
Journal of Optimization Theory and Applications (2022) 194:821–851
https://doi.org/10.1007/s10957-022-02050-x

On Approximation Algorithm for Orthogonal Low-Rank
Tensor Approximation

Yuning Yang1

Received: 8 May 2021 / Accepted: 12 May 2022 / Published online: 28 June 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
This work studies solution methods for approximating a given tensor by a sum of
R rank-1 tensors with one or more of the latent factors being orthonormal. Such
a problem arises from applications such as image processing, joint singular value
decomposition, and independent component analysis. Most existing algorithms are of
the iterative type, while algorithms of the approximation type are limited. By exploring
the multilinearity and orthogonality of the problem, we introduce an approximation
algorithm in this work. Depending on the computation of several key subproblems,
the proposed approximation algorithm can be either deterministic or randomized. The
approximation lower bound is established, both in the deterministic and the expected
senses. The approximation ratio depends on the size of the tensor, the number of
rank-1 terms, and is independent of the problem data. When reduced to the rank-1
approximation case, the approximation bound coincides with those in the literature.
Moreover, the presented results fill a gap left in Yang (SIAM J Matrix Anal Appl
41:1797–1825, 2020), where the approximation bound of that approximation algo-
rithm was established when there is only one orthonormal factor. Numerical studies
show the usefulness of the proposed algorithm.

Keywords Tensor · Orthogonality · Approximation algorithm · Approximation
bound · Polar decomposition

Mathematics Subject Classification 90C26 · 15A18 · 15A69 · 41A50

Communicated by Guoyin Li.

B Yuning Yang
yyang@gxu.edu.cn

1 College of Mathematics and Information Science, Guangxi University, Nanning 530004, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10957-022-02050-x&domain=pdf
http://orcid.org/0000-0003-1805-4210

822 Journal of Optimization Theory and Applications (2022) 194:821–851

1 Introduction

Tensors (hypermatrices) play an important role in signal processing, data analysis,
statistics, and machine learning nowadays, key to which are tensor decomposi-
tions/approximations [4, 6, 20, 37]. Canonical polyadic (CP) decomposition factorizes
a data tensor into some rank-1 components. Such a decomposition can be unique under
mild assumptions [21, 34, 36]. However, the degeneracy of the associated optimiza-
tion problem requires one to impose additional constraints, such as nonnegativity,
angularity, and orthogonality constraints [19, 26, 27]. Orthogonal CP approximation
requires that one or more of the latent factors be orthonormal [11, 19], modeling appli-
cations arising from image processing, joint SVD, independent component analysis,
DS-CDMA systems, and so on [5, 7, 32, 35, 38, 41, 42].

Most existing algorithms for orthogonal CP approximation are iterative ones [3,
11, 16, 23, 24, 28, 31, 41, 47, 48]; just to name a few. Specifically, alternating least
squares (ALS) algorithmswere developed in [3, 41, 47]: Chen and Saad [3] considered
the model that all the factors are orthonormal and established the convergence of ALS
under certain local assumptions; Sørensen et al. [41] considered the case that one
of the factors is orthonormal, while the convergence was not provided. Such a gap
was filled in [47] for generic tensors. Guan and Chu [11] considered the case that
one or more of the factors are orthonormal, proposed a method that simultaneously
updates two vectors corresponding to two factors, and proved the global convergence
for generic tensors. Shifted type ALS algorithms were developed in [16, 31, 48]: Pan
and Ng [31] considered symmetric tensors and established global convergence for
generic tensors; Hu and Ye [16] studied the case where all factors are orthonormal and
established the global and linear convergence of the algorithm; Yang [48] established
the global convergence when the orthonormal factors are one or more than one. Local
linear convergence of ALS was proved in [44] under certain positive definiteness
assumptions. In the rank-1 approximation case, global linear convergence was shown
to be valid for generic tensors [15]. Martin and Van Loan [28] and Li et al. [23]
proposed Jacobi-type algorithms, where Li et al. [23] considered symmetric tensors
and established the global convergence of the developed algorithms. Besides, Sørensen
et al. [41] proposed a simultaneous matrix diagonalization approach for the problem
with one orthonormal factor.

As a nonconvex problem, the solution quality of iterative algorithms depends
on the initializer. To find a good initializer for iterative algorithms, Yang [48, Pro-
cedure 3.1] developed an approximation algorithm that first finds the orthonormal
factors by using the celebrated higher-order SVD (HOSVD) [8] and then computes
the non-orthonormal ones by solving rank-1 approximation problems. However, the
approximation bound of Yang [48, Procedure 3.1] was only established when the
number of orthonormal latent factors is one.

To fill this gap, by further exploring themultilinearity and orthogonality of the prob-
lem, we modify [48, Procedure 3.1] to devise a new approximation algorithm. A main
feature of the proposed algorithm is that it can be either deterministic or randomized,
depending on how to deal with a set of subproblems. Specifically, two deterministic
and one randomized procedures are considered. The approximation lower bound is
derived, both in the deterministic and in the expected senses, regardless of how many

123

Journal of Optimization Theory and Applications (2022) 194:821–851 823

latent orthonormal factors there are. The approximation ratio depends on the size of
the tensor, the number of rank-1 terms, and is independent of the problem data. Reduc-
ing to the rank-1 approximation case, the approximation ratio is of the same order as
in [13, 51]. We provide numerical studies to show the efficiency of the introduced
algorithm and its usefulness in tensor recovery and clustering.

In fact, approximation algorithms have already been widely studied for tensor
approximations. For example, HOSVD, sequentially truncated HOSVD [45], and
hierarchical HOSVD [10] are also approximation algorithms for the Tucker decom-
position. On the other hand, several randomized approximation algorithms have been
proposed in recent years for Tucker decomposition or t-SVD [1, 2, 29, 50]. The solu-
tion quality of the aforementioned algorithms was measured via error bounds. In the
context of tensor best rank-1 approximation and related polynomial optimization prob-
lems, deterministic or randomized approximation algorithms were developed [9, 12,
13, 18, 39, 40], where the solution quality was measured by approximation bounds;
our algorithm extends these to orthogonal rank-R approximations.

The rest of this work is organized as follows. Preliminaries are given in Sect. 2.
The new approximation algorithm is introduced in Sect. 3, while the approximation
bound is derived in Sect. 4. Section 5 provides numerical results, and Sect. 6 draws
some conclusions.

2 Preliminaries

Throughout this work, vectors are written as boldface lowercase letters (x, y, . . .),
matrices correspond to italic capitals (A, B, . . .), and tensors arewritten as calligraphic
capitals (A,B, · · ·). Rn1×···×nd denotes the space of n1 × · · · × nd real tensors. For
two tensors A,B of the same size, their inner product 〈A,B〉 is given by the sum
of entry-wise products. The Frobenius (or Hilbert–Schmidt) norm of A is defined
by ‖A‖F = 〈A,A〉1/2. ⊗ denotes the outer product. For u j ∈ R

n j , j = 1, . . . , d,
u1 ⊗ · · · ⊗ ud denotes a rank-1 tensor in R

n1×···×nd , which is written as
⊗d

j=1 u j

for short. For j = 1, . . . , d and for each j , if we are given R vectors of size n j :
u j,1, . . . ,u j,R , we usually collect them into amatrixUj = [u j,1, . . . ,u j,R] ∈ R

n j×R .
The mode- j unfolding of A ∈ R

n1×···×nd , denoted as A(j), is a matrix in

R
n j×∏d

k �= j nk . The product between a tensorA ∈ R
n1×···×nd and a vectoru j ∈ R

n j with
respect to the j-th mode, written as A × j u�

j , is a tensor in R
n1×···×n j−1×n j+1×···×nd .

Given a d-th order tensor A ∈ R
n1×···×nd , a positive integer R, decision matrices

(factors) Uj = [u j,1, . . . ,u j,R] ∈ R
n j×R , j = 1, . . . , d, and coefficients σi ∈ R,

i = 1, . . . , R, the orthogonal CP approximation under consideration can be written
as [11]:

min
U1,...,Ud ,σ1,...,σR

∥
∥
∥
∥A −

∑R

i=1
σi
⊗d

j=1
u j,i

∥
∥
∥
∥

2

F

s.t. u�
j,iu j,i = 1, j = 1, . . . , d − t, 1 ≤ i ≤ R,

U�
j U j = I , j = d − t + 1, . . . , d, σi ∈ R,

(2.1)

123

824 Journal of Optimization Theory and Applications (2022) 194:821–851

where 1 ≤ t ≤ d denotes the number of latent orthonormal factors. The constraints
mean that the last t latent factors are required to be orthonormal, while the first d − t
ones are not. However, due to the presence of the scalars σi , each column u j,i of the
first d − t factors can be normalized. Using orthogonality, (2.1) can be equivalently
formulated as a maximization problem [11]:

maxU1,...,Ud G(U1, . . . ,Ud) := ∑R
i=1

〈
A,
⊗d

j=1 u j,i

〉2

s.t. u�
j,iu j,i = 1, j = 1, . . . , d − t, 1 ≤ i ≤ R,

U�
j U j = I , j = d − t + 1, . . . , d,

(2.2)

where the variables σi ’s have been eliminated. The approximation algorithms and the
corresponding analysis studied here are mainly focused on (2.2) .

Let V ∈ R
m×n , m ≥ n. The polar decomposition of V is to decompose it into two

matrices U ∈ R
m×n and H ∈ R

n×n such that V = UH , where U is columnwisely
orthonormal, and H is a symmetric positive semidefinite matrix. Its relation with SVD
is given below.

Theorem 2.1 (c.f. [14]) Let V ∈ R
m×n, m ≥ n. Then, there exist U ∈ R

m×n and a
unique symmetric positive semidefinite matrix H ∈ R

n×n such that

V = UH , U�U = I ∈ R
n×n .

(U , H) is the polar decomposition of V . If rank(V) = n, then H is symmetric positive
definite and U is uniquely determined.

Furthermore, let H = QΛQ�, Q,Λ ∈ R
n×n be the eigenvalue decomposition of

H, namely, Q�Q = QQ� = I , Λ = diag(λ1, . . . , λn) be a diagonal matrix where
λ1 ≥ · · · ≥ λn ≥ 0. Then, U = PQ�, and V = PΛQ� is a reduced SVD of V .

Let V = [v1, . . . , vn] andU = [u1, . . . ,un]where vi ,ui ∈ R
m , i = 1, . . . , n. The

following two lemmas are useful.

Lemma 2.1 Let U ∈ R
m×n and H ∈ R

n×n be two matrices generated by the polar
decomposition of V ∈ R

m×n such that V = UH, where U is columnwisely orthonor-
mal and H is symmetric positive semidefinite. Let vi and ui be defined as above. Then,
it holds that

〈ui , vi 〉 ≥ 0, i = 1, . . . ,m.

