pair. Since C(J , X) ↪→ L1(J , X), by the

assumption on L and Balder theorem again, we have

inf
u∈Uad

J (u) = lim
k→∞E

∫ T

0
L(t, x̃uk (t), uk(t))dt

≥ lim
k→∞E

∫ T

0
L(t, x̃u

0
(t), u0(t))dt

= J (x̃u
0
, u0) ≥

∫
u∈Uad

J (u).

Therefore, J (x̃u
0
, u0) = J (u0) = inf

xu0∈Θu
J (xu

0
, u0). Moreover, J (u0) =

infu∈Uad J (u), i.e., J attains its minimum at u0 ∈ Uad . The proof is
completed. ��

5 An Application

Let X = U := L2[0, π ]. We consider the following semilinear time-fractional
Sobolev-type stochastic diffusion equations:

∂
α,β
t (x − xzz) − xzz = f (t, z, x) + B(t)u(t, z) + g(t, z, x)∂tW (t, z),

t ∈ (0, T ], z ∈ [0, π ],
x(t, 0) = x(t, π) = 0, t ∈ (0, T ],

(I 1−γ
0+ x)(0, z) = x0(z), z ∈ [0, π ],

where γ = α +β(1−α) for α ∈ (1/2, 1) and β ∈ [0, 1], and where ∂
α,β
t is the Hilfer

fractional partial derivative. B(·) : [0, T ] → L(U , X) is defined by B(t) := be−t I
for some b > 0, t ∈ [0, T ].

Define A : D(A) → X by Ax := −xzz and E : D(E) → X by Ex := x − xzz ,
where each of the domains D(A) and D(E) is given by

{x ∈ X : x, xz are absolutely continuous, xzz ∈ X , x(t, 0) = x(t, π) = 0}.

From [8], A and E can be written as

Ax =
∞∑
n=1

n2(x, ϕn)ϕn, x ∈ D(A),

and

Ex =
∞∑
n=1

(1 + n2)(x, ϕn)ϕn, x ∈ D(E),
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respectively,where (·, ·) is the inner product in X ,ϕn(z) := √
2/π sin(nz),n = 1, 2, ...

are the eigenfunctions, and {ϕn}∞n=1 forms an orthonormal basis of X . Moreover, for
any x ∈ X , it follows that

E−1x =
∞∑
n=1

1

1 + n2
(x, ϕn)ϕn, −AE−1x =

∞∑
n=1

−n2

1 + n2
(x, ϕn)ϕn,

and thus the semigroup TE (t), t ≥ 0 generated by −AE−1 is given as follows:

TE (t)x =
∞∑
n=1

e
− n2

1+n2
t
(x, ϕn)ϕn .

It is obvious that E−1 is compact, bounded with ‖E−1‖L(X) ≤ 1, and the semigroup
TE (t) is strongly continuous on X satisfying ‖TE (t)‖L(X) ≤ 1.

Let ψn(t) = 〈W (t, ·), en〉 for each n. Assume that the covariance operator Q
satisfies 〈Qen, ek〉 = δnk�

2
n for some constants ϕn > 0, n, k ∈ N. Then, we get

that {ψn(t)}n≥1 is a sequence of independent Wiener processes in one dimension
with mean zero and covariance E{ψn(t)ψk(s)} = δnk�

2
n (t ∧ s). So we can write

ψn(t) = �nwn(t) and

W (t, z) =
∞∑
n=1

ψn(t)en(z) =
∞∑
n=1

�nwn(t)en(z),

where {wn(t)} is a sequence of standard Wiener processes in one dimension.
Finally, let functions f and g satisfy the assumptions (Hf) and (Hg), since the

current fractional partial differential equations can be formulated as problem (1)–(2),
we thus obtain that there exists least one mild solution x ∈ Bγ

r for some r > 0 in
Theorem 4.1, and its corresponding limited Bolza problem admits at least one optimal
feasible pair in Theorem 4.2.

6 Conclusions

In this paper, we study some sufficient conditions for the existence of mild solutions
to Sobolev-type stochastic evolution equations with Hilfer fractional derivative of
order α ∈ (1/2, 1) and β ∈ [0, 1] as well as the existence to a control system.
Moreover, it is shown that the Lagrange problem admits at least one optimal state
control pair under some natural assumptions. The results are established by means of
the compactness of semigroup, fractional calculus, Krasnoselskii’s fixed point theorem
and Balder theorem to Bolza problem. Also, our results are obtained without the
Lipschitz conditions to nonlinear functions.
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