Proof Since V = UH andU�U = I , we haveU�V = H , which means that 〈ui , vi 〉
is exactly the i-th diagonal entry of H . As H is positive semidefinite, its diagonal
entries are nonnegative. The desired result follows. ��

Denote ‖·‖∗ as the nuclear norm of a matrix, i.e., the sum of its singular values.
From Theorem 2.1, we easily see that:

Lemma 2.2 Let U and V be defined as in Theorem 2.1. Then, 〈U , V 〉 = ‖V ‖∗.

123

Journal of Optimization Theory and Applications (2022) 194:821–851 825

Denote Gmax as the maximal value of (2.2) and λi (A(d)) the i-th largest singular
value of A(d). We have the following result, whose proof is in Appendix A.

Lemma 2.3 It holds that
∑R

i=1 λi (A(d))
2 ≥ Gmax in (2.2).

3 Approximation Algorithm

The approximation algorithm proposed in this work inherits certain ideas from Yang
[48, Procedure 3.1], and so we first briefly recall its strategy. [48, Procedure 3.1]
obtained an approximation solution to (2.2) as follows: One first applies the truncated
HOSVD [8] to getUd , . . . ,Ud−t+1. That is to say, for j = d, . . . , d−t+1, one unfolds

A to A(j) ∈ R
n j×∏d

l �= j nl and performs the truncated SVD to get its left leading R
singular vectors u j,1, . . . ,u j,R , forming the j-th factor Uj = [u j,1, . . . ,u j,R]. Once
Ud , . . . ,Ud−t+1 are obtained, one then approximately solves R tensor best rank-1
approximation problems:

maxu1,1,...,ud−t,R

〈
A⊗d

j=d−t+1 u j,i ,
⊗d−t

j=1 u j,i

〉

s.t. u�
j,iu j,i = 1, j = 1, . . . , d − t,

(3.3)

where the data tensors A⊗d
j=d−t+1 u j,i := A ×d−t+1 u�

d−t+1,i × · · · ×d u�
d,i ∈

R
n1×···×nd−t , i = 1, . . . , R.
The approximation bound of the above strategy was established when t = 1 [48,

Proposition 3.2]. However, when t ≥ 2, it is difficult to build connections between
orthonormal factors theoretically, making it hard to derive the approximation bound.
Our new algorithm differs from [48] in the computation of the orthonormal factors
Ud−1, . . . ,Ud−t+1. By taking (2.2) with d = t = 3 as an example, we state our idea
below and depict the workflow in Fig. 1.

The computation of U3 is the same as [48], namely, we let U3 := [u3,1, . . . ,u3,R]
where u3,1, . . . ,u3,R are the left R leading singular vectors of the unfolding matrix
A(d) ∈ R

n3×n1n2 . Then, findingU2 can be divided into a splitting step and a gathering
step. In the splitting step, with u3,1, . . . ,u3,R at hand, we first compute R matrices
M2,1, . . . , M2,R , with

M2,i := A ×3 u�
3,i ∈ R

n2×n1, i = 1, . . . , R.

Then, using a procedure called get_v_from_M that will be specified later, we com-
pute R vectors v2,i of size n2 from M2,i for each i . The principle of get_v_from_M
is to retain as much of the information from M2,i as possible, and to satisfy some
theoretical bounds. Three versions of such a procedure will be detailed later. In the
gathering step, we first denote V2 := [v2,1, . . . , v2,R] ∈ R

n2×R , which may not be
orthonormal and hence not feasible. To orthogonalize it, a straightforward idea is to
find the nearest orthonormal matrix to V2. This is equivalent to applying the polar
decomposition to V2, to obtain the orthonormal matrix U2 := [u2,1, . . . ,u2,R].

123

826 Journal of Optimization Theory and Applications (2022) 194:821–851

Fig. 1 Workflow of Algorithm 1 for approximately solving (2.2) when d = 3 and t = 3. PD is short for
polar decomposition

ComputingU1 is similar. In the splitting step, withU3 andU2 at hand, we first com-
pute M1,i := A×2 u�

2,i × u�
3,i ∈ R

n1 , i = 1, . . . , R. Since M1,i ’s are already vectors,
we immediately let v1,i = M1,i . In the gathering step, we let V1 := [v1,1, . . . , v1,R]
and then perform polar decomposition on V1 to get U1.

For general d ≥ 3, we can similarly apply the above splitting step and gathering
step to obtain Ud−1,Ud−2, . . ., sequentially. In fact, the design of the splitting and
gathering steps follows the principle that

· · · ≥
∑R

i=1

〈
u j,i , v j,i

〉2 ≥ α
∑R

i=1

〈
u j+1,i , v j+1,i

〉2 ≥ · · · , (3.4)

where α ∈ (0, 1) and this will be studied in detail later. If t < d, i.e., there
exist non-orthonormal constraints, then with Ud−t+1, . . . ,Ud at hand, we compute
U1, . . . ,Ud−t via approximately solving R tensor rank-1 approximation problems
(3.3). The whole algorithm is summarized in Algorithm 1.

Some remarks on Algorithm 1 are given as follows.

Remark 3.1 1. When t = 1, Algorithm 1 and [48, Procedure 3.1] are exactly the same
if they take the same procedure rank1approx.

123

Journal of Optimization Theory and Applications (2022) 194:821–851 827

Algorithm 1 Approximation algorithm for (2.2)
Require: A ∈ R

n1×···×nd , d ≥ 3, R ≥ 1, t ≥ 1
1: Compute ud,1, . . . ,ud,R as the left leading R unit singular vectors of the unfolding matrix A(d) ∈
R
nd×∏d−1

k=1 nk . Denote Ud := [ud,1, . . . , ud,R]
2: for j = d − 1 : −1 : d − t + 1 do
3: % splitting step
4: for i = 1 : R do
5: Compute the j-th order tensor

B j ,i := A × j+1 u
�
j+1,i × j+2 · · · ×d u�

d,i ∈ R
n1×···×n j

6: if j > 1 then
7: Unfold B j,i to matrix Mj ,i as

Mj ,i := reshape

(

B j ,i , n j ,
∏ j−1

k=1
nk

)

∈ R
n j×

∏ j−1
k=1 nk

8: Extract a vector v j ,i from Mj ,i as

v j ,i := get_v_from_M(Mj ,i) ∈ R
n j % to be introduced later

9: else
10: v j ,i := B j ,i ∈ R

n j

11: end if
12: end for
13: % gathering step
14: Denote Vj := [v j,1, . . . , v j ,R] ∈ R

n j×R

15: Compute the polar decomposition of Vj to obtain orthonormal Uj

U j = [u j ,1, . . . , u j ,R] := polar_decomp(Vj)

16: end for % end of the computation of orthonormal factors
17: if t < d then
18: for i = 1 : R do
19: Compute a rank-1 approximation solution to the tensor A ×d−t+1 u�

d−t+1,i × · · · ×d u�
d,i =

Bd−t+1,i ×d−t+1 u�
d−t+1,i ∈ R

n1×···×nd−t , with each u j,i normalized:

(u1,i , . . . , ud−t,i) = rank1approx(A ×d−t+1 u
�
d−t+1,i × · · · ×d u�

d,i)

20: end for
21: Collect Uj := [u j ,1, . . . , u j ,R], j = 1, . . . , d − t
22: end if % end of the computation of non-orthonormal factors
23: return U1, . . . ,Ud

2. SinceB j,i = A× j+1u�
j+1,i × j+2 · · ·×d u�

d,i andB j−1,i = A× j u�
j,i × j+1 · · ·×d

u�
d,i , we have the relation that

B j−1,i = B j,i × j u�
j,i .

This recursive definition on B j,i reduces its computational complexity.
3. Computing v j,1, . . . , v j,R can be done in parallel.
4. The algorithm does not guarantee that the generated objective value is larger

than certain values, such as
∑R

i=1A(i, . . . , i)2 (here A(i1, . . . , id) denotes the

123

828 Journal of Optimization Theory and Applications (2022) 194:821–851

(i1, . . . , id)-th entry of A, and we assume that A(1, . . . , 1)2 ≥ A(2, . . . , 2)2 ≥
· · ·). This objective function corresponds to the feasible pointUj ’s with u j,i = ei ,
where ei is a vector of the proper size such that its i-th entry is 1 and other entries
are 0.

On the procedure get_v_from_M: How to obtain v j,i from Mj,i is important both
in theory and practice. To retain more information in v j,i from Mj,i , we expect that

∥
∥v j,i

∥
∥2 ≥ β

∥
∥Mj,i

∥
∥2
F , (3.5)

where β ∈ (0, 1). We provide three procedures to achieve this, two deterministic and
one randomized. To simplify the notations in the procedures, we omit the footscripts
j and i . In the procedures, M ∈ R

n×m , v ∈ R
n , and y ∈ R

m .
The first idea is straightforward: we let v be M times its leading right unit singular

vector:

Procedure v = get_v_from_M(M) (A)

1. Compute the leading right unit singular vector of M , denoted as y;
2. Return v = My.

The second one is to first pick the row of M with the largest magnitude, normalize
it to yield a column vector y, and then let v = My:

Procedure v = get_v_from_M(M) (B)

1. Denote mk as the k-th row of M . Letmk̄ be the row with the largest magnitude, i.e.,

∥
∥
∥mk̄

∥
∥
∥ = max

1≤k≤n

∥
∥
∥mk

∥
∥
∥ .

If there exist multiple k̄ satisfying the above condition, choose the first one;

2. Denote y := (mk̄)�/

∥
∥
∥mk̄

∥
∥
∥;

3. Return v = My.

The third one is to first randomly and uniformly pick a row of M , normalize it to
yield y, and then let v = My:

Procedure v = get_v_from_M(M) (C)

1. Randomly and uniformly choose k̄ ∈ {1, . . . , n};
2. Denote y := (mk̄)�/

∥
∥
∥mk̄

∥
∥
∥;

3. Return v = My.

The analysis of the procedures will be given in the next section.
On the procedure rank1approx: To be more general, rank1approx in Algo-
rithm 1 can be any efficient approximation algorithm for solving tensor best rank-1
approximation problems, such as [13,Algorithm1withDR2], [51, Sect. 5], [48, Proce-
dure 3.3], or even Algorithm 1 itself (the case that R = 1 and t = d). For the purpose

123

Journal of Optimization Theory and Applications (2022) 194:821–851 829

of approximation bound analysis, we require rank1approx to have an approxi-
mation bound characterization, i.e., for any m-th order data tensor C ∈ R

n1×···×nm

(assuming that n1 ≤ · · · ≤ nm), the normalized solution (x1, . . . , xm) returned by
rank1approx admits an approximation bound of the form:

〈
C,
⊗m

j=1
x j

〉
≥ ‖C‖F

ζ(m)
, ∀C ∈ R

n1×···×nm , m ≥ 1, (3.6)

where 1/ζ(m) ≤ 1 represents the approximation factor. For He et al. [13, Approx-
imation 1 with DR 2], it can be checked from He et al. [13, Sect. 3.1] that when
m ≥ 3,

ζ(m) =
√
∏m−2

j=1
n j · √

n1.

For Yang [48, Procedure 3.3], it follows from Yang [48, Proposition 3.1] that

ζ(m) =
⎧
⎨

⎩

√∏m−1
j=1 n j ·∏m/2−2

j=1 n2 j+1 · n−1
2

√
nm−1nm, m even and m ≥ 4,

√∏m−1
j=2 n j ·∏(m+1)/2−2

j=1 n2 j
√
nm−1nm, m odd and m ≥ 3.

When m = 1, 2, namely C is a vector or a matrix, we have that ζ(1) = 1 and
ζ(2) = √

n1 for both algorithms.
Computational complexity of Algorithm 1: to simplify the presentation, we consider
n1 = · · · = nd = n. Computing Ud is a truncated SVD, whose complexity is
O(n2 · nd−1). In the computation of Ud−1, computing Bd−1,i and Md−1,i requires

O(nd) flops. As Md−1,i ∈ R
n×nd−2

, computing vd−1,i requires O(n2 · nd−2) flops if
Procedure A is used, while it takes O(n · nd−2) flops for Procedures B and C. In any
case, this is dominated by O(nd). Thus, the complexity of the splitting step is O(Rnd).
The main effort of the gathering step is the polar decomposition of Vd−1,i ∈ R

n×R ,
with complexity O(R2n). Hence, computingUd−1 requires O(Rnd)+O(R2n) flops.

The complexity of computingUd−2 is similar: from Remark 3.1, computingBd−2,i
and Md−2,i needs O(nd−1) flops. The total complexity of Ud−2 is O(Rnd−1) +
O(R2n).

ForUd−3, . . . ,Ud−t+1, the analysis is analogous.DenoteO(rank1approx(·)) as
the complexity of the rank-1 approximation procedure, depending onwhich procedure
is used. Then, the updating of U1, . . . ,Ud−t has complexity

O(Rnd−t+1) + O(R · rank1approx(Bd−t+1,i ×d−t+1 u�
d−t+1,i)),

where the first term comes from computing Bd−t+1,i . Summarizing the above discus-
sions, we have:

123

830 Journal of Optimization Theory and Applications (2022) 194:821–851

Proposition 3.1 (Computational complexity of Algorithm 1) Assume that n1 = n2 =
· · · = nd = n. The computational complexity of Algorithm 1 is

O(nd+1) +
t+1∑

j=2

O(Rnd− j+2) + O(t R2n)

+O(R · rank1approx(Bd−t+1,i ×d−t+1 u�
d−t+1,i)).

In particular, if t = d, then it is

O(nd+1) +
∑d+1

j=2
O(Rnd− j+2) + O(dR2n),

which is dominated by O(nd+1).

Note that Yang [48, Procedure 3.1] requires t SVDs of size n × nd−1, while Algo-
rithm 1 performs only one SVD of this size plus additional operations of smaller
sizes. This makes Algorithm 1 more efficient, which will be confirmed by numerical
observations.

4 Approximation Bound

Approximation bound results for general tensors with 1 ≤ t ≤ d are presented in
Sect. 4.1, and then, we give the results for nearly orthogonal tensors in Sect. 4.2.

To begin with, we need some preparations. Recall that there is an intermediate
variable y in Procedures A–C. This variable is important in the analysis. To distinguish
y with respect to each i and j , when obtaining v j,i , we denote the associated y as

y j,i , which is of size
∏ j−1

k=1 nk . The procedures show that v j,i = Mj,iy j,i . Since

Mj,i = reshape
(
B j,i , n j ,

∏ j−1
k=1 nk

)
and B j,i = A× j+1 u�

j+1,i × j+2 · · · ×d u�
d,i ,

we have the following expression of
〈
u j,i , v j,i

〉
:

〈
u j,i , v j,i

〉 = 〈
u j,i , Mj,iy j,i

〉

=
〈
M�

j,iu j,i , y j,i

〉

=
〈
A × j u�

j,i × j+1 · · · ×d u�
d,i ,Y j,i

〉
, (4.7)

where we denote

Y j,i := reshape(y j,i , n1, . . . , n j−1) ∈ R
n1×···×n j−1 . (4.8)

Note that
∥
∥Y j,i

∥
∥
F = 1 according to Procedures A–C.

The above expression is only well defined when j ≥ 2 (see Algorithm 1). To make
it consistent when j = 1 (which happens when t = d), we set Y1,i = y1,i = 1. We

123

Journal of Optimization Theory and Applications (2022) 194:821–851 831

also denote M1,i := B1,i = v1,i accordingly. It is clear that (4.7) still makes sense
when j = 1.

On the other hand, Vj in the algorithm is only definedwhen j = d−t+1, . . . , d−1.
For convenience, we denote

Vd = [vd,1, . . . , vd,R] ∈ R
nd×R with vd,i := λi (A(d))ud,i , i = 1, . . . , R. (4.9)

We then define Bd−t,i . Note that in the algorithm, B j,i is only defined when j ≥
d− t+1.We thus similarly define Bd−t,i := A×d−t+1u�

d−t+1,i ×d−t+2 · · ·×d u�
d,i ∈

R
n1×···×nd−t , i = 1, . . . , R. When t = d, B0,i ’s are scalars.

4.1 Approximation Bound for General Tensors

When t = 1,Algorithm1 coincideswithYang [48, Procedure 3.1] if they take the same
best rank-1 approximation procedure. Thus, similar to Yang [48, Proposition 3.2], we
have:

G(U1, . . . ,Ud) =
R∑

i=1

〈

A ×d u�
d,i ,

d−1⊗

j=1

u j,i

〉2

≥
R∑

i=1

∥
∥
∥A ×d u�

d,i

∥
∥
∥
2

F

ζ(d − 1)2

=
R∑

i=1

λi (A(d))
2

ζ(d − 1)2
, (4.10)

where the inequality comes from (3.6), and the last equality is due to that the unfolding
of A ×d u�

d,i to a vector is exactly vd,i defined in (4.9).
The remaining part is focused on the t ≥ 2 cases. We first present an overview and

informal analysis of the approximation bound, under the setting that (3.4) holds with
a factor α j , and then we detail α j . The formal approximation bound results are stated
in the last of this subsection.

Lemma 4.4 (Informal approximation bound of Algorithm 1) Let 2 ≤ t ≤ d and let
U1, . . . ,Ud be generated by Algorithm 1. If for each d − t + 1 ≤ j ≤ d − 1, there
holds

∑R

i=1

〈
u j,i , v j,i

〉2 ≥ α j

∑R

i=1

〈
u j+1,i , v j+1,i

〉2
, (4.11)

where α j ∈ (0, 1], then we have the following approximation bound:

G(U1, . . . ,Ud) ≥ 1

ζ(d − t)2
∏d−1

j=d−t+1
α j ·

∑R

i=1
λi (A(d))

2

≥ 1

ζ(d − t)2
∏d−1

j=d−t+1
α j · Gmax,

where 1/ζ(d − t) is the rank-1 approximation ratio of n1 × · · · × nd−t tensors, as
noted in (3.6).

123

832 Journal of Optimization Theory and Applications (2022) 194:821–851

Proof To make the analysis below consistent with the case t = d that does not require
perform rank-1 approximation, we denote ζ(0) = 1 and

⊗0
j=1 u j,i = 1. It holds that

G(U1, . . . ,Ud) =
R∑

i=1

〈

A,
⊗d

j=1
u j,i

〉2

=
R∑

i=1

〈

Bd−t,i ,
⊗d−t

j=1
u j,i

〉2

≥ 1

ζ(d − t)2

R∑

i=1

∥
∥Bd−t,i

∥
∥2
F = 1

ζ(d − t)2
max

‖Y‖F=1

〈Bd−t,i ,Y
〉

≥ 1

ζ(d − t)2

R∑

i=1

〈Bd−t,i ,Yd−t+1,i
〉2 ;

here, the first inequality follows from the setting (3.6), and the second one is due to
that Yd−t+1,i ∈ R

n1×···×nd−t defined in (4.8) satisfies
∥
∥Yd−t+1,i

∥
∥
F = 1. From the

definition of Bd−t,i and (4.7), we have

〈Bd−t,i ,Yd−t+1,i
〉 =

〈
A ×d−t+1 u�

d−t+1,i ×d−t+2 · · · ×d u�
d,i ,Yd−t+1,i

〉

= 〈
ud−t+1,i , vd−t+1,i

〉
.

It thus follows from (4.11) that

G(U1, . . . ,Ud) ≥ 1

ζ(d − t)2

R∑

i=1

〈
ud−t+1,i , vd−t+1,i

〉2

≥ · · ·
≥ 1

ζ(d − 1)2
∏d−t

j=d−t+1
α j ·

∑R

i=1

〈
ud,i , vd,i

〉2
.

From (4.9) and that
∥
∥u j,i

∥
∥ = 1, we see that

∑R
i=1

〈
u j,i , v j,i

〉2 = ∑R
i=1 λi (A(d))

2 ≥
Gmax, where Lemma 2.3 gives the inequality. The result follows. ��

4.1.1 On Chain Inequality (4.11)

To establish the connection between
〈
u j,i , v j,i

〉
and

〈
u j+1,i , v j+1,i

〉
, we need to detail

(3.5). We first simply assume that (3.5) holds with a factor β j , and later we present β j

in Lemma 4.6. The proofs of Lemmas 4.5 and 4.6 are left to Appendix A.

Lemma 4.5 Let 2 ≤ t ≤ d and let U1, . . . ,Ud be generated by Algorithm 1. If for
each d − t + 1 ≤ j ≤ d − 1, there holds

∥
∥v j,i

∥
∥2 ≥ β j

∥
∥Mj,i

∥
∥2
F , i = 1, . . . , R, (4.12)

123

Journal of Optimization Theory and Applications (2022) 194:821–851 833

where β j ∈ (0, 1] (if j = 1 then (4.12) holds with β j = 1), then we have for
j = d − t + 1, . . . , d − 1, and i = 1, . . . , R,

R∑

i=1

〈
u j,i , v j,i

〉2 ≥ β j

R

R∑

i=1

〈
u j+1,i , v j+1,i

〉2
.

Remark 4.2 When j = 1 (this happens when t = d), according to Algorithm 1,
v1,i = B1,i = M1,i for each i , and so (4.12) holds with β1 = 1.

We then specify (4.12). Denote E as the expectation operator.

Lemma 4.6 For 2 ≤ j ≤ d − 1, if v j,i is generated from Mj,i by Procedures A or B,
then it holds that

∥
∥v j,i

∥
∥2 ≥ 1

n j

∥
∥Mj,i

∥
∥2
F .

If v j,i is generated by Procedure C, then it holds that

E
∥
∥v j,i

∥
∥2 ≥ 1

n j

∥
∥Mj,i

∥
∥2
F .

The above two lemmas show that (4.12) is crucial in deriving the approximation
bound. (4.12) also implies that it is possible to devise get_v_from_Mwithout using
the form Mj,iy j,i , which can be studied in the future.

4.1.2 Putting the Pieces Together

Let β j be such that

β j = n−1
j if 2 ≤ j ≤ d − 1, and β j = 1 if j = 1.

Based on (4.10) and Lemmas 4.4–4.6, the main results are stated as follows.

Theorem 4.2 (Formal approximation bound) Let 1 ≤ t ≤ d and let U1, . . . ,Ud be
generated by Algorithm 1. For j = d − t + 1, . . . , d − 1, i = 1, . . . , R, if v j,i ’s are
generated deterministically by Procedures A or B, then

G(U1, . . . ,Ud) ≥ 1

ζ(d − t)2
∏d−1

j=d−t+1

β j

R
·
∑R

i=1
λi (A(d))

2

≥ 1

ζ(d − t)2
∏d−1

j=d−t+1

β j

R
· Gmax;

123

834 Journal of Optimization Theory and Applications (2022) 194:821–851

if v j,i ’s are generated randomly by Procedure C, then

EG(U1, . . . ,Ud) ≥ 1

ζ(d − t)2
∏d−1

j=d−t+1

β j

R
·
∑R

i=1
λi (A(d))

2

≥ 1

ζ(d − t)2
∏d−1

j=d−t+1

β j

R
· Gmax.

The ratio 1
ζ(d−t)2

∏d−1
j=d−t+1

β j
R is

⎧
⎨

⎩

1
Rd−1

∏d−1
j=2 n j

, t = d,

1
Rt−1ζ(d−t)2

∏d−1
j=d−t+1 n j

, 1 ≤ t < d.

Discussions on the approximation bound are left to Appendix B. In particular, the
empirical study indicates that the approximation bound might be independent of R.
However, how to improve it still needs further study.

Reducing to thebest rank-1 approximationproblemmax‖u j‖=1,1≤ j≤d

〈
A,
⊗d

j=1 u j

〉

i.e., R = 1, t = d, from Theorem 4.2 we have the following corollary.

Corollary 4.1 Let u j , 1 ≤ j ≤ d be generated by Algorithm 1 with R = 1 and t = d.
Then, the approximation ratio is 1√∏d−1

j=2 n j

(either in the deterministic or the expected

sense).

The above ratio is of the same order as [13, 51], which is not the best to date [12,

40] (it lacks a factor
√∏d−1

j=2 log n j). However, our aim is not to compare them in
the context of rank-1 approximation. Moreover, even in this case, Algorithm 1 with
Procedures B and C is new (in fact, after this work is almost finished, we find that
in the rank-1 setting, Algorithm 1 with Procedure A is essentially the same as [13,
Algorithm 1 with DR 2].).

4.2 Approximation Results for Nearly Orthogonal Tensors

We consider the following type of tensors in this subsection:

Assumption 4.1

A =
∑R

i=1
σi
⊗d

j=1
u∗
j,i + E, (4.13)

where the last t U∗
j ’s are orthonormal, and the first (d − t) U∗

j ’s are columnwisely
normalized. We assume that σ1 > · · · > σR > 0. E denotes the noisy tensor.

The cases that σi1 = σi2 for some 1 ≤ i1 < i2 ≤ R need more assumptions and
analysis, which is out of the current scope.

Running Algorithm 1 on A with t ≥ 2, it is easy to obtain the following results.

123

Journal of Optimization Theory and Applications (2022) 194:821–851 835

Proposition 4.2 Let A satisfy Assumption 4.1 with t ≥ 2 and E = 0. Let U1, . . . ,Ud

be generated by Algorithm 1, where t in the algorithm takes the same value as that in
the assumption. Then,

G(U1, . . . ,Ud) =
∑R

i=1
σ 2
i = Gmax, and Uj = U∗

j , j = 1, . . . , d,

where for U j = U∗
j , we ignore the sign, i.e., it in fact holds u j,i = ±u∗

j,i for each j
and i .

Remark 4.3 This proposition also shows that Algorithm 1 is well designed for orthog-
onal tensors.

The proof is left to Appendix A. From its proof and by matrix perturbation theory,
it is not hard to obtain the perturbed version of Proposition 4.2:

Proposition 4.3 Under the setting of Proposition 4.2, if E �= 0 is small enough, then
we have G(U1, . . . ,Ud) = Gmax − O(‖E‖), where the constant behind the big O is
nonnegative, and

min{
∥
∥
∥u j,i + u∗

j,i

∥
∥
∥ ,

∥
∥
∥u j,i − u∗

j,i

∥
∥
∥} = O(‖E‖), j = 1, . . . , d, i = 1, . . . , R.

It remains to consider the case that t = 1 in Assumption 4.1, i.e., only U∗
d is

orthonormal. In general, if there are no additional assumptions onU∗
j , j = 1, . . . , d−1,

then it is hard to obtain the approximation results. For instance, if A = PQ� where
P is orthonormal but Q is not, then it is hard to recover P and Q. We thus make the
following incoherence assumption:

Assumption 4.2 There exists at least one U∗
j , 1 ≤ j ≤ d − 1 that is incoherent with

modules 0 ≤ δ < 1, i.e.,

∃1 ≤ j ≤ d − 1, with
∣
∣
∣
〈
u∗
j,i1 ,u

∗
j,i2

〉∣
∣
∣ ≤ δ, ∀i1 �= i2.

It is clear that U∗
j is a nearly orthonormal matrix if δ is small enough. In what fol-

lows, we assume without loss of generality that U∗
d−1 satisfies Assumption 4.2. We

immediately have:

Proposition 4.4 If U∗
d−1 is incoherent with modules δ, then U∗−d is also incoherent

with modules δ.

We consider the expression of A(d)A�
(d). Let Σ := diag(σ1, . . . , σR) and U∗−d ∈

R

∏d−1
j=1 n j×R be the matrix whose i-th column is the vectorization of

⊗d−1
j=1 u

∗
j,i . We

have

123

836 Journal of Optimization Theory and Applications (2022) 194:821–851

A(d)A
�
(d) = U∗

dΣ(U∗−d)
�U∗−dΣ(U∗

d)� + O(E)

= U∗
dΣ2(U∗

d)� +U∗
dΣ

×

⎡

⎢
⎢
⎢
⎣

0 (u∗−d,1)
�u∗−d,2 ··· (u∗−d,1)

�u∗−d,R

... 0
. . .

...
...

. . . 0
...

(u∗−d,R)�u∗−d,1 ··· (u∗−d,R)�u∗−d,R−1 0

⎤

⎥
⎥
⎥
⎦

Σ(U∗
d)�

+ O(E)

= U∗
dΣ2(U∗

d)� + O(δ) + O(E),

namely, A(d)A�
(d) is a perturbation of the eigen-decomposition U∗

dΣ2(U∗
d)�, given

that δ and E are small enough. If Assumption 4.1 holds, by matrix perturbation theory,
the above discussion implies that

min{∥∥ud,i + u∗
d,i

∥
∥ ,
∥
∥ud,i − u∗

d,i

∥
∥} = O(δ) + O(‖E‖), i = 1, . . . , R,

where Ud is generated by the algorithm. It then follows that A ×d u�
d,i is a nearly

rank-1 tensor with perturbation O(δ) + O(E), and so

min{
∥
∥
∥u j,i + u∗

j,i

∥
∥
∥ ,

∥
∥
∥u j,i − u∗

j,i

∥
∥
∥} = O(δ) + O(‖E‖), j = 1, . . . , d − 1.

We thus have a similar result as Proposition 4.3:

Proposition 4.5 Denote U1, . . . ,Ud as the factors generated by Algorithm 1, where
Assumption 1 holds with t = 1; furthermore, Assumption 4.2 holds. If E and δ are
small enough, and we also set t = 1 in the algorithm, then G(U1, . . . ,Ud) = Gmax −
O(δ) − O(‖E‖), where the constants behind the big O are nonnegative, and

min
{∥
∥
∥u j,i + u∗

j,i

∥
∥
∥ ,

∥
∥
∥u j,i − u∗

j,i

∥
∥
∥
}

= O(δ) + O(‖E‖), j = 1, . . . , d, i = 1, . . . , R.

5 Numerical Study

We evaluate the performance of Algorithm 1with Procedures A–C, and compare them
with Yang [48, Procedure 3.1]. All the computations are conducted on an Intel i7-7770
CPU desktop computer with 32GB of RAM. The supporting software is MATLAB
R2019b. TheMATLABpackageTensorlab [46] is employed for tensor operations. The
MATLAB code is available in the folder “alg” of https://github.com/yuningyang19/
epsilon-ALS with the name “approx_alg_new”.
Performance of approximation algorithms: we compare Algorithm 1 with Procedures
A–C with [48, Procedure 3.1] in this part. They are, respectively, marked as Algo-
rithm 1 (A), Algorithm 1 (B), Algorithm 1 (C), and Yang2020. All the algorithms

123

https://github.com/yuningyang19/epsilon-ALS
https://github.com/yuningyang19/epsilon-ALS

Journal of Optimization Theory and Applications (2022) 194:821–851 837

employ the same rank1approx procedure [48, Procedure 3.2] for solving the rank-
1 approximation subproblems. The tensors A ∈ R

n×n×n×n are randomly generated
where every entry obeys the standard normal distribution. The presented results are
averaged over 50 instances for each case.

We first fix R = 10, and let n vary from 10 to 100. The results are depicted in
Fig. 2. Algorithm 1 (A) is in red with star markers, Algorithm 1 (B) is in magenta
with circle markers, Algorithm 1 (C) is in blue with square markers, and Yang2020
is in black with right arrow markers. The left panels show the curves of the objective
valuesG(U1, . . . ,Ud) versus n, fromwhichwe observe that Algorithm 1 (A) performs
the best, followed by Algorithm 1 (B). This is because by using SVDs, Procedure A
retains more information in v than other procedures. Yang2020 performs not as well
as Algorithm 1, and its performance gets worse when t increases. This also has been
reported in [48, Table 3.1], while the performance of Algorithm 1 is more stable.
Therefore, we may conclude that Algorithm 1 exploits the structure of the problem
better thanYang2020. The right panels show theCPU time versus n, fromwhichwe see
that Yang2020 needs more time than Algorithm 1. This is because Yang2020 requires
to perform t SVDs of size n × nd−1, while the most expensive step of Algorithm 1
is only one SVD of this size. Considering Procedures A–C themselves, Algorithm 1
(A) is the most expensive one, followed by Algorithm 1 (B). The randomized version,
i.e., Algorithm 1 (C), is the cheapest one.

We then fix n = 80, t = 3, and vary R from 5 to 80. The results are plotted in
Fig. 3, from which we still observe that Algorithm 1 (A) performs the best in terms
of the objective value. Considering the CPU time, Algorithm 1 (B) and 1 (C) seem to
be far better. This shows the superiority of SVD-free procedures for computing the
vector v concerning the CPU time.
Performance of approximation algorithms plus ALS for factor recovery: the ten-
sors are generated similarly as [41, 48]: A = B/ ‖B‖ + β · N /‖N‖, where
B = ∑R

i=1 σi
⊗d

j=1 u
∗
j,i , N is an unstructured tensor, and β denotes the noise level.

Here we set β = 0.1, R = 10, d = 4, and n varies from 60 to 90. σi , U∗
j , and

N are randomly drawn from a uniform distribution in [−1, 1]. The last t U∗
j are

then orthonormalized by using the orth function, while the first (d − t) ones are
columnwisely normalized. We only test t = 3 and t = 4 cases. We compare ε-
ALS [48] with ε = 10−8 initialized by different initializers generated respectively by
Yang2020, Algorithm 1 (A), Algorithm 1 (B), and Algorithm 1 (C). ε-ALS initial-
ized by random initializers is used as a baseline. The stopping criterion for ε-ALS

is
∑d

j=1

∥
∥
∥U

(k+1)
j −U (k)

j

∥
∥
∥
F

/

∥
∥
∥U

(k)
j

∥
∥
∥
F

≤ 10−5 or k ≥ 2000. The relative error is

defined as follows [41, 48]:

rel.err =
∑d

j=1

∥
∥
∥U∗

j −U out
j · Π j

∥
∥
∥
F

/
∥
∥Uj

∥
∥
F ,

whereΠ j = argminΠ∈Π

∥
∥
∥U∗

j −U out
j · Π

∥
∥
∥
F
,Π denotes the set of permutationmatri-

ces, andU out
j ’s are the factors output by the iterative algorithm.Finding the permutation

can be efficiently done by the Hungarian algorithm [22]. The presented results are
averaged over 50 instances for each case.

123

838 Journal of Optimization Theory and Applications (2022) 194:821–851

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Alg. 1 (A)
Alg. 1 (B)
Alg. 1 (C)
Yang 2020

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

C
P

U
 T

im
e

Alg. 1 (A)
Alg. 1 (B)
Alg. 1 (C)
Yang 2020

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Alg. 1 (A)
Alg. 1 (B)
Alg. 1 (C)
Yang 2020

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

C
P

U
 T

im
e

Alg. 1 (A)
Alg. 1 (B)
Alg. 1 (C)
Yang 2020

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Alg. 1 (A)
Alg. 1 (B)
Alg. 1 (C)
Yang 2020

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

C
P

U
 T

im
e

Alg. 1 (A)
Alg. 1 (B)
Alg. 1 (C)
Yang 2020

(a) t = 2. Left: G(U1, . . . , Ud) versus n; right: CPU time versus n.

(b) t = 3. Left: G(U1, . . . , Ud) versus n; right: CPU time versus n.

(c) t = 4. Left: G(U1, . . . , Ud) versus n; right: CPU time versus n.

Fig. 2 PerformanceofAlgorithm1 (A) (red and starmarkers),Algorithm1 (B) (magenta and circlemarkers),
Algorithm 1 (C) (blue and square markers), and [48, Procedure 3.1] (black and right arrow markers) for
approximately solving (2.2) whereA ∈ R

n×n×n×n are randomly generated. n varies from 10 to 100

The results when t = 3 and t = 4 are reported in Tables 1 and 2, in which ‘rel.err0’
and ‘time0, respectively, represent the relative error and CPU time evaluated at the
initializers. From the tables, we first observe that ε-ALS initialized by Yang2020 and
Algorithm 1 outperforms those with random initializations, considering both relative

123

Journal of Optimization Theory and Applications (2022) 194:821–851 839

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5
104

Alg. 1 (A)
Alg. 1 (B)
Alg. 1 (C)
Yang 2020

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

C
P

U
 T

im
e

Alg. 1 (A)
Alg. 1 (B)
Alg. 1 (C)
Yang 2020

(a) (b)

Fig. 3 Performances of Algorithm 1 (A) (red and star markers), Algorithm 1 (B) (magenta and circle
markers), Algorithm 1 (C) (blue and square markers), and [48, Procedure 3.1] (black and right arrow
markers) for approximately solving (2.2) where A ∈ R

80×80×80×80 are randomly generated. R varies
from 5 to 80

error and computational time. Comparing Algorithm 1with Yang2020, we can see that
inmost cases, ε-ALS initialized byAlgorithm1performs comparable or slightly better.
Comparing among ε-ALS initialized by the three versions of Algorithm 1, Algorithm
1 (C) is slightly worse in terms of time; this is because although Algorithm 1 (C) is the
most efficient, ε-ALS initialized by it needs more iterations than the others. Therefore,
it would be necessary to further improve the efficiency of the iterative algorithms.

Next, we fix d = t = 4, n = 100, β = 0.1, and vary R from 10 to 100. We also
fix n = 50, R = 10, and vary β from 0.05 to 1. Plots of relative error of different
methods are depicted in Fig. 4. From the table, we still observe that ε-ALS initialized
by approximation algorithms performs better than that with random initializers, and
the iterative algorithm initialized by Algorithm 1 is comparable with that initialized
by Yang2020.
CP approximation for clustering: tensor CP approximation for clustering works as
follows: Suppose thatwehave N samplesA1, . . . ,An ∈ R

n1×···×nd ,d ≥ 2. For a given
parameter R, and for unknown variables A ∈ R

N×R,Uj ∈ R
n j×R , j = 1, . . . , d, one

solves the following problem first:

min
A,U1,...,Ud

N∑

k=1

∥
∥
∥
∥Ak −

∑R

i=1
aki
⊗d

j=1
u j,i

∥
∥
∥
∥

2

F

s.t. A = (aki) ∈ R
N×R,U�

j U j = I , 1 ≤ j ≤ d,

(5.14)

where in aki ∈ R, k represents the row index while i is the column index. Write
ak := [ak1, . . . , akR]� ∈ R

R , i.e., it is the transpose of the k-th row of A. Equation
(5.14) means that one finds a common subspace inRn1×···×nd , which is spanned by the
basis

⊗d
j=1 u j,i , i = 1, . . . , R, and projects the samples onto this subspace. ak can be

seen as a representation ofAk . This canbe regarded as a dimension reduction procedure
[32, 35]. By stackingAk’s into a (d + 1)-th order tensorA withA(k, :, . . . , :) = Ak ,
and denoting ai as the i-th column of A, the objective function of (5.14) can be

123

840 Journal of Optimization Theory and Applications (2022) 194:821–851

Ta
bl
e
1

ε
-A

L
S
in
iti
al
iz
ed

by
di
ff
er
en
ts
tr
at
eg
ie
s

n
Y
an
g2

02
0

A
lg
or
ith

m
1
(A

)
A
lg
or
ith

m
1
(B

)
A
lg
or
ith

m
1
(C

)
R
an
do

m

60
R
el
.e
rr
.(
re
l.e
rr
0
)

0.
01

39
(0
.0
36

6)
0.
01

40
(0
.0
29

5)
0.
01

37
(0
.0
34

8)
0.
02

18
(0
.0
68

0)
0.
02

91

It
er
.

7.
32

6.
26

8.
70

8.
04

18
.7
2

T
im

e
(t
im

e0
)

0.
58

64
(0
.1
67

0)
0.
51

55
(0
.1
52

7)
0.
56

45
(0
.0
93

1)
0.
53

40
(0
.0
81

0)
0.
92

70
R
el
.e
rr
.(
re
l.e
rr
0
)

0.
01

25
(0
.0
25

5)
0.
01

25
(0
.0
17

7)
0.
01

90
(0
.0
25

2)
0.
01

97
(0
.0
48

9)
0.
02

85

It
er
.

4.
50

4.
34

4.
38

4.
68

32
.9
2

T
im

e
(t
im

e0
)

0.
71

88
(0
.3
63

1)
0.
62

09
(0
.2
64

4)
0.
52

05
(0
.1
64

6)
0.
54

40
(0
.1
55

8)
2.
71

00

80
R
el
.e
rr
.(
re
l.e
rr
0
)

0.
01

91
(0
.0
23

9)
0.
01

86
(0
.0
21

6)
0.
01

89
(0
.0
21

8)
0.
01

14
(0
.0
34

3)
0.
01

93

It
er
.

19
.2
0

9.
24

9.
72

24
.4
4

35
.0
8

T
im

e
(t
im

e0
)

3.
15

58
(0
.6
19

8)
1.
76

79
(0
.3
63

3)
1.
72

81
(0
.2
64

7)
3.
50

75
(0
.2
46

0)
4.
58

28

90
R
el
.e
rr
.(
re
l.e
rr
0
)

0.
00

30
(0
.0
09

6)
0.
00

30
(0
.0
05

7)
0.
00

30
(0
.0
10

9)
0.
00

30
(0
.0
31

4)
0.
01

08

It
er
.

5.
52

4.
92

7.
56

10
.3
8

32
.1
0

T
im

e
(t
im

e0
)

2.
48

42
(1
.0
17

2)
1.
88

17
(0
.5
41

0)
2.
24

18
(0
.3
97

9)
2.
75

13
(0
.3
62

0)
6.
41

16

B
ol
d
va
lu
es

in
di
ca
te
th
at
th
ey

ar
e
th
e
be
st
am

on
g
th
e
co
m
pa
re
d
on

es
t
=

3
an
d
R

=
10

ca
se
s.
‘r
el
.e
rr
0
’
an
d
‘t
im

e0
’,
re
sp
ec
tiv

el
y,
re
pr
es
en
tt
he

re
la
tiv

e
er
ro
r
an
d
C
PU

tim
e
ev
al
ua
te
d
at
th
e
in
iti
al
iz
er
s

123

Journal of Optimization Theory and Applications (2022) 194:821–851 841

Ta
bl
e
2

ε
-A

L
S
in
iti
al
iz
ed

by
di
ff
er
en
ts
tr
at
eg
ie
s

Y
an
g2

02
0

A
lg
or
ith

m
1
(A

)
A
lg
or
ith

m
1
B

A
lg
or
ith

m
1
(C

)
R
an
do

m

60
R
el
.e
rr
.(
re
l.e
rr
0
)

0.
02

11
(0
.0
32

8)
0.
02

14
(0
.0
26

3)
0.
01

33
(0
.0
32

0)
0.
02

09
(0
.0
65

8)
0.
07

06

It
er
.

13
.4
2

12
.0
4

11
.3
2

18
.5
6

36
.6
8

T
im

e
(t
im

e0
)

0.
87

80
(0
.1
88

3)
0.
79

27
(0
.1
58

0)
0.
68

84
(0
.0
90

0)
1.
01

34
(0
.0
83

5)
1.
75

35

70
R
el
.e
rr
.(
re
l.e
rr
0
)

0.
01

29
(0
.0
30

0)
0.
01

29
(0
.0
20

9)
0.
01

26
(0
.0
31

8)
0.
01

32
(0
.0
56

0)
0.
03

69

It
er
.

31
.6
2

23
.3
4

18
.5
8

28
.9
4

45
.8
6

T
im

e(
tim

e0
)

3.
16

25
(0
.3
60

9)
2.
20

63
(0
.2
25

2)
1.
76

03
(0
.1
55

0)
2.
56

64
(0
.1
42

9)
4.
03

30

80
R
el
.e
rr
.(
re
l.e
rr
0
)

0.
02

79
(0
.0
34

7)
0.
02

76
(0
.0
29

4)
0.
02

79
(0
.0
31

2)
0.
02

80
(0
.0
47

7)
0.
03

61

It
er
.

16
.8
4

9.
58

13
.2
8

18
.5
2

24
.7
6

T
im

e
(t
im

e0
)

2.
96

19
(0
.6
23

4)
1.
80

31
(0
.3
55

5)
2.
19

36
(0
.2
61

9)
2.
77

64
(0
.2
48

2)
3.
30

43

90
R
el
.e
rr
.(
re
l.e
rr
0
)

0.
00

29
(0
.0
06

4)
0.
00

29
(0
.0
04

1)
0.
00

29
(0
.0
07

9)
0.
00

29
(0
.0
41

4)
0.
01

94

It
er
.

30
.5
6

11
.4
8

20
.0
6

16
.8
8

43
.4
6

T
im

e
(t
im

e0
)

6.
94

53
(0
.9
81

4)
3.
00

44
(0
.5
02

1)
4.
46

24
(0
.3
83

5)
3.
86

32
(0
.3
49

9)
8.
31

36

B
ol
d
va
lu
es

in
di
ca
te
th
at
th
ey

ar
e
th
e
be
st
am

on
g
th
e
co
m
pa
re
d
on

es
t
=

4
an
d
R

=
10

ca
se
s.
‘r
el
.e
rr
0
’
an
d
‘t
im

e0
’,
re
sp
ec
tiv

el
y,
re
pr
es
en
tt
he

re
la
tiv

e
er
ro
r
an
d
C
PU

tim
e
ev
al
ua
te
d
at
th
e
in
iti
al
iz
er
s

123

842 Journal of Optimization Theory and Applications (2022) 194:821–851

10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
R

el
at

iv
e

E
rr

or

Alg. 1 (A)
Alg. 1 (B)
Yang 2020
Random

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

R
el

at
iv

e
E

rr
or

Alg. 1 (A)
Alg. 1 (B)
Yang 2020
Random

(a) (b)

Fig. 4 Comparisons of relative error of ε-ALS initialized by Algorithm 1 (A) (red and star markers),
Algorithm 1 (B) (magenta and circle markers), [48, Procedure 3.1] (black and right arrow markers), and
random initializers (black and diamond markers). Left panel: n is fixed to 100, β = 0.1, t = 4, while R
varies from 10 to 100. Right panel: n is fixed to 50, t = 4, R = 10, while the noise level β varies from 0.05
to 1

written as
∥
∥
∥A −∑R

i=1 ai ⊗ u1,i ⊗ · · · ⊗ ud,i

∥
∥
∥
2

F
, and so (5.14) reduces to (2.2). Once

A = [a1, . . . , aR] is obtained, we use K -means for clustering, with the transpose of
the rows of A, namely, ak’s being the new samples. The cluster error is defined as
follows: Let K ≥ 2 be the given clusters, φ0 : Rn1×···×nd → {1, . . . , K } be the true
clustering mapping, and φ be the estimated one. Denote card(·) the cardinality of a
set and I (·) the indicator function. The following metric is used to measure clustering
performance [43]:

cluster err. := (N
2

)−1
card

({i, j} : I (ψ(Ai) = ψ(A j)
) �= I

(
ψ0(Ai) = ψ0(A j)

)
, i < j

)
.

We solve (5.14) by ε-ALS initialized by Algorithm 1 (A), (B), and by random initial-
ization,with R = 30 for the problem. For the first two initializations, themax iterations
of ε-ALS are set to 10, while it is 1000 for the random initialization. We also compare
them with vanilla K -means, namely the original samples Ak’s are first vectorized
and then clustered by K -means. The dataset COIL-100 http://www.cs.columbia.edu/
CAVE/software/softlib/coil-100.php is used, which consists of 100 objects, each con-
taining 72 images of size 128×128 viewing from different angles. In our experiment,
we each time randomly select K = {5, 7, 9, 11, 15, 20} objects, each object randomly
selecting M = 50 images, resulting into a third-order tensor A ∈ R

50K×128×128 that
consists of 50K samples. For each case we run 50 instances and present the averaged
results in Table 3.

Considering the clustering error, we observe from the table that armed with the
approximation algorithm, CP approximation-based method achieves better perfor-
mance than the vanilla K -means, while Algorithm 1 (A) is slightly better than
Algorithm 1 (B). However, if starting from a random initializer, CP approximation
based method is worse than vanilla K -means. This shows the usefulness of the intro-
duced approximation algorithm. Considering the computational time, we see that the
first two methods are also better than vanilla K -means. This is because ε-ALS is
stopped within 10 iterations and because the sample size after reduction is R = 30.
On the other side, the sample size for the vanilla K -means is 1282. We also observe

123

http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php

Journal of Optimization Theory and Applications (2022) 194:821–851 843

Table 3 CP approximation for clustering via first solving (5.14) by Algorithm 1 (A) + ε-ALS, Algorithm 1
(B) + ε-ALS, and random + ε-ALS

K Algorithm 1 (A) Algorithm 1 (B) Random vanilla K -means
Cluster err. Time Cluster err. Time Cluster err. Time. Cluster err. Time

5 1.10E−01 0.33 1.12E−01 0.24 1.44E−01 6.25 1.33E−01 0.44

7 9.60E−02 0.40 1.04E−01 0.31 1.64E−01 5.12 1.08E−01 0.79

9 8.24E−02 0.50 9.12E−02 0.42 1.40E−01 11.74 1.00E−01 1.25

11 7.48E−02 0.58 8.08E−02 0.50 1.21E−01 15.26 8.54E−02 1.76

15 6.31E−02 0.78 6.92E−02 0.68 9.56E−02 14.86 7.25E−02 3.23

20 5.36E−02 1.04 5.23E−02 0.98 7.84E−02 24.14 5.56E−02 5.58

Bold values indicate that they are the best among the compared ones
The iterative algorithm of the first two stops within 10 iterations while that for the third is 1000; then, the
K -means is performed to the reduced samples ak ’s. We also use the vanilla K -means as the baseline

Fig. 5 Cluster error and CPU time of CP approximation for clustering of one instance with varying R from
10 to 100, and K = 5. Left: cluster error versus R; right: CPU time versus R

that Random+ ε-ALS usually cannot stopwithin 1000 iterations, making it the slowest
one.

Wenext show the influence of R on the performance.Wefix an instancewith K = 5,
and vary R from 10 to 100.We plot the cluster error and CPU time of Algorithm 1 (A)
+ ε-ALS in Fig. 5. We see that the cluster error does not change a lot when R varies,
while around R = 30, the cluster error seems to be slightly better than the other cases.
This together with the CPU time shown in the right panel explains why we choose
R = 30 in the experiment.

6 Conclusions

In [48], an approximation procedure was proposed for orthogonal low-rank tensor
approximation, while the approximation bound was only established when the num-
ber of latent orthonormal factors is one. To fill this gap, a modified approximation
algorithm was developed in this work. It allows either deterministic or randomized
procedures to solve some key subproblems in the algorithm, therefore giving more
flexibility. The approximation bound, both in the deterministic and the expected senses,
has been established regardless of howmany orthonormal factors there are. Moreover,

123

844 Journal of Optimization Theory and Applications (2022) 194:821–851

compared with Yang [48, Procedure 3.1] which requires t SVDs of size n × nd−1,
the modified algorithm involves only one SVD of this size (plus other operations of
smaller size), making it more efficient. Numerical tests were provided to verify the
usefulness of the algorithm, and its performance is favorably compared with Yang [48,
Procedure 3.1]. One of the future work is that in Algorithm 1, instead of obtaining
B j,i fromA× j+1 u�

j+1,i · · ·×d u�
d,i , other choices of mixingA and u j,i are possible.

On the other hand, approaches for finding global solutions can be studied, where a
possible way is to use convex relaxation as those for rank-1 approximation [17, 30,
49]. Another possible research thread is to extend the notion of best rank-1 approxi-
mation ratio of a tensor space [25, 33] to the best rank-R approximation ratio setting
and study its properties.

Acknowledgements We thank the editor and the anonymous reviewers for their insightful comments and
suggestions that helped improve this manuscript. We thank Mr. Xianpeng Mao for his help in the experi-
ments. This work was supported by National Natural Science Foundation of China Grants 11801100 and
12171105, and the Fok Ying Tong Education Foundation Grant 171094.

A Proofs

Proof of Lemma 2.3 One notices that

∑R

i=1
λi (A(d))

2 = max
Xi

∑R

i=1

〈
A(d), Xi

〉2 s.t. ‖Xi‖F = 1, rank(Xi) = 1,
〈
Xi , X j

〉 = 0, i �= j,

where Xi ∈ R
nd×∏d−1

k=1 nk . The above problem is equivalent to

max
U ,V

∑R

i=1

(
u�
i A(d)vi

)2
s.t. U�U = I , ‖vi‖ = 1,

where U = [u1, . . . ,uR] ∈ R
nd×R and V = [v1, . . . , vR] ∈ R

∏d−1
k=1 nk×R . Note

that the above maximization problem is a relaxation of (2.2); thus
∑R

i=1 λi (A(d))
2 ≥

Gmax. ��
Proof of Lemma 4.5 Since the orthonormal Uj ’s, j = d − t + 1, . . . , d − 1, are given
by the polar decomposition of Vj , from Lemma 2.1, we have

〈
u j,i , v j,i

〉 ≥ 0. Using
the relation that a21 + · · · + a2R ≥ 1

R (a1 + · · · + aR)2 for nonnegative ai ’s, we have

∑R

i=1

〈
u j,i , v j,i

〉2 ≥ 1

R

(∑R

i=1

〈
u j,i , v j,i

〉
)2

= 1

R

〈
Uj , Vj

〉2

for each j . Lemma 2.2 shows that
〈
Uj , Vj

〉 = ∥
∥Vj

∥
∥∗; the norm relationship gives that∥

∥Vj
∥
∥∗ ≥ ∥

∥Vj
∥
∥
F . Thus,

∑R

i=1

〈
u j,i , v j,i

〉2 ≥ 1

R

∥
∥Vj

∥
∥2
F .

123

Journal of Optimization Theory and Applications (2022) 194:821–851 845

We distinguish the cases that j ≤ d − 2 and j = d − 1. For the former case,

∑R

i=1

〈
u j,i , v j,i

〉2 ≥ 1

R

∥
∥Vj

∥
∥2
F = 1

R

∑R

i=1

∥
∥v j,i

∥
∥2

(by (4.12)) ≥ β j

R

∑R

i=1

∥
∥Mj,i

∥
∥2
F

= β j

R

∑R

i=1

∥
∥
∥A × j+1 u�

j+1,i × j+2 · · · ×d u�
d,i

∥
∥
∥
2

F

≥ β j

R

∑R

i=1

〈
A × j+1 u�

j+1,i × j+2 · · · ×d u�
d,i ,Y j+1,i

〉2

(by (4.7)) = β j

R

∑R

i=1

〈
u j+1,i , v j+1,i

〉2
, (A.15)

where the equality in the third line follows from that Mj,i is the unfolding of B j,i =
A× j+1u�

j+1,i× j+2· · ·×du�
d , and the third inequality uses the fact that

∥
∥Y j+1,i

∥
∥
F = 1

where Y j,i was defined in (4.8).
When j = d −1, since Yd,i is not defined, there is a slight difference after the third

line of (A.15). In this case, we have

∑R

i=1

〈
ud−1,i , vd−1,i

〉2 ≥ βd−1

R

∑R

i=1

∥
∥
∥A ×d u�

d,i

∥
∥
∥
2

F

= βd−1

R

∑R

i=1
λi (A(d))

2 = βd−1

R

∑R

i=1

〈
ud,i , vd,i

〉2
,

where the first inequality comes from a similar analysis as (A.15), the first equality
follows from the definition of Ud , and the last one is due to the definition of Vd in
(4.9). The desired inequality thus follows. ��

Proof of Lemma 4.6 If v j,i is generated by Procedure A, we have

∥
∥v j,i

∥
∥2 = λ2max(Mj,i) ≥ 1

n j

∥
∥Mj,i

∥
∥2
F ,

where λmax(·) denotes the largest singular value of a matrix.
If v j,i is generated by Procedure B, we have

∥
∥v j,i

∥
∥2 = ∥

∥Mj,iy j,i
∥
∥2 =

n j∑

k=1

〈

mk
j,i ,

mk̄
j,i∥

∥
∥mk̄

j,i

∥
∥
∥

〉2

≥
∥
∥
∥mk̄

j,i

∥
∥
∥
2 ≥ 1

n j

∥
∥Mj,i

∥
∥2
F ,

where we recall that mk
j,i denotes the k-th row of Mj,i , and mk̄

j,i is the row with the
largest magnitude.

If v j,i is generated by Procedure C, since k̄ is uniformly and randomly chosen from

{1, . . . , n j }, this means that with equal probability, the random variable
∥
∥v j,i

∥
∥2 takes

123

846 Journal of Optimization Theory and Applications (2022) 194:821–851

the value
∑n j

k=1

〈
mk

j,i ,m
s
j,i/

∥
∥
∥ms

j,i

∥
∥
∥
〉2
, s = 1, . . . , n j , i.e.,

Prob

⎧
⎨

⎩

∥
∥v j,i

∥
∥2 =

n j∑

k=1

〈

mk
j,i ,

ms
j,i∥

∥
∥ms

j,i

∥
∥
∥

〉2
⎫
⎬

⎭
= 1

n j
, s = 1, . . . , n j .

Therefore,

E
∥
∥v j,i

∥
∥2 = 1

n j

n j∑

s=1

n j∑

k=1

〈

mk
j,i ,

ms
j,i∥

∥
∥ms

j,i

∥
∥
∥

〉2

≥ 1

n j

n j∑

s=1

∥
∥
∥ms

j,i

∥
∥
∥
2 = 1

n j

∥
∥Mj,i

∥
∥2
F .

The proof has been completed. ��
Proof of Proposition 4.2 To achieve this, we first show that Vj generated by Algorithm
1 satisfies

Vj = U∗
j · Σ, j = d − t + 1, . . . , d, (A.16)

where Σ = diag(σ1, . . . , σR). If (A.16) holds, then since Uj generated by the algo-
rithm is given by the polar decomposition of Vj , by Assumption 4.1, it follows

Uj = U∗
j , j = d − t + 1, . . . , d. (A.17)

(A.16) can be proved by the induction method starting from j = d. When j = d,
this is in fact given by (4.9). To see this, we only need to show that λi (A(d)) = σi
where we recall that λi (·) denotes the i-th largest singular value of a matrix. Let

U∗−d ∈ R

∏d−1
j=1 n j×R be thematrix whose i-th column is the vectorization of

⊗d−1
j=1 u

∗
j,i .

Under Assumption 4.1 when t ≥ 2, U∗−d is orthonormal, giving that U∗
dΣ(U∗−d)

�
is a reduced SVD of A(d), and the results follow. Assume that (A.16) holds when
j = d, d −1, . . . ,m; thenUj = U∗

j , j = d, d −1, . . . ,m. Therefore, it follows from
the algorithm that

Bm−1,i = A ×m u�
m,i ×m+1 × · · · ×d u�

d,i = σi
⊗m−1

j=1
u∗
j,i ,

which is a rank-1 tensor. Since Mj−1,i is the unfolding of Bm−1,i , it can be seen that
ym−1,i generated by Procedures A–C is just the vectorization of

⊗m−2
j=1 u∗

j,i , and so
vm−1,i = σiu∗

m−1,i , which demonstrates that (A.16) holds when j = m − 1. Thus,
(A.16) and (A.17) are valid for j = d − t + 1, . . . , d.

SinceA×d−t+1u�
d−t+1,i ×m+1× · · ·×d u�

d,i is of rank-1, the rank-1 approximation
procedure generates that u j,i = u∗

j,i , j = 1, . . . , d − t . Hence, G(U1, . . . ,Ud) =
G(U∗

1 , . . . ,U∗
d) = ∑R

i=1 σ 2
i . This completes the proof. ��

123

Journal of Optimization Theory and Applications (2022) 194:821–851 847

B Empirical Discussions on the Approximation Bound

Lemma 4.5 shows that the approximation ratio arises from two folds of each factor: the
lower bound of

∥
∥v j,i

∥
∥2 /

∥
∥Mj,i

∥
∥2
F and the lower bound of

∑R
i=1

〈
u j,i , v j,i

〉2
/
∥
∥Vj

∥
∥2
F .

The former reaches theworst bound1/n j whenMj,i is row-wisely orthogonal and each
row has equal magnitude; the latter attains the worst bound 1/R when Vj is of rank-
1 and each column admits equal magnitude. In reality, these two worst cases rarely
occur simultaneously, meaning that it is possible to further improve the theoretical
lower bound. Here, we show the real ratio and the theoretical ratio via examples as
follows.

We generate tensorsA ∈ R
n×n×n×n , where every entry obeys the standard normal

distribution. We set t = 4 for the problem. n varies from 10 to 100, where for each
n, 50 instances are generated. We use Procedure A in the algorithm. In Fig. 6(a), we

plot the curve of the real ratio
(∑R

i=1

∥
∥v j,i

∥
∥2 /

∥
∥Mj,i

∥
∥2
F

)
/R and the curve of the

theoretical ratio 1/n when j = 1, 2. The figure shows that although the real ratio is
better, it still approaches the theoretical one as n increases. In Fig. 6b, we fix n = 100
and vary R from 10 to 100. We plot the real ratio

∑R
i=1

〈
u j,i , v j,i

〉2
/
∥
∥Vj

∥
∥2
F and the

theoretical one 1/R. The figure shows that the real ratio is far better, while it also
decreases as R increases.

To further investigate the influence of n and R on the bound, we also plot the total
real ratio G(U1,...,Ud)

∑R
i=1 λmax(A(d))

2
and the theoretical one 1/R3n2 in Fig. 6c. The tensors are

the same as above, where in the left panel, we vary n from 10 to 100 with R = 10
fixed; in the right one, R varies from 10 to 100 with n = 100 fixed. The real ratio is
in red, and the theoretical ratio is in black with diamond markers. We see that the real
ratio decreases as n increases, confirming the observation of Fig. 6a. Moreover, the
real ratio is almost parallel to the theoretical ratio, showing that the theoretical ratio
is reasonable up to a constant (if we view R as a constant). The right panel shows
that when R increases, the real ratio does not decrease as much as the theoretical one,
showing that the term 1/R3 might be too loose in the theoretical ratio. Thus we also
plot the curve of 1

n2
, which is in black with right arrow markers. We see that 1/n2

is still under the curve of the real ratio, meaning that it is possible to improve the
theoretical ratio in the absence of R.

123

848 Journal of Optimization Theory and Applications (2022) 194:821–851

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
R

at
io

real ratio
theoretical ratio

10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
at

io

real ratio
theoretical ratio

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io

real ratio
theoretical ratio

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
at

io

real ratio
theoretical ratio

10 20 30 40 50 60 70 80 90 10010-7

10-6

10-5

10-4

10-3

10-2

10-1

R
at

io

10 20 30 40 50 60 70 80 90 10010-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

R
at

io

(a)

(b)

(c)

Fig. 6 Real ratio versus theoretical ratio

123

Journal of Optimization Theory and Applications (2022) 194:821–851 849

C Another get_v_from_M Procedure

Procedure v = get_v_from_M(M) (D)

Randomly and uniformly draw a vector y ∈ S
m−1, where Sm−1 denotes the unit sphere in R

m ; return
v = My.

Proposition C.6 Let v ∈ R
n be generated from M ∈ R

n×m by Procedure D. Then it
holds that E ‖v‖2 = 1

m ‖M‖2F .
Proof The proof is based on Lemmas C.7 and C.8. ��
Lemma C.7 Let y be randomly and uniformly drawn from the unit sphere Sm−1 inRm.
Then, it holds that

E(y(k))2 = 1/m, E y(k1)y(k2) = 0,

where k, k1, k2 = 1, . . . ,m, k1 �= k2, and y(k) denotes the k-th entry of y.

Proof The first property comes from He et al. [12, p. 896]. The second one uses
symmetry. Let z ∈ R

n be defined such that z(k) = y(k) for all k �= k1, and
z(k1) = −y(k1). Then, z is also uniformly distributed on the unit sphere, which
means that E z(k1)z(k2) = E y(k1)y(k2). By the definition of z, this means that
E y(k1)y(k2) = 0. Since k1 and k2 can be arbitrary, the results follow. ��
Lemma C.8 Let y be randomly and uniformly drawn from S

m−1. For any constant
vector a ∈ R

m, it holds that E 〈a, y〉2 = m−1‖a‖2.
Proof We have from Lemma C.7 that

E 〈a, y〉2 = E
∑m

k1=1

∑m

k2=1
a(k1)y(k1)a(k2)y(k2)

=
∑m

k=1
(a(k))2(y(k))2 +

∑

k1 �=k2
a(k1)a(k2)y(k1)y(k2) = m−1‖a‖2.

��
Remark C.4 Proposition C.6 shows that if Procedure D is used in Algorithm 1, then
the approximation bound will be worse than that based on the other three procedures,
as m is usually far larger than n in our context. Thus, we only leave this procedure in
the appendix for potential interest.

References

1. Ahmadi-Asl, S., Abukhovich, S., Asante-Mensah, M.G., Cichocki, A., Phan, A.H., Tanaka, T.,
Oseledets, I.: Randomized algorithms for computation of Tucker decomposition and higher order
SVD (HOSVD). IEEE Access 9, 28684–28706 (2021)

123

850 Journal of Optimization Theory and Applications (2022) 194:821–851

2. Che, M., Wei, Y., Yan, H.: The computation of low multilinear rank approximations of tensors via
power scheme and random projection. SIAM J. Matrix Anal. Appl. 41(2), 605–636 (2020)

3. Chen, J., Saad, Y.: On the tensor SVD and the optimal low rank orthogonal approximation of tensors.
SIAM J. Matrix Anal. Appl. 30(4), 1709–1734 (2009)

4. Cichocki, A., Mandic, D., De Lathauwer, L., Zhou, G., Zhao, Q., Caiafa, C., Phan, H.A.: Tensor
decompositions for signal processing applications: from two-way to multiway component analysis.
IEEE Signal Process. Mag. 32(2), 145–163 (2015)

5. Comon, P.: Independent component analysis, a new concept? Signal Process. 36(3), 287–314 (1994)
6. Comon, P.: Tensors: a brief introduction. IEEE Signal Process. Mag. 31(3), 44–53 (2014)
7. De Lathauwer, L.: A short introduction to tensor-based methods for factor analysis and blind source

separation. In: 2011 7th International Symposiumon Image andSignal Processing andAnalysis (ISPA),
pp. 558–563. IEEE (2011)

8. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J.
Matrix Anal. Appl. 21(4), 1253–1278 (2000)

9. Fu, T., Jiang, B., Li, Z.: Approximation algorithms for optimization of real-valued general conjugate
complex forms. J. Glob. Optim. 70(1), 99–130 (2018)

10. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl.
31(4), 2029–2054 (2010)

11. Guan, Y., Chu, D.: Numerical computation for orthogonal low-rank approximation of tensors. SIAM
J. Matrix Anal. Appl. 40(3), 1047–1065 (2019)

12. He, S., Jiang, B., Li, Z., Zhang, S.: Probability bounds for polynomial functions in random variables.
Math. Oper. Res. 39(3), 889–907 (2014)

13. He, S., Li, Z., Zhang, S.: Approximation algorithms for homogeneous polynomial optimization with
quadratic constraints. Math. Program. Ser. B 125, 353–383 (2010)

14. Higham, N.J.: Computing the polar decomposition-with applications. SIAM J. Sci. Stat. Comput. 7(4),
1160–1174 (1986)

15. Hu, S., Li, G.: Convergence rate analysis for the higher order power method in best rank one approxi-
mations of tensors. Numer. Math. 140(4), 993–1031 (2018)

16. Hu, S., Ye, K.: Linear convergence of an alternating polar decomposition method for low rank orthog-
onal tensor approximations. arXiv preprint arXiv:1912.04085 (2019)

17. Jiang, B., Ma, S., Zhang, S.: Tensor principal component analysis via convex optimization. Math.
Program. Ser. A 150, 423–457 (2015)

18. Kofidis, E., Regalia, P.: On the best rank-1 approximation of higher-order supersymmetric tensors.
SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002)

19. Kolda, T.G.: Orthogonal tensor decompositions. SIAM J. Matrix Anal. Appl. 23(1), 243–255 (2001)
20. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAMRev. 51(3), 455–500 (2009)
21. Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to

arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)
22. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Log. Q. 2(1–2), 83–97

(1955)
23. Li, J., Usevich, K., Comon, P.: Globally convergent Jacobi-type algorithms for simultaneous orthogonal

symmetric tensor diagonalization. SIAM J. Matrix Anal. Appl. 39(1), 1–22 (2018)
24. Li, J., Zhang, S.: Polar decomposition based algorithms on the product of Stiefel manifolds with

applications in tensor approximation. arXiv preprint arXiv:1912.10390 (2019)
25. Li, Z., Nakatsukasa, Y., Soma, T., Uschmajew, A.: On orthogonal tensors and best rank-one approxi-

mation ratio. SIAM J. Matrix Anal. Appl. 39(1), 400–425 (2018)
26. Lim, L.H., Comon, P.: Nonnegative approximations of nonnegative tensors. J. Chemom. 23(7–8),

432–441 (2009)
27. Lim, L.H., Comon, P.: Blind multilinear identification. IEEE Trans. Inf. Theory 60(2), 1260–1280

(2014)
28. Martin, C.D.M., Van Loan, C.F.: A Jacobi-type method for computing orthogonal tensor decomposi-

tions. SIAM J. Matrix Anal. Appl. 30(3), 1219–1232 (2008)
29. Minster, R., Saibaba, A.K., Kilmer, M.E.: Randomized algorithms for low-rank tensor decompositions

in the Tucker format. SIAM J. Math. Data Sci. 2(1), 189–215 (2020)
30. Nie, J., Wang, L.: Semidefinite relaxations for best rank-1 tensor approximations. SIAM J. Matrix

Anal. Appl. 35(3), 1155–1179 (2014)

123

http://arxiv.org/abs/1912.04085
http://arxiv.org/abs/1912.10390

Journal of Optimization Theory and Applications (2022) 194:821–851 851

31. Pan, J., Ng, M.K.: Symmetric orthogonal approximation to symmetric tensors with applications to
image reconstruction. Numer. Linear Algebra Appl. 25(5), e2180 (2018)

32. Pesquet-Popescu, B., Pesquet, J.C., Petropulu, A.P.: Joint singular value decomposition-a new tool for
separable representation of images. In: Proceedings 2001 International Conference on Image Process-
ing, vol. 2, pp. 569–572. IEEE (2001)

33. Qi, L.: The best rank-one approximation ratio of a tensor space. SIAM J. Matrix Anal. Appl. 32(2),
430–442 (2011)

34. Qi, Y., Comon, P., Lim, L.H.: Semialgebraic geometry of nonnegative tensor rank. SIAM J. Matrix
Anal. Appl. 37(4), 1556–1580 (2016)

35. Shashua, A., Levin, A.: Linear image coding for regression and classification using the tensor-rank
principle. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001, vol. 1, pp. I–I. IEEE (2001)

36. Sidiropoulos, N.D., Bro, R.: On the uniqueness of multilinear decomposition of N-way arrays. J.
Chemom. 14(3), 229–239 (2000)

37. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E., Faloutsos, C.: Tensor decom-
position for signal processing and machine learning. IEEE Trans. Signal Process. 65(13), 3551–3582
(2017)

38. Sidiropoulos, N.D., Giannakis, G.B., Bro, R.: Blind PARAFAC receivers for DS-CDMA systems.
IEEE Trans. Signal Process. 48(3), 810–823 (2000)

39. da Silva, A.P., Comon, P., de Almeida, A.L.F.: A finite algorithm to compute rank-1 tensor approxi-
mations. IEEE Signal Process. Lett. 23(7), 959–963 (2016)

40. So, A.M.C.: Deterministic approximation algorithms for sphere constrained homogeneous polynomial
optimization problems. Math. Program., Ser. B 129(2), 357–382 (2011)

41. Sørensen, M., De Lathauwer, L., Comon, P., Icart, S., Deneire, L.: Canonical polyadic decomposition
with a columnwise orthonormal factor matrix. SIAM J. Matrix Anal. Appl. 33(4), 1190–1213 (2012)

42. Sørensen, M., De Lathauwer, L., Deneire, L.: PARAFAC with orthogonality in one mode and applica-
tions in DS-CDMA systems. In: 2010 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 4142–4145. IEEE (2010)

43. Sun,W.,Wang, J., Fang,Y.:Regularized k-means clustering of high-dimensional data and its asymptotic
consistency. Electron. J. Stat. 6, 148–167 (2012)

44. Uschmajew, A.: Local convergence of the alternating least squares algorithm for canonical tensor
approximation. SIAM J. Matrix Anal. Appl. 33(2), 639–652 (2012)

45. Vannieuwenhoven, N., Vandebril, R., Meerbergen, K.: A new truncation strategy for the higher-order
singular value decomposition. SIAM J. Sci. Comput. 34(2), A1027–A1052 (2012)

46. Vervliet, N., Debals, O., Sorber, L., Van Barel, M., De Lathauwer, L.: Tensorlab 3.0 (2016). http://
www.tensorlab.net

47. Wang, L., Chu, M.T., Yu, B.: Orthogonal low rank tensor approximation: alternating least squares
method and its global convergence. SIAM J. Matrix Anal. Appl. 36(1), 1–19 (2015)

48. Yang, Y.: The epsilon-alternating least squares for orthogonal low-rank tensor approximation and its
global convergence. SIAM J. Matrix Anal. Appl. 41(4), 1797–1825 (2020)

49. Yang, Y., Feng, Y., Huang, X., Suykens, J.A.K.: Rank-1 tensor properties with applications to a class
of tensor optimization problems. SIAM J. Optim. 26(1), 171–196 (2016)

50. Zhang, J., Saibaba, A.K., Kilmer, M.E., Aeron, S.: A randomized tensor singular value decomposition
based on the t-product. Numer. Linear Algebra Appl. 25(5), e2179 (2018)

51. Zhang, X., Qi, L., Ye, Y.: The cubic spherical optimization problems. Math. Comput. 81(279), 1513–
1525 (2012)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://www.tensorlab.net
http://www.tensorlab.net

	On Approximation Algorithm for Orthogonal Low-Rank Tensor Approximation
	Abstract
	1 Introduction
	2 Preliminaries
	3 Approximation Algorithm
	4 Approximation Bound
	4.1 Approximation Bound for General Tensors
	4.1.1 On Chain Inequality (4.11)
	4.1.2 Putting the Pieces Together

	4.2 Approximation Results for Nearly Orthogonal Tensors

	5 Numerical Study
	6 Conclusions
	Acknowledgements
	A Proofs
	B Empirical Discussions on the Approximation Bound
	C Another get_v_from_M Procedure
	References